
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACE: EXPLORING ACTIVATION VARIANCE FOR ACCU-
RATE AND CALIBRATION-EFFICIENT LLM PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid expansion of large language models (LLMs), the demand for mem-
ory and computational resources has grown significantly. Recent advances in
LLM pruning aim to reduce the size and computational cost of these models.
However, existing methods often suffer from either suboptimal pruning perfor-
mance or low time efficiency during the pruning process. In this work, we pro-
pose an efficient and effective pruning method that simultaneously achieves high
pruning performance and fast pruning speed with calibration efficiency. Our ap-
proach: (1) introduces an activation variance-guided pruning metric: a new metric
that allows for better semantic information distinction preservation in the output
activations after pruning; (2) enables model pruning with only a small sequence
length of calibration dataset, while can maintain similar pruning performance as
the original baselines that relies on larger sequence of calibration dataset (e.g.
2048 sequence lengths for Wanda and RIA). We conduct extensive experiments
on prevalent LLMs, such as OPT, LLaMA, LLaMA-2, LLaMA-3, Qwen2.5, and
MoE-based models such as Mixtral 8x7B. The experimental results show that we
can achieve up to 18% decrease of perplexity and up to 63% less pruning time on
WikiText-2, demonstrating the effectiveness of the proposed method.

1 INTRODUCTION

Recently, large language models (LLMs) have emerged as a prominent area of investigation, demon-
strating exceptional capabilities through extensive parameterization across various tasks, such as
language understanding (Devlin et al., 2018), text generation (Brown et al., 2020; Touvron et al.,
2023a), question answering (Rajpurkar et al., 2016; Lewis et al., 2020), dialogue (Roller et al.,
2021), and code generation (Chen et al., 2021), etc. While the increasing scale of LLMs has yield
substantial accuracy inprovements, the advancement necessitates a compromise in memory con-
sumption and inference latency (Devlin et al., 2019; Touvron et al., 2023a; Agarwal et al., 2023).
For instance, deploying a LLaMA-65B model requires at least four A100-40GB GPUs, with the
time-to-first-token (TTFT) exceeding 100 milliseconds (Yang et al., 2025), highlighting the sig-
nificant limitations of practical deployment in resource-constrained environments. To mitigate the
computational bottlenecks, various models compression techniques have been proposed, such as
quantization (Bai et al., 2020; Frantar & Alistarh, 2022; Xiao et al., 2023; Lin et al., 2024), pruning
(Wolff et al., 1992; LeCun et al., 1989; Mocanu et al., 2018; Sun et al., 2023; Frantar & Alistarh,
2023), weight decomposition (Hsu et al., 2022; Yang et al., 2024), etc. Among them, LLMs post-
training pruning (Frantar & Alistarh, 2023; Sun et al., 2023) has garnered particular attention due to
their ability in applying sparsity constraints to pre-trained LLMs without requiring computationally
expensive retraining procedures, thus avoiding the prohibitive memory overhead.

Although existing LLMs post-training pruning methods (Sun et al., 2023; Frantar & Alistarh, 2023)
have demonstrated potential in compressing model size with reduced memory overhead and negli-
gible accuracy loss across diverse tasks, these approaches typically employ a well-designed weight
importance evaluation metric with numerical magnitudes of weights and activations to identify im-
portant weight elements that should be preserved during pruning. In this work, we identify a promis-
ing yet unexplored opportunities in designing the importance evaluation metrics via exploring the
semantic information inherent in the input activation feature space: For equal-valued weights,
those with lower input activation variance more effectively maintain token-level semantic dis-
tinctions: previous studies (Ethayarajh, 2019; Gao et al., 2021b) have shown that reduced token-
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level variation can result in semantic collapse and performance degradation across both classification
and generation tasks. However, existing works fail to consider the variance of input activation fea-
tures, a critical factor in preserving semantic distinctions. We observe that when comparing two
same-valued weights, the weight associated with higher input activation produces reduced output
activation differentiation across distinct tokens, thereby diminishing semantic distinctions. Conse-
quently, such weights should be assigned lower importance scores compared to those exhibiting
smaller variance, as they contribute less effectively to maintaining semantic diversity.

In this work, we propose ACE, which explores activation variance for accurate and calibration-
efficient LLMs pruning. Inspired by the role of input activation feature variance, we design an
activation variance-guided weight pruning metric (VarP), which incorporates a variance-based per-
turbation term and allows for better semantic information distinction preservation in the output acti-
vations after pruning. Moreover, we provide a theoretical analysis of the calibration efficiency of our
approach and show that our method can achieve high accuracy even when applied with reduced se-
quence lengths for calibration data, demonstrating the potential of the proposed method in practical
deployment scenarios with limited calibration data. Furthermore, VarP maintains (or even surpasses)
the performance of full sequence length pruning baselines with fewer input sequence length and re-
duced pruning time, highlighting its effectiveness and calibration efficiency. We summarize our
contributions as follows:

• We propose the activation variance-guided pruning metric, which includes the variance of input
activation to avoid the diminish of distinction between different tokens during pruning.

• We theoretically analyze our proposed method can achieve calibration efficiency. Moreover, the
experimental results demonstrate that our approach can achieve high accuracy on the pruned mod-
els with less input calibration sequence length and reduced pruning time.

• We conduct extensive experiments on various LLMs, such as OPT, LLaMA, LLaMA-2, LLaMA-
3, Qwen2.5, and Mixtral-MoE models. Experimental results show that our method can outperform
the baselines for both unstructured sparsity and N:M sparsity settings. For example, our VarP only
takes 66% of the pruning time to perform 2:4 semi-structured pruning on Qwen2.5-32B compared
to Wanda, while even obtaining about 0.4 reduction in perplexity compared with original Wanda.

2 RELATED WORK

Network Pruning for Neural Networks. Both unstructured pruning (Han et al., 2015; Frankle
& Carbin, 2019) and structured pruning (Liu et al., 2017; Molchanov et al., 2019) are extensively
explored for model compression and acceleration. The former identifies and removes individual
weights based on criteria such as magnitude (Han et al., 2015) or gradient information (Lee et al.,
2018). While achieving high sparsity, these methods often require specialized hardware to realize ac-
tual speedups. The latter focuses on removing entire structural components such as neurons, filters,
or channels (Li et al., 2017; Liu et al., 2017). Among different structured sparsity patterns, the N:M
sparsity (Mishra et al., 2021) has gained prominence, where N out of every M consecutive weights
are retained. This pattern is adopted in NVIDIA’s Ampere and later GPU architectures through
specialized hardware support, enabling real-world efficient deployment and substantial acceleration
during inference (Sun et al., 2023; Frantar et al., 2023; Zhang et al., 2024).

