

000 001 002 003 004 005 006 007 008 009 010 ACE: EXPLORING ACTIVATION VARIANCE FOR ACCU- RATE AND CALIBRATION-EFFICIENT LLM PRUNING

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid expansion of large language models (LLMs), the demand for memory and computational resources has grown significantly. Recent advances in LLM pruning aim to reduce the size and computational cost of these models. However, existing methods often suffer from either suboptimal pruning performance or low time efficiency during the pruning process. In this work, we propose an efficient and effective pruning method that simultaneously achieves high pruning performance and fast pruning speed with calibration efficiency. Our approach: (1) introduces an activation variance-guided pruning metric: a new metric that allows for better semantic information distinction preservation in the output activations after pruning; (2) enables model pruning with only a small sequence length of calibration dataset, while can maintain similar pruning performance as the original baselines that relies on larger sequence of calibration dataset (e.g. 2048 sequence lengths for Wanda and RIA). We conduct extensive experiments on prevalent LLMs, such as OPT, LLaMA, LLaMA-2, LLaMA-3, Qwen2.5, and MoE-based models such as Mixtral 8x7B. The experimental results show that we can achieve up to 18% decrease of perplexity and up to 63% less pruning time on WikiText-2, demonstrating the effectiveness of the proposed method.

1 INTRODUCTION

Recently, large language models (LLMs) have emerged as a prominent area of investigation, demonstrating exceptional capabilities through extensive parameterization across various tasks, such as language understanding (Devlin et al., 2018), text generation (Brown et al., 2020; Touvron et al., 2023a), question answering (Rajpurkar et al., 2016; Lewis et al., 2020), dialogue (Roller et al., 2021), and code generation (Chen et al., 2021), etc. While the increasing scale of LLMs has yield substantial accuracy improvements, the advancement necessitates a compromise in memory consumption and inference latency (Devlin et al., 2019; Touvron et al., 2023a; Agarwal et al., 2023). For instance, deploying a LLaMA-65B model requires at least four A100-40GB GPUs, with the time-to-first-token (TTFT) exceeding 100 milliseconds (Yang et al., 2025), highlighting the significant limitations of practical deployment in resource-constrained environments. To mitigate the computational bottlenecks, various models compression techniques have been proposed, such as quantization (Bai et al., 2020; Frantar & Alistarh, 2022; Xiao et al., 2023; Lin et al., 2024), pruning (Wolff et al., 1992; LeCun et al., 1989; Mocanu et al., 2018; Sun et al., 2023; Frantar & Alistarh, 2023), weight decomposition (Hsu et al., 2022; Yang et al., 2024), etc. Among them, LLMs post-training pruning (Frantar & Alistarh, 2023; Sun et al., 2023) has garnered particular attention due to their ability in applying sparsity constraints to pre-trained LLMs without requiring computationally expensive retraining procedures, thus avoiding the prohibitive memory overhead.

Although existing LLMs post-training pruning methods (Sun et al., 2023; Frantar & Alistarh, 2023) have demonstrated potential in compressing model size with reduced memory overhead and negligible accuracy loss across diverse tasks, these approaches typically employ a well-designed weight importance evaluation metric with numerical magnitudes of weights and activations to identify important weight elements that should be preserved during pruning. In this work, we *identify a promising yet unexplored opportunities in designing the importance evaluation metrics via exploring the semantic information inherent in the input activation feature space: For equal-valued weights, those with lower input activation variance more effectively maintain token-level semantic distinctions*: previous studies (Ethayarajh, 2019; Gao et al., 2021b) have shown that reduced token-

054 level variation can result in semantic collapse and performance degradation across both classification
 055 and generation tasks. However, existing works fail to consider the variance of input activation fea-
 056 tures, a critical factor in preserving semantic distinctions. We observe that when comparing two
 057 same-valued weights, the weight associated with higher input activation produces reduced output
 058 activation differentiation across distinct tokens, thereby diminishing semantic distinctions. Con-
 059 sequently, such weights should be assigned lower importance scores compared to those exhibiting
 060 smaller variance, as they contribute less effectively to maintaining semantic diversity.

061 In this work, we propose ACE, which explores activation variance for accurate and calibration-
 062 efficient LLMs pruning. Inspired by the role of input activation feature variance, we design an
 063 activation variance-guided weight pruning metric (VarP), which incorporates a variance-based per-
 064 turbation term and allows for better semantic information distinction preservation in the output acti-
 065 vations after pruning. Moreover, we provide a theoretical analysis of the calibration efficiency of our
 066 approach and show that our method can achieve high accuracy even when applied with reduced se-
 067 quence lengths for calibration data, demonstrating the potential of the proposed method in practical
 068 deployment scenarios with limited calibration data. Furthermore, VarP maintains (or even surpasses)
 069 the performance of full sequence length pruning baselines with fewer input sequence length and re-
 070 duced pruning time, highlighting its effectiveness and calibration efficiency. We summarize our
 071 contributions as follows:

- 072 • We propose the activation variance-guided pruning metric, which includes the variance of input
 073 activation to avoid the diminish of distinction between different tokens during pruning.
- 074 • We theoretically analyze our proposed method can achieve calibration efficiency. Moreover, the
 075 experimental results demonstrate that our approach can achieve high accuracy on the pruned mod-
 076 els with less input calibration sequence length and reduced pruning time.
- 077 • We conduct extensive experiments on various LLMs, such as OPT, LLaMA, LLaMA-2, LLaMA-
 078 3, Qwen2.5, and Mixtral-MoE models. Experimental results show that our method can outperform
 079 the baselines for both unstructured sparsity and N:M sparsity settings. For example, our VarP only
 080 takes 66% of the pruning time to perform 2:4 semi-structured pruning on Qwen2.5-32B compared
 081 to Wanda, while even obtaining about 0.4 reduction in perplexity compared with original Wanda.

082 2 RELATED WORK

083 **Network Pruning for Neural Networks.** Both unstructured pruning (Han et al., 2015; Frankle
 084 & Carbin, 2019) and structured pruning (Liu et al., 2017; Molchanov et al., 2019) are extensively
 085 explored for model compression and acceleration. The former identifies and removes individual
 086 weights based on criteria such as magnitude (Han et al., 2015) or gradient information (Lee et al.,
 087 2018). While achieving high sparsity, these methods often require specialized hardware to realize ac-
 088 tual speedups. The latter focuses on removing entire structural components such as neurons, filters,
 089 or channels (Li et al., 2017; Liu et al., 2017). Among different structured sparsity patterns, the N:M
 090 sparsity (Mishra et al., 2021) has gained prominence, where N out of every M consecutive weights
 091 are retained. This pattern is adopted in NVIDIA’s Ampere and later GPU architectures through
 092 specialized hardware support, enabling real-world efficient deployment and substantial acceleration
 093 during inference (Sun et al., 2023; Frantar et al., 2023; Zhang et al., 2024).

094 **Post-Training Pruning for Large Language Models.** Unlike training-aware sparsification (Gale
 095 et al., 2019), which iteratively prunes and fine-tunes the model during training, post-training prun-
 096 ing (PTP) operates directly on pretrained checkpoints, making it appealing for scenarios with limited
 097 training access or budget. However, designing effective pruning metrics remains a key challenge.
 098 Existing works such as Wanda (Sun et al., 2023) rely on the element-wise product of weight mag-
 099 nitudes and input activations to estimate importance. RIA (Zhang et al., 2024) incorporates relative
 100 importance between input and output channels to mitigate the problem of channel collapse. Pruner-
 101 zero (Dong et al., 2024) leverages evolutionary search to adaptively discover layer-wise metrics,
 102 while SparseGPT (Frantar & Alistarh, 2023) formulates pruning as a local reconstruction problem
 103 inspired by second-order approximations. However, current PTP works primarily focus on the en-
 104 hancement of the element of the weights (Damadi, 2021; Dong et al., 2019; Sun et al., 2023; Frantar
 105 et al., 2023). Few studies explore the statistical information of input activations to further improve
 106 the pruning performance.

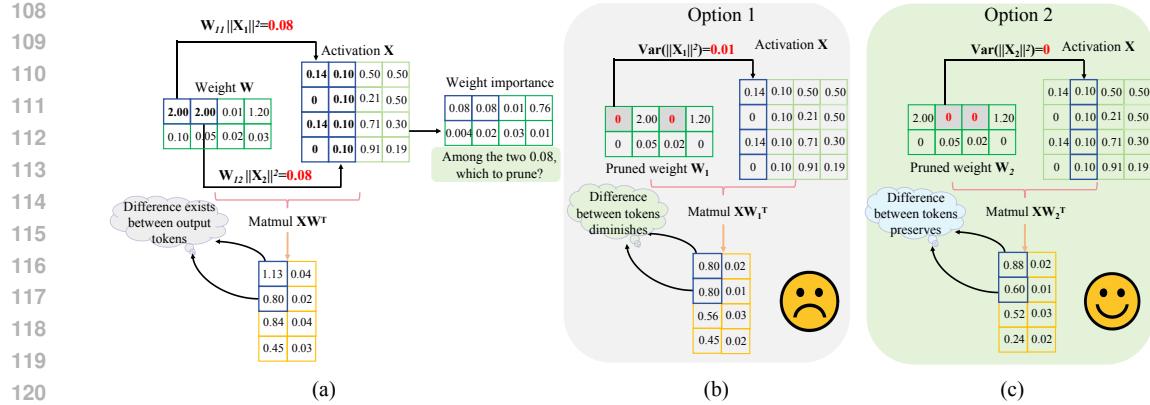


Figure 1: The motivating example of our proposed activation variance-guided pruning metric

3 METHODOLOGY

In this section, we will describe the motivation and our proposed ACE, an accurate and calibration efficient pruning approach of Large Language Models (LLMs). Firstly, we propose an activation variance-guided pruning metric which incorporates weights and the variance of input activations into the metric, aiming to maintain the relative distances between token representations in the embedding space during pruning, thus higher accuracy of the pruned model. Secondly, we theoretically analyze the calibration efficiency of our method.

