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Abstract
Graph neural networks (GNNs) have demon-
strated success in learning representations of brain
graphs derived from functional magnetic reso-
nance imaging (fMRI) data. However, existing
GNN methods assume brain graphs are static over
time and the graph adjacency matrix is known
prior to model training. These assumptions con-
tradict evidence that brain graphs are time-varying
with a connectivity structure that depends on the
choice of functional connectivity measure. Incor-
rectly representing fMRI data with noisy brain
graphs can adversely affect GNN performance.
To address this, we propose DynDepNet, a novel
method for learning the optimal time-varying
dependency structure of fMRI data induced by
downstream prediction tasks. Experiments on
real-world fMRI datasets, for the task of sex clas-
sification, demonstrate that DynDepNet achieves
state-of-the-art results, outperforming the best
baseline in terms of accuracy by approximately
8 and 6 percentage points, respectively. Further-
more, analysis of the learned dynamic graphs re-
veals prediction-related brain regions consistent
with existing neuroscience literature.

1. Introduction
Functional magnetic resonance imaging (fMRI) is primar-
ily used to measure blood-oxygen level dependent (BOLD)
signal (or blood flow) in the brain (Huettel et al., 2004). It
is one of the most frequently used non-invasive imaging
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techniques for investigating brain function (Power et al.,
2014; Just & Varma, 2007). Typically, this is achieved by
employing a statistical measure of pairwise dependence,
such as Pearson correlation or mutual information. These
measures are used to summarize the functional connectivity
(FC) between BOLD signals originating from anatomically
separate brain regions (Friston, 1994). The resulting FC
matrices, or functional connectomes, have found extensive
application in graph-based network analyses (Sporns, 2022;
Wang et al., 2010) and as inputs to machine learning mod-
els (He et al., 2020) offering valuable insights into both
normal and abnormal brain function.

Graph neural networks (GNNs) are a type of deep neural
network that can learn representations of graph-structured
data (Wu et al., 2020a). GNNs employ a message-passing
scheme to learn these representations by aggregating in-
formation from the neighborhoods of nodes, utilizing the
observed graph structure or adjacency matrix. By prepro-
cessing FC matrices into adjacency matrices that correspond
to brain graphs, GNNs have recently exhibited success in
various fMRI-related prediction tasks. These tasks include
predicting phenotypes such as biological sex (Azevedo et al.,
2022; Kim & Ye, 2020) and age (Gadgil et al., 2020), ana-
lyzing brain activity during different cognitive tasks (Zhang
et al., 2021), and identifying brain disorders like autism
spectrum disorder (Li et al., 2021) and attention deficit hy-
peractivity disorder. (Zhao et al., 2022).

However, the majority of existing GNN methods applied to
fMRI data rely on two key assumptions: (1) brain graphs
are static and not time-varying, and (2) the true dependency
structure between brain regions is known prior to model
training. Although these assumptions are convenient for
implementation purposes, they contradict a growing body of
evidence suggesting FC dynamically changes over time (Cal-
houn et al., 2014; Chang & Glover, 2010), and that no one
statistical measure of dependency exists for truly captur-
ing FC (Mohanty et al., 2020). In order to ensure GNNs
can effectively learn meaningful representations for use in
downstream tasks, it is crucial to establish an approach for
constructing the dependency structure of dynamic graphs
that accurately reflects the underlying fMRI data.
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Figure 1. The conceptual framework of DynDepNet Fθ(·) = FθC ◦ FθG(·) which consists of a dynamic graph learner FθG(·) and
a dynamic graph classifier FθC (·). The dynamic graph learner takes BOLD signals from fMRI data as input X1:T ′ ∈ RV ×T ′

and
outputs a dynamic brain graph G1:T = (A1:T ,F1:T ) = FθG(X1:T ′) where A1:T ∈ (0, 1)V ×V ×T is a dynamic adjacency matrix,
F1:T ∈ RV ×B×T is dynamic node feature matrix, and T ≤ T ′. The dynamic graph classifier predicts class labels using the learnt
dynamic brain graph ŷ = FθC (G1:T ). Each of these two components are further spit into individual modules describing their purpose.

Contributions We propose DynDepNet1, the first end-
to-end trainable GNN-based model designed to learn task-
specific dynamic brain graphs from fMRI data in a super-
vised manner. DynDepNet addresses the limitations of exist-
ing methods by constructing dynamic graph adjacency matri-
ces using spatially attended brain region embeddings derived
from windowed BOLD signals. Furthermore, DynDepNet
incorporates temporal attention and learnable edge sparsity
to enhance classification performance and interpretability.
Through extensive experiments on real-world resting-state
and task fMRI datasets, DynDepNet achieves state-of-the-
art performance in the task of biological sex classification.
Additionally, an interpretability analysis of the learned dy-
namic graph adjacency matrices reveals prediction-related
brain regions that align with existing neuroscience literature.

2. Related work
Brain graph classification Recent methods for brain
graph classification employ static measures of FC such as
Pearson correlation (Zhang et al., 2021; Kim & Ye, 2020;
Azevedo et al., 2022; Huang et al., 2022) or partial corre-
lation (Li et al., 2021) for graph construction. However,
this approach overlooks the dynamic nature of FC, which
is known to change over time (Calhoun et al., 2014), and
the fact that the choice of FC measure affects the perfor-
mance on downstream tasks (Korhonen et al., 2021). To
capture the non-stationary nature of FC, recent methods
have emerged that specifically aim to learn representations
of dynamic brain graphs. For instance, Gadgil et al. (2020)
propose a variant of the spatial-temporal GNN (Yan et al.,
2018) for fMRI data. However, only graph node features are

1Code available at https://github.com/
ajrcampbell/DynDepNet

taken as time-varying whilst the adjacency matrix remains
static. Similarly, Kim et al. (2021) leverage spatial-temporal
attention within a transformer framework (Vaswani et al.,
2017) to classify dynamic brain graphs. However, the graph
adjacency matrix is assumed to be unweighted, and similar
to previous methods, still requires careful selection of a FC
measure prior to model training.

Graph structure learning Deep graph structure learning
(GSL) (Zhu et al., 2021; Kalofolias et al., 2017) is a method
for addressing the challenge of defining the correct prior
dependency structure for GNNs. GSL methods learn the
adjacency matrix of a dataset alongside the parameters of
a GNN by solving a downstream task like classification or
regression. While recent GSL attempts on multivariate time-
series data have shown improved performance in regression
tasks (Cao et al., 2020; Wu et al., 2020b; 2019), they typ-
ically learn a single static graph for all samples, which is
not suitable for multi-subject fMRI data where subject-level
brain graphs exhibit discriminative differences (Finn et al.,
2015). Several fMRI-specific GSL methods, such as those
proposed by Mahmood et al. (2021), Riaz et al. (2020),
and Kan et al. (2022), learn brain graphs from BOLD sig-
nals for downstream classification tasks. However, unlike
DynDepNet, these methods assume static brain graphs.

3. Problem formulation
We formulate the problem of dynamic brain graph structure
learning as a supervised multivariate timeseries classifica-
tion task. Let X1:T ′ = (x1, . . . ,xT ′) ∈ RV×T ′

denote
BOLD signals from V ∈ N brain regions measured over
T ′ ∈ N timepoints, and let y ∈ [0, . . . C − 1] represent
a corresponding discrete class label, where C ∈ N is the
total number of classes. We assume that X1:T ′ posses a
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true, yet unknown, nonstationary dependency structure. To
summarize this dynamic dependency structure, we define
a dynamic brain graph G1:T = (A1:T ,F1:T ), which con-
sists of a dynamic adjacency matrix A1:T ∈ (0, 1)V×V×T

and a dynamic node feature matrix F1:T ∈ RV×B×T over
T ≤ T ′ snapshots, where B ∈ N denotes the number of
features.

