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ABSTRACT

With the rapid expansion of large language models (LLMs), the demand for mem-
ory and computational resources has grown significantly. Recent advances in
LLM pruning aim to reduce the size and computational cost of these models.
However, existing methods often suffer from either suboptimal pruning perfor-
mance or low time efficiency during the pruning process. In this work, we pro-
pose an efficient and effective pruning method that simultaneously achieves high
pruning performance and fast pruning speed with calibration efficiency. Our ap-
proach: (1) introduces an activation variance-guided pruning metric: a new metric
that allows for better semantic information distinction preservation in the output
activations after pruning; (2) enables model pruning with only a small sequence
length of calibration dataset, while can maintain similar pruning performance as
the original baselines that relies on larger sequence of calibration dataset (e.g.
2048 sequence lengths for Wanda and RIA). We conduct extensive experiments
on prevalent LLMs, such as OPT, LLaMA, LLaMA-2, LLaMA-3, Qwen2.5, and
MoE-based models such as Mixtral 8x7B. The experimental results show that we
can achieve up to 18% decrease of perplexity and up to 63% less pruning time on
WikiText-2, demonstrating the effectiveness of the proposed method.

1 INTRODUCTION

Recently, large language models (LLMs) have emerged as a prominent area of investigation, demon-
strating exceptional capabilities through extensive parameterization across various tasks, such as
language understanding (Devlin et al., |2018]), text generation (Brown et al., |2020; Touvron et al.,
2023al), question answering (Rajpurkar et al., 2016} Lewis et al., [2020), dialogue (Roller et al.,
2021)), and code generation (Chen et al., |2021), etc. While the increasing scale of LLMs has yield
substantial accuracy inprovements, the advancement necessitates a compromise in memory con-
sumption and inference latency (Devlin et al.| |2019; [Touvron et al., [2023a}; /Agarwal et al.l [2023).
For instance, deploying a LLaMA-65B model requires at least four A100-40GB GPUs, with the
time-to-first-token (TTFT) exceeding 100 milliseconds (Yang et all [2025), highlighting the sig-
nificant limitations of practical deployment in resource-constrained environments. To mitigate the
computational bottlenecks, various models compression techniques have been proposed, such as
quantization (Bai et al.||2020; |Frantar & Alistarh} 2022; Xiao et al.,|2023; |Lin et al., |2024), pruning
(Wolff et al.l [1992; [LeCun et al.| |1989; Mocanu et al.| 2018} [Sun et al., 2023} [Frantar & Alistarh),
2023)), weight decomposition (Hsu et al., 2022; |Yang et al., [2024), etc. Among them, LL.Ms post-
training pruning (Frantar & Alistarh, [2023; |Sun et al., 2023) has garnered particular attention due to
their ability in applying sparsity constraints to pre-trained LLMs without requiring computationally
expensive retraining procedures, thus avoiding the prohibitive memory overhead.

Although existing LLMs post-training pruning methods (Sun et al.| 2023} [Frantar & Alistarh, [2023)
have demonstrated potential in compressing model size with reduced memory overhead and negli-
gible accuracy loss across diverse tasks, these approaches typically employ a well-designed weight
importance evaluation metric with numerical magnitudes of weights and activations to identify im-
portant weight elements that should be preserved during pruning. In this work, we identify a promis-
ing yet unexplored opportunities in designing the importance evaluation metrics via exploring the
semantic information inherent in the input activation feature space: For equal-valued weights,
those with lower input activation variance more effectively maintain token-level semantic dis-
tinctions: previous studies (Ethayarajh, 2019; |Gao et al.l [2021b)) have shown that reduced token-
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level variation can result in semantic collapse and performance degradation across both classification
and generation tasks. However, existing works fail to consider the variance of input activation fea-
tures, a critical factor in preserving semantic distinctions. We observe that when comparing two
same-valued weights, the weight associated with higher input activation produces reduced output
activation differentiation across distinct tokens, thereby diminishing semantic distinctions. Conse-
quently, such weights should be assigned lower importance scores compared to those exhibiting
smaller variance, as they contribute less effectively to maintaining semantic diversity.

In this work, we propose ACE, which explores activation variance for accurate and calibration-
efficient LLMs pruning. Inspired by the role of input activation feature variance, we design an
activation variance-guided weight pruning metric (VarP), which incorporates a variance-based per-
turbation term and allows for better semantic information distinction preservation in the output acti-
vations after pruning. Moreover, we provide a theoretical analysis of the calibration efficiency of our
approach and show that our method can achieve high accuracy even when applied with reduced se-
quence lengths for calibration data, demonstrating the potential of the proposed method in practical
deployment scenarios with limited calibration data. Furthermore, VarP maintains (or even surpasses)
the performance of full sequence length pruning baselines with fewer input sequence length and re-
duced pruning time, highlighting its effectiveness and calibration efficiency. We summarize our
contributions as follows:

* We propose the activation variance-guided pruning metric, which includes the variance of input
activation to avoid the diminish of distinction between different tokens during pruning.

* We theoretically analyze our proposed method can achieve calibration efficiency. Moreover, the
experimental results demonstrate that our approach can achieve high accuracy on the pruned mod-
els with less input calibration sequence length and reduced pruning time.