3.1 ACTIVATION VARIANCE-GUIDED WEIGHT PRUNING METRIC (VARP)

Motivation. Most existing LLM pruning methods rely on importance metrics computed through various formulations involving weights and activations. However, the limitation arises when multiple elements share the same importance score. As illustrated in Figure 1(a), when two elements in the weight importance matrix in the first row have the same value (i.e., 0.08), it becomes difficult to determine which corresponding element to prune in the weight matrix \mathbf{W} to achieve a target sparsity of 50%. Two different pruning options exist based on the choice of pruning weight elements with the same importance score. **Option 1** is to prune the first weight element in the first row with a corresponding larger variance (i.e., 0.01 is larger than 0), resulting in a reduced difference between the first two elements of first column in the output matmul compared to the original dense model, as illustrated in Figure 1(b). In contrast, **Option 2** prunes the second element in the first row of weight matrix, which better preserves the output disparities between the first two elements of the first column in the output, as shown in Figure 1(c), thereby maintaining closer alignment with the original distribution characteristics. For NLP tasks, preserving distinctions between output channels of tokens in the embedding space is crucial for maintaining semantic coherence and preventing the loss of token-level differences in model outputs (Ethayarajh, 2019; Li et al., 2020).

VarP Design. Motivated by the above example, we propose our activation variance-guided weight importance score metric which incorporates the variance of input activation as follows:

$$S_{var_{ij}} = |\mathbf{W}_{ij}| \cdot (h(||\mathbf{X}_j||_2) + \text{Var}[||\mathbf{X}_j||_2^2]) \quad (1)$$

where $||\mathbf{X}_j||_2$ is the l_2 norm of j th features aggregated across N different tokens, and $\text{Var}[||\mathbf{X}_j||_2^2]$ represents the variance of the squared values in the j -th column of the input activation. $h(\cdot)$ is used to represent the transformation of the l_2 norm and serve as a factor in the product of $|\mathbf{W}_{ij}|$ and $h(||\mathbf{X}_j||_2)$ to estimate the impact on the output when the weight element \mathbf{W}_{ij} is removed. Simply, we can use $S_{W_{ij} + var_{ij}}$ for deriving below. Building upon $h(||\mathbf{X}_j||_2)$, we introduce an input variance-based perturbation term $\text{Var}[||\mathbf{X}_j||_2^2]$ to further determine which weight element should be pruned when the values of $|\mathbf{W}_{ij}| \cdot h(||\mathbf{X}_j||_2)$ are similar. We define $h(||\mathbf{X}_j||_2)$ as follows to evaluate the importance of the j th feature in input activation \mathbf{X}

$$h(||\mathbf{X}_j||_2) = (\mathbb{E}[||\mathbf{X}_j||_2^2])^2 + \mathbb{E}[||\mathbf{X}_j||_2^2] + 1 \quad (2)$$

162 where $\mathbb{E}[||\mathbf{X}_j||^2]$ represents the mean of the squared values in the j -th row of the input activation.
 163 Combining Equation 1 and Equation 2, we get our weight importance score metric as
 164

$$165 \mathbf{S}_{var_{ij}} = |\mathbf{W}_{ij}| \cdot ((\mathbb{E}[||\mathbf{X}_j||^2_2])^2 + \text{Var}[||\mathbf{X}_j||^2_2] + \mathbb{E}[||\mathbf{X}_j||^2_2] + 1) \quad (3)$$

166 Based on the formula linking variance and expectation, we have
 167

$$168 \text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \quad (4)$$

169 Combing Equation 3 and Equation 4, $\mathbf{S}_{var_{ij}}$ can be further derived as follows
 170

$$171 \mathbf{S}_{var_{ij}} = |\mathbf{W}_{ij}| \cdot (\mathbb{E}[||\mathbf{X}_j||^4_2] + \mathbb{E}[||\mathbf{X}_j||^2_2] + 1) \quad (5)$$

172 Based on the fact that the input activations are normalized, implying that the corresponding activation values are less than 1. Then, based on the power series expansion
 173

$$174 \mathbb{E}[||\mathbf{X}_j||^4_2] + \mathbb{E}[||\mathbf{X}_j||^2_2] + 1 = \mathbb{E}[||\mathbf{X}_j||^4_2 + ||\mathbf{X}_j||^2_2 + 1] \approx \mathbb{E}\left[\frac{1}{1 - ||\mathbf{X}_j||^2_2}\right] \quad (6)$$

175 We derive the importance score as
 176

$$177 \mathbf{S}_{var_{ij}} = |\mathbf{W}_{ij}| \cdot \mathbb{E}\left[\frac{1}{1 - ||\mathbf{X}_j||^2_2}\right] \quad (7)$$

178 In the above equation, we use the absolute value of weight in the importance metric of our proposed
 179 method which we refer as *Wanda+VarP* in our experiments, since it shares the same weight component
 180 of the importance metric in Wanda (Sun et al., 2023). Similarly, we derive the importance metric of *RIA+VarP* as
 181

$$182 \mathbf{S}_{RIA+var_{ij}} = \left(\frac{|\mathbf{W}_{ij}|}{\sum |\mathbf{W}_{*j}|} + \frac{|\mathbf{W}_{ij}|}{\sum |\mathbf{W}_{i*}|} \right) \cdot \mathbb{E}\left[\frac{1}{1 - ||\mathbf{X}_j||^2_2}\right] \quad (8)$$

183 where $\sum |\mathbf{W}_{*i}|$ and $\sum |\mathbf{W}_{j*}|$ denote the sum of the i -th row sum and the sum of j -th column in the
 184 weight matrix, respectively.
 185

186 3.2 CALIBRATION DATA EFFICIENCY ANALYSIS

187 SparseGPT (Frantar & Alistarh, 2023) formulates LLMs post-training pruning as a layer-wise reconstruction
 188 problem, where for each layer, it aims to minimize the reconstruction error after pruning.
 189 Drawing inspiration from Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1993), SparseGPT (Frantar & Alistarh, 2023) develops a pruning metric as follows
 190

$$191 \mathbf{S}_{ij} = \frac{|\mathbf{W}_{ij}|^2}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j}, \quad (9)$$

192 where $\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$ represents the regularized Hessian matrix used in the layer-wise reconstruction
 193 problem and λ is used to prevent algorithm failure due to singular matrices thus ensuring the Hessian
 194 is always invertible. Given the input activation as $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{d_{in}})$, we have
 195

$$196 \frac{1}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j} = \frac{\lambda + ||\mathbf{X}||^2}{\lambda + ||\mathbf{X}||^2 - \mathbf{X}_j^2} \cdot \lambda \quad (10)$$

197 Where $||\mathbf{X}||^2 = \sum_{i=1}^{d_{in}} \mathbf{X}_i^2$. Wanda (Sun et al., 2023) uses a coarse formulation to approximate
 198 $\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})$ as follows
 199

$$200 \frac{1}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j} \approx \frac{1}{(\text{diag}(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}))_j^{-1}} = \mathbf{X}_j^2 + \lambda \quad (11)$$

201 Taking the difference of our derivation (i.e., Equation 10) and Wanda's approximation (i.e., Equation 11), we have
 202

$$203 \text{diff} = \left| \frac{\lambda + ||\mathbf{X}||^2}{\lambda + ||\mathbf{X}||^2 - \mathbf{X}_j^2} \cdot \lambda - (\mathbf{X}_j^2 + \lambda) \right| \approx \frac{||\mathbf{X}||^2 \mathbf{X}_j^2}{\lambda + ||\mathbf{X}||^2} \quad (12)$$

216 Suppose the input sequence length is denoted as N , we can further derive $diff$ as follows (Detailed
 217 derivation can be found at Appendix B.1.2)

$$219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237 \quad 238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad 244 \quad 245 \quad 246 \quad 247 \quad 248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad 254 \quad 255 \quad 256 \quad 257 \quad 258 \quad 259 \quad 260 \quad 261 \quad 262 \quad 263 \quad 264 \quad 265 \quad 266 \quad 267 \quad 268 \quad 269$$

$$diff = \frac{1}{N+1} \mathbb{E}[||\mathbf{X}_j||^2] \quad (13)$$

Equation 13 shows an inverse relationship between the sequence length N and $diff$. Specifically, as N decreases, $diff$ increases monotonically, which demonstrates that our proposed method yields reduced reconstruction error and improved accuracy, particularly in scenarios with smaller input sequence length. This theoretical finding suggests that our approach exhibits calibration data efficiency. The detailed derivation can be found in Appendix B.1.1 and B.1.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Evaluations. We use OPT 350M-13B (Zhang et al., 2022), LLaMA 7B-65B (Touvron et al., 2023a), LLaMA2 7B-13B (Touvron et al., 2023b), LLaMA 3 series (Grattafiori et al., 2024), Qwen2.5 1.5B-32B (Team, 2024), and MoE models such as Mixtral-8x7B and Mixtral-8x7B-Instruct (Jiang et al., 2024) to evaluate our proposed method. All model checkpoints used in our experiments are obtained from the HuggingFace Transformers library to ensure reproducibility. For fair comparison, we employ uniform pruning across all linear layers while preserving the embeddings and the head as dense (Sun et al., 2023; Zhang et al., 2024). We evaluate the proposed method in both generation task and zero-shot task. For the generation task, we measure the perplexity of the three model families on WikiText-2 (Merity et al., 2016). For zero-shot evaluation, we evaluate on seven benchmark tasks from EleutherAI LM Harness (Gao et al., 2021a) following existing work (Sun et al., 2023) on LLaMA models. All experiments are conducted on a server with 8 NVIDIA A100 GPUs, each with 40GB memory.