Given a dataset D ⊂ X × Y consisting of N ∈ N
subjects data (X1:T ′ , y) ∈ D, we aim to train a model
Fθ(·) = FθG ◦ FθC (·) with parameters θ = θG ∪ θC
that can predict class labels ŷ given input X1:T ′ using
an intermediary learnt dynamic brain graph Fθ(X1:T ′) =
FθC (FθG(X1:T ′)) = FθC (G1:T ) = ŷ. Training consists
of minimizing the discrepancy between the actual label
y and the predicted label ŷ, described by a loss function
L(y, {ŷ, G1:T }). The optimization objective is therefore
θ∗ = argminθ E(X1:T ′ ,y)∈D[L(y, Fθ(X1:T ′))].

4. Method
We present DynDepNet, a novel method for learning the
optimal time-varying dependency structure of fMRI data
induced by a downstream prediction task. DynDepNet
consists of two main components: (1) dynamic graph
learner FθG : X → G, and (2) dynamic graph classifier
FθC : G → Y . As depicted in Figure 1, we further split
these two components into individual modules, elucidating
their purpose, architecture, and role in learning the optimal
time-varying dependency structure of fMRI data.

4.1. Dynamic graph learner

Split windows The dynamic graph learner maps BOLD
signals onto a dynamic brain graph, denoted FθG(X1:T ′) =
G1:T . To achieve this, the input X1:T ′ is first split into
windows using a temporal-splitting stack transformation
fθW (·), as defined by

fθW (X1:T ′) = X̃1:T = (X̃1, . . . X̃T ) ∈ RP×V×T

X̃t = XtS:tS+P , t = 1, . . . , T
(1)

where 1 ≤ P, S ≤ T ′ are hyperparameters specifying win-
dow length and stride, respectively, X̃t ∈ RP×V is a win-
dow of BOLD signal, and T = ⌊(T ′−2(P−1)−1)/S+1⌋
is the number of windows. The hyperparameters P and S
are chosen such that each window has a stationary depen-
dency structure. We leave more data-driven methods for
selecting optimal values of P and S, such as statistical tests
for stationarity (Dickey & Fuller, 1981), for future work.

Temporal feature extraction The windowed BOLD sig-
nals X̃1:T from (1) are then passed through a 2D convo-
lutional neural network (CNN) denoted fθE (·) to extract
KE-dimensional feature embeddings for each brain region

independently such that fθE (X̃1:T ) = HG
1:T ∈ RKE×V×T .

To accomplish this, we employ an inception temporal convo-
lutional network (I-TCN) architecture inspired by Wu et al.
(2020b). Our version of I-TCN incorporates dilated convo-
lutional kernels and causal padding from original temporal
convolutional network (Bai et al., 2018) and combines it
with a multi-channel feature extraction in a inception struc-
ture (Szegedy et al., 2015). Formally, if fθE (·) consists of
LG layers, for the l-th layer with M convolutional filters,
we have

H
(l)
1:T = ReLU

(
BatchNorm

(
H

(l−1)
1:T

+ ||Mm=1H
(l−1)
1:T ∗d W(l)

m

)) (2)

where H
(l−1)
1:T ,H

(l)
1:T ∈ RKE×V×T represent input and

output embeddings, respectively. Additionally, W(l)
m ∈

R⌊KE/M⌋×KE×1×Sm denotes the m-th 2D convolutional
filter of length Sm, and H

(0)
1:T = X̃1:T , H(LG)

1:T = HG
1:T . The

symbols || and ∗d denote concatenation along the feature di-
mension and convolution operator with dilation factor d > 0,
respectively. The functions BatchNorm(·) and ReLU(·) de-
note batch normalization (Ioffe & Szegedy, 2015) and a
rectified linear unit activation (Nair & Hinton, 2010), re-
spectively. To increase the receptive field size of each con-
volutional kernel exponentially with the number of layers,
we set d = 2l−1 following the approach of Oord et al.
(2016). Moreover, we enforce S1 < · · · < SM to allow
for the simultaneous use of small and large kernel lengths
within a single layer, thereby capturing short and long-term
temporal patterns efficiently during training.

Dynamic adjacency matrix To capture spatial relation-
ships between brain regions, while considering the inde-
pendently learned embeddings HG

1:T from the feature ex-
tractor (2), we employ a self-attention mechanism denoted
as fθS (·). Specifically, at each snapshot we utilize the em-
beddings to learn the pair-wise dependency structure be-
tween brain regions, denoted At, using a simplified version
of scaled dot-product self-attention (Vaswani et al., 2017).
More formally,

At = fθS (H
G
t ) = Sigmoid

(
QtK

⊤
t√

KS

)
Qt = HG

t WQ, Kt = HG
t WK

(3)

where Qt,Kt ∈ RV×KS represent query and key matri-
ces, respectively. They are obtained by performing KS-
dimensional linear projections on the embedding HG

t us-
ing trainable matrices WQ, WK ∈ RKE×KS . We inter-
pret each At as a brain graph adjacency matrix, which
by definition is a weighted and directed matrix that rep-
resents the connectivity between brain regions. To con-
form with the commonly assumed undirected nature of
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brain graph analysis (Friston, 1994), we can simply set
WQ = WK to make At undirected. By computing
self-attention matrices over the entire sequence of fea-
ture embeddings, we obtain a dynamic adjacency matrix
A1:T = (A1, . . . ,AT ) ∈ (0, 1)V×V×T that summarizes
the dynamic FC between brain regions.

Edge sparsity By definition, the adjacency matrix At

from (3) represents a fully-connected graph at every snap-
shot. However, fully-connected graphs are challenging to
interpret and computationally expensive for learning down-
stream tasks with GNNs. Moreover, they are susceptible to
noise. To address these issues, we propose a soft threshold
operator (Donoho, 1995) denoted as fθP (·) to enforce edge
sparsity.This operator is defined following

fθP (ai,j,t) = ReLU(ai,j,t − Sigmoid(θP )) (4)

where Sigmoid(θP ) ∈ (0, 1) represents a learnable edge
weight threshold, and ai,j,t ∈ A1:T . Notably, when ai,j,t ≤
Sigmoid(θp), the output fθP (ai,j,t) becomes zero, resulting
in edge sparsity. To ensure the threshold Sigmoid(θP ) starts
close to 0, we initialize θP ≈ −10. This initialization
prevents excessive sparsification of At in the early stages
of training. Unlike other methods that rely on absolute
thresholds (Zhao et al., 2021), percentile thresholds (Kim
et al., 2021; Li et al., 2019), or k-nearest-neighbor (k-NN)
approaches (Yu et al., 2020; Wu et al., 2020b), which require
careful hyperparameter tuning to determine the optimal level
of edge sparsity, our soft threshold layer learns an optimal
threshold smoothly during training that is task specific.

Dynamic node feature matrix We take the windowed
timeseries X̃t from (1) and compute node feature
fθN (X̃t) = Ft ∈ RV×B as follows

Σt =
1

P − 1
X̃⊤

t (IP − 1

P
1⊤
P1P )X̃t

D̃t =
√

diag(Σt), Ft = D̃−1
t ΣtD̃

−1
t .