* We conduct extensive experiments on various LLMs, such as OPT, LLaMA, LLaMA-2, LLaMA-
3, Qwen2.5, and Mixtral-MoE models. Experimental results show that our method can outperform
the baselines for both unstructured sparsity and N:M sparsity settings. For example, our VarP only
takes 66% of the pruning time to perform 2:4 semi-structured pruning on Qwen2.5-32B compared
to Wanda, while even obtaining about 0.4 reduction in perplexity compared with original Wanda.

2 RELATED WORK

Network Pruning for Neural Networks. Both unstructured pruning (Han et al.| 2015 Frankle
& Carbinl [2019) and structured pruning (Liu et al., [2017; Molchanov et all [2019) are extensively
explored for model compression and acceleration. The former identifies and removes individual
weights based on criteria such as magnitude (Han et al., [2015) or gradient information (Lee et al.,
2018). While achieving high sparsity, these methods often require specialized hardware to realize ac-
tual speedups. The latter focuses on removing entire structural components such as neurons, filters,
or channels (Li et al.l 2017} Liu et al., |2017). Among different structured sparsity patterns, the N:M
sparsity (Mishra et al., 2021)) has gained prominence, where N out of every M consecutive weights
are retained. This pattern is adopted in NVIDIA’s Ampere and later GPU architectures through
specialized hardware support, enabling real-world efficient deployment and substantial acceleration
during inference (Sun et al.| 2023} [Frantar et al.| |2023; [Zhang et al.| 2024)).

Post-Training Pruning for Large Language Models. Unlike training-aware sparsification (Gale
et al.| 2019), which iteratively prunes and fine-tunes the model during training, post-training prun-
ing (PTP) operates directly on pretrained checkpoints, making it appealing for scenarios with limited
training access or budget. However, designing effective pruning metrics remains a key challenge.
Existing works such as Wanda (Sun et al.| 2023)) rely on the element-wise product of weight mag-
nitudes and input activations to estimate importance. RIA (Zhang et al.,|2024) incorporates relative
importance between input and output channels to mitigate the problem of channel collapse. Pruner-
zero (Dong et all 2024) leverages evolutionary search to adaptively discover layer-wise metrics,
while SparseGPT (Frantar & Alistarhl [2023) formulates pruning as a local reconstruction problem
inspired by second-order approximations. However, current PTP works primarily focus on the en-
hancement of the element of the weights (Damadi, 2021; Dong et al., 2019} |Sun et al.| 2023} |[Frantar
et al.} 2023). Few studies explore the statistical information of input activations to further improve
the pruning performance.
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Figure 1: The motivating example of our proposed activation variance-guided pruning metric

3 METHODOLOGY

In this section, we will describe the motivation and our proposed ACE, an accurate and calibration
efficient pruning approach of Large Language Models (LLMs). Firstly, we propose an activation
variance-guided pruning metric which incorporates weights and the variance of input activations into
the metric, aiming to maintain the relative distances between token representations in the embedding
space during pruning, thus higher accuracy of the pruned model. Secondly, we theoretically analyze
the calibration efficiency of our method.

3.1 ACTIVATION VARIANCE-GUIDED WEIGHT PRUNING METRIC (VARP)

Motivation. Most existing LLM pruning methods rely on importance metrics computed through
various formulations involving weights and activations. However, the limitation arises when multi-
ple elements share the same importance score. As illustrated in Figure[T(a), when two elements in
the weight importance matrix in the first row have the same value (i.e., 0.08), it becomes difficult to
determine which corresponding element to prune in the weight matrix W to achieve a target sparsity
of 50%. Two different pruning options exist based on the choice of pruning weight elements with
the same importance score. Option 1 is to prune the first weight element in the first row with a
corresponding larger variance (i.e., 0.01 is larger than 0), resulting in a reduced difference between
the first two elements of first column in the output matmul compared to the original dense model,
as illustrated in Figure [T[b). In contrast, Option 2 prunes the second element in the first row of
weight matrix, which better preserves the output disparities between the first two elements of the
first column in the output, as shown in Figure [T{c), thereby maintaining closer alignment with the
original distribution characteristics. For NLP tasks, preserving distinctions between output channels
of tokens in the embedding space is crucial for maintaining semantic coherence and preventing the
loss of token-level differences in model outputs (Ethayarajhl 2019; L1 et al., 2020).

VarP Design. Motivated by the above example, we propose our activation variance-guided weight
importance score metric which incorporates the variance of input activation as follows:

Svary, = [Wij| - (h(1X]]2) + Var[[[X;][3]) (D

where ||X;]|2 is the I> norm of jth features aggregated across N different tokens, and Var|||X;||3]
represents the variance of the squared values in the j-th column of the input activation. h(-) is used
to represent the transformation of the I/, norm and serve as a factor in the product of |W;;| and
h(||X;]]2) to estimate the impact on the output when the weight element W,; is removed. Simply,
we can use Swanda+var,; for deriving below. Building upon h(||X,l|2) , we introduce an input
variance-based perturbation term Var([||X;||3] to further determine which weight element should be
pruned when the values of [W;;| - h(||X,||2) are similar. We define h(||X;]|2) as follows to evaluate
the importance of the jth feature in input activation X

h(IIX;112) = (E[1X;113])* + E[[X;1[3] + 1 2)
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where E[||X;||?] represents the mean of the squared values in the j-th row of the input activation.
Combining Equation |l|and Equation 2| we get our weight importance score metric as