Baselines. Our baselines consist of two categories: one includes methods that only support 50% structured pruning such as SliceGPT (Ashkboos et al., 2024), SVD-LLM (Wang et al., 2024a), ASVD (Yuan et al., 2023), FLAP (An et al., 2024), SoBP (Wei et al., 2024) and CFSP (Wang et al., 2024b), and the other includes methods that not only support 50% structured pruning but also 2:4 and 4:8 semi-structured pruning methods, such as Wanda (Sun et al., 2023) and RIA (Zhang et al., 2024).

Calibration Data. For fair comparison with baselines, we take 128 samples from the C4 dataset (Raffel et al., 2020) for all models. Max context length size is used for both unstructured pruning and N:M semi-structured pruning for Wanda and RIA.

4.2 GENERATION TASK

We compare the VarP method with various LLM-based pruning baselines (e.g., SliceGPT (Ashkboos et al., 2024), SVD-LLM (Wang et al., 2024a), ASVD (Yuan et al., 2023), FLAP (An et al., 2024), SoBP (Wei et al., 2024) and CFSP (Wang et al., 2024b)) using the WikiText-2 dataset. We evaluated the performance in PPL of the LLaMA, LLaMA-2, LLaMA-3 and OPT model families in various sizes, as shown in Table 7 and Table 9. We also provide the time taken for the pruning process of the OPT and LLaMA models by these baselines, as shown in Table 12 and Table 10. The results of SliceGPT, SliceGPT-eq, SVD-LLM, ASVD, SoBP are from SoBP (Wei et al., 2024).

The experimental results show that compared to the baselines that only support structured pruning, our method outperforms them in both efficiency and performance at 50% sparsity. For example, on the LLaMA-7B model, our method achieves a PPL nearly 2.0 lower than SoBP, while running almost twice as fast as FLAP. Compared with the Wanda and RIA baselines, we can see that our method achieves results comparable to, or even better than, the original Wanda and RIA. For instance, on the LLaMA-7B model, our method achieves a PPL approximately 0.15 lower than the original Wanda. Moreover, our approach is much more time efficient than both the original Wanda and the RIA, taking only about 40% of the pruning time of the original Wanda on the OPT-30B model.

270
271
272
Table 1: PPL (↓) of LLaMA and LLaMA-2 models
with VarP and baselines at 50% sparsity

Method	LLaMA				LLaMA-2	
	7B	13B	30B	65B	7B	13B
SliceGPT	15.94	9.79	8.22	6.92	12.80	10.60
SliceGPT-eq	46.08	11.89	9.89	8.10	16.02	13.38
SVD-LLM	13.85	10.22	7.96	6.69	16.14	10.79
ASVD	1.7e3	149.94	17.78	15.23	2.1e3	71.21
FLAP	20.80	13.60	9.59	7.05	21.94	13.70
SoBP	9.09	7.61	6.06	5.10	9.28	7.39
CFSP	10.18	8.32	7.06	6.25	9.31	8.00
Wanda	7.27	6.16	5.32	4.57	6.92	5.99
RIA	7.14	6.09	5.09	4.40	6.81	5.83
VarP (ours)	7.15	6.11	5.10	4.44	6.42	5.45

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
Table 2: Pruning time (s) (↓) of LLaMA
and OPT models with VarP and base-
lines at 50% sparsity

Method	LLaMA		OPT	
	7B	13B	6.7B	13B
SliceGPT	720	2400	840	2160
SVD-LLM	1440	7740	1980	9660
ASVD	6.2e4	3.9e6	7.5e4	3.7e5
FLAP	60	180	60	90
SoBP	1080	3900	2100	1.3e4
CFSP	40	58	43	62
Wanda	65	93	67	183
RIA	69	90	72	186
VarP (ours)	37	53	37	64

283
284
4.3 ZERO-SHOT TASKS285
286
287
288
289
290
291
292
293
We report the zero-shot accuracy across seven tasks and the average accuracy of them on OPT-6.7B, LLaMA-7B, LLaMA-13B, and Qwen-2.5-3B from Table 3 to Table 6. We also have results on OPT-13B, LLaMA-2-7B, LLaMA-3.1-8B and LLaMA-2-13B, as shown from Table 15 to Table 18 in Appendix B.2.2. Across both unstructured and semi-structured sparsity settings, our method outperforms Wanda and RIA with sequences length of 16. VarP with the input sequence length of only 16 can generally surpass Wanda and RIA baselines pruning with 16 sequence lengths. For example, on the OPT-6.7B model with 2:4 semi-structured pruning, our method of RIA+VarP achieves an average accuracy of 46.46%, surpassing Wanda (Seq.Len = 16) by 1.1% and RIA (Seq.Len = 16) by 0.45%, respectively.294
295
Table 3: Accuracy (↑) of OPT-6.7B on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	62.32	53.43	46.03	61.48	62.66	27.22	24.60	48.24	+1.19
	Wanda+VarP (ours)	16	66.64	53.42	47.65	60.85	63.17	28.85	25.40	49.43	
	RIA	16	63.97	52.71	46.69	61.33	62.88	27.90	24.40	48.55	+0.87
	RIA+VarP (Ours)	16	66.29	53.09	47.69	61.04	63.74	28.28	25.80	49.42	
2:4	Wanda	16	62.17	52.35	40.91	59.74	56.06	24.74	21.60	45.36	+0.53
	Wanda+VarP (ours)	16	62.35	51.26	42.23	60.93	57.70	26.19	20.60	45.89	
	RIA	16	62.19	53.42	41.29	61.01	56.88	25.50	21.80	46.01	+0.45
	RIA+VarP (Ours)	16	63.57	51.64	42.68	59.99	58.13	26.38	22.80	46.46	
4:8	Wanda	16	62.22	53.41	43.45	60.13	58.95	26.71	23.00	46.83	+0.11
	Wanda+VarP (ours)	16	63.94	52.71	45.45	61.48	60.19	26.87	24.80	47.92	
	RIA	16	63.15	53.79	43.98	60.77	59.05	26.88	23.60	47.31	+1.30
	RIA+VarP (Ours)	16	64.80	52.35	45.55	61.72	61.20	27.48	25.20	48.61	

305
306
307
Table 4: Accuracy (↑) of LLaMA-7B on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	70.73	54.51	51.51	64.87	69.48	36.09	29.00	53.74	+0.69
	Wanda+VarP (Ours)	16	70.51	61.39	51.60	66.45	68.89	35.58	26.60	54.43	
	RIA	16	71.54	61.73	51.49	66.65	69.75	35.90	28.40	55.07	+0.04
	RIA+VarP (Ours)	16	70.67	64.62	51.61	66.61	69.07	35.58	27.60	55.11	
2:4	Wanda	16	68.19	53.79	41.73	62.04	59.80	26.70	22.60	47.83	+1.04
	Wanda+VarP (Ours)	16	68.02	54.88	43.89	63.61	61.32	28.83	21.60	48.87	
	RIA	16	67.98	55.23	42.03	62.03	60.48	26.96	24.20	48.41	+0.96
	RIA+VarP (Ours)	16	68.87	56.68	43.88	63.06	61.74	28.59	22.80	49.37	
4:8	Wanda	16	70.00	55.23	46.81	64.09	63.38	31.91	24.80	50.88	+0.79
	Wanda+VarP (Ours)	16	69.48	59.92	48.10	63.22	63.97	31.82	25.20	51.67	
	RIA	16	69.29	55.95	47.00	64.48	63.72	31.65	26.20	51.18	+0.87
	RIA+VarP (Ours)	16	69.85	59.93	48.42	64.25	64.02	32.34	25.60	52.05	

317
318
319
4.4 PERFORMANCE ON LLMs WITH VARIOUS SCALES320
321
322
323
Table 7 presents the performance of our method across different model scales, focusing on the OPT
series models, ranging from 350M to 30B, evaluated on WikiText-2 datasets. Additional results for
the Qwen2.5 series and Mixtral-MoE models on WikiText-2 are also provided in the Appendix B.2.1.
We observe that our method is effective across models of varying scales. Compared with the baseline
methods, our approach achieves performance comparable to, or even better than original Wanda, and

Table 5: Accuracy (\uparrow) of LLaMA-13B comparison on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-c	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	73.35	58.12	55.12	70.51	74.17	41.21	31.20	57.67	-0.12
	Wanda+VarP (Ours)	16	73.33	59.94	54.78	70.80	73.10	41.56	29.40	57.55	
	RIA	16	73.34	57.11	54.51	70.62	73.94	40.87	30.60	57.28	
	RIA+VarP (Ours)	16	73.98	58.48	54.97	70.64	72.65	41.47	29.00	57.31	+0.03
2:4	Wanda	16	70.12	53.79	46.44	66.45	65.82	32.25	25.80	51.52	
	Wanda+VarP (Ours)	16	70.35	53.69	48.73	65.75	65.65	33.37	26.40	51.99	+0.47
	RIA	16	69.85	53.42	47.43	67.30	66.92	33.68	26.20	52.11	
	RIA+VarP (Ours)	16	70.59	53.14	49.16	66.61	66.49	33.94	26.20	52.30	+0.19
4:8	Wanda	16	70.69	54.15	50.73	68.67	70.17	37.82	27.60	54.26	+0.74
	Wanda+VarP (Ours)	16	72.94	54.51	52.45	68.35	70.67	38.48	27.60	55.00	
	RIA	16	71.16	53.43	51.24	70.48	69.95	37.37	28.00	54.52	
	RIA+VarP (Ours)	16	72.68	53.09	52.57	67.62	71.07	38.99	28.80	54.97	+0.45