Post-Training Pruning for Large Language Models. Unlike training-aware sparsification (Gale
et al., 2019), which iteratively prunes and fine-tunes the model during training, post-training prun-
ing (PTP) operates directly on pretrained checkpoints, making it appealing for scenarios with limited
training access or budget. However, designing effective pruning metrics remains a key challenge.
Existing works such as Wanda (Sun et al., 2023) rely on the element-wise product of weight mag-
nitudes and input activations to estimate importance. RIA (Zhang et al., 2024) incorporates relative
importance between input and output channels to mitigate the problem of channel collapse. Pruner-
zero (Dong et al., 2024) leverages evolutionary search to adaptively discover layer-wise metrics,
while SparseGPT (Frantar & Alistarh, 2023) formulates pruning as a local reconstruction problem
inspired by second-order approximations. However, current PTP works primarily focus on the en-
hancement of the element of the weights (Damadi, 2021; Dong et al., 2019; Sun et al., 2023; Frantar
et al., 2023). Few studies explore the statistical information of input activations to further improve
the pruning performance.
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Figure 1: The motivating example of our proposed activation variance-guided pruning metric

3 METHODOLOGY

In this section, we will describe the motivation and our proposed ACE, an accurate and calibration
efficient pruning approach of Large Language Models (LLMs). Firstly, we propose an activation
variance-guided pruning metric which incorporates weights and the variance of input activations into
the metric, aiming to maintain the relative distances between token representations in the embedding
space during pruning, thus higher accuracy of the pruned model. Secondly, we theoretically analyze
the calibration efficiency of our method.

3.1 ACTIVATION VARIANCE-GUIDED WEIGHT PRUNING METRIC (VARP)

Motivation. Most existing LLM pruning methods rely on importance metrics computed through
various formulations involving weights and activations. However, the limitation arises when multi-
ple elements share the same importance score. As illustrated in Figure 1(a), when two elements in
the weight importance matrix in the first row have the same value (i.e., 0.08), it becomes difficult to
determine which corresponding element to prune in the weight matrix W to achieve a target sparsity
of 50%. Two different pruning options exist based on the choice of pruning weight elements with
the same importance score. Option 1 is to prune the first weight element in the first row with a
corresponding larger variance (i.e., 0.01 is larger than 0), resulting in a reduced difference between
the first two elements of first column in the output matmul compared to the original dense model,
as illustrated in Figure 1(b). In contrast, Option 2 prunes the second element in the first row of
weight matrix, which better preserves the output disparities between the first two elements of the
first column in the output, as shown in Figure 1(c), thereby maintaining closer alignment with the
original distribution characteristics. For NLP tasks, preserving distinctions between output channels
of tokens in the embedding space is crucial for maintaining semantic coherence and preventing the
loss of token-level differences in model outputs (Ethayarajh, 2019; Li et al., 2020).

VarP Design. Motivated by the above example, we propose our activation variance-guided weight
importance score metric which incorporates the variance of input activation as follows:

Svarij = |Wij | · (h(||Xj ||2) + Var[||Xj ||22]) (1)

where ||Xj ||2 is the l2 norm of jth features aggregated across N different tokens, and Var[||Xj ||22]
represents the variance of the squared values in the j-th column of the input activation. h(·) is used
to represent the transformation of the l2 norm and serve as a factor in the product of |Wij | and
h(||Xj ||2) to estimate the impact on the output when the weight element Wij is removed. Simply,
we can use SWanda+varij for deriving below. Building upon h(||Xj ||2) , we introduce an input
variance-based perturbation term Var[||Xj ||22] to further determine which weight element should be
pruned when the values of |Wij | · h(||Xj ||2) are similar. We define h(||Xj ||2) as follows to evaluate
the importance of the jth feature in input activation X

h(||Xj ||2) = (E[||Xj ||22])2 + E[||Xj ||22] + 1 (2)

3
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where E[||Xj ||2] represents the mean of the squared values in the j-th row of the input activation.
Combining Equation 1 and Equation 2, we get our weight importance score metric as

Svarij = |Wij | · ((E[||Xj ||22])2 +Var[||Xj ||22] + E[||Xj ||22] + 1) (3)

Based on the formula linking variance and expectation, we have

Var[X] = E[X2]− (E[X])2 (4)

Combing Equation 3 and Equation 4, Svarij can be further derived as follows

Svarij = |Wij | · (E[||Xj ||42] + E[||Xj ||22] + 1) (5)

Based on the fact that the input activations are normalized, implying that the corresponding activa-
tion values are less than 1. Then, based on the power series expansion

E[||Xj ||42] + E[||Xj ||22] + 1 = E[||Xj ||42 + ||Xj ||22 + 1] ≈ E[
1

1− ||Xj ||22
] (6)

We derive the importance score as

Svarij = |Wij | · E[
1

1− ||Xj ||22
] (7)

In the above equation, we use the absolute value of weight in the importance metric of our proposed
method which we refer as Wanda+VarP in our experiments, since it shares the same weight com-
ponent of the importance metric in Wanda (Sun et al., 2023). Similarly, we derive the importance
metric of RIA+VarP as

SRIA+varij =

(
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

)
· E[ 1

1− ||Xj ||22
] (8)

where
∑

|W∗i| and
∑

|Wj∗| denote the sum of the i-th row sum and the sum of j-th column in the
weight matrix, respectively.

3.2 CALIBRATION DATA EFFICIENCY ANALYSIS

SparseGPT (Frantar & Alistarh, 2023) formulates LLMs post-training pruning as a layer-wise recon-
struction problem, where for each layer, it aims to minimize the reconstruction error after pruning.
Drawing inspiration from Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1993), SparseGPT (Fran-
tar & Alistarh, 2023) develops a pruning metric as follows

Sij =
|Wij |2

diag
(
(XT X + λI)−1

)
j

, (9)

where XT X + λI represents the regularized Hessian matrix used in the layer-wise reconstruction
problem and λ is used to prevent algorithm failure due to singular matrices thus ensuring the Hessian
is always invertible. Given the input activation as X = (X1,X2, . . . ,Xdin

), we have

1

diag
(
(XT X + λI)−1

)
j

=
λ+ ||X||2

λ+ ||X||2 − X2
j

· λ (10)

Where ∥X∥2 =
∑din

i=1 X2
i . Wanda (Sun et al., 2023) uses a coarse formulation to approximate

diag((XT X + λI)−1) as follows

1

diag
(
(XT X + λI)−1

)
j

≈ 1

(diag(XT X + λI))−1
j

= X2
j + λ (11)

Taking the difference of our derivation (i.e., Equation 10) and Wanda’s approximation (i.e., Equa-
tion 11), we have

diff = | λ+ ||X||2

λ+ ||X||2 − X2
j

· λ− (X2
j + λ)| ≈

||X||2X2
j

λ+ ||X||2
(12)
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Suppose the input sequence length is denoted as N , we can further derive diff as follows (Detailed
derivation can be found at Appendix B.1.2)

diff =
1

N + 1
E[||Xj ||2] (13)

Equation 13 shows an inverse relationship between the sequence length N and diff . Specifically,
as N decreases, diff increases monotonically, which demonstrates that our proposed method yields
reduced reconstruction error and improved accuracy, particularly in scenarios with smaller input
sequence length. This theoretical finding suggests that our approach exhibits calibration data effi-
ciency. The detailed derivation can be found in Appendix B.1.1 and B.1.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Evaluations. We use OPT 350M-13B (Zhang et al., 2022), LLaMA 7B-65B (Tou-
vron et al., 2023a), LLaMA2 7B-13B (Touvron et al., 2023b), LLaMA 3 series (Grattafiori et al.,
2024), Qwen2.5 1.5B-32B (Team, 2024), and MoE models such as Mixtral-8x7B and Mixtral-8x7B-
Instruct (Jiang et al., 2024) to evaluate our proposed method. All model checkpoints used in our
experiments are obtained from the HuggingFace Transformers library to ensure reproducibility. For
fair comparison, we employ uniform pruning across all linear layers while preserving the embed-
dings and the head as dense (Sun et al., 2023; Zhang et al., 2024). We evaluate the proposed method
in both generation task and zero-shot task. For the generation task, we measure the perplexity of
the three model families on WikiText-2 (Merity et al., 2016). For zero-shot evaluation, we evalu-
ate on seven benchmark tasks from EleutherAI LM Harness (Gao et al., 2021a) following existing
work (Sun et al., 2023) on LLaMA models. All experiments are conducted on a server with 8
NVIDIA A100 GPUs, each with 40GB memory.