(5)

Here, Σt ∈ RV×V denotes the sample covariance matrix
and IV and 1V are a V × V identity matrix and a 1 × V
matrix of ones, respectively. As such, fθN (·) computes a
correlation matrix Ft ∈ [−1, 1]V×V by normalizing Σt

with the square roots of its diagonal elements D̃t. By con-
structing the dynamic node features this way, each node’s
feature vector has a length B = V . This choice of node fea-
tures is motivated by previous work on static brain graphs,
where a node’s FC profile has shown superior performance
compared to other features (Li et al., 2021; Kan et al., 2022;
Cui et al., 2022).

4.2. Dynamic graph classifier

Spatial-temporal feature extraction To learn a spatial-
temporal representation of the dynamic graph G1:T =

(A1:T ,F1:T ) from (4) and (5), we employ a LC-layered
recurrent GNN (Seo et al., 2018), denoted fθF (·). For sim-
plicity, we implement the recurrence relation using a gated
recurrent unit (GRU) (Cho et al., 2014) and each gate as a
graph convolutional network (GCN) (Kipf & Welling, 2016).
Specifically, the GCN for gate g ∈ {r, u, c} in the l-th layer
is defined

GCN(l)
g (Ft,At) = D̂

−1/2
t ÂtD̂

−1/2
t FtW

(l)
g (6)

where W(l)
g ∈ RKC×KC is a trainable weight matrix, Ât =

At + IV denotes a snapshot adjacency matrix with added
self-edges, and D̂t = diag(Ât1

⊤
1×V ) is the degree matrix.

At each snapshot, the l-th layer of the GRU is defined

R
(l)
t = Sigmoid

(
GCN(l)

r (H̃
(l−1)
t ||H̃(l)

t−1,At)
)

(7)

U
(l)
t = Sigmoid

(
GCN(l)

u (H̃
(l−1)
t ||H̃(l)

t−1,At)
)

(8)

C
(l)
t = Tanh

(
GCN(l)

c (H̃
(l−1)
t ||R(l)

t ⊙ H̃
(l)
t−1,At)

)
(9)

H̃
(l)
t = U

(l)
t ⊙ H̃

(l)
t−1 + (1−U

(l)
t )⊙C

(l)
t (10)

where R
(l)
t ,U

(l)
t ∈ RV×KC are the reset and update gates,

respectively. The initial hidden state H̃(0)
t = Ft is set to the

input node features, and H̃
(l)
0 ∈ 0V×KC

is initialized as a
matrix of zeros. The symbols ⊙ and || denote the Hadamard
product and the feature-wise concatenation operator, respec-
tively. By iterating through (7)-(10) for each snapshot, we
obtain per-layer output embeddings H

(l)
1:T ∈ RV×KC×T .

These embeddings are concatenated along the feature di-
mension, to combine information from neighbors that are
up to LC-hops away from each node, and then averaged
over the node dimension to create a sequence of brain graph
embeddings following

HC
1:T = ϕ(||LC

l=1H
(l)
1:T ) ∈ RKCLC×T (11)

where ϕ = 1
V 11×V represents a average pooling matrix.

Though we only focus on GCN and GRU, it is straightfor-
ward to extend the proposed method to other GNNs (Hamil-
ton et al., 2017; Veličković et al., 2017) and RNNs (Hochre-
iter & Schmidhuber, 1997), which we leave for future work.

Temporal attention readout In order to highlight the
snapshots that contain the most relevant brain graph embed-
dings HC

1:T from (11), we incorporate a novel temporal at-
tention readout layer, denoted fθT (·), which is adapted from
squeeze-and-excite attention networks (Hu et al., 2018).
More formally, the layer introduces a temporal attention
score matrix α ∈ (0, 1)1×T defined following

α = Sigmoid(ReLU(ψHC
1:TW1)W2) (12)

where W1 ∈ RT×τT , W2 ∈ RτT×T are trainable weight
matrices that capture temporal dependencies. The hyper-
parameter τ ∈ (0, 1] controls the bottleneck, and ψ =

1
KCLC

11×KCLC
represents an average pooling matrix.
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Graph-level representation Using the temporal attention
scores α from (12), we compute the graph-level representa-
tion hG ∈ RLCKC using a weighted sum of the snapshots

hG = (α⊙HC
1:T )ξ

⊤ (13)

where ξ = 11×T denotes a sum pooling matrix. Finally,
we pass the graph-level representation through a linear
layer, which maps it onto a vector of class probabilities
p(y|X1:T ′) ∈ ∆C . Formally

p(y|X1:T ′) = Softmax(hGW3) (14)

where W3 ∈ RLCLK×C is a trainable weight matrix.

4.3. Loss function

Since our task is graph classification, we train DynDepNet
by minimizing the cross-entropy loss LCE(y, ŷ) as well as a
collection of prior constraints on the learnt graphs denoted
R(G1:T ) such that

L(y, {ŷ, G1:T }) = LCE(y, ŷ) +R(G1:T ). (15)

Here, LCE(y, ŷ) = −
∑C

c=1 1(y = c) log p(y|X1:T ′)c and
p(·|·)c is the c-th element of the output probability vector
from (14). This encourages DynDepNet to learn task-aware
dynamic graphs that encode class differences into A1:T .

Regularization constraints Since connected nodes in a
graph are more likely to share similar features (McPherson
et al., 2001), we add a regularization term encouraging
feature smoothness defined as

LFS(A1:T ,F1:T ) =
1

V 2

T∑
t=1

Tr(F⊤
t L̂tFt) (16)

where Tr(·) denotes the matrix trace operator and L̂t =

D
−1/2
t LtD

−1/2
t is the (symmetric) normalized Lapla-

cian matrix defined as Lt = Dt − At where Dt =
diag(At1V×1) which makes feature smoothness node de-
gree independent (Ando & Zhang, 2006). Furthermore, to
discourage volatile changes in graph structure between snap-
shots we also add a prior constraint encouraging temporal
smoothness defined as

LTS(A1:T ) =

T−1∑
t=1

||At −At+1||1 (17)

where || · ||1 denotes the matrix L1-norm. Moreover,
to encourage the learning of a large sparsity parameter
Softmax(θP ) in (4), we further add a sparsity regulariza-
tion term defined

LSP(A1:T ) =

T∑
t=1

||At||1, (18)

which in combination with LCE(·, ·), ensures only the most
import task-specific edges are kept in At. The final loss
function we seek to minimize is

L(y, {ŷ, G1:T }) = LCE(y, ŷ) + λFSLFS(F1:T ,A1:T )

+ λTSLTS(A1:T ) + λSPLSP(A1:T ) (19)

where λFS, λTS, λSP ≥ 0 are hyperparameters weighting the
relative contribution of each regularization term.

5. Experiments
We evaluate the performance of DynDepNet on the task of
biological sex classification, which serves as a widely used
benchmark for supervised deep learning models designed
for fMRI data (Kim et al., 2021; Azevedo et al., 2022).
The classification of biological sex based on brain imaging
data is of significant interest in neuroscience, as it has been
shown that there are observable differences between males
and females in various brain characteristics and functional
connectivity patterns (Bell et al., 2006; Mao et al., 2017).
By assessing the performance of DynDepNet on this task,
we can gain insights into its ability to capture sex-related
differences and leverage them for accurate classification.