Table 6: Accuracy (\uparrow) of Qwen2.5-3B on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	66.11	72.34	45.40	64.25	71.51	37.29	26.80	54.81	+0.88
	Wanda+VarP (ours)	16	68.70	73.29	45.52	66.23	71.72	37.63	26.80	55.69	
	RIA	16	67.89	76.17	45.81	65.19	71.75	38.31	27.80	56.13	-0.09
	RIA+VarP (Ours)	16	67.40	76.43	45.92	65.90	72.15	37.73	26.80	56.04	
2:4	Wanda	16	63.21	63.18	35.77	58.01	56.39	24.74	20.00	45.90	+0.02
	Wanda+VarP (ours)	16	64.83	56.31	35.75	58.73	59.39	26.45	20.00	45.92	
	RIA	16	63.85	60.28	36.52	58.63	60.52	27.21	18.20	46.45	
	RIA+VarP (Ours)	16	64.10	60.13	38.30	57.83	59.85	27.38	19.60	46.74	+0.29
4:8	Wanda	16	62.54	61.01	41.45	60.77	66.07	31.14	23.60	49.51	+0.93
	Wanda+VarP (ours)	16	63.37	65.71	41.87	61.88	66.33	31.74	22.20	50.44	
	RIA	16	62.32	58.48	42.19	61.32	67.34	31.56	22.20	49.34	
	RIA+VarP (Ours)	16	62.91	66.43	41.80	62.27	66.09	32.00	22.80	50.61	+1.27

shows a notable PPL reduction compared with Wanda and RIA using 16 sequence lengths, with the improvement being particularly pronounced in semi-structured pruning for smaller models. For example, on the OPT-13B model with 2:4 structured pruning, the original Wanda achieves a PPL of 15.53, while Wanda with a sequence length of 16 achieves 15.34. In comparison, Wanda+VarP reaches approximately 13.95, representing a reduction of about 1.5. Similarly, RIA+VarP achieves a PPL that is approximately 1.6 lower than that of RIA with a sequence length of 16.

Table 7: PPL (\downarrow) of OPT model series on WikiText-2 at different sparsity levels

Sparsity	Method	Seq.Len	OPT					
			350M	1.3B	2.7B	6.7B	13B	30B
50%	Wanda	2048	36.24	18.40	14.22	11.98	11.92	10.03
	Wanda	16	42.91	24.62	17.62	14.33	12.34	11.01
	Wanda+VarP (ours)	16	37.78	20.77	15.02	12.32	11.64	10.29
	RIA	16	40.09	20.46	15.68	12.32	11.70	10.22
	RIA+VarP (ours)	16	37.40	19.90	14.70	12.08	11.38	10.13
2:4	Wanda	2048	114.57	28.15	21.27	15.91	15.53	13.47
	Wanda	16	136.12	35.63	25.69	18.58	15.34	19.13
	Wanda+VarP (ours)	16	103.80	29.59	24.45	16.11	13.95	14.02
	RIA	16	141.18	30.88	23.89	16.25	15.10	16.89
	RIA+VarP (ours)	16	120.04	28.06	23.48	15.84	13.54	13.43
4:8	Wanda	2048	58.95	22.20	16.78	13.55	13.38	10.87
	Wanda	16	66.70	27.82	20.55	17.00	13.28	12.58
	Wanda+VarP (ours)	16	58.13	23.34	17.61	13.77	12.33	11.13
	RIA	16	67.48	23.43	18.24	14.78	12.95	12.00
	RIA+VarP (ours)	16	63.14	22.36	17.57	13.62	12.06	10.95

378
379

4.5 PERFORMANCE ON MOE-BASED LLMs

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

We also have experiments to show the effectiveness of the proposed method on MoE-based models, such as the Mixtral-MoE 8x7B-v0.1 and Instruct models as shown in Table 8. Experimental results show that our method is effective for MoE models, particularly in the 2:4 and 4:8 semi-structured pruning settings. For instance, in Mixtral-MoE-8x7B-v0.1, our Wanda+VarP achieves a roughly 0.2 lower PPL compared to Wanda with a sequence length of 16, while RIA+VarP achieves a 0.3 lower PPL compared to RIA with a sequence length of 16.

4.6 CALIBRATION EFFICIENCY ANALYSIS
ON DIFFERENT LLMs395
396
397
398
399
400
401

We conduct experiments to evaluate our proposed VarP approach, including the perplexity on WikiText-2 and runtime on LLaMA, LLaMA-2 and LLaMA-3 models in Table 9 and Table 10. We also provide more results of different models of pruning time such as Qwen2.5 and pruning time of Mixtral-MoE in Appendix B.2.1. Our key findings are summarized as follows:

Table 8: PPL (↓) of Mixtral-MoE model series
on WikiText-2

Sparsity	Method	Seq.Len	8x7B-v0.1	8x7B-Instruct
50%	Wanda	2048	4.45	4.68
	Wanda	16	4.58	4.75
	Wanda+VarP (ours)	16	4.46	4.67
	RIA	16	4.52	4.63
	RIA+VarP (ours)	16	4.41	4.60
2:4	Wanda	2048	6.22	6.25
	Wanda	16	6.47	6.41
	Wanda+VarP (ours)	16	6.30	6.24
	RIA	16	6.30	6.43
	RIA+VarP (ours)	16	6.03	6.01
4:8	Wanda	2048	5.18	5.33
	Wanda	16	5.38	5.49
	Wanda+VarP (ours)	16	5.22	5.33
	RIA	16	5.25	5.40
	RIA+VarP (ours)	16	5.11	5.22

Table 9: PPL (↓) of LLaMA, LLaMA-2, and LLaMA-3 families on WikiText-2

Sparsity	Method	Seq.Len	LLaMA				LLaMA-2		Meta-LLaMA-3		LLaMA-3.1		LLaMA-3.2	
			7B	13B	30B	65B	7B	13B	8B	8B	1B	3B	1B	3B
50%	Wanda	2048	7.26	6.15	5.25	4.60	6.46	5.56	8.87	8.74	20.78	11.58		
	Wanda	16	7.89	6.60	5.41	4.46	6.82	5.88	9.02	8.93	23.81	12.19		
	Wanda+VarP (ours)	16	7.18	6.12	5.13	4.41	6.49	5.47	8.47	8.44	21.39	11.49		
	RIA	16	7.27	6.11	5.14	4.42	6.44	5.53	8.35	8.34	19.63	11.32		
	RIA+VarP (ours)	16	7.15	6.11	5.10	4.44	6.42	5.45	8.31	8.29	19.25	11.22		
2:4	Wanda	2048	11.53	9.60	6.89	6.24	11.34	8.35	22.29	20.57	74.09	31.09		
	Wanda	16	11.70	9.35	7.00	6.15	11.73	8.35	22.43	20.21	70.80	32.05		
	Wanda+VarP (ours)	16	11.03	8.61	6.66	5.72	10.57	7.42	22.58	20.04	69.87	33.86		
	RIA	16	11.53	8.83	6.81	6.05	11.17	7.90	22.62	20.33	89.69	34.74		
	RIA+VarP (ours)	16	11.38	8.72	6.62	5.92	11.49	7.68	22.12	19.67	75.78	32.01		
4:8	Wanda	2048	8.56	7.40	5.98	5.30	8.09	6.52	13.14	12.24	38.50	18.43		
	Wanda	16	8.69	7.37	5.87	5.16	8.28	6.48	12.60	12.08	37.80	18.22		
	Wanda+VarP (ours)	16	8.25	7.03	5.76	4.97	7.95	6.16	12.30	11.66	37.93	18.19		
	RIA	16	8.46	7.14	5.78	5.08	8.05	6.34	12.20	11.75	41.06	18.93		
	RIA+VarP (ours)	16	8.34	7.02	5.72	5.02	7.93	6.25	12.18	11.58	37.76	18.23		

417
418
419
420
421
422
423

1) Compared to the full-sequence pruning variant of Wanda with 2048 sequence lengths, our VarP method offers substantial gains in time efficiency on LLaMA models. For example, in the 2:4 semi-structured pruning of the LLaMA-2-13B model, our method requires only about 25% of the pruning time compared to original Wanda. At the same time, Wanda+VarP achieves a PPL of 7.42, whereas both original Wanda and Wanda with a sequence length of 16 have a PPL of approximately 8.35, showing a reduction of around 1.0.

424
425
426
427
428
429

2) When compared to RIA with 16 sequence lengths, VarP exhibits slightly higher latency but yields significantly better evaluation performance. This accuracy gain is especially pronounced on the LLaMA-3 series of models. On the LLaMA-3.1-8B model with 2:4 semi-structured pruning, RIA with 16 sequence lengths produces a PPL of 20.33. In comparison, VarP can achieves a lower PPL of 19.67, representing a 0.7 reduction in perplexity and only have an additional latency about 16 seconds comparing to RIA with 16 sequence lengths.