Baselines. Our baselines consist of two categories: one includes methods that only support 50%
structured pruning such as SliceGPT (Ashkboos et al., 2024), SVD-LLM (Wang et al., 2024a),
ASVD (Yuan et al., 2023), FLAP (An et al., 2024), SoBP (Wei et al., 2024) and CFSP (Wang et al.,
2024b), and the other includes methods that not only support 50% structured pruning but also 2:4
and 4:8 semi-structured pruning methods, such as Wanda (Sun et al., 2023) and RIA (Zhang et al.,
2024).

Calibration Data. For fair comparison with baselines, we take 128 samples from the C4
dataset (Raffel et al., 2020) for all models. Max context length size is used for both unstructured
pruning and N:M semi-structured pruning for Wanda and RIA.

4.2 GENERATION TASK

We compare the VarP method with various LLM-based pruning baselines (e.g., SliceGPT (Ashkboos
et al., 2024), SVD-LLM (Wang et al., 2024a), ASVD (Yuan et al., 2023), FLAP (An et al., 2024),
SoBP (Wei et al., 2024) and CFSP (Wang et al., 2024b)) using the WikiText-2 dataset. We evaluated
the performance in PPL of the LLaMA, LLaMA-2, LLaMA-3 and OPT model families in various
sizes, as shown in Table 7 and Table 9. We also provide the time taken for the pruning process of
the OPT and LLaMA models by these baselines, as shown in Table 12 and Table 10. The results of
SliceGPT, SliceGPT-eq, SVD-LLM, ASVD, SoBP are from SoBP (Wei et al., 2024).

The experimental results show that compared to the baselines that only support structured pruning,
our method outperforms them in both efficiency and performance at 50% sparsity. For example, on
the LLaMA-7B model, our method achieves a PPL nearly 2.0 lower than SoBP, while running almost
twice as fast as FLAP. Compared with the Wanda and RIA baselines, we can see that our method
achieves results comparable to, or even better than, the original Wanda and RIA. For instance, on the
LLaMA-7B model, our method achieves a PPL approximately 0.15 lower than the original Wanda.
Moreover, our approach is much more time efficient than both the original Wanda and the RIA,
taking only about 40% of the pruning time of the original Wanda on the OPT-30B model.
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Table 1: PPL (↓) of LLaMA and LLaMA-2 models
with VarP and baselines at 50% sparsity

Method LLaMA LLaMA-2
7B 13B 30B 65B 7B 13B

SliceGPT 15.94 9.79 8.22 6.92 12.80 10.60
SliceGPT-eq 46.08 11.89 9.89 8.10 16.02 13.38
SVD-LLM 13.85 10.22 7.96 6.69 16.14 10.79
ASVD 1.7e3 149.94 17.78 15.23 2.1e3 71.21
FLAP 20.80 13.60 9.59 7.05 21.94 13.70
SoBP 9.09 7.61 6.06 5.10 9.28 7.39
CFSP 10.18 8.32 7.06 6.25 9.31 8.00
Wanda 7.27 6.16 5.32 4.57 6.92 5.99
RIA 7.14 6.09 5.09 4.40 6.81 5.83
VarP (ours) 7.15 6.11 5.10 4.44 6.42 5.45

Table 2: Pruning time (s) (↓) of LLaMA
and OPT models with VarP and base-
lines at 50% sparsity

Method LLaMA OPT
7B 13B 6.7B 13B

SliceGPT 720 2400 840 2160
SVD-LLM 1440 7740 1980 9660
ASVD 6.2e4 3.9e6 7.5e4 3.7e5
FLAP 60 180 60 90
SoBP 1080 3900 2100 1.3e4
CFSP 40 58 43 62
Wanda 65 93 67 183
RIA 69 90 72 186
VarP (ours) 37 53 37 64

4.3 ZERO-SHOT TASKS

We report the zero-shot accuracy across seven tasks and the average accuracy of them on OPT-6.7B,
LLaMA-7B, LLaMA-13B, and Qwen-2.5-3B from Table 3 to Table 6. We also have results on
OPT-13B, LLaMA-2-7B, LLaMA-3.1-8B and LLaMA-2-13B, as shown from Table 15 to Table 18
in Appendix B.2.2. Across both unstructured and semi-structured sparsity settings, our method out-
performs Wanda and RIA with sequences length of 16. VarP with the input sequence length of only
16 can generally surpass Wanda and RIA baselines pruning with 16 sequence lengths. For example,
on the OPT-6.7B model with 2:4 semi-structured pruning, our method of RIA+VarP achieves an
average accuracy of 46.46%, surpassing Wanda (Seq Len = 16) by 1.1% and RIA (Seq Len = 16)
by 0.45%, respectively.

Table 3: Accuracy (↑) of OPT-6.7B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 62.32 53.43 46.03 61.48 62.66 27.22 24.60 48.24 +1.19Wanda+VarP (ours) 16 66.64 53.42 47.65 60.85 63.17 28.85 25.40 49.43
RIA 16 63.97 52.71 46.69 61.33 62.88 27.90 24.40 48.55 +0.87RIA+VarP (Ours) 16 66.29 53.09 47.69 61.04 63.74 28.28 25.80 49.42

2:4

Wanda 16 62.17 52.35 40.91 59.74 56.06 24.74 21.60 45.36 +0.53Wanda+VarP (ours) 16 62.35 51.26 42.23 60.93 57.70 26.19 20.60 45.89
RIA 16 62.19 53.42 41.29 61.01 56.88 25.50 21.80 46.01 +0.45RIA+VarP (Ours) 16 63.57 51.64 42.68 59.99 58.13 26.38 22.80 46.46

4:8

Wanda 16 62.22 53.41 43.45 60.13 58.95 26.71 23.00 46.83 +0.11Wanda+VarP (ours) 16 63.94 52.71 45.45 61.48 60.19 26.87 24.80 47.92
RIA 16 63.15 53.79 43.98 60.77 59.05 26.88 23.60 47.31 +1.30RIA+VarP (Ours) 16 64.80 52.35 45.55 61.72 61.20 27.48 25.20 48.61