Svari; = Wiz - (E[IX5][3])? + Var[||X,13] + E[|IX;][3] + 1) 3)
Based on the formula linking variance and expectation, we have
Var[X] = E[X?] — (E[X])? (4)
Combing Equation [3|and Equation{4} S, can be further derived as follows
Svars; = [Wis| - (E[|IX;][3] + E[[1X;1[3] + 1) ()

Based on the fact that the input activations are normalized, implying that the corresponding activa-
tion values are less than 1. Then, based on the power series expansion

1
E[|[X;1[2] + E[1X1[3] + 1 = E[|1X;1]3 + X3 + 1] ~ E[W} (6)
ill2
We derive the importance score as
1
Svarij - |Wz‘ . E[i] (7)
T XG13

In the above equation, we use the absolute value of weight in the importance metric of our proposed
method which we refer as Wanda+VarP in our experiments, since it shares the same weight com-
ponent of the importance metric in Wanda (Sun et al., 2023)). Similarly, we derive the importance
metric of RIA+VarP as

|Wi;| [Wi;| ) 1
SRIA var;; — ( + E’[ ] (8)
* Do IWal D Wi 1= [1%;113

where ) [W,;| and > |W;,| denote the sum of the i-th row sum and the sum of j-th column in the
weight matrix, respectively.

3.2 CALIBRATION DATA EFFICIENCY ANALYSIS

SparseGPT (Frantar & Alistarh, 2023)) formulates LLMs post-training pruning as a layer-wise recon-
struction problem, where for each layer, it aims to minimize the reconstruction error after pruning.
Drawing inspiration from Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1993)), SparseGPT (Fran-
tar & Alistarhl 2023)) develops a pruning metric as follows

S — (Wi |2
iy — . T 1\
diag (X" X + AI) )j

©))

where X7 X 4 M represents the regularized Hessian matrix used in the layer-wise reconstruction
problem and X is used to prevent algorithm failure due to singular matrices thus ensuring the Hessian

is always invertible. Given the input activation as X = (X1, X, ..., Xy,, ), we have
1 A+ [1X])2
. T = 3 (10
diag ((X X+)\I)_1)j A+ X2 = X
Where | X||? = g‘;"l Xf Wanda (Sun et al., [2023) uses a coarse formulation to approximate
diag((XTX 4+ AI)~!) as follows
1 1
~ =X2+ A\ (11)

diag (X"X+AD)~1) . (diag(X"X +A1); "

Taking the difference of our derivation (i.e., Equation [I0) and Wanda’s approximation (i.e., Equa-
tion[TT)), we have

A+ [1X])2 X|[2X3
%./\_(Xf_t_)\”,v [IX| J
A+ (X2 =X

diff = N 12
7 = AHIXIE .
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Suppose the input sequence length is denoted as IV, we can further derive di f f as follows (Detailed
derivation can be found at Appendix [B.1.2)

1
diff = = ElX1%] (13)

Equation [13| shows an inverse relationship between the sequence length N and diff. Specifically,
as IV decreases, diff increases monotonically, which demonstrates that our proposed method yields
reduced reconstruction error and improved accuracy, particularly in scenarios with smaller input
sequence length. This theoretical finding suggests that our approach exhibits calibration data effi-
ciency. The detailed derivation can be found in Appendix and[B.1.2

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Evaluations. We use OPT 350M-13B (Zhang et al., [2022)), LLaMA 7B-65B (Tou-
vron et al., 2023a)), LLaMA2 7B-13B (Touvron et al., 2023b), LLaMA 3 series (Grattafiori et al.,
2024), Qwen2.5 1.5B-32B (Team), 2024}, and MoE models such as Mixtral-8x7B and Mixtral-8x7B-
Instruct (Jiang et al., |2024)) to evaluate our proposed method. All model checkpoints used in our
experiments are obtained from the HuggingFace Transformers library to ensure reproducibility. For
fair comparison, we employ uniform pruning across all linear layers while preserving the embed-
dings and the head as dense (Sun et al.,|2023}; [Zhang et al.,2024). We evaluate the proposed method
in both generation task and zero-shot task. For the generation task, we measure the perplexity of
the three model families on WikiText-2 (Merity et al., 2016). For zero-shot evaluation, we evalu-
ate on seven benchmark tasks from EleutherAI LM Harness (Gao et al., 2021a)) following existing
work (Sun et al.l [2023) on LLaMA models. All experiments are conducted on a server with 8
NVIDIA A100 GPUs, each with 40GB memory.

Baselines. Our baselines consist of two categories: one includes methods that only support 50%
structured pruning such as SliceGPT (Ashkboos et al. 2024), SVD-LLM (Wang et al. [2024a),
ASVD (Yuan et al., [2023)), FLAP (An et al., 2024), SoBP (Wei et al.| 2024) and CFSP (Wang et al.,
2024b), and the other includes methods that not only support 50% structured pruning but also 2:4
and 4:8 semi-structured pruning methods, such as Wanda (Sun et al., [2023) and RIA (Zhang et al.,
2024).