430
431

3) While Wanda with 16 sequence lengths is the fastest among the methods, it comes at the cost of degraded performance. For example, on the LLaMA-7B model with 50% unstructured pruning, Wanda+VarP achieves a PPL of 7.18, outperforming Wanda (Seq.Len = 16) with PPL of 7.89.

432 Table 10: Pruning Time (s) (\downarrow) of LLaMA, LLaMA-2, and LLaMA-3 model series on WikiText-2
433 at different sparsity levels
434

435 Sparsity	436 Method	437 Seq.Len	438 LLaMA				439 LLaMA-2		440 Meta-LLaMA-3		441 LLaMA-3.1		442 LLaMA-3.2	
			7B	13B	30B	65B	7B	13B	8B	8B	1B	3B		
443 50%	444 Wanda	445 2048	446 64.6	447 39.4	448 49.3	449 67.6	450 98.8	451 183.5	452 76.7	453 74.8	454 28.9	455 52.4		
	456 Wanda	457 16	458 23.7	459 29.8	460 40.0	461 60.7	462 22.7	463 27.9	464 30.4	465 29.8	466 15.2	467 25.3		
	468 Wanda+VarP (ours)	469 16	470 29.9	471 37.4	472 53.1	473 78.4	474 29.2	475 36.7	476 44.4	477 43.8	478 22.7	479 35.6		
	480 RIA	481 16	482 33.2	483 41.6	484 66.5	485 102.1	486 33.4	487 43.7	488 33.6	489 29.6	490 17.0	491 25.3		
	492 RIA+VarP (ours)	493 16	494 47.2	495 52.2	496 82.6	497 120.7	498 45.0	499 57.6	500 45.7	501 44.6	502 24.1	503 37.5		
452 2:4	453 Wanda	454 2048	455 80.6	456 121.6	457 260.9	458 463.7	459 179.4	460 267.7	461 118.9	462 117.7	463 39.3	464 74.0		
	465 Wanda	466 16	467 41.1	468 55.7	469 98.3	470 152.7	471 42.7	472 55.3	473 73.9	474 74.2	475 26.2	476 49.8		
	477 Wanda+VarP (ours)	478 16	479 48.3	480 65.9	481 110.6	482 174.4	483 48.2	484 65.2	485 86.4	486 86.0	487 33.0	488 61.4		
	489 RIA	490 16	491 72.9	492 102.5	493 195.6	494 323.7	495 74.0	496 108.4	497 73.1	498 72.2	499 28.8	500 51.6		
	501 RIA+VarP (ours)	502 16	503 84.9	504 118.3	505 212.7	506 342.5	507 88.6	508 116.1	509 88.2	510 88.8	511 34.9	512 64.1		
450 4:8	451 Wanda	452 2048	453 70.2	454 104.2	455 226.8	456 410.3	457 160.2	458 234.6	459 95.9	460 96.7	461 33.8	462 62.5		
	463 Wanda	464 16	465 31.0	466 40.2	467 65.9	468 100.9	469 31.3	470 40.1	471 50.6	472 52.2	473 21.0	474 37.4		
	475 Wanda+VarP (ours)	476 16	477 38.1	478 57.2	479 80.8	480 121.5	481 38.4	482 50.5	483 62.6	484 61.4	485 27.4	486 50.2		
	487 RIA	488 16	489 51.5	490 72.8	491 131.7	492 209.3	493 53.0	494 74.6	495 52.7	496 50.2	497 21.6	498 39.2		
	499 RIA+VarP (ours)	500 16	501 67.9	502 92.8	503 148.2	504 228.6	505 67.1	506 86.0	507 64.5	508 66.3	509 29.5	510 51.2		

450
451 4.7 IMPACT OF DIFFERENT SPARSITY
452

453 We report PPL of LLMs on
454 WikiText-2 under different sparsity
455 settings, as shown in Table 11. We can find that across
456 different sparsity settings, our
457 method, especially RIA+VarP,
458 consistently matches or outperforms the baselines. At lower
459 sparsity levels (20% and 40%),
460 RIA sometimes performs better
461 on certain OPT models but
462 yields results comparable to
463 ours on LLaMA models. As
464 sparsity increases (50%–60%),
465 our approach surpasses both
466 RIA and Wanda in pruning
467 effectiveness. Notably, on the
468 OPT-13B model with 60% unstructured pruning, our method reduces PPL by about 1.9 compared
469 to the baseline. Similarly, on the LLaMA-13B model under 60% unstructured pruning, we achieve
470 a PPL of 8.16, outperforming Wanda’s 8.75 (using a 2048-length input) by 0.6, while using much
471 shorter sequences. In contrast, Wanda with shorter sequence lengths shows significant performance
472 degradation, performing considerably worse than both our method and RIA.
473

474 5 CONCLUSION
475

476 This work introduces an activation variance-guided accurate and calibration-efficient post-training
477 pruning technique tailored for large language models. We introduce VarP, an activation variance-
478 guided weight pruning metric, which incorporates input activation variance into the pruning metric,
479 achieving both pruning effectiveness and calibration efficiency. Through extensive experiments on
480 prominent LLMs like OPT, LLaMA, LLaMA2, LLaMA3, Qwen2.5, and MoE-based Mixtral across
481 varying model sizes, we show that VarP can achieve better performance than baselines with less
482 pruning time and can combine with existing methods such as RIA for more efficient and accurate
483 pruning. Moreover, experimental results show that our proposed LLM pruning method can be
484 adapted to N:M sparsity and achieve better accuracy and calibration efficiency via taking benefit
485 from the design of VarP.

Table 11: PPL (\downarrow) of LLMs with different sparsity on WikiText-2

435 Sparsity	436 Method	437 Seq.Len	438 LLaMA		439 LLaMA-2		440 OPT		
			7B	13B	7B	13B	1.3B	6.7B	13B
443 20%	444 Wanda	445 2048	446 5.81	447 5.13	448 5.22	449 4.68	450 14.69	451 10.62	452 10.06
	453 Wanda	454 16	455 5.76	456 5.13	457 5.17	458 5.09	459 15.32	460 10.43	461 9.94
	462 Wanda+VarP (ours)	463 16	464 5.72	465 5.11	466 5.14	467 4.62	468 15.09	469 10.94	470 10.16
	473 RIA	474 16	475 5.75	476 5.13	477 5.16	478 4.62	479 14.34	480 10.38	481 10.00
	484 RIA+VarP (ours)	485 16	486 5.74	487 5.12	488 5.16	489 4.59	490 14.96	491 10.93	492 10.16
452 40%	453 Wanda	454 2048	455 6.39	456 5.51	457 5.66	458 5.01	459 15.87	460 10.96	461 10.64
	463 Wanda	464 16	465 6.48	466 5.64	467 5.75	468 5.09	469 18.57	470 12.13	471 10.66
	475 Wanda+VarP (ours)	476 16	477 6.27	478 5.48	479 5.63	480 4.95	481 17.52	482 11.29	483 10.62
	487 RIA	488 16	489 6.29	490 5.48	491 5.62	492 4.94	493 16.36	494 10.98	495 10.48
	499 RIA+VarP (ours)	500 16	501 6.23	502 5.47	503 5.62	504 4.92	505 16.96	506 11.24	507 10.58
450 60%	451 Wanda	452 2048	453 10.69	454 8.75	455 10.04	456 7.93	457 26.53	458 15.21	459 15.94
	460 Wanda	461 16	462 13.35	463 9.75	464 11.34	465 8.60	466 45.77	467 20.32	468 17.52
	477 Wanda+VarP (ours)	478 16	479 11.02	480 8.37	481 11.11	482 7.21	483 30.56	484 16.24	485 14.42
	489 RIA	490 16	491 11.23	492 8.44	493 10.16	494 7.58	495 32.76	496 16.21	497 15.68
	499 RIA+VarP (ours)	500 16	501 10.82	502 8.16	503 10.02	504 7.28	505 28.37	506 15.04	507 14.15

486 REFERENCES
487

488 Megha Agarwal, Asfandyar Qureshi, Linden Li Nikhil Sardana, Julian Quevedo, and Daya Khu-
489 dia. Llm inference performance engineering: Best practices. *URL: <https://www.databricks.com/blog/llm-inference-performanceengineering-best-practices>*, 2023.

490

491 Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
492 tured pruning for large language models. In *Proceedings of the AAAI Conference on Artificial*
493 *Intelligence*, volume 38, pp. 10865–10873, 2024.

494

495 Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
496 Hensman. Slicept: Compress large language models by deleting rows and columns. *arXiv*
497 *preprint arXiv:2401.15024*, 2024.

498

499 Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
500 King. Binarybert: Pushing the limit of bert quantization. *arXiv preprint arXiv:2012.15701*, 2020.

501

502 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are few-shot
503 learners. *NeurIPS*, 33, 2020.

504

505 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, et al. Evaluating large language models
506 trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

507

508 Seyyed Mohammad Saeed Damadi. Compression of deep neural networks. Master’s thesis, Univer-
509 sity of Maryland, Baltimore County, 2021.

510

511 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
512 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

513

514 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
515 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
516 *the North American chapter of the association for computational linguistics: human language*
517 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

518

519 Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
520 Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. *arXiv*
521 *preprint arXiv:2406.02924*, 2024.

522

523 Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
524 aware quantization of neural networks with mixed-precision. In *Proceedings of the IEEE/CVF*
525 *international conference on computer vision*, pp. 293–302, 2019.

526

527 Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geom-
528 etry of bert, elmo, and gpt-2 embeddings. In *Proceedings of the 2019 Conference on Empirical*
529 *Methods in Natural Language Processing (EMNLP)*, pp. 55–65, 2019.