Table 4: Accuracy (↑) of LLaMA-7B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 70.73 54.51 51.51 64.87 69.48 36.09 29.00 53.74 +0.69Wanda+VarP (Ours) 16 70.51 61.39 51.60 66.45 68.89 35.58 26.60 54.43
RIA 16 71.54 61.73 51.49 66.65 69.75 35.90 28.40 55.07 +0.04RIA+VarP (Ours) 16 70.67 64.62 51.61 66.61 69.07 35.58 27.60 55.11

2:4

Wanda 16 68.19 53.79 41.73 62.04 59.80 26.70 22.60 47.83 +1.04Wanda+VarP (Ours) 16 68.02 54.88 43.89 63.61 61.32 28.83 21.60 48.87
RIA 16 67.98 55.23 42.03 62.03 60.48 26.96 24.20 48.41 +0.96RIA+VarP (Ours) 16 68.87 56.68 43.88 63.06 61.74 28.59 22.80 49.37

4:8

Wanda 16 70.00 55.23 46.81 64.09 63.38 31.91 24.80 50.88 +0.79Wanda+VarP (Ours) 16 69.48 59.92 48.10 63.22 63.97 31.82 25.20 51.67
RIA 16 69.29 55.95 47.00 64.48 63.72 31.65 26.20 51.18 +0.87RIA+VarP (Ours) 16 69.85 59.93 48.42 64.25 64.02 32.34 25.60 52.05

4.4 PERFORMANCE ON LLMS WITH VARIOUS SCALES

Table 7 presents the performance of our method across different model scales, focusing on the OPT
series models, ranging from 350M to 30B, evaluated on WikiText-2 datasets. Additional results for
the Qwen2.5 series and Mixtral-MoE models on WikiText-2 are also provided in the Appendix B.2.1.
We observe that our method is effective across models of varying scales. Compared with the baseline
methods, our approach achieves performance comparable to, or even better than original Wanda, and
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Table 5: Accuracy (↑) of LLaMA-13B comparison on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 73.35 58.12 55.12 70.51 74.17 41.21 31.20 57.67 -0.12Wanda+VarP (Ours) 16 73.33 59.94 54.78 70.80 73.10 41.56 29.40 57.55
RIA 16 73.34 57.11 54.51 70.62 73.94 40.87 30.60 57.28 +0.03RIA+VarP (Ours) 16 73.98 58.48 54.97 70.64 72.65 41.47 29.00 57.31

2:4

Wanda 16 70.12 53.79 46.44 66.45 65.82 32.25 25.80 51.52 +0.47Wanda+VarP (Ours) 16 70.35 53.69 48.73 65.75 65.65 33.37 26.40 51.99
RIA 16 69.85 53.42 47.43 67.30 66.92 33.68 26.20 52.11 +0.19RIA+VarP (Ours) 16 70.59 53.14 49.16 66.61 66.49 33.94 26.20 52.30

4:8

Wanda 16 70.69 54.15 50.73 68.67 70.17 37.82 27.60 54.26 +0.74Wanda+VarP (Ours) 16 72.94 54.51 52.45 68.35 70.67 38.48 27.60 55.00
RIA 16 71.16 53.43 51.24 70.48 69.95 37.37 28.00 54.52 +0.45RIA+VarP (Ours) 16 72.68 53.09 52.57 67.62 71.07 38.99 28.80 54.97

Table 6: Accuracy (↑) of Qwen2.5-3B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 66.11 72.34 45.40 64.25 71.51 37.29 26.80 54.81 +0.88Wanda+VarP (ours) 16 68.70 73.29 45.52 66.23 71.72 37.63 26.80 55.69
RIA 16 67.89 76.17 45.81 65.19 71.75 38.31 27.80 56.13 -0.09RIA+VarP (Ours) 16 67.40 76.43 45.92 65.90 72.15 37.73 26.80 56.04

2:4

Wanda 16 63.21 63.18 35.77 58.01 56.39 24.74 20.00 45.90 +0.02Wanda+VarP (ours) 16 64.83 56.31 35.75 58.73 59.39 26.45 20.00 45.92
RIA 16 63.85 60.28 36.52 58.63 60.52 27.21 18.20 46.45 +0.29RIA+VarP (Ours) 16 64.10 60.13 38.30 57.83 59.85 27.38 19.60 46.74

4:8

Wanda 16 62.54 61.01 41.45 60.77 66.07 31.14 23.60 49.51 +0.93Wanda+VarP (ours) 16 63.37 65.71 41.87 61.88 66.33 31.74 22.20 50.44
RIA 16 62.32 58.48 42.19 61.32 67.34 31.56 22.20 49.34 +1.27RIA+VarP (Ours) 16 62.91 66.43 41.80 62.27 66.09 32.00 22.80 50.61

shows a notable PPL reduction compared with Wanda and RIA using 16 sequence lengths, with the
improvement being particularly pronounced in semi-structured pruning for smaller models. For
example, on the OPT-13B model with 2:4 structured pruning, the original Wanda achieves a PPL
of 15.53, while Wanda with a sequence length of 16 achieves 15.34. In comparison, Wanda+VarP
reaches approximately 13.95, representing a reduction of about 1.5. Similarly, RIA+VarP achieves
a PPL that is approximately 1.6 lower than that of RIA with a sequence length of 16.

Table 7: PPL (↓) of OPT model series on WikiText-2 at different sparsity levels

Sparsity Method Seq Len
OPT

350M 1.3B 2.7B 6.7B 13B 30B

50%

Wanda 2048 36.24 18.40 14.22 11.98 11.92 10.03
Wanda 16 42.91 24.62 17.62 14.33 12.34 11.01
Wanda+VarP (ours) 16 37.78 20.77 15.02 12.32 11.64 10.29
RIA 16 40.09 20.46 15.68 12.32 11.70 10.22
RIA+VarP (ours) 16 37.40 19.90 14.70 12.08 11.38 10.13

2:4

Wanda 2048 114.57 28.15 21.27 15.91 15.53 13.47
Wanda 16 136.12 35.63 25.69 18.58 15.34 19.13
Wanda+VarP (ours) 16 103.80 29.59 24.45 16.11 13.95 14.02
RIA 16 141.18 30.88 23.89 16.25 15.10 16.89
RIA+VarP (ours) 16 120.04 28.06 23.48 15.84 13.54 13.43

4:8

Wanda 2048 58.95 22.20 16.78 13.55 13.38 10.87
Wanda 16 66.70 27.82 20.55 17.00 13.28 12.58
Wanda+VarP (ours) 16 58.13 23.34 17.61 13.77 12.33 11.13
RIA 16 67.48 23.43 18.24 14.78 12.95 12.00
RIA+VarP (ours) 16 63.14 22.36 17.57 13.62 12.06 10.95
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4.5 PERFORMANCE ON MOE-BASED LLMS Table 8: PPL (↓) of Mixtral-MoE model series
on WikiText-2

Sparsity Method Seq Len 8x7B-v0.1 8x7B-Instruct

50%

Wanda 2048 4.45 4.68
Wanda 16 4.58 4.75
Wanda+VarP (ours) 16 4.46 4.67
RIA 16 4.52 4.63
RIA+VarP (ours) 16 4.41 4.60

2:4

Wanda 2048 6.22 6.25
Wanda 16 6.47 6.41
Wanda+VarP (ours) 16 6.30 6.24
RIA 16 6.30 6.43
RIA+VarP (ours) 16 6.03 6.01

4:8

Wanda 2048 5.18 5.33
Wanda 16 5.38 5.49
Wanda+VarP (ours) 16 5.22 5.33
RIA 16 5.25 5.40
RIA+VarP (ours) 16 5.11 5.22

We also have experiments to show the effec-
tiveness of the proposed method on MoE-based
models, such as the Mixtral-MoE 8×7B-v0.1 and
Instruct models as shown in Table 8. Experi-
mental results show that our method is effective
for MoE models, particularly in the 2:4 and 4:8
semi-structured pruning settings. For instance,
in Mixtral-MoE-8×7B-v0.1, our Wanda+VarP
achieves a roughly 0.2 lower PPL compared
to Wanda with a sequence length of 16, while
RIA+VarP achieves a 0.3 lower PPL compared
to RIA with a sequence length of 16.