5.1. Datasets

We constructed two datasets using publicly available fMRI
data from the Human Connectome Project (HCP) S1200
release2 (Van Essen et al., 2013). The two datasets differ
based on whether the subjects were in resting state (HCP-
Rest) or performing a specific task (HCP-Task) during the
fMRI acquisition.

HCP-Rest For the HCP-Rest, we considered resting-state
fMRI scans that underwent minimal preprocessing follow-
ing the pipeline described in Glasser et al. (2013). We se-
lected a total of N = 1, 095 subjects from the first scanning-
session (out of four) that used left-right (LR) phase encoding.
During image acquisition, subjects were instructed to rest
for 15 minutes. The repetition time (TR), which denotes
the time between successive image acquisitions, was set to
0.72 seconds, resulting in a total of T ′ = 1, 200 images per
subject. We used the biological sex of each subject as the
label resulting in a total of C = 2 classes. Female subjects
accounted for 54.4% of the dataset.

HCP-Task For the HCP-Task, we considered task fMRI
scans from the emotional task, which underwent minimal
preprocessing using the same pipeline as HCP-Rest. We
selected a total of N = 926 subjects from the first scanning
session (out of two) with LR phase encoding. During the
task, subjects were asked to indicate which of two faces or

2https://db.humanconnectome.org
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Table 1. Biological sex classification results for HCP-Rest and HCP-Task. Results are mean plus/minus standard deviation across 5 runs.
First and second-best results are bold and underlined, respectively. Statistically significant difference from DynDepNet marked *. Models
are grouped by type of functional connectivity taken as input (FC) (S = static, D = dynamic, - = BOLD signals).

Model FC HCP-Rest HCP-Task

ACC (%, ↑) AUROC (↑) ACC (%, ↑) AUROC (↑)

BLSTM - 81.50± 1.26 * 0.9058± 0.0081 * 77.24± 4.05 * 0.8526± 0.0188 *
KRR S 83.50± 1.94 * 0.9187± 0.0025 * 81.37± 2.17 * 0.9031± 0.0185 *
SVM S 82.70± 2.68 * 0.9170± 0.0089 * 83.16± 1.91 * 0.9097± 0.0184 *
MLP S 81.47± 3.29 * 0.9091± 0.0281 * 81.10± 3.44 * 0.8837± 0.0250 *
BNCNN S 76.83± 7.46 * 0.6156± 0.0837 * 70.66± 8.23 * 0.5945± 0.0499 *
DFMRI S 82.65± 3.40 * 0.8941± 0.0342 * 81.34± 2.19 * 0.8024± 0.0317 *
FBNG S 81.57± 2.90 * 0.8967± 0.0170 * 77.16± 3.90 * 0.8548± 0.0320 *
STGCN D 62.63± 4.50 * 0.6991± 0.0264 * 54.87± 3.37 * 0.5629± 0.0355 *
STAGIN D 83.13± 2.11 * 0.8597± 0.0467 * 81.88± 2.73 * 0.8088± 0.0404 *
DynDepNet D 92.32 ± 2.22 0.9623 ± 0.0433 89.54 ± 3.48 0.9496 ± 0.0423

which of two shapes presented at the bottom of a screen
matched the face or shape at the top of the screen. The
scanning session lasted approximately 2.11 minutes with
a TR of 0.72 seconds, resulting in T ′ = 176 images per
subject. Similar to the HCP-Rest dataset, the classes were
defined based on the biological sex of the subjects. Female
subjects accounted for 51.2% of the dataset.

Further preprocessing Since the fMRI scans from both
datasets represent a timeseries of 3D brain volumes, we
parcellate them into V = 243 mean brain region (210 corti-
cal, 36 subcortical) BOLD signals of length T ′ time points
using the Brainnetome atlas 3 (Fan et al., 2016). Each time-
series was then transformed into a z-scores by standardizing
region-wise in order to remove amplitude effects. To bal-
ance the class proportions across both datasets, we randomly
oversampled the minority class male.

5.2. Baselines

We compared DynDepNet against a range of different base-
line models that have been previously used to classify fMRI
data, and for which code is publicly available. The baselines
are broadly grouped based on whether they take as input
static FC, dynamic FC, or BOLD signals. For static (linear)
baselines, we include kernel ridge regression (KRR) (He
et al., 2020) and support vector machine (SVM) (Abra-
ham et al., 2017). For static deep learning baselines we
include a multilayer perception (MLP) and BrainnetCNN
(BNCNN) (Kawahara et al., 2017). For dynamic baselines
we include ST-GCN (STGCN) (Gadgil et al., 2020) and
STAGIN (Kim et al., 2021). For GSL baselines, we in-
clude FBNetGen (FBNG) (Kan et al., 2022) and Deep fMRI
(DFMRI) (Riaz et al., 2020). Finally, we include a bidirec-

3https://atlas.brainnetome.org

tional LSTM (BLSTM) (Hebling Vieira et al., 2021) which
learns directly from BOLD signals. Further details about
each baseline model can be found in Appendix A.

5.3. Evaluation metrics

Model performance is evaluated on test data using accuracy
(ACC) and area under the receiver operator curve (AUROC),
as classes are balanced. To compare the performance of
models, we use the almost stochastic order (ASO) test of
statistical significance (Del Barrio et al., 2018; Dror et al.,
2019), as implemented by Ulmer et al. (2022). For all tests,
the significance level is set to α = 0.05 and adjusted using
the Bonferroni correction (Bonferroni, 1936) when making
multiple comparisons.

5.4. Implementation

Both datasets were split into training, validation, and test
datasets, maintaining class proportions with an 80/10/10%
ratio. To ensure that differences in classification perfor-
mance could be attributed primarily to differences in model
architecture, specific training and testing strategies for the
baselines were removed. Instead, all models were trained
using the Adam optimizer (Kingma & Ba, 2014) with de-
coupled weight decay (Loshchilov & Hutter, 2017). We
trained all models for a maximum of 5, 000 epochs and em-
ployed early stopping with a patience of 15 based on the
lowest accuracy observed on the validation dataset. This
strategy helped prevent overfitting and allowed us to select
the best-performing model. To alleviate computational load
and introduce stochastic augmentation, the time dimension
of the training samples was randomly sampled. Specifi-
cally, for the HCP-Rest dataset, the time dimension was
set to T ′ = 600, while for the HCP-Task dataset, it was
set to T ′ = 150, following the approach used by Kim et al.
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(2021). To account for variability in the training process,
each model was trained five times using different random
seeds and dataset splits. This ensured a more robust evalua-
tion of the model’s performance and mitigated the influence
of random initialization and data variability.

Software and hardware All models were developed in
Python 3.7 (Python Core Team, 2019) and relied on several
libraries including scikit-learn 1.3.0 (Pedregosa et al., 2011),
PyTorch 2.0.1 (Paszke et al., 2019), numpy 1.25.1 (Harris
et al., 2020), TorchMetrics 1.0.0 (Nicki Skafte Detlefsen
et al., 2022), and deep-significance 1.2.6 (Ulmer et al., 2022).
All experiments were conducted on a Linux server (Debian
5.10.113-1) with a NVIDIA RTX A6000 GPU with 48 GB
memory and 16 CPUs.