530

531 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
532 networks. *International Conference on Learning Representations*, 2019.

533

534 Elias Frantar and Dan Alistarh. Spdy: Accurate pruning with speedup guarantees. In *International*
535 *conference on machine learning*, pp. 6726–6743. PMLR, 2022.

536

537 Elias Frantar and Dan Alistarh. Sparsecpt: Massive language models can be accurately pruned in
538 one-shot. *International Conference on Machine Learning*, pp. 10322–10337, 2023.

539

540 Elias Frantar, Eldar Kurtic, Markus Stenström, and Dan Alistarh. Optimal brain compression: A
541 framework for accurate post-training quantization and pruning. *Advances in Neural Information*
542 *Processing Systems*, 36, 2023.

543

544 Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. In *Inter-
545 national Conference on Learning Representations (ICLR)*, 2019. *URL <https://openreview.net/forum?id=H1Y8hhg0b>*. OpenReview preprint.

540 Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
 541 Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
 542 language model evaluation. *Version v0. 0.1. Sept*, 10:8–9, 2021a.

543

544 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
 545 embeddings. In *EMNLP*, 2021b.

546

547 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 548 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 549 of models. *arXiv preprint arXiv:2407.21783*, 2024.

550

551 Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
 552 efficient neural networks. *Advances in neural information processing systems*, 28, 2015.

553

554 Babak Hassibi and David G Stork. Optimal brain surgeon and general network pruning. *IEEE
 555 international conference on neural networks*, pp. 293–299, 1993.

556

557 Yen-Chang Hsu, Ting Hua, Sungjen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
 558 compression with weighted low-rank factorization. *arXiv preprint arXiv:2207.00112*, 2022.

559

560 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 561 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 562 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

563

564 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information
 565 processing systems*, 2, 1989.

566

567 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
 568 based on connection sensitivity. In *International Conference on Learning Representations*, 2018.

569

570 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, et al. Retrieval-augmented generation
 571 for knowledge-intensive nlp tasks. *NeurIPS*, 2020.

572

573 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
 574 efficient convnets. In *5th International Conference on Learning Representations, ICLR*, 2017.

575

576 Kevin Li, Mark Yatskar, Wen-tau Yin, and Dan Hovy. Analyzing and measuring bert’s understanding
 577 of syntax. In *International Conference on Learning Representations (ICLR)*, 2020.

578

579 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 580 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 581 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 582 87–100, 2024.

583

584 Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
 585 ing efficient convolutional networks through network slimming. In *Proceedings of the IEEE
 586 international conference on computer vision*, pp. 2736–2744, 2017.

587

588 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 589 models. *arXiv preprint arXiv:1609.07843*, 2016.

590

591 Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Accelerating sparse deep neural
 592 networks. In *2021 IEEE Hot Chips 33 Symposium (HCS)*, pp. 1–23. IEEE, 2021.

593

594 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
 595 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
 596 tivity inspired by network science. *Nature communications*, 9(1):2383, 2018.

597

598 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 599 for neural network pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 600 and Pattern Recognition*, pp. 11264–11272, 2019.

601

602 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 603 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 604 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

594 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
 595 for machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

596

597 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, et al. Recipes for building an open-domain
 598 chatbot. In *Proceedings of the 16th Conference of the European Chapter of the Association for*
 599 *Computational Linguistics*, pp. 300–325, 2021.

600 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 601 for large language models. *arXiv preprint arXiv:2306.11695*, 2023.

602

603 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

604

605 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 606 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 607 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

608

609 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 610 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 611 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

612

613 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
 614 decomposition for large language model compression. *arXiv preprint arXiv:2403.07378*, 2024a.

615

616 Yuxin Wang, Minghua Ma, Zekun Wang, Jingchang Chen, Huiming Fan, Liping Shan, Qing Yang,
 617 Dongliang Xu, Ming Liu, and Bing Qin. Cfsp: An efficient structured pruning framework for
 618 llms with coarse-to-fine activation information. *arXiv preprint arXiv:2409.13199*, 2024b.

619

620 Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang Xiang, Jun Chen, and Yong Liu. Structured
 621 optimal brain pruning for large language models. In *Proceedings of the 2024 Conference on*
 622 *Empirical Methods in Natural Language Processing*, pp. 13991–14007, 2024.

623

624 Gregory J Wolff, B Hassibi, and D Stork. Optimal brain surgeon and general network pruning.
 625 Technical report, Technical report, 1992.

626

627 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 628 Accurate and efficient post-training quantization for large language models. In *International*
 629 *Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.

630

631 Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang. Loretta: Low-rank economic tensor-
 632 train adaptation for ultra-low-parameter fine-tuning of large language models. *arXiv preprint*
 633 *arXiv:2402.11417*, 2024.

634

635 Yifan Yang, Kai Zhen, Bhavana Ganesh, Aram Galstyan, Goeric Huybrechts, Markus Müller,
 636 Jonas M Kübler, Rupak Vignesh Swaminathan, Athanasios Mouchtaris, Sravan Babu Bodap-
 637 ati, et al. Wanda++: Pruning large language models via regional gradients. *arXiv preprint*
 638 *arXiv:2503.04992*, 2025.

639

640 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
 641 Activation-aware singular value decomposition for compressing large language models. *arXiv*
 642 *preprint arXiv:2312.05821*, 2023.

643

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 644 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 645 language models. *arXiv preprint arXiv:2205.01068*, 2022.

646

647 Xin Zhang, Jiachen Wen, Yujun Zhou, Zhongzhi Huang, Xianglong Liu, and Dahua Lin. Plug-
 648 and-play: Hardware-aware semi-structured pruning for large language models. *arXiv preprint*
 649 *arXiv:2402.07883*, 2024.

648 **A CLAIM OF LLM USAGE**
649650 In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
651 Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
652 for clarity and readability.
653654 **B APPENDIX**
655656 **B.1 ACTIVATION VARIANCE-GUIDED WEIGHT PRUNING METRIC**
657658 **B.1.1 DERIVATION OF VARP IMPORTANCE METRIC**
659660 Given the loss function $L(\mathbf{W})$, its Taylor expansion around the current weights \mathbf{W} is:
661

662
$$L(\mathbf{W} + \Delta\mathbf{W}) \approx L(\mathbf{W}) + \nabla L(\mathbf{W})^T \Delta\mathbf{W} + \frac{1}{2} \Delta\mathbf{W}^T \mathbf{H} \Delta\mathbf{W} \quad (14)$$

663

664 where: $-\nabla L(\mathbf{W})$ is the gradient, $-\mathbf{H} = \nabla^2 L(\mathbf{W})$ is the Hessian (second derivative matrix). To min-
665 imize the loss variation after pruning, we focus on the second-order term $\frac{1}{2} \Delta\mathbf{W}^T \mathbf{H} \Delta\mathbf{W}$. However,
666 calculating the full Hessian is computationally expensive for large models. SparseGPT approxi-
667 mates the Hessian using the input data matrix \mathbf{X} . Specifically, for MSE loss or linearized networks,
668 $\mathbf{H} \approx \mathbf{X}^T \mathbf{X}$ and $\lambda \mathbf{I}$ is added as a regularization term to stabilize the inverse. Thus, the approximate
669 local Hessian becomes:
670

671
$$\mathbf{H} \approx \mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} \quad (15)$$

672

673 The pruning metric used in SparseGPT is:
674

675
$$\mathbf{S}_{ij} = \left[\frac{|\mathbf{W}|^2}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})} \right]_{ij} \quad (16)$$

676

677 which captures how important a weight is, normalized by the local curvature (second-order sensi-
678 tivity) of the loss surface. If $\mathbf{X} \in \mathbb{R}^{1 \times n}$ is an input: $-\mathbf{X}^T \in \mathbb{R}^{n \times 1}$, $-\mathbf{X}^T \mathbf{X} \in \mathbb{R}^{n \times n}$, a rank-1 matrix
679 $\mathbf{u}\mathbf{v}^T$ where $\mathbf{u} = \mathbf{v} = \mathbf{X}^T$. Using the Sherman-Morrison formula, we have:
680

681
$$(\lambda \mathbf{I} + \mathbf{u}\mathbf{v}^T)^{-1} = \frac{1}{\lambda} \mathbf{I} - \frac{1}{\lambda^2} \frac{\mathbf{u}\mathbf{v}^T}{1 + \frac{\mathbf{v}^T \mathbf{u}}{\lambda}} \quad (17)$$

682

683 Specifically, the i -th diagonal element is:
684

685
$$[(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1}]_{ii} = \frac{1}{\lambda} - \frac{1}{\lambda^2} \cdot \frac{\mathbf{X}_i^2}{1 + \frac{\|\mathbf{X}\|^2}{\lambda}} \quad (18)$$

686

687 where $\|\mathbf{X}\|^2 = \sum_{i=1}^n \mathbf{X}_i^2$. Then, we have :
688

689
$$\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j = \frac{1}{\lambda} - \frac{\mathbf{X}_j^2}{\lambda^2 + \lambda \|\mathbf{X}\|^2} \quad (19)$$

690

691 Each diagonal element depends on the square of the corresponding feature in \mathbf{X} . Then, we have:
692

693
$$\frac{1}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j} = \frac{\lambda + \|\mathbf{X}\|^2}{\lambda + \|\mathbf{X}\|^2 - \mathbf{X}_j^2} \cdot \lambda \quad (20)$$