4.6 CALIBRATION EFFICIENCY ANALYSIS
ON DIFFERENT LLMS

We conduct experiments to evaluate our proposed VarP approach, including the perplexity on
WikiText-2 and runtime on LLaMA, LLaMA-2 and LLaMA-3 models in Table 9 and Table 10.
We also provide more results of different models of pruning time such as Qwen2.5 and pruning time
of Mixtral-MoE in Appendix B.2.1. Our key findings are summarized as follows:

Table 9: PPL (↓) of LLaMA, LLaMA-2, and LLaMA-3 families on WikiText-2

Sparsity Method Seq Len
LLaMA LLaMA-2 Meta-LLaMA-3 LLaMA-3.1 LLaMA-3.2

7B 13B 30B 65B 7B 13B 8B 8B 1B 3B

50%

Wanda 2048 7.26 6.15 5.25 4.60 6.46 5.56 8.87 8.74 20.78 11.58
Wanda 16 7.89 6.60 5.41 4.46 6.82 5.88 9.02 8.93 23.81 12.19
Wanda+VarP (ours) 16 7.18 6.12 5.13 4.41 6.49 5.47 8.47 8.44 21.39 11.49
RIA 16 7.27 6.11 5.14 4.42 6.44 5.53 8.35 8.34 19.63 11.32
RIA+VarP (ours) 16 7.15 6.11 5.10 4.44 6.42 5.45 8.31 8.29 19.25 11.22

2:4

Wanda 2048 11.53 9.60 6.89 6.24 11.34 8.35 22.29 20.57 74.09 31.09
Wanda 16 11.70 9.35 7.00 6.15 11.73 8.35 22.43 20.21 70.80 32.05
Wanda+VarP (ours) 16 11.03 8.61 6.66 5.72 10.57 7.42 22.58 20.04 69.87 33.86
RIA 16 11.53 8.83 6.81 6.05 11.17 7.90 22.62 20.33 89.69 34.74
RIA+VarP (ours) 16 11.38 8.72 6.62 5.92 11.49 7.68 22.12 19.67 75.78 32.01

4:8

Wanda 2048 8.56 7.40 5.98 5.30 8.09 6.52 13.14 12.24 38.50 18.43
Wanda 16 8.69 7.37 5.87 5.16 8.28 6.48 12.60 12.08 37.80 18.22
Wanda+VarP (ours) 16 8.25 7.03 5.76 4.97 7.95 6.16 12.30 11.66 37.93 18.19
RIA 16 8.46 7.14 5.78 5.08 8.05 6.34 12.20 11.75 41.06 18.93
RIA+VarP (ours) 16 8.34 7.02 5.72 5.02 7.93 6.25 12.18 11.58 37.76 18.23

1) Compared to the full-sequence pruning variant of Wanda with 2048 sequence lengths, our VarP
method offers substantial gains in time efficiency on LLaMA models. For example, in the 2:4 semi-
structured pruning of the LLaMA-2-13B model, our method requires only about 25% of the pruning
time compared to original Wanda. At the same time, Wanda+VarP achieves a PPL of 7.42, whereas
both original Wanda and Wanda with a sequence length of 16 have a PPL of approximately 8.35,
showing a reduction of around 1.0.

2) When compared to RIA with 16 sequence lengths, VarP exhibits slightly higher latency but yields
significantly better evaluation performance. This accuracy gain is especially pronounced on the
LLaMA-3 series of models. On the LLaMA-3.1-8B model with 2:4 semi-structured pruning, RIA
with 16 sequence lengths produces a PPL of 20.33. In comparison, VarP can achieves a lower PPL
of 19.67, representing a 0.7 reduction in perplexity and only have an additional latency about 16
seconds comparing to RIA with 16 sequence lengths.

3) While Wanda with 16 sequence lengths is the fastest among the methods, it comes at the cost
of degraded performance. For example, on the LLaMA-7B model with 50% unstructured pruning,
Wanda+VarP achieves a PPL of 7.18, outperforming Wanda (Seq Len = 16) with PPL of 7.89.
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Table 10: Pruning Time (s) (↓) of LLaMA, LLaMA-2, and LLaMA-3 model series on WikiText-2
at different sparsity levels

Sparsity Method Seq Len
LLaMA LLaMA-2 Meta-LLaMA-3 LLaMA-3.1 LLaMA-3.2

7B 13B 30B 65B 7B 13B 8B 8B 1B 3B

50%

Wanda 2048 64.6 39.4 49.3 67.6 98.8 183.5 76.7 74.8 28.9 52.4
Wanda 16 23.7 29.8 40.0 60.7 22.7 27.9 30.4 29.8 15.2 25.3
Wanda+VarP (ours) 16 29.9 37.4 53.1 78.4 29.2 36.7 44.4 43.8 22.7 35.6
RIA 16 33.2 41.6 66.5 102.1 33.4 43.7 33.6 29.6 17.0 25.3
RIA+VarP (ours) 16 47.2 52.2 82.6 120.7 45.0 57.6 45.7 44.6 24.1 37.5

2:4

Wanda 2048 80.6 121.6 260.9 463.7 179.4 267.7 118.9 117.7 39.3 74.0
Wanda 16 41.1 55.7 98.3 152.7 42.7 55.3 73.9 74.2 26.2 49.8
Wanda+VarP (ours) 16 48.3 65.9 110.6 174.4 48.2 65.2 86.4 86.0 33.0 61.4
RIA 16 72.9 102.5 195.6 323.7 74.0 108.4 73.1 72.2 28.8 51.6
RIA+VarP (ours) 16 84.9 118.3 212.7 342.5 88.6 116.1 88.2 88.8 34.9 64.1

4:8

Wanda 2048 70.2 104.2 226.8 410.3 160.2 234.6 95.9 96.7 33.8 62.5
Wanda 16 31.0 40.2 65.9 100.9 31.3 40.1 50.6 52.2 21.0 37.4
Wanda+VarP (ours) 16 38.1 57.2 80.8 121.5 38.4 50.5 62.6 61.4 27.4 50.2
RIA 16 51.5 72.8 131.7 209.3 53.0 74.6 52.7 50.2 21.6 39.2
RIA+VarP (ours) 16 67.9 92.8 148.2 228.6 67.1 86.0 64.5 66.3 29.5 51.2