Calibration Data. For fair comparison with baselines, we take 128 samples from the C4
dataset (Raffel et al.l [2020) for all models. Max context length size is used for both unstructured
pruning and N:M semi-structured pruning for Wanda and RIA.

4.2 GENERATION TASK

We compare the VarP method with various LLM-based pruning baselines (e.g., SliceGPT (Ashkboos
et al., [2024), SVD-LLM (Wang et al.| [2024a), ASVD (Yuan et al.| [2023), FLAP (An et al., |[2024),
SoBP (Wei et al., 2024) and CFSP (Wang et al., [2024b)) using the WikiText-2 dataset. We evaluated
the performance in PPL of the LLaMA, LLaMA-2, LLaMA-3 and OPT model families in various
sizes, as shown in Table [7] and Table [0} We also provide the time taken for the pruning process of
the OPT and LLaMA models by these baselines, as shown in Table and Table The results of
SliceGPT, SliceGPT-eq, SVD-LLM, ASVD, SoBP are from SoBP (Wei et al., [2024)).

The experimental results show that compared to the baselines that only support structured pruning,
our method outperforms them in both efficiency and performance at 50% sparsity. For example, on
the LLaMA-7B model, our method achieves a PPL nearly 2.0 lower than SoBP, while running almost
twice as fast as FLAP. Compared with the Wanda and RIA baselines, we can see that our method
achieves results comparable to, or even better than, the original Wanda and RIA. For instance, on the
LLaMA-7B model, our method achieves a PPL approximately 0.15 lower than the original Wanda.
Moreover, our approach is much more time efficient than both the original Wanda and the RIA,
taking only about 40% of the pruning time of the original Wanda on the OPT-30B model.
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Table 1: PPL (]) of LLaMA and LLaMA-2 models Table 2: Pruning time (s) (/) of LLaMA
with VarP and baselines at 50% sparsity and OPT models with VarP and base-
lines at 50% sparsity

Method LLaMA LLaMA-2
7B 13B 30B  65B 7B 13B Method LLaMA OPT

7B 13B | 6.7B  13B
SliceGPT 1594 979 822 692 12.80  10.60 -
SliceGPT-eq | 46.08 11.89 9.89  8.10 1602 1338 SliceGPT 720 2400 | 840 2160
SVD-LLM | 13.85 1022 796 6.69 16.14  10.79 SVD-LLM | 1440 7740 | 1980 9660
ASVD 1.7e3  149.94 17.78 1523 2.1e3 7121 ASVD 6.2¢4  3.9¢6 | 7.5e4 3.7e5
FLAP 2080 13.60 959  7.05 21.94 13.70 FLAP 60 180 | 60 90
SoBP 909 761 606 5.10 928  7.39 SoBP 1080 3900 | 2100 1.3e4
CFSP 1018 832  7.06 625 931  8.00 CFSP 40 58 43 62
Wanda 727 616 532 457 6.92 599 Wanda 65 93 67 183
RIA 714 609 509 4.40 681 583 RIA 69 90 72 186
VarP (ours) | 7.15 6.1 510 444 642 545 VarP (ours) | 37 53 37 64

4.3 ZERO-SHOT TASKS

We report the zero-shot accuracy across seven tasks and the average accuracy of them on OPT-6.7B,
LLaMA-7B, LLaMA-13B, and Qwen-2.5-3B from Table [3] to Table [6} We also have results on
OPT-13B, LLaMA-2-7B, LLaMA-3.1-8B and LLaMA-2-13B, as shown from Table [T5]to Table
in Appendix [B.2.2] Across both unstructured and semi-structured sparsity settings, our method out-
performs Wanda and RIA with sequences length of 16. VarP with the input sequence length of only
16 can generally surpass Wanda and RIA baselines pruning with 16 sequence lengths. For example,
on the OPT-6.7B model with 2:4 semi-structured pruning, our method of RIA+VarP achieves an
average accuracy of 46.46%, surpassing Wanda (Seq_Len = 16) by 1.1% and RIA (Seq_Len = 16)
by 0.45%, respectively.

Table 3: Accuracy (1) of OPT-6.7B on 7 zero-shot tasks

Sparsity | Method | SeqLen | BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg. | Avg. A
Wanda 16 62.32 5343 46.03 61.48 62.66 2722 24.60 | 48.24 +1.19
50% ‘Wanda+VarP (ours) 16 66.64 53.42 47.65 60.85 63.17 28.85 2540 | 4943 .
v RIA 16 63.97 5271 46.69 61.33 62.88 27.90 24.40 48.55 +0.87
RIA+VarP (Ours) 16 66.29  53.09 47.69 61.04 63.74 28.28 25.80 | 49.42 .
Wanda 16 62.17 5235 4091 59.74 56.06 24.74 21.60 45.36 40.53
24 Wanda+VarP (ours) 16 6235 51.26 42.23 60.93 57.70 26.19 20.60 | 45.89 .
. RIA 16 62.19 5342 41.29 61.01 56.88 25.50 21.80 | 46.01 +0.45
RIA+VarP (Ours) 16 63.57 51.64 42.68 59.99 58.13 26.38 22.80 46.46 )
Wanda 16 6222 5341 43.45 60.13 58.95 26.71 23.00 | 46.83 +0.11
4:8 Wanda+VarP (ours) 16 63.94 5271 45.45 61.48 60.19 26.87 24.80 47.92 .
: RIA 16 63.15 53.79 43.98 60.77 59.05 26.88 23.60 47.31 +1.30
RIA+VarP (Ours) 16 64.80 52.35 45.55 61.72 61.20 2748 25.20 | 48.61 .