Hyperparameter optimization In order to determine the
best hyperparameter values for each model, we performed
a grid search using the validation dataset. We started with
the default hyperparameter values provided in the original
implementations of the baselines. While it was not feasible
to exhaustively search for the optimal values of all hyper-
parameters for every baseline model, we focused on tuning
key hyperparameters such as regularization loss weights (for
KRR and SVM) and the dimensions of hidden layers (for
MLP, BLSTM, BNCNN, STGCN, DFMRI, FBNG, STA-
GIN). For DynDepNet, we set the number of filters in the
temporal feature extractor fθE (·) to M = 3 and the bottle-
neck in the temporal attention layers fθT (·) to τ = 0.5. The
specific values of other hyperparameters used for DynDep-
Net can be found in Appendix B.

5.5. Classification results

The results of biological sex classification are presented in
Table 1. It is evident that DynDepNet achieves the highest
performance among all models on both HCP-Rest and HCP-
Task datasets, as measured by accuracy and AUROC. On
HCP-Rest, DynDepNet surpasses the second-best baseline
KRR in terms of accuracy by 8.82 percentage points (pp),
while on HCP-Task, it outperforms the second-best baseline
SVM by 8.17 pp. These improvements are statistically sig-
nificant. It is worth noting that, consistent with the findings
of He et al. (2020), the linear baselines KRR and SVM ei-
ther outperform or achieve comparable performance to the
deep learning baselines when considering only static brain
graphs. The superior performance of DynDepNet can be
attributed to its ability to learn dynamic brain graphs during
training, as well as incorporating temporal dynamics. See
Appendix C for further results.

5.6. Ablation study

To examine the impact of key components in DynDepNet,
we conduct an ablation study by removing specific model

components and evaluating their effect on performance.
Specifically, within the dynamic graph learner FθG(·) we
replace the I-TCN fθE (·) with a 1D CNN with filter length
4 (w/o inception), replace self-attention fθS (·) with a nor-
malized Person correlation matrix (w/o spatial att.), remove
edge sparsity fθP (·) with λSP = 0 (w/o sparsity), and
remove temporal attention fθT (·) (w/o temporal att.). In
addition, we also remove feature smoothness λFS = 0
(w/o feature reg.) and temporal smoothness λTS = 0 (w/o
temporal reg.) graph regularization terms from the loss
function.

Table 2. Ablation study results on HCP-Rest and HCP-Task. Re-
sults are mean plus/minus standard deviation across 5 runs. Best
results are shown in bold. Statistically significant difference from
DynDepNet marked *.

Model ACC (%, ↑)

HCP-Rest HCP-Task

DynDepNet 92.32 ± 2.22 89.54 ± 3.48
- w/o inception 91.22 ± 2.69 * 88.79 ± 2.34
- w/o self att. 89.97 ± 3.04 * 86.80 ± 3.76
- w/o sparsity 92.32 ± 2.23 * 87.00 ± 2.33 *
- w/o temporal att. 92.26 ± 2.43 87.56 ± 2.84 *
- w/o feature reg. 92.29 ± 2.39 88.50 ± 2.87
- w/o temporal reg. 92.12 ± 2.21 88.43 ± 3.23

Results The results of the ablation study are presented
in Table 2. First, the use of self-attention significantly im-
proves accuracy across both datasets (HCP-Rest ↑ 2.34 pp
vs HCP-Task ↑ 2.74 pp) since it allows for task-aware spa-
tial relationships between brain regions to be built into the
dynamic graph adjacency matrix, which in turn benefits
the graph classifier. Second, sparsity also significantly im-
proves accuracy (HCP-Rest ↑ 1.04 pp vs HCP-Task ↑ 2.54
pp) since it removes noisy edges from the dynamic adja-
cency matrix thereby reducing errors from being propagated
to node representations in the graph classifier. Finally, the
effect of the I-TCN is significant for HCP-Rest (↑ 1.10 pp)
but only marginal for HCP-Task (↑ 0.75 pp). This might
be explained by the fact that the BOLD signals from the
former dataset are collected over a longer time period than
the latter, thereby benefiting more from larger kernel sizes
being able to extract longer temporal patterns.

5.7. Hyperparameter sensitivity

We conduct a sensitivity analysis on the main hyperparam-
eters which influence the complexity of DynDepNet. In
particular, for the dynamic graph learner FθG(·) we vary
window length P , window stride S, embedding size KE ,
and number of layers LG. On the other hand, for the dy-
namic graph classifier FθC (·) we vary the number of layers

7



DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data via Dynamic Graph Structure Learning

Figure 2. Sensitivity analysis results on HCP-Rest and HCP-Task.
Results are mean plus/minus standard deviation across 5 runs.

LC and number of features KC . For each experiment, we
change the hyperparameter under investigation and fix the
remaining hyperparameters to their optimally tuned values
from Appendix B.

Results Figure 2 summarizes the results of the hyperpa-
rameter sensitivity analysis. On both HCP-Rest and HCP-
Task we observe that increasing the window length P leads
to a decrease in accuracy. We attribute this to the fact that
including more data within a window makes it harder for
the dynamic graph learner to identify fast changes between
brain regions that are discriminative for the task. Similarly,
increasing the window stride S also leads to a decrease in
accuracy, as contiguous windows of BOLD signals are not
fully captured, resulting in a loss of important information
when constructing dynamic graphs. Furthermore, we find
that increasing the depth of information propagation beyond
3 hops in the dynamic graph classifier, as indicated by the
number of layers LC , leads to a decrease in performance.
This suggests that excessive information propagation can
introduce noise and degrade the discriminative power of
the learned graph representations. Moreover, increasing
the number of layers LG and the embedding size KE in
the graph learner, as well as the number of features KC in
the graph classifier, exhibit diminishing returns in terms of
performance gains. This implies that there is an optimal bal-
ance between model complexity and performance, beyond
which further increasing the capacity of the model does not
yield significant improvements in accuracy.

6. Interpretability analysis
A major strength of DynDepNet is its ability to learn task-
aware dynamic brain graphs from BOLD signals, which
has applications beyond classification. To showcase the in-

terpretability of DynDepNet, Figure 3 compares, using the
same subject, a dynamic adjacency matrix A1:T output from
DynDepNet with a dynamic FC matrix AC

1:T calculated
using Pearson correlation following Calhoun et al. (2014).
The comparison highlights several advantages of the learned
dynamic adjacency matrix. Firstly, A1:T exhibits greater
sparsity, with only the most relevant and discriminative con-
nections between brain regions having non-zero weights. In
contrast, AC

1:T assigns weights to all connections, including
potentially irrelevant and noisy relationships. Additionally,
the learned A1:T is not restricted to linear relationships be-
tween brain regions, as it can capture more complex and
non-linear dependencies. This flexibility allows DynDepNet
to capture higher-order interactions and intricate dynamics
that may be missed by AC1 : T , which assumes linear as-
sociations between brain regions.

6.1. Brain region importance

To identify brain regions that are most sex-discriminative,
we create a brain region score vector z ∈ RV by computing
the temporally weighted node degree. This score vector
provides a measure of the importance of each brain region
in contributing to the classification task. Specifically, we cal-
culate the average degree for each region across snapshots,
weighted by the corresponding temporal attention scores
α. This computation yields z = 1

T

∑T
t=1(

∑V
j=1 Aj,t)αt.

Next, we select the top 20% of regions based on their scores
across all subjects in the test dataset. These regions are
then visualized with respect to the functional connectivity
networks defined by Yeo et al. (2011) in Figure 4.