4.7 IMPACT OF DIFFERENT SPARSITY

Table 11: PPL (↓) of LLMs with different sparsity on WikiText-2

Sparsity Method Seq Len
LLaMA LLaMA-2 OPT

7B 13B 7B 13B 1.3B 6.7B 13B

20%

Wanda 2048 5.81 5.13 5.22 4.68 14.69 10.62 10.06
Wanda 16 5.76 5.13 5.17 5.09 15.32 10.43 9.94
Wanda+VarP (ours) 16 5.72 5.11 5.14 4.62 15.09 10.94 10.16
RIA 16 5.75 5.13 5.16 4.62 14.34 10.38 10.00
RIA+VarP (ours) 16 5.74 5.12 5.16 4.59 14.96 10.93 10.16

40%

Wanda 2048 6.39 5.51 5.66 5.01 15.87 10.96 10.64
Wanda 16 6.48 5.64 5.75 5.09 18.57 12.13 10.66
Wanda+VarP (ours) 16 6.27 5.48 5.63 4.95 17.52 11.29 10.62
RIA 16 6.29 5.48 5.62 4.94 16.36 10.98 10.48
RIA+VarP (ours) 16 6.23 5.47 5.62 4.92 16.96 11.24 10.58

60%

Wanda 2048 10.69 8.75 10.04 7.93 26.53 15.21 15.94
Wanda 16 13.35 9.75 11.34 8.60 45.77 20.32 17.52
Wanda+VarP (ours) 16 11.02 8.37 11.11 7.21 30.56 16.24 14.42
RIA 16 11.23 8.44 10.16 7.58 32.76 16.21 15.68
RIA+VarP (ours) 16 10.82 8.16 10.02 7.28 28.37 15.04 14.15

We report PPL of LLMs on
WikiText-2 under different spar-
sity settings, as shown in Ta-
ble 11. We can find that across
different sparsity settings, our
method, especially RIA+VarP,
consistently matches or outper-
forms the baselines. At lower
sparsity levels (20% and 40%),
RIA sometimes performs bet-
ter on certain OPT models but
yields results comparable to
ours on LLaMA models. As
sparsity increases (50%–60%),
our approach surpasses both
RIA and Wanda in pruning ef-
fectiveness. Notably, on the
OPT-13B model with 60% unstructured pruning, our method reduces PPL by about 1.9 compared
to the baseline. Similarly, on the LLaMA-13B model under 60% unstructured pruning, we achieve
a PPL of 8.16, outperforming Wanda’s 8.75 (using a 2048-length input) by 0.6, while using much
shorter sequences. In contrast, Wanda with shorter sequence lengths shows significant performance
degradation, performing considerably worse than both our method and RIA.

5 CONCLUSION

This work introduces an activation variance-guided accurate and calibration-efficient post-training
pruning technique tailored for large language models. We introduce VarP, an activation variance-
guided weight pruning metric, which incorporates input activation variance into the pruning metric,
achieving both pruning effectiveness and calibration efficiency. Through extensive experiments on
prominent LLMs like OPT, LLaMA, LLaMA2, LLaMA3, Qwen2.5, and MoE-based Mixtral across
varying model sizes, we show that VarP can achieve better performance than baselines with less
pruning time and can combine with existing methods such as RIA for more efficient and accu-
rate pruning. Moreover, experimental results show that our proposed LLM pruning method can be
adapted to N:M sparsity and achieve better accuracy and calibration efficiency via taking benefit
from the design of VarP.
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A CLAIM OF LLM USAGE

In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
for clarity and readability.

B APPENDIX

B.1 ACTIVATION VARIANCE-GUIDED WEIGHT PRUNING METRIC

B.1.1 DERIVATION OF VARP IMPORTANCE METRIC

Given the loss function L(W), its Taylor expansion around the current weights W is:

L(W +∆W) ≈ L(W) +∇L(W)T∆W +
1

2
∆WT H∆W (14)

where: - ∇L(W) is the gradient, - H = ∇2L(W) is the Hessian (second derivative matrix). To min-
imize the loss variation after pruning, we focus on the second-order term 1

2∆WT H∆W. However,
calculating the full Hessian is computationally expensive for large models. SparseGPT approxi-
mates the Hessian using the input data matrix X. Specifically, for MSE loss or linearized networks,
H ≈ XT X and λI is added as a regularization term to stabilize the inverse. Thus, the approximate
local Hessian becomes:

H ≈ XT X + λI (15)

The pruning metric used in SparseGPT is:

Sij =

[
|W|2

diag
(
(XT X + λI)−1

)]
ij

(16)

which captures how important a weight is, normalized by the local curvature (second-order sensi-
tivity) of the loss surface. If X ∈ R1×n is an input: - XT ∈ Rn×1, - XT X ∈ Rn×n, a rank-1 matrix
uvT where u = v = XT . Using the Sherman-Morrison formula, we have:

(λI + uvT )−1 =
1

λ
I − 1

λ2

uvT

1 + vT u
λ

(17)

Specifically, the i-th diagonal element is:[
(XT X + λI)−1

]
ii
=

1

λ
− 1

λ2
· X2

i

1 + ∥X∥2

λ

(18)

where ∥X∥2 =
∑n

i=1 X2
i . Then, we have :

diag
(
(XT X + λI)−1

)
j
=

1

λ
−

X2
j

λ2 + λ∥X∥2
(19)

Each diagonal element depends on the square of the corresponding feature in X . Then, we have:

1

diag
(
(XT X + λI)−1

)
j

=
λ+ ||X||2

λ+ ||X||2 − X2
j

· λ (20)

Note that the input X have been normalized, so ∥X∥2 can be approximately viewed as a constant,
we can denote it as k. The pruning metric can be simplified as:

Sij =
|Wij |2

diag
(
(XT X + λI)−1

)
j

= |Wij |2 ·
λ+ k

λ+ k − X2
j

· λ (21)
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Since λ is a constant, we can omit it and we can get:

Sij =
|Wij |2

diag
(
(XT X + λI)−1

)
j

= |Wij |2 ·
1

1− X2
j

λ+k

(22)

where λ+ k is a constant as well and we can omit it. We can use more input to calculate their mean
value of calibration data and get our final pruning metric:

Svarij = E[Sij ] = |Wij |2 · E[
1

1− ||Xj ||2
] (23)

B.1.2 EFFICIENCY ANALYSIS

Now we analyze the efficiency of VarP. Wanda assumes the denominator of Equation 16 can be
approximated:

1

diag
(
(XT X + λI)−1

)
j

≈ 1

(diag(XT X + λI))−1
j

= X2
j + λ (24)

Taking the difference of the right sides between Equation 20 and Equation 24, we have (||X||2 can
be approximately replaced by k):

| λ(λ+ k)

λ+ k − X2
j

− X2
j − λ| = | λ

1− X2
j

λ+k

− X2
j − λ| (25)

Applying the power series expansion, we have:

| λ

1− X2
j

λ+k

− X2
j − λ| = |λ(1 +

X2
j

λ+ k
)− X2

j − λ| =
kX2

j

λ+ k
(26)

If we have more sequences with length of L as input, we can take the average of the X2
j , then we

can the dfference between VarP and Wanda’s as:

diff =
k

λ+ k

X2
j1 + X2

j2 + · · ·+ X2
jL

L
=

k

λ+ k
E[||Xj ||2] (27)

Since the λ is a constant, we can make it equals to nk, then:

diff =
k

λ+ k
E[||Xj ||2] =

1

L+ 1
E[||Xj ||2] (28)

We can see from the above Equation that if L is small, the difference between these two methods
will be large, which demonstrates the calibration efficiency of our proposed method.