Table 4: Accuracy (1) of LLaMA-7B on 7 zero-shot tasks

Sparsity | Method | SeqLen | BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg. | Avg. A
Wanda 16 70.73 5451 51.51 64.87 69.48 36.09 29.00 53.74 40.69
50% ‘Wanda+VarP (Ours) 16 70.51 61.39 51.60 66.45 68.89 35.58 26.60 54.43 .
R RIA 16 7154  61.73 51.49 66.65 69.75 35.90 28.40 55.07 +0.04
RIA+VarP (Ours) 16 70.67 64.62 51.61 66.61 69.07 35.58 27.60 55.11 :
Wanda 16 68.19 53.79 41.73 62.04 59.80 26.70 22.60 47.83 +1.04
0.4 ‘Wanda+VarP (Ours) 16 68.02  54.88 43.89 63.61 61.32 28.83 21.60 48.87 .
. RIA 16 6798 5523 42.03 62.03 60.48 26.96 2420 | 4841 +0.96
RIA+VarP (Ours) 16 68.87 56.68 43.88 63.06 61.74 28.59 22.80 49.37 :
Wanda 16 70.00 5523 46.81 64.09 63.38 3191 24.80 50.88 +0.79
48 ‘Wanda+VarP (Ours) 16 69.48  59.92 48.10 63.22 63.97 31.82 25.20 51.67 .
. RIA 16 69.29 5595 47.00 64.48 63.72 31.65 26.20 5T.18 40.87
RIA+VarP (Ours) 16 69.85 59.93 48.42 64.25 64.02 32.34 25.60 52.05 .

4.4 PERFORMANCE ON LLMS WITH VARIOUS SCALES

Table[7] presents the performance of our method across different model scales, focusing on the OPT
series models, ranging from 350M to 30B, evaluated on WikiText-2 datasets. Additional results for
the Qwen2.5 series and Mixtral-MoE models on WikiText-2 are also provided in the Appendix[B.2.1]
We observe that our method is effective across models of varying scales. Compared with the baseline
methods, our approach achieves performance comparable to, or even better than original Wanda, and
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Table 5: Accuracy (1) of LLaMA-13B comparison on 7 zero-shot tasks

Sparsity | Method | SeqLen | BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg. | Avg. A
Wanda 16 7335 58.12 55.12 70.51 74.17 41.21 31.20 57.67 0.12
509 ‘Wanda+VarP (Ours) 16 7333 59.94 54.78 70.80 73.10 41.56 29.40 57.55 e
¢ RIA 16 7334 5711 5451 70.62 73.94 40.87 30.60 57.28 40.03
RIA+VarP (Ours) 16 7398 58.48 54.97 70.64 72.65 41.47 29.00 57.31 o
Wanda 16 70.12  53.79 46.44 66.45 65.82 32.25 25.80 51.52 1047
2.4 ‘Wanda+VarP (Ours) 16 70.35  53.69 48.73 65.75 65.65 33.37 26.40 51.99 .
: RIA 16 69.85 5342 4743 67.30 66.92 33.68 26.20 52.11 40.19
RIA+VarP (Ours) 16 70.59 53.14 49.16 66.61 66.49 33.94 26.20 52.30 .
Wanda 16 70.69  54.15 50.73 68.67 70.17 37.82 27.60 54.26 074
48 ‘Wanda+VarP (Ours) 16 7294 54.51 52.45 68.35 70.67 38.48 27.60 55.00 .
. RIA 16 71.16 5343 51.24 70.48 69.95 37.37 28.00 5452 40.45
RIA+VarP (Ours) 16 72.68 53.09 52.57 67.62 71.07 38.99 28.80 54.97 .
Table 6: Accuracy (1) of Qwen2.5-3B on 7 zero-shot tasks
Sparsity | Method | SeqLen | BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg. | Avg. A
Wanda 16 66.11 72.34 45.40 64.25 71.51 37.29 26.80 | 54.81 +0.88
50% Wanda+VarP (ours) 16 68.70  73.29 45.52 66.23 71.72 37.63 26.80 55.69 )
v RIA 16 67.89 76.17 4581 65.19 71.75 38.31 27.80 56.13 0.09
RIA+VarP (Ours) 16 67.40 76.43 45.92 65.90 7215 37.73 26.80 56.04 -
Wanda 16 63.21 63.18 35.77 58.01 56.39 24.74 20.00 45.90 +0.02
2.4 Wanda+VarP (ours) 16 64.83 56.31 35.75 58.73 59.39 26.45 20.00 | 45.92 :
. RIA 16 63.85  60.28 36.52 58.63 60.52 27.21 1820 | 4645 +0.29
RIA+VarP (Ours) 16 64.10 60.13 38.30 57.83 59.85 27.38 19.60 46.74 :
Wanda 16 62.54  61.01 41.45 60.77 66.07 31.14 23.60 49.51 4093
4:8 Wanda+VarP (ours) 16 63.37 65.71 41.87 61.88 66.33 31.74 22.20 50.44 .
. RIA 16 6232 5848 42.19 61.32 67.34 31.56 22.20 49.34 127
RIA+VarP (Ours) 16 6291 66.43 41.80 62.27 66.09 32.00 22.80 | 50.61 .