Results For HCP-Rest, 25.5% of the highest scoring brain
regions are within the default mode network (DMN), a key
FC network that is consistently observed in resting-state
fMRI studies (Mak et al., 2017; Satterthwaite et al., 2015).
Within the DMN the brain regions with the highest pre-
dictive ability are localized in the dorsal anterior cingulate
cortex, middle frontal gyrus, and posterior superior tem-
poral cortex. These fronto-temporal brain regions are key
components of the theory of mind network, which underlies
a meta-cognitive function in which females excel (Aden-
zato et al., 2017). Another key region in theory of mind
tasks, the posterior superior temporal cortex is found to reli-
ably predict sex within the ventral attention network (VAN).
For HCP-Task, 30.6% of the highest scoring brain regions
fall in the parahippocampal gyrus, medial occipital cortex,
and superior parietal lobule which form the posterior visual
network (VSN). The fact that such regions best discrimi-
nated males from females reflects differences in the ability
to process emotional content and/or sex-related variability
in directing attention to certain features of emotional stim-
uli (Mackiewicz et al., 2006), like the facial expressions
from the HCP task paradigm (Markett et al., 2020). For
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Figure 3. Dynamic FC matrix calculated using Pearson correlation AC
1:T normalized to [0, 1] (top) compared to a dynamic adjacency

matrix learnt by DynDepNet A1:T (bottom). Both matrices are computed using the BOLD signals from the same randomly sampled
subject from HCP-Rest with a window size and stride of P = 50 and S = 3, respectively.

Figure 4. Sex-discriminative brain region scores z (normalized to [0, 1]) for HCP-Rest (top) and HCP-Task (bottom).

further analysis we refer to Appendix D.

7. Conclusion
In conclusion, we propose DynDepNet, a novel end-to-end
trainable model for learning optimal time-varying depen-
dency structures from fMRI data in the form of dynamic
brain graphs. To the best of our knowledge, we are the
first to propose and address the dynamic graph structure
learning problem in the context of fMRI data using a GNN-
based deep learning method. Our approach leverages spatial-
temporal attention mechanisms to capture the inter- and
intra-relationships of brain region BOLD signals. Through
extensive experiments on two real-world fMRI datasets, we
demonstrate that DynDepNet achieves state-of-the-art per-
formance in biological sex classification. The interpretabil-
ity of DynDepNet is a major strength, as it learns task-aware
dynamic graphs that capture the most relevant and discrim-
inative connections between brain regions. The learned
dynamic adjacency matrix exhibits sparsity, highlighting the
importance of only the most informative edges, while also
allowing for non-linear relationships between brain regions.
This flexibility enables DynDepNet to capture higher-order
interactions and intricate dynamics that may be missed by
traditional correlation-based methods.

Future research Future research directions will focus on
learning the optimal window size and stride during train-
ing to further enhance the flexibility and adaptability of
DynDepNet. Additionally, it will be valuable to expand
the range of fMRI datasets and prediction tasks to include
mental health disorders such as schizophrenia, depression,
and autism spectrum disorders. By applying DynDepNet to
these domains, possible insights might be gained into the
dynamic brain connectivity patterns associated with these
different psychiatric conditions, contributing to the devel-
opment of more accurate diagnostic tools and personalized
treatment strategies.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, J., Zuo, X., and He, Y. Graph-based network anal-
ysis of resting-state functional mri. Frontiers in systems
neuroscience, pp. 16, 2010.

Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. Graph
wavenet for deep spatial-temporal graph modeling. arXiv
preprint arXiv:1906.00121, 2019.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020a.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang, C.
Connecting the dots: Multivariate time series forecasting
with graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 753–763, 2020b.

Yan, S., Xiong, Y., and Lin, D. Spatial temporal graph
convolutional networks for skeleton-based action recog-
nition. In Thirty-second AAAI conference on artificial
intelligence, 2018.

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R.,
Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller,
J. W., Zöllei, L., Polimeni, J. R., et al. The organization
of the human cerebral cortex estimated by intrinsic func-
tional connectivity. Journal of neurophysiology, 2011.

Yu, D., Zhang, R., Jiang, Z., Wu, Y., and Yang, Y. Graph-
revised convolutional network. In Joint European con-
ference on machine learning and knowledge discovery in
databases, pp. 378–393. Springer, 2020.

Zhang, Y., Tetrel, L., Thirion, B., and Bellec, P. Functional
annotation of human cognitive states using deep graph
convolution. NeuroImage, 231:117847, 2021.

Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., and Ye, Y.
Heterogeneous graph structure learning for graph neural
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 4697–4705, 2021.

Zhao, K., Duka, B., Xie, H., Oathes, D. J., Calhoun, V.,
and Zhang, Y. A dynamic graph convolutional neural
network framework reveals new insights into connectome
dysfunctions in adhd. Neuroimage, 246:118774, 2022.

Zhu, Y., Xu, W., Zhang, J., Du, Y., Zhang, J., Liu, Q., Yang,
C., and Wu, S. A survey on graph structure learning:
Progress and opportunities. arXiv e-prints, pp. arXiv–
2103, 2021.

13



DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data via Dynamic Graph Structure Learning

A. Baselines
We compare DynDepNet against a range of different baseline models that have been previously used to classify fMRI
data and for which code is publicly available. These baselines encompass a mixture of models covering both static and
dynamic, linear and non-linear, as well as graph and non-graph-based. It is worth noting that many existing GNN baselines
are challenging to adapt for use with fMRI data, as the data is naturally multi-graph-based (each subject has their own
dynamic graph) rather than a single static or dynamic graph.

Kernel ridge regression4 (KRR) (He et al., 2020) Kernel ridge regression combines ridge regression (linear least squares
with L2-norm regularization) with the kernel trick. It learns a linear decision function in a higher-dimensional feature space
induced by the kernel and the input data (Murphy, 2012a). Following He et al. (2020), we use a linear kernel and keep the
weight on the regularization loss as a tunable hyperparameter. KRR takes as input the vectorized lower-triangle (excluding
the principal diagonal) of a static FC matrix computed using Pearson correlation.

Support vector machine (SVM) (Abraham et al., 2017) Support vector machine learns a hyperplane to separate data
points from different classes in a high-dimensional space created by a kernel function (Murphy, 2012b). Following Abraham
et al. (2017), we use a linear kernel and keep the weight on the regularization loss as a tunable hyperparameter. Similar to
KRR, SVM takes as input a vectorized static FC matrix computed using Pearson correlation.

Multilayered perceptron4 (MLP) (Hebling Vieira et al., 2021) A multilayered perceptron taking as input vectorized
static FC matrices computed using Pearson correlation. This baseline model has been used in previous studies (Kawahara
et al., 2017; Gadgil et al., 2020), and we follow the implementation described in Hebling Vieira et al. (2021). The MLP
consists of three linear layers with dropout, batch normalization, and ReLU activation functions applied after the first two
layers. The dimensionality of the hidden layers is considered as a hyperparameter to be tuned.

Bi-directional long short-term memory (BLSTM) (Hebling Vieira et al., 2021) A bi-directional LSTM that directly
learns patterns from the BOLD signals, without relying on precomputed FC matrices. In accordance with Hebling Vieira
et al. (2021), our implementation includes two bi-directional LSTM layers (Graves & Schmidhuber, 2005). Each layer
processes the BOLD signals in both the forward and backward directions, and the hidden representations from the two
directions are combined using addition. The dimensionality of the hidden layers is treated as a tunable hyperparameter.