B.2 MORE EXPERIMENT RESULTS

B.2.1 MORE RESULTS OF PPL AND PRUNING TIME ON MORE MODELS

Tables 12 provides the pruning time of OPT series models of our method comparing with base-
lines. Table 13 and Table 14 present the overall pruning time of the VarP method on the Qwen2.5
and Mistral-MoE models and PPL of Qwen2.5 models. It can be observed that, compared with the
baseline, our method slightly increases the pruning time consumption. However, compared with the
original baseline using a 2048 sequence length, the pruning time is significantly reduced. In exper-
iments with Qwen2.5 and Mixtral-MoE models, we observe that our method performs similarly to
the baselines under 50% sparsity. However, in semi-structured sparsity 2:4 and 4:8, our approach
outperforms the baselines. For example, in the Qwen2.5-14B experiments, RIA+VarP achieves ap-
proximately a 0.3 reduction in PPL compared to RIA with 16 sequence lengths, while Wanda+VarP
shows about a 0.5 reduction in PPL compared to Wanda with 16 sequence lengths. In terms of time,
compared to Wanda with 2048 sequence lengths, the entire pruning process took only about 66% of
Wanda’s time while achieving an approximate 0.4 reduction in PPL.
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Table 12: Pruning Time (s) (↓) of OPT model series on WikiText-2 at different sparsity levels

Sparsity Method Seq Len
OPT

350M 1.3B 2.7B 6.7B 13B 30B

50%

Wanda 2048 31.4 39.4 49.3 67.5 98.8 183.5
Wanda 16 17.8 17.8 21.2 25.7 31.3 45.2
Wanda+VarP (ours) 16 25.8 27.1 33.2 37.2 45.1 63.7
RIA 16 16.1 19.8 21.8 24.4 31.6 44.8
RIA+VarP (ours) 16 24.2 25.4 31.6 33.8 43.1 59.6

2:4

Wanda 2048 38.9 50.8 69.4 111.7 160.7 300.6
Wanda 16 24.8 34.4 47.8 65.8 97.8 171.3
Wanda+VarP (ours) 16 33.8 44.1 57.7 78.4 112.5 178.5
RIA 16 23.1 32.4 46.8 63.8 95.7 161.5
RIA+VarP (ours) 16 32.4 41.0 59.2 76.1 110.6 177.2

4:8

Wanda 2048 35.0 42.8 58.1 87.6 129.8 240.4
Wanda 16 20.7 25.9 34.7 45.2 63.3 102.3
Wanda+VarP (ours) 16 31.0 34.8 46.0 58.2 76.4 120.3
RIA 16 20.2 24.5 34.8 45.5 64.5 101.9
RIA+VarP (ours) 16 28.9 34.0 46.3 55.3 75.9 117.0

Table 13: PPL (↓) of Qwen-2.5 model series on WikiText-2

Sparsity Method Seq Len 1.5B 3B 7B 14B 32B

50%

Wanda 2048 12.54 10.21 7.74 6.58 6.49
Wanda 16 13.32 10.75 7.88 6.93 6.63
Wanda+VarP (ours) 16 12.97 10.33 7.70 6.64 6.50
RIA 16 12.46 9.98 7.59 6.51 6.50
RIA+VarP (ours) 16 12.42 9.94 7.55 6.49 6.46

2:4

Wanda 2048 42.30 21.16 13.10 12.37 8.90
Wanda 16 43.96 23.41 13.55 11.53 8.71
Wanda+VarP (ours) 16 42.02 23.73 12.93 10.98 8.45
RIA 16 45.46 22.11 12.53 11.28 8.59
RIA+VarP (ours) 16 45.20 21.64 12.48 11.02 8.32

4:8

Wanda 2048 19.39 13.67 9.34 8.38 7.32
Wanda 16 20.35 14.13 9.58 7.97 7.45
Wanda+VarP (ours) 16 20.13 13.99 9.40 7.80 7.35
RIA 16 20.37 13.54 9.18 7.77 7.33
RIA+VarP (ours) 16 20.03 13.47 9.18 7.59 7.14

B.2.2 MORE RESULTS ON ZERO-SHOT TASKS

Tables 15 to Table 18 present more zero-shot evaluation accuracy of LLaMA models and OPT
models. It can be observed that our method generally outperforms the baseline methods in evaluation
accuracy. For example, in the 4:8 semi-structured pruning task of the OPT-13B model, our method
achieves nearly a 2% higher average evaluation accuracy compared to the baseline.

B.2.3 ROBUSTNESS ANALYSIS

To evaluate the robustness and stability of our method, we conduct experiments across multiple
calibration data sampling configurations We select three different random seeds, therefore three
different calibration data subsets, and repeat the pruning process for each of them on LLaMA-7B
model using WikiText-2 dataset. It’s shown in Table 19 that our method exhibits better results across
different random seeds.
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Table 14: Pruning time (s) (↓) of Qwen-2.5 and Mixtral-MoE model series on WikiText-2 at different
sparsity levels

Sparsity Method Seq Len
Qwen-2.5 Mixtral-MoE

1.5B 3B 7B 14B 32B 8x7B-v0.1 8x7B-Instruct

50%

Wanda 2048 28.9 40.6 74.7 125.9 218.2 174.3 180.8
Wanda 16 16.7 20.8 17.5 46.0 64.8 99.3 99.8
Wanda+VarP (ours) 16 22.7 28.8 24.0 66.6 95.8 159.3 160.1
RIA 16 19.8 20.6 17.6 46.8 65.6 102.2 103.4
RIA+VarP (ours) 16 23.4 27.9 25.4 67.2 96.3 160.5 161.8

2:4

Wanda 2048 36.3 54.2 113.6 197.8 353.5 410.0 410.0
Wanda 16 25.8 33.2 36.9 122.0 203.8 332.9 330.0
Wanda+VarP (ours) 16 32.1 41.9 42.6 147.2 238.6 387.2 389.5
RIA 16 25.0 33.9 37.8 121.9 205.3 335.3 331.5
RIA+VarP (ours) 16 31.5 43.6 45.8 146.3 236.3 390.1 391.4

4:8

Wanda 2048 32.4 46.2 93.8 159.7 285.2 292.5 295.7
Wanda 16 20.6 26.5 26.3 83.5 131.4 214.6 212.5
Wanda+VarP (ours) 16 28.0 35.0 33.5 106.4 146.5 271.0 273.4
RIA 16 21.0 26.7 28.6 82.4 132.5 217.4 214.6
RIA+VarP (ours) 16 28.0 34.7 35.4 105.5 164.5 275.3 277.2

Table 15: Accuracy (↑) of OPT-13B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 65.75 53.43 48.39 62.66 64.10 29.78 26.20 50.04
+1.32