shows a notable PPL reduction compared with Wanda and RIA using 16 sequence lengths, with the
improvement being particularly pronounced in semi-structured pruning for smaller models. For
example, on the OPT-13B model with 2:4 structured pruning, the original Wanda achieves a PPL
of 15.53, while Wanda with a sequence length of 16 achieves 15.34. In comparison, Wanda+ VarP
reaches approximately 13.95, representing a reduction of about 1.5. Similarly, RIA+VarP achieves
a PPL that is approximately 1.6 lower than that of RIA with a sequence length of 16.

Table 7: PPL () of OPT model series on WikiText-2 at different sparsity levels

Sparsity | Method Seq-Len OPT
350M 13B  27B 6.7B 13B 30B
Wanda 2048 3624 1840 1422 1198 1192 10.03
Wanda 16 4291 2462 17.62 1433 1234 11.01
50% Wanda+VarP (ours) 16 3778 20.77 15.02 1232 11.64 10.29
RIA 16 40.09 2046 15.68 1232 11.70 10.22
RIA+VarP (ours) 16 37.40 1990 1470 12.08 11.38 10.13
Wanda 2048 114.57 28.15 21.27 1591 1553 1347
Wanda 16 136.12  35.63 25.69 18.58 1534 19.13
2:4 Wanda+VarP (ours) 16 103.80 29.59 2445 16.11 1395 14.02
RIA 16 141.18 30.88 23.89 1625 15.10 16.89
RIA+VarP (ours) 16 120.04 28.06 23.48 15.84 13.54 1343
Wanda 2048 5895 2220 1678 13.55 1338 10.87
Wanda 16 66.70  27.82 2055 17.00 1328 12.58
4:8 Wanda+VarP (ours) 16 58.13 2334 17.61 13777 1233 11.13
RIA 16 67.48 2343 1824 1478 1295 12.00
RIA+VarP (ours) 16 63.14 2236 17.57 13.62 12.06 10.95
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4.5 PERFORMANCE ON MOE-BASED LLMS Table 8: PPL (|) of Mixtral-MoE model series
on WikiText-2
We also have experiments to show the effec-

tiveness of the proposed method on MoE-based  sparsity | Method | SeqLen | 8x7B-v0.1  8x7B-Instruct
models, such as the M1xtra1-.MOE 8x7B-v0.1 agd Wanda 2088 445 168
Instruct models as shown in Table [§] Experi- Wanda 16 458 475
mental results show that our method is effective ~ 50% Wanda+VarP (ours) | 16 446 467
for MoE models, particularly in the 2:4 and 4:8 RIA 16 452 463
. . . . RIA+VarP (ours) 16 441 4.60

semi-structured pruning settings. For instance,

in Mixtral-MoE-8x7B-v0.1, our Wanda+VarP \‘z‘::j: 2?28 Zii ZZ?
achieves a roughly 0.2 lower PPL compared 54 | voswariouws | 16 | 63 6o
to Wanda with a sequence length of 16, while RIA 16 6.30 6.43
RIA+VarP achieves a 0.3 lower PPL compared RIA+VarP (ours) 16 6.03 6.01
to RIA with a sequence length of 16. Wanda 2048 5.18 5.33
‘Wanda 16 5.38 5.49
4:8 ‘Wanda+VarP (ours) 16 522 5.33
4.6 CALIBRATION EFFICIENCY ANALYSIS RIA 16 5.5 5.40
ON DIFFERENT LLMS RIA+VarP (ours) 16 5.11 5.22

We conduct experiments to evaluate our proposed VarP approach, including the perplexity on
WikiText-2 and runtime on LLaMA, LLaMA-2 and LLaMA-3 models in Table [9] and Table [10]
We also provide more results of different models of pruning time such as Qwen2.5 and pruning time
of Mixtral-MoE in Appendix Our key findings are summarized as follows:

Table 9: PPL (]) of LLaMA, LLaMA-2, and LLaMA-3 families on WikiText-2

Sparsity | Method Seq_Len LLaMA LLaMA-2 Meta-LLaMA-3 | LLaMA-3.1 LLaMA-3.2
7B 13B 30B 65B 7B 13B 8B 8B 1B 3B
Wanda 2048 726 6.15 525 4.60 | 646 556 8.87 8.74 20.78 11.58
Wanda 16 789 6.60 541 446 | 682 5.88 9.02 8.93 23.81 12.19
50% Wanda+VarP (ours) 16 7.18 6.12 5.13 441 | 649 547 8.47 8.44 21.39  11.49
RIA 16 727 6.1 514 442 | 644 553 8.35 8.34 19.63  11.32
RIA+VarP (ours) 16 7.15 6.11 510 444 | 642 545 8.31 8.29 19.25 11.22
Wanda 2048 1153 9.60 6.89 6.24 | 11.34 835 22.29 20.57 74.09  31.09
Wanda 16 11.70 935 7.00 6.15 | 11.73 835 22.43 20.21 70.80  32.05
2:4 Wanda+VarP (ours) 16 11.03  8.61 6.66 572 | 10.57 7.42 22.58 20.04 69.87 33.86
RIA 16 11.53 883 681 6.05 | 11.17 7.90 22.62 20.33 89.69 34.74
RIA+VarP (ours) 16 11.38 872 6.62 592 | 1149 17.68 22.12 19.67 75.78  32.01
Wanda 2048 856 740 598 530 | 8.09 652 13.14 12.24 38.50 1843
Wanda 16 8.69 737 587 516 | 828 648 12.60 12.08 37.80 18.22
4:8 ‘Wanda+VarP (ours) 16 825 703 576 497 | 795 6.16 12.30 11.66 37.93 18.19
RIA 16 846 7.14 578 508 | 805 6.34 12.20 11.75 41.06 1893
RIA+VarP (ours) 16 834 7.02 572 502 | 793 625 12.18 11.58 37.76  18.23

1) Compared to the full-sequence pruning variant of Wanda with 2048 sequence lengths, our VarP
method offers substantial gains in time efficiency on LLaMA models. For example, in the 2:4 semi-
structured pruning of the LLaMA-2-13B model, our method requires only about 25% of the pruning
time compared to original Wanda. At the same time, Wanda+VarP achieves a PPL of 7.42, whereas
both original Wanda and Wanda with a sequence length of 16 have a PPL of approximately 8.35,
showing a reduction of around 1.0.

2) When compared to RIA with 16 sequence lengths, VarP exhibits slightly higher latency but yields
significantly better evaluation performance. This accuracy gain is especially pronounced on the
LLaMA-3 series of models. On the LLaMA-3.1-8B model with 2:4 semi-structured pruning, RIA
with 16 sequence lengths produces a PPL of 20.33. In comparison, VarP can achieves a lower PPL
of 19.67, representing a 0.7 reduction in perplexity and only have an additional latency about 16
seconds comparing to RIA with 16 sequence lengths.

3) While Wanda with 16 sequence lengths is the fastest among the methods, it comes at the cost
of degraded performance. For example, on the LLaMA-7B model with 50% unstructured pruning,
Wanda+VarP achieves a PPL of 7.18, outperforming Wanda (Seq_Len = 16) with PPL of 7.89.
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Table 10: Pruning Time (s) (|) of LLaMA, LLaMA-2, and LLaMA-3 model series on WikiText-2
at different sparsity levels

Sparsity | Method Seq_Len LLaMA LLaMA-2 Meta-LLaMA-3 | LLaMA-3.1 | LLaMA-3.2
7B 13B 30B 65B 7B 13B 8B 8B 1B 3B

Wanda 2048 646 394 493 67.6 98.8 1835 76.7 74.8 289 524

Wanda 16 237 298 40.0 60.7 22.7 279 30.4 29.8 152 253

50% Wanda+VarP (ours) 16 299 374 53.1 78.4 29.2 36.7 44.4 43.8 227 35.6
RIA 16 332 416 66.5 102.1 | 334 437 33.6 29.6 170 253

RIA+VarP (ours) 16 472 522 82.6 120.7 | 45.0 57.6 45.7 44.6 241 375

Wanda 2048 80.6 121.6 2609 463.7 | 1794 267.7 118.9 117.7 393 740

Wanda 16 41.1 557 983 1527 | 427 55.3 73.9 74.2 262 498

2:4 ‘Wanda+VarP (ours) 16 483 659 1106 1744 | 482 65.2 86.4 86.0 33.0 614
RIA 16 729 1025 1956 3237 | 740 108.4 73.1 72.2 ‘ 28.8 51.6

RIA+VarP (ours) 16 849 1183 2127 3425 | 83.6 1l16.1 88.2 88.8 349 641

Wanda 2048 702 1042 2268 4103 | 160.2 234.6 95.9 96.7 ‘ 338 625

Wanda 16 31.0 402 65.9 1009 | 313 40.1 50.6 52.2 ‘ 21.0 374

4:8 Wanda+VarP (ours) 16 38.1 572 80.8 1215 | 384 50.5 62.6 61.4 274  50.2
RIA 16 515 728  131.7 2093 | 53.0 74.6 52.7 50.2 ‘ 21.6 392