BrainNetCNN4 (BNCNN) (Kawahara et al., 2017) A CNN that utilizes specially designed cross convolutional filters,
including edge-to-edge and edge-to-node filters, to directly learn topological features from static FC matrices. The model
takes the FC matrices as input and was originally proposed in Kawahara et al. (2017). In our implementation, we follow
the approach described in He et al. (2020), which includes four layers. The number of hidden channels in the last layer is
treated as a tunable hyperparameter.

Spatio-temporal graph convolutional network5 (STGCN) (Gadgil et al., 2020) A GNN architecture that consists of
three spatio-temporal blocks. Each block comprises a GCN layer for extracting spatial features and a 1D CNN layer for
extracting temporal features. In our implementation, we follow the approach described in Gadgil et al. (2020). The node
features are obtained by windowing the BOLD signals, and the adjacency matrix is computed as the average FC matrix,
which is calculated using Pearson correlation, over all subjects in the training dataset. The number of hidden features in the
model is treated as a hyperparameter to be tuned.

Deep fMRI (DFMRI) (Riaz et al., 2020) A deep learning-based GSL method that directly learns static brain graphs
from BOLD signals. The model consists of a 1D CNN feature extractor, an MLP graph constructor, and an MLP graph
classifier. The feature extractor processes the BOLD signals to extract informative features. The graph constructor, inspired
by Siamese networks (Bromley et al., 1993), learns a similarity score between pairs of extracted features from different
brain regions. Finally, the graph classifier uses the learned graph structure to perform classification. In our implementation,
we treat the hidden dimension in the graph classifier as a tunable hyperparameter.

4https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/predict_phenotypes/
He2019_KRDNN/

5https://github.com/sgadgil6/cnslab_fmri
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Functional Brain Network Generator6(FBNG) (Kan et al., 2022) Another GSL method that learns static brain graphs
directly from BOLD signals. It utilizes a LSTM feature extractor and a GNN as a graph classifier (Kan et al., 2022). In
contrast to DFMRI, which uses a MLP to learn a graph adjacency matrix, FBNG takes the inner product between the
extracted features. Similar to DynDepNet, FBNG introduces a group inter loss, which aims to maximize the difference in
learned graphs across different classes while keeping those within the same class similar. In our implementation, we treat
the hidden dimension in the graph classifier as a tunable hyperparameter.

Spatio-temporal Attention Graph Isomorphism Network7 (STAGIN) (Kan et al., 2022) A joint GNN and transformer
model that takes attributed unweighted dynamic graphs derived from sliding window functional connectivity as input.
Following the approach of Kim et al. (2021), Pearson correlation is used as the measure of functional connectivity, and the
matrices are binarized by thresholding the top 30-percentile values as connected edges. In our implementation, we fix the
number of layers in the GNN to four and treat the node embedding dimension as a hyperparameter to be tuned.

B. Hyperparameter optimization

Table 3. Optimal hyperparameter values for DynDepNet on HCP-Rest and HCP-Task based on 5 runs using lowest validation accuracy.

Hyperparameter Range HCP-Rest HCP-Task

Training
- Batch size {5, 10, 20, 50} 20 20
- Learning rate {1e-2, 1e-3, 1e-4} 1e-3 1e-3
- Weight decay {1e-5, 1e-4, 1e-3} 1e-4 1e-4
Model
- Dynamic graph learner

– Window length, P {5, 10, 30, 50, 70, 100} 50 30
– Window stride, S {1, 3, 5, 10, 25, 50} 3 1
– Number of layers, LG {1, 2, 3, 4, 5, 6} 4 4
– Number of features, KE {8, 16, 32, 128, 256} 64 64
– Filter sizes, Sm {{3, 5, 7}, {4, 8, 16}} {4, 8, 16} {4, 8, 16}
– Embedding size KS {4, 8, 16, 32, 64, 128} 16 16

- Dynamic graph classifier
– Number of layers, LC {1, 2, 3, 4, 5, 6} 3 3
– Number of features, KC {8, 16, 32, 64, 128, 256} 64 64

- Feature smoothness, λFS {1e-4, 1e-3, 1e-2} 1e-4 1e-4
- Temporal smoothness, λTS {1e-4, 1e-3, 1e-2} 1e-3 1e-4
- Sparsity, λSP {1e-4, 1e-3, 1e-2} 1e-3 1e-3

C. Classification results
Figure 5 shows individual ASO test (Dror et al., 2019) statistics for the biological sex classification task. The ASO test has
been recently proposed to test the statistical significance of deep learning models. Specifically, the ASO test determines
whether a stochastic order (Reimers & Gurevych, 2018) exists between two models based on their respective sets of scores
obtained from multiple runs using different random seeds. Given scores of two models A and B over multiple runs, the
ASO test computes a test-statistic ϵmin that indicates how far model A is from being significantly better than model B.
Given a predefined significance level α ∈ (0, 1), when the distance ϵmin = 0.0, one can claim that model A is stochastically
dominant over model B. When ϵmin < 0.5 one can say model A almost stochastically dominates model B. Finally, when
ϵmin = 1.0 model B stochastically dominates model A. For ϵmin = 0.5, no order between model A and model B can be
determined.

6https://github.com/Wayfear/FBNETGEN
7https://github.com/egyptdj/stagin

15

https://github.com/Wayfear/FBNETGEN
https://github.com/egyptdj/stagin


DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data via Dynamic Graph Structure Learning

HCP-Task HCP-Rest

A
C

C
A

U
R

O
C

Figure 5. ASO test statistics ϵmin for biological sex classification on HCP-Rest and HCP-Task using significance level α = 0.05. Results
are read from row to column. For example, on HCP-Rest in terms of accuracy (top left) DynDepNet (row) is stochastically dominant over
STAGIN (column) with ϵmin of 0.01.
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D. Brain region importance
We provide further details on the sex-discriminative brain region scores from Figure 4 in Tables 4-9. All brain regions and
their respective MNI coordinates are taken from the Brainnetome atlas (Fan et al., 2016). Brain regions are further grouped
into FC networks from Yeo et al. (2011) as well as lobe and gyrus (the outermost layer of the brain).

Table 4. Sex-discriminative brain region scores (normalized to [0, 1]) the default mode network (DMN) for HCP-Rest (Figure 4 top left).

Lobe Gyrus (hemisphere) Region MNI (x, y, z) Score

Limbic lobe Cingulate gyrus (left) A23d dorsal area 23 -4, -39, 31 0.93
Frontal lobe Middle frontal gyrus

(left)
A8vl ventrolateral area 8 -33, 23, 45 0.92

Frontal lobe Superior frontal
gyrus (right)

A10m medial area 10 8, 58, 13 0.87

Frontal lobe Superior frontal
gyrus (right)

A9l lateral area 9 13, 48, 40 0.85

Temporal lobe Middle temporal
gyrus (right)

A21r rostral area 21 51, 6, -32 0.83

Temporal lobe Posterior superior
temporal sulcus (left)

rpSTS rostroposterior supe-
rior temporal sulcus

-54, -40, 4 0.82

Temporal lobe Middle temporal
gyrus (left)

A21c caudal area 21 -65, -30, -12 0.81

Temporal lobe Superior temporal
gyrus (right)

A22r rostral area 22 56, -12, - 5 0.72

Frontal lobe Inferior frontal gyrus
(right)

A45c caudal area 45 54, 24, 12 0.72

Frontal lobe Orbital gyrus (left) A12/47o orbital area 12/47 -36, 33, -16 0.69
Parietal lobe Precuneus (left) A31 Area 31 (Lc1) -6, -55, 34 0.23
Limbic lobe Cingulate gyrus

(right)
A32sg subgenual area 32 5, 41, 6 0.23

Table 5. Sex-discriminative brain region scores (normalized to [0, 1]) in the somatomotor network (SMN) for HCP-Rest (Figure 4 top
middle).