694

695 Note that the input \mathbf{X} have been normalized, so $\|\mathbf{X}\|^2$ can be approximately viewed as a constant,
696 we can denote it as k . The pruning metric can be simplified as:
697

698
$$\mathbf{S}_{ij} = \frac{|\mathbf{W}_{ij}|^2}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j} = |\mathbf{W}_{ij}|^2 \cdot \frac{\lambda + k}{\lambda + k - \mathbf{X}_j^2} \cdot \lambda \quad (21)$$

700

702 Since λ is a constant, we can omit it and we can get:
 703

$$704 \quad 705 \quad 706 \quad \mathbf{S}_{ij} = \frac{|\mathbf{W}_{ij}|^2}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j} = |\mathbf{W}_{ij}|^2 \cdot \frac{1}{1 - \frac{\mathbf{x}_j^2}{\lambda+k}} \quad (22)$$

707 where $\lambda + k$ is a constant as well and we can omit it. We can use more input to calculate their mean
 708 value of calibration data and get our final pruning metric:
 709

$$710 \quad \mathbf{S}_{var_{ij}} = \mathbb{E}[\mathbf{S}_{ij}] = |\mathbf{W}_{ij}|^2 \cdot \mathbb{E}\left[\frac{1}{1 - \|\mathbf{X}_j\|^2}\right] \quad (23)$$

712 B.1.2 EFFICIENCY ANALYSIS

714 Now we analyze the efficiency of VarP. Wanda assumes the denominator of Equation 16 can be
 715 approximated:
 716

$$717 \quad 718 \quad \frac{1}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})_j} \approx \frac{1}{(\text{diag}(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}))_j^{-1}} = \mathbf{X}_j^2 + \lambda \quad (24)$$

719 Taking the difference of the right sides between Equation 20 and Equation 24, we have ($\|\mathbf{X}\|^2$ can
 720 be approximately replaced by k):
 721

$$722 \quad 723 \quad 724 \quad \left| \frac{\lambda(\lambda+k)}{\lambda+k - \mathbf{X}_j^2} - \mathbf{X}_j^2 - \lambda \right| = \left| \frac{\lambda}{1 - \frac{\mathbf{x}_j^2}{\lambda+k}} - \mathbf{X}_j^2 - \lambda \right| \quad (25)$$

725 Applying the power series expansion, we have:
 726

$$727 \quad 728 \quad 729 \quad \left| \frac{\lambda}{1 - \frac{\mathbf{x}_j^2}{\lambda+k}} - \mathbf{X}_j^2 - \lambda \right| = \left| \lambda \left(1 + \frac{\mathbf{X}_j^2}{\lambda+k}\right) - \mathbf{X}_j^2 - \lambda \right| = \frac{k\mathbf{X}_j^2}{\lambda+k} \quad (26)$$

730 If we have more sequences with length of L as input, we can take the average of the \mathbf{X}_j^2 , then we
 731 can the difference between VarP and Wanda's as:
 732

$$733 \quad 734 \quad diff = \frac{k}{\lambda+k} \frac{\mathbf{X}_{j1}^2 + \mathbf{X}_{j2}^2 + \dots + \mathbf{X}_{jL}^2}{L} = \frac{k}{\lambda+k} \mathbb{E}[\|\mathbf{X}_j\|^2] \quad (27)$$

735 Since the λ is a constant, we can make it equals to nk , then:
 736

$$737 \quad 738 \quad diff = \frac{k}{\lambda+k} \mathbb{E}[\|\mathbf{X}_j\|^2] = \frac{1}{L+1} \mathbb{E}[\|\mathbf{X}_j\|^2] \quad (28)$$

739 We can see from the above Equation that if L is small, the difference between these two methods
 740 will be large, which demonstrates the calibration efficiency of our proposed method.
 741

742 B.2 MORE EXPERIMENT RESULTS

744 B.2.1 MORE RESULTS OF PPL AND PRUNING TIME ON MORE MODELS

745 Tables 12 provides the pruning time of OPT series models of our method comparing with base-
 746 lines. Table 13 and Table 14 present the overall pruning time of the VarP method on the Qwen2.5
 747 and Mistral-MoE models and PPL of Qwen2.5 models. It can be observed that, compared with the
 748 baseline, our method slightly increases the pruning time consumption. However, compared with the
 749 original baseline using a 2048 sequence length, the pruning time is significantly reduced. In exper-
 750 iments with Qwen2.5 and Mixtral-MoE models, we observe that our method performs similarly to
 751 the baselines under 50% sparsity. However, in semi-structured sparsity 2:4 and 4:8, our approach
 752 outperforms the baselines. For example, in the Qwen2.5-14B experiments, RIA+VarP achieves ap-
 753 proximately a 0.3 reduction in PPL compared to RIA with 16 sequence lengths, while Wanda+VarP
 754 shows about a 0.5 reduction in PPL compared to Wanda with 16 sequence lengths. In terms of time,
 755 compared to Wanda with 2048 sequence lengths, the entire pruning process took only about 66% of
 Wanda's time while achieving an approximate 0.4 reduction in PPL.

756 Table 12: Pruning Time (s) (↓) of OPT model series on WikiText-2 at different sparsity levels
757

758 759 760 761 762 763 764 765	766 767 768 769 770	771 772 773 774 775	776 777 778	779 780 781 782 783 784 785	786 787 788 789 790	791 792 793 794 795	OPT					
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795	781 782 783 784 785 786 787 788 789 790 791 792 793 794 795	782 783 784 785 786 787 788 789 790 791 792 793 794 795	783 784 785 786 787 788 789 790 791 792 793 794 795	784 785 786 787 788 789 790 791 792 793 794 795	785 786 787 788 789 790 791 792 793 794 795	786 787 788 789 790 791 792 793 794 795						
							350M	1.3B	2.7B	6.7B	13B	30B
50%	2:4	4:8	Wanda	2048	31.4	39.4	49.3	67.5	98.8	183.5		
			Wanda	16	17.8	17.8	21.2	25.7	31.3	45.2		
			Wanda+VarP (ours)	16	25.8	27.1	33.2	37.2	45.1	63.7		
			RIA	16	16.1	19.8	21.8	24.4	31.6	44.8		
			RIA+VarP (ours)	16	24.2	25.4	31.6	33.8	43.1	59.6		
50%	2:4	4:8	Wanda	2048	38.9	50.8	69.4	111.7	160.7	300.6		
			Wanda	16	24.8	34.4	47.8	65.8	97.8	171.3		
			Wanda+VarP (ours)	16	33.8	44.1	57.7	78.4	112.5	178.5		
			RIA	16	23.1	32.4	46.8	63.8	95.7	161.5		
			RIA+VarP (ours)	16	32.4	41.0	59.2	76.1	110.6	177.2		
50%	2:4	4:8	Wanda	2048	35.0	42.8	58.1	87.6	129.8	240.4		
			Wanda	16	20.7	25.9	34.7	45.2	63.3	102.3		
			Wanda+VarP (ours)	16	31.0	34.8	46.0	58.2	76.4	120.3		
			RIA	16	20.2	24.5	34.8	45.5	64.5	101.9		
			RIA+VarP (ours)	16	28.9	34.0	46.3	55.3	75.9	117.0		

776 Table 13: PPL (↓) of Qwen-2.5 model series on WikiText-2

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795	796 797 798 799 800 801 802 803 804 805 806 807 808 809	800 801 802 803 804 805 806 807 808 809	801 802 803 804 805 806 807 808 809	802 803 804 805 806 807 808 809	803 804 805 806 807 808 809	804 805 806 807 808 809	805 806 807 808 809	806 807 808 809	807 808 809	808 809	809	
50%	2:4	4:8	Wanda	2048	12.54	10.21	7.74	6.58	6.49			
			Wanda	16	13.32	10.75	7.88	6.93	6.63			
			Wanda+VarP (ours)	16	12.97	10.33	7.70	6.64	6.50			
			RIA	16	12.46	9.98	7.59	6.51	6.50			
			RIA+VarP (ours)	16	12.42	9.94	7.55	6.49	6.46			
50%	2:4	4:8	Wanda	2048	42.30	21.16	13.10	12.37	8.90			
			Wanda	16	43.96	23.41	13.55	11.53	8.71			
			Wanda+VarP (ours)	16	42.02	23.73	12.93	10.98	8.45			
			RIA	16	45.46	22.11	12.53	11.28	8.59			
			RIA+VarP (ours)	16	45.20	21.64	12.48	11.02	8.32			
50%	2:4	4:8	Wanda	2048	19.39	13.67	9.34	8.38	7.32			
			Wanda	16	20.35	14.13	9.58	7.97	7.45			
			Wanda+VarP (ours)	16	20.13	13.99	9.40	7.80	7.35			
			RIA	16	20.37	13.54	9.18	7.77	7.33			
			RIA+VarP (ours)	16	20.03	13.47	9.18	7.59	7.14			

798 B.2.2 MORE RESULTS ON ZERO-SHOT TASKS

799 Tables 15 to Table 18 present more zero-shot evaluation accuracy of LLaMA models and OPT
800 models. It can be observed that our method generally outperforms the baseline methods in evaluation
801 accuracy. For example, in the 4:8 semi-structured pruning task of the OPT-13B model, our method
802 achieves nearly a 2% higher average evaluation accuracy compared to the baseline.

803 B.2.3 ROBUSTNESS ANALYSIS

804 To evaluate the robustness and stability of our method, we conduct experiments across multiple
805 calibration data sampling configurations. We select three different random seeds, therefore three
806 different calibration data subsets, and repeat the pruning process for each of them on LLaMA-7B
807 model using WikiText-2 dataset. It's shown in Table 19 that our method exhibits better results across
808 different random seeds.