RIA+VarP (ours) 16 679 928 1482 228.6 | 67.1 86.0 64.5 66.3 295 512

4.7 IMPACT OF DIFFERENT SPARSITY

We report PPL of LLMs on Table 11: PPL (|) of LLMs with different sparsity on WikiText-2
WikiText-2 under different spar-

sity settings, as shown in Ta- o | \enoa SeqLen | LLAMA LLaMA-2 OPT
ble [l We can find that across B_BB| 7B 13B| 138 678 138
different sparsity settings, our Wanda 2048 | 581 513 | 522 468 | 1469 1062 10.06
. Wanda 16 576 513 | 517 509 | 1532 1043 9.94
methf’d’ especially RIA+VarP, . Wanda+VarP (ours) | 16 572 511|514 462 | 1509 1094 10.16
consistently matches or outper- RIA 16 575 513 | 5.16 462 | 1434 1038 10.00
forms the baselines. At lower RIA+VarP (ours) 16 574 512 | 516 459 | 1496 1093 10.16
sparsity levels (20% and 40%), Wanda 2048 | 639 551 | 566 501 | 1587 1096 10.64
RIA Sometimes performs bet_ ‘Wanda 16 6.48 564 | 575 5.09 | 1857 12.13 10.66
. 40% Wanda+VarP (ours) | 16 627 548 | 563 495 | 1752 1129 10.62
te_r on certain OPT models but RIA 16 629 548 | 5.62 494 | 1636 1098 10.48
yields results comparable to RIA+VarP (ours) 16 623 547 | 562 492 | 1696 1124 10.58
ours on .LLaMA models.  As Wanda 2048 | 1069 875 | 1004 793 | 2653 1521 1594
sparsity increases (50%—-60%), Wanda 16 | 1335 975 | 1134 860 | 4577 2032 1752
our approach surpasses both  60% Wanda+VarP (ours) | 16 | 1102 837 | 1111 721 | 3056 1624 14.42
. . RIA 16 | 1123 844 | 10.16 758 | 3276 1621 15.68
RIA and Wanda in pruning ef RIA+VarP (ours) 16 | 1082 8.16 | 1002 7.28 | 2837 1504 14.15

fectiveness.  Notably, on the
OPT-13B model with 60% unstructured pruning, our method reduces PPL by about 1.9 compared
to the baseline. Similarly, on the LLaMA-13B model under 60% unstructured pruning, we achieve
a PPL of 8.16, outperforming Wanda’s 8.75 (using a 2048-length input) by 0.6, while using much
shorter sequences. In contrast, Wanda with shorter sequence lengths shows significant performance
degradation, performing considerably worse than both our method and RIA.

5 CONCLUSION

This work introduces an activation variance-guided accurate and calibration-efficient post-training
pruning technique tailored for large language models. We introduce VarP, an activation variance-
guided weight pruning metric, which incorporates input activation variance into the pruning metric,
achieving both pruning effectiveness and calibration efficiency. Through extensive experiments on
prominent LLMs like OPT, LLaMA, LLaMA2, LLaMA3, Qwen2.5, and MoE-based Mixtral across
varying model sizes, we show that VarP can achieve better performance than baselines with less
pruning time and can combine with existing methods such as RIA for more efficient and accu-
rate pruning. Moreover, experimental results show that our proposed LLM pruning method can be
adapted to N:M sparsity and achieve better accuracy and calibration efficiency via taking benefit
from the design of VarP.



Under review as a conference paper at ICLR 2026

REFERENCES

Megha Agarwal, Asfandyar Qureshi, Linden Li Nikhil Sardana, Julian Quevedo, and Daya Khu-
dia. Llm inference performance engineering: Best practices. URI: https://www. databricks.
com/blog/llm-inference-performanceengineering-best-practices, 2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jingiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865-10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are few-shot
learners. NeurlIPS, 33, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Seyyed Mohammad Saeed Damadi. Compression of deep neural networks. Master’s thesis, Univer-
sity of Maryland, Baltimore County, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 293-302, 2019.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geom-
etry of bert, elmo, and gpt-2 embeddings. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 55-65, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. International Conference on Learning Representations, 2019.

Elias Frantar and Dan Alistarh. Spdy: Accurate pruning with speedup guarantees. In International
conference on machine learning, pp. 6726-6743. PMLR, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. International Conference on Machine Learning, pp. 10322-10337, 2023.

Elias Frantar, Eldar Kurtic, Markus Stenstrém, and Dan Alistarh. Optimal brain compression: A
framework for accurate post-training quantization and pruning. Advances in Neural Information
Processing Systems, 36, 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. In Interna-
tional Conference on Learning Representations (ICLR), 2019. URL https://openreview.
net/forum?id=H1Y8hhgOb, OpenReview preprint.

10


https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8-9, 2021a.

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021b.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. Advances in neural information processing systems, 28, 2015.

Babak Hassibi and David G Stork. Optimal brain surgeon and general network pruning. IEEE
international conference on neural networks, pp. 293-299, 1993.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2018.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, et al. Retrieval-augmented generation
for knowledge-intensive nlp tasks. NeurIPS, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR, 2017.

Kevin Li, Mark Yatskar, Wen-tau Yin, and Dan Hovy. Analyzing and measuring bert’s understanding
of syntax. In International Conference on Learning Representations (ICLR), 2020.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736-2744, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Accelerating sparse deep neural
networks. In 2021 IEEE Hot Chips 33 Symposium (HCS), pp. 1-23. IEEE, 2021.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):2383, 2018.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11264-11272, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

11



Under review as a conference paper at ICLR 2026

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, et al. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 300-325, 2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Qwen Team. Qwen?2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024a.

Yuxin