Lobe Gyrus (hemisphere) Region MNI (x, y, z) Score

Temporal lobe Superior temporal
gyrus (left)

A22c caudal area 22 -62, -33, 7 0.83

Parietal lobe Inferior parietal lob-
ule (right)

A40rv rostroventral area 40
(PFop)

55, -26, 26 0.79

Frontal lobe Superior frontal
gyrus (right)

A6m medial area 6 7, -4, 60 0.78

Parietal lobe Postcentral gyrus
(right)

A2 area 2 48, -24, 48 0.77

Frontal lobe Precentral gyrus (left) A4t area 4 (trunk region) -13, -20, 73 0.77
Frontal lobe Precentral gyrus (left) A4ul area 4 (upper limb re-

gion)
-26, -25, 63 0.73

Parietal lobe Postcentral gyrus
(left)

A1/2/3tru area 1/2/3 (trunk
region)

-21, -35, 68 0.71

Parietal lobe Postcentral gyrus
(right)

A1/2/3tonIa area 1/2/3
(tongue and larynx region)

56, -10, 15 0.70

Temporal lobe Superior temporal
gyrus (right)

TE1.0 and TE1.2 51, -4, -1 0.22
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Table 6. Sex-discriminative brain region scores (normalized to [0, 1]) in the ventral attention network (VAN) for HCP-Rest (Figure 4 top
right).

Lobe Gyrus (hemisphere) Region MNI (x, y, z) Score

Temporal lobe Posterior superior
temporal sulcus (left)

Caudoposterior superior tem-
poral sulcus

-52, -50, 11 0.72

Limbic lobe Cingulate gyrus
(right)

A24cd caudodorsal area 24 4, 6, 38 0.70

Frontal lobe Inferior frontal gyrus
(left)

A44v ventral area 44 -52, 13, 6 0.55

Frontal lobe Inferior frontal gyrus
(left)

A44op opercular area 44 -39, 23, 4 0.51

Limbic lobe Cingulate gyrus
(right)

A32p pregenual area 32 5, 28, 27 0.48

Frontal lobe Inferior frontal gyrus
(right)

A44v ventral area 44 54, 14, 11 0.47

Insular lobe Insular gyrus (left) dIa dorsal agranular insula -34, 18, 1 0.46
Frontal lobe Precentral gyrus

(right)
A4tl area 4 (tongue and lar-
ynx region)

54, 4, 9 0.45

Table 7. Sex-discriminative brain region scores (normalized to [0, 1]) in the visual network (VSN) for HCP-Task (Figure 4 bottom left).

Lobe Gyrus (hemisphere) Region MNI (x, y, z) Score

Temporal lobe Parahippocampal
gyrus (right)

TH area TH (medial PPHC) 19, -36, -11 0.92

Occipital lobe Medioventral occipi-
tal cortex (left)

vmPOS ventromedial pari-
etooccipital sulcus

-13, -68, 12 0.91

Occipital lobe Medioventral occipi-
tal cortex (left)

rCunG rostral cuneus gyrus -5, -81, 10 0.88

Occipital lobe Medioventral occipi-
tal cortex (right)

rLinG rostral lingual gyrus 18, -60, -7 0.58

Occipital lobe Lateral occipital cor-
tex (right)

OPC occipital polar cortex 22, -97, 4 0.56

Parietal lobe Inferior parietal lob-
ule (left)

A39c caudal area 39 (PGp) -34, -80, 29 0.55

Limbic lobe Cingulate gyrus
(right)

A23v ventral area 23 9, -44, 11 0.54

Parietal lobe Precuneus (right) dmPOS dorsomedial pari-
etooccipital sulcus (PEr)

16, -64, 25 0.50

Occipital lobe Medioventral occipi-
tal cortex (right)

vmPOS ventromedial pari-
etooccipital sulcus

15, -63, 12 0.40

Temporal lobe Fusiform gyrus
(right)

A37mv medioventral area 37 31, -62, -14 0.38

Temporal lobe Parahippocampal
gyrus (left)

TL area tl (lateral PPHC, pos-
terior parahippocampa)

-28, -32, -18 0.37

Temporal lobe Fusiform gyrus
(right)

A37lv lateroventral area 37 43, -49, -19 0.37

Occipital lobe Medioventral occipi-
tal cortex (right)

rCunG rostral cuneus gyrus 7, -76, 11 0.36

Occipital lobe Lateral occipital cor-
tex (right)

iOccG inferior occipital
gyrus

32, -85, -12 0.36

Temporal lobe Parahippocampal
gyrus (right)

TL area TL (lateral PPHC,
posterior parahippocamp)

30, -30, -18 0.36
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Table 8. Sex-discriminative brain region scores (normalized to [0, 1])in the subcortical network (SCN) for HCP-Task (Figure 4 bottom
middle).

Lobe Gyrus (hemisphere) Region MNI (x, y, z) Score

Subcortical nuclei Thalamus (right) mPMtha pre-motor thalamus 12, -14, 1 0.72
Subcortical nuclei Thalamus (right) mPFtha medial pre-frontal

thalamus
7, -11, 6 0.66

Subcortical nuclei Thalamus (right) cTtha caudal temporal thala-
mus

10, -14, 14 0.65

Insular lobe Insular gyrus (left) vIa ventral agranular insula -32, 14, -13 0.61
Subcortical nuclei Basal ganglia (left) vCa central caudate -12, 14, 0 0.60
Subcortical nuclei Basal ganglia (left) vmPu ventromedial putamen -23, 7, -4 0.46
Subcortical nuclei Basal ganglia (right) dlPu dorsolateral putamen 29, -3, 1 0.45
Subcortical nuclei Thalamus (right) Otha occipital thalamus 13, -27, 8 0.41
Limbic lobe cingulate gyrus (left) A24rv rostroventral area 24 -3, 8, 25 0.36

Table 9. Sex-discriminative brain region scores (normalized to [0, 1]) in the dorsal attention network (DAN) for HCP-Task (Figure 4
bottom right).

Lobe Gyrus (hemisphere) Region MNI (x, y, z) Score

Parietal lobe Superior parietal lob-
ule (right)

A5l lateral area 5 35, -42, 54 0.92

Frontal lobe Precentral gyrus
(right)

A6cvl caudal ventrolateral
area 6

51, 7, 30 0.51

Parietal lobe Superior parietal lob-
ule (left)

A7c caudal area 7 -15, -71, 52 0.50

Frontal lobe Superior frontal
gyrus (left)

A6dl dorsolateral area 6 -18, -1, 65 0.42

Temporal lobe Inferior temporal
gyrus (right)

A37elv extreme lateroventral
area 37

53, -52, -18 0.42

Parietal lobe Superior parietal lob-
ule (right)

A7r rostral area 7 19, -57, 65 0.41

Parietal lobe Inferior parietal lob-
ule (right)

A40rd rostrodorsal area 40
(PFt)

47, -35, 45 0.40

Temporal lobe Middle temporal
gyrus (right)

A37dl dorsolateral area 37 60, -53, 3 0.40
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