810
811 Table 14: Pruning time (s) (↓) of Qwen-2.5 and Mixtral-MoE model series on WikiText-2 at different
812 sparsity levels

Sparsity	Method	Seq.Len	Qwen-2.5					Mixtral-MoE	
			1.5B	3B	7B	14B	32B	8x7B-v0.1	8x7B-Instruct
50%	Wanda	2048	28.9	40.6	74.7	125.9	218.2	174.3	180.8
	Wanda	16	16.7	20.8	17.5	46.0	64.8	99.3	99.8
	Wanda+VarP (ours)	16	22.7	28.8	24.0	66.6	95.8	159.3	160.1
	RIA	16	19.8	20.6	17.6	46.8	65.6	102.2	103.4
	RIA+VarP (ours)	16	23.4	27.9	25.4	67.2	96.3	160.5	161.8
2:4	Wanda	2048	36.3	54.2	113.6	197.8	353.5	410.0	410.0
	Wanda	16	25.8	33.2	36.9	122.0	203.8	332.9	330.0
	Wanda+VarP (ours)	16	32.1	41.9	42.6	147.2	238.6	387.2	389.5
	RIA	16	25.0	33.9	37.8	121.9	205.3	335.3	331.5
	RIA+VarP (ours)	16	31.5	43.6	45.8	146.3	236.3	390.1	391.4
4:8	Wanda	2048	32.4	46.2	93.8	159.7	285.2	292.5	295.7
	Wanda	16	20.6	26.5	26.3	83.5	131.4	214.6	212.5
	Wanda+VarP (ours)	16	28.0	35.0	33.5	106.4	146.5	271.0	273.4
	RIA	16	21.0	26.7	28.6	82.4	132.5	217.4	214.6
	RIA+VarP (ours)	16	28.0	34.7	35.4	105.5	164.5	275.3	277.2

832
833 Table 15: Accuracy (↑) of OPT-13B on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	65.75	53.43	48.39	62.66	64.10	29.78	26.20	50.04	+1.32
	Wanda+VarP (Ours)	16	65.11	56.68	50.23	63.70	65.90	31.74	26.20	51.36	
	RIA	16	65.86	54.11	49.01	62.84	64.31	30.90	26.60	50.52	0.00
	RIA+VarP (Ours)	16	63.00	55.24	49.94	63.14	65.49	31.91	25.00	50.52	
2:4	Wanda	16	64.31	52.70	43.80	60.93	59.55	26.11	22.60	47.14	+0.97
	Wanda+VarP (Ours)	16	58.93	53.07	47.31	63.07	61.53	28.67	24.20	48.11	
	RIA	16	65.65	52.70	44.57	61.88	58.63	27.05	21.60	47.44	+0.66
	RIA+VarP (Ours)	16	62.14	53.79	46.78	62.51	60.86	28.07	22.60	48.10	
4:8	Wanda	16	65.29	53.07	46.16	62.66	60.81	27.30	24.80	48.58	+1.97
	Wanda+VarP (Ours)	16	62.30	59.57	48.74	63.30	63.68	31.05	25.20	50.55	
	RIA	16	65.44	52.34	46.54	63.38	60.86	27.64	24.80	48.71	+1.11
	RIA+VarP (Ours)	16	61.45	57.77	48.47	62.83	62.96	30.29	25.00	49.82	

846
847
848
849
850
851 Table 16: Accuracy (↑) of LLaMA-3.1-8B on 7 zero-shot tasks
852

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	75.90	61.01	51.30	67.88	70.87	39.57	27.20	56.24	-0.03
	Wanda+VarP (ours)	16	76.55	56.31	51.23	69.22	73.12	40.28	26.80	56.21	
	RIA	16	77.40	56.31	51.53	69.21	72.81	41.46	28.20	56.70	-0.31
	RIA+VarP (ours)	16	78.21	55.23	51.73	69.14	72.72	40.96	26.80	56.39	
2:4	Wanda	16	64.61	54.51	37.31	59.74	58.20	25.25	19.00	45.52	+0.63
	Wanda+VarP (ours)	16	66.62	52.35	38.70	59.98	60.32	26.46	18.60	46.15	
	RIA	16	66.54	53.07	38.31	59.27	59.97	28.32	19.40	46.41	+0.09
	RIA+VarP (ours)	16	66.34	53.09	38.39	59.89	59.81	28.62	19.40	46.50	
4:8	Wanda	16	66.72	53.43	44.10	66.22	65.36	30.80	23.40	50.00	+0.62
	Wanda+VarP (ours)	16	67.34	53.80	44.83	65.68	65.41	33.12	24.20	50.62	
	RIA	16	67.72	53.42	44.48	65.11	64.84	32.24	25.00	50.40	+0.08
	RIA+VarP (ours)	16	68.32	53.07	44.39	64.96	65.38	33.20	24.00	50.48	

864
865Table 17: Accuracy (\uparrow) of LLaMA-2-7B on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	74.44	55.59	51.29	66.12	71.63	37.25	29.40	55.10	-0.18
	Wanda+VarP (Ours)	16	73.70	57.76	51.01	66.15	70.38	37.30	28.20	54.92	
	RIA	16	73.70	55.59	51.37	66.45	69.69	35.66	28.60	54.43	+0.44
	RIA+VarP (Ours)	16	73.72	55.62	51.53	66.08	70.48	37.47	29.20	54.87	
2:4	Wanda	16	67.83	53.43	39.85	59.59	59.30	27.04	21.80	46.98	+0.73
	Wanda+VarP (Ours)	16	65.85	53.45	42.18	60.93	63.55	28.41	19.60	47.71	
	RIA	16	66.90	53.39	40.27	59.59	60.77	27.98	21.80	47.24	+0.65
	RIA+VarP (Ours)	16	65.34	54.20	42.45	61.29	62.54	28.62	20.80	47.89	
4:8	Wanda	16	71.56	54.15	45.29	63.69	65.48	32.51	24.80	51.07	+0.32
	Wanda+VarP (Ours)	16	70.33	53.80	46.80	64.71	66.29	34.39	23.40	51.39	
	RIA	16	72.88	54.14	45.82	64.15	66.27	32.75	24.80	51.54	+0.14
	RIA+VarP (Ours)	16	69.70	54.51	47.30	64.72	66.37	34.56	24.60	51.68	

878
879Table 18: Accuracy (\uparrow) of LLaMA-2-13B on 7 zero-shot tasks

Sparsity	Method	Seq.Len	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.	Avg. Δ
50%	Wanda	16	78.66	62.45	56.61	70.56	76.72	42.58	32.00	59.94	-0.31
	Wanda+VarP (Ours)	16	78.84	62.10	56.97	69.54	75.80	41.80	32.40	59.63	
	RIA	16	79.90	62.09	56.31	70.00	76.18	40.27	31.00	59.39	+0.72
	RIA+VarP (Ours)	16	80.57	60.94	57.49	70.16	76.94	42.49	32.20	60.11	
2:4	Wanda	16	77.42	59.55	46.01	66.92	68.57	33.10	23.60	53.59	+0.32
	Wanda+VarP (Ours)	16	77.03	56.32	48.74	65.12	69.02	36.18	25.00	53.91	
	RIA	16	77.18	58.84	46.83	66.69	68.77	33.27	23.40	53.57	+0.49
	RIA+VarP (Ours)	16	76.97	58.42	49.07	64.03	69.79	34.97	25.20	54.06	
4:8	Wanda	16	79.35	60.29	51.67	68.03	74.03	38.90	27.80	57.15	+0.37
	Wanda+VarP (Ours)	16	78.78	61.73	53.45	68.48	72.89	38.57	28.80	57.52	
	RIA	16	79.75	60.29	51.85	68.51	73.10	38.31	27.00	56.97	+0.43
	RIA+VarP (Ours)	16	77.49	62.77	53.63	67.94	73.18	37.60	29.20	57.40	

894

895

896

Table 19: Perplexity for pruned LLaMA-7B models with different random seeds on WikiText-2

897

898

Model	Method	seed#1	seed#2	seed#3
	Wanda-16	7.89	8.19	7.76
LLaMA-7B	RIA with 16 sequence lengths	7.27	7.28	7.26
	Wanda+VarP (Ours)	7.18	7.18	7.120

904

905

906

907

Table 20: Perplexity of pruned LLaMA-7B model with different sequence lengths on WikiText-2

909

910

911

912

913

914

915

916

917

Model	Method	Sequence Lengths					
		16	32	128	512	1024	2048
LLaMA-7B	Wanda	7.89	7.52	7.28	7.27	7.27	7.26
	RIA	7.27	7.22	7.15	7.13	7.12	7.12
	Wanda+VarP (Ours)	7.18	7.19	7.20	7.25	7.26	7.25

918 B.2.4 IMPACT OF SEQUENCE LENGTHS
919920 We present the impact of sequence lengths on the LLaMA-7B model for WikiText-2 under 50%
921 unstructured sparsity in Table 20. It's shown that our method consistently achieves better pruning
922 performance, especially when the sequence length is relatively small, yielding much lower perplexity
923 compared to both RIA and Wanda. This aligns with our theoretical analysis: with the decreasing
924 of the input sequence length, our method has higher advantage over Wanda, empirically supporting
925 the theoretical derivation provided in the Appendix B.1. While RIA shows improved performance
926 with longer sequences, it also incurs more expensive time costs. Therefore, our approach offers a
927 balanced trade-off, maintaining both accuracy and time efficiency.
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971