Wanda+VarP (Ours) 16 65.11 56.68 50.23 63.70 65.90 31.74 26.20 51.36
RIA 16 65.86 54.11 49.01 62.84 64.31 30.90 26.60 50.52

0.00
RIA+VarP (Ours) 16 63.00 55.24 49.94 63.14 65.49 31.91 25.00 50.52

2:4

Wanda 16 64.31 52.70 43.80 60.93 59.55 26.11 22.60 47.14
+0.97

Wanda+VarP (Ours) 16 58.93 53.07 47.31 63.07 61.53 28.67 24.20 48.11
RIA 16 65.65 52.70 44.57 61.88 58.63 27.05 21.60 47.44

+0.66
RIA+VarP (Ours) 16 62.14 53.79 46.78 62.51 60.86 28.07 22.60 48.10

4:8

Wanda 16 65.29 53.07 46.16 62.66 60.81 27.30 24.80 48.58
+1.97

Wanda+VarP (Ours) 16 62.30 59.57 48.74 63.30 63.68 31.05 25.20 50.55
RIA 16 65.44 52.34 46.54 63.38 60.86 27.64 24.80 48.71

+1.11
RIA+VarP (Ours) 16 61.45 57.77 48.47 62.83 62.96 30.29 25.00 49.82

Table 16: Accuracy (↑) of LLaMA-3.1-8B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 75.90 61.01 51.30 67.88 70.87 39.57 27.20 56.24
-0.03

Wanda+VarP (ours) 16 76.55 56.31 51.23 69.22 73.12 40.28 26.80 56.21
RIA 16 77.40 56.31 51.53 69.21 72.81 41.46 28.20 56.70

-0.31
RIA+VarP (ours) 16 78.21 55.23 51.73 69.14 72.72 40.96 26.80 56.39

2:4

Wanda 16 64.61 54.51 37.31 59.74 58.20 25.25 19.00 45.52
+0.63

Wanda+VarP (ours) 16 66.62 52.35 38.70 59.98 60.32 26.46 18.60 46.15
RIA 16 66.54 53.07 38.31 59.27 59.97 28.32 19.40 46.41

+0.09
RIA+VarP (ours) 16 66.34 53.09 38.39 59.89 59.81 28.62 19.40 46.50

4:8

Wanda 16 66.72 53.43 44.10 66.22 65.36 30.80 23.40 50.00
+0.62

Wanda+VarP (ours) 16 67.34 53.80 44.83 65.68 65.41 33.12 24.20 50.62
RIA 16 67.72 53.42 44.48 65.11 64.84 32.24 25.00 50.40

+0.08
RIA+VarP (ours) 16 68.32 53.07 44.39 64.96 65.38 33.20 24.00 50.48
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Table 17: Accuracy (↑) of LLaMA-2-7B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 74.44 55.59 51.29 66.12 71.63 37.25 29.40 55.10
-0.18

Wanda+VarP (Ours) 16 73.70 57.76 51.01 66.15 70.38 37.30 28.20 54.92
RIA 16 73.70 55.59 51.37 66.45 69.69 35.66 28.60 54.43

+0.44
RIA+VarP (Ours) 16 73.72 55.62 51.53 66.08 70.48 37.47 29.20 54.87

2:4

Wanda 16 67.83 53.43 39.85 59.59 59.30 27.04 21.80 46.98
+0.73

Wanda+VarP (Ours) 16 65.85 53.45 42.18 60.93 63.55 28.41 19.60 47.71
RIA 16 66.90 53.39 40.27 59.59 60.77 27.98 21.80 47.24

+0.65
RIA+VarP (Ours) 16 65.34 54.20 42.45 61.29 62.54 28.62 20.80 47.89

4:8

Wanda 16 71.56 54.15 45.29 63.69 65.48 32.51 24.80 51.07
+0.32

Wanda+VarP (Ours) 16 70.33 53.80 46.80 64.71 66.29 34.39 23.40 51.39
RIA 16 72.88 54.14 45.82 64.15 66.27 32.75 24.80 51.54

+0.14
RIA+VarP (Ours) 16 69.70 54.51 47.30 64.72 66.37 34.56 24.60 51.68

Table 18: Accuracy (↑) of LLaMA-2-13B on 7 zero-shot tasks

Sparsity Method Seq Len BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Avg. ∆

50%

Wanda 16 78.66 62.45 56.61 70.56 76.72 42.58 32.00 59.94
-0.31

Wanda+VarP (Ours) 16 78.84 62.10 56.97 69.54 75.80 41.80 32.40 59.63
RIA 16 79.90 62.09 56.31 70.00 76.18 40.27 31.00 59.39

+0.72
RIA+VarP (Ours) 16 80.57 60.94 57.49 70.16 76.94 42.49 32.20 60.11

2:4

Wanda 16 77.42 59.55 46.01 66.92 68.57 33.10 23.60 53.59
+0.32

Wanda+VarP (Ours) 16 77.03 56.32 48.74 65.12 69.02 36.18 25.00 53.91
RIA 16 77.18 58.84 46.83 66.69 68.77 33.27 23.40 53.57

+0.49
RIA+VarP (Ours) 16 76.97 58.42 49.07 64.03 69.79 34.97 25.20 54.06

4:8

Wanda 16 79.35 60.29 51.67 68.03 74.03 38.90 27.80 57.15
+0.37

Wanda+VarP (Ours) 16 78.78 61.73 53.45 68.48 72.89 38.57 28.80 57.52
RIA 16 79.75 60.29 51.85 68.51 73.10 38.31 27.00 56.97

+0.43
RIA+VarP (Ours) 16 77.49 62.77 53.63 67.94 73.18 37.60 29.20 57.40

Table 19: Perplexity for pruned LLaMA-7B models with different random seeds on WikiText-2

Model Method seed#1 seed#2 seed#3

LLaMA-7B
Wanda-16 7.89 8.19 7.76
RIA with 16 sequence lengths 7.27 7.28 7.26
Wanda+VarP (Ours) 7.18 7.18 7.120

Table 20: Perplexity of pruned LLaMA-7B model with different sequence lengths on WikiText-2

Model Method
Sequence Lengths

16 32 128 512 1024 2048

LLaMA-7B
Wanda 7.89 7.52 7.28 7.27 7.27 7.26

RIA 7.27 7.22 7.15 7.13 7.12 7.12
Wanda+VarP

(Ours) 7.18 7.19 7.20 7.25 7.26 7.25
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B.2.4 IMPACT OF SEQUENCE LENGTHS

We present the impact of sequence lengths on the LLaMA-7B model for WikiText-2 under 50%
unstructured sparsity in Table 20. It’s shown that our method consistently achieves better pruning
performance, especially when the sequence length is relatively small, yielding much lower perplex-
ity compared to both RIA and Wanda. This aligns with our theoretical analysis: with the decreasing
of the input sequence length, our method has higher advantage over Wanda, empirically supporting
the theoretical derivation provided in the Appendix B.1. While RIA shows improved performance
with longer sequences, it also incurs more expensive time costs. Therefore, our approach offers a
balanced trade-off, maintaining both accuracy and time efficiency.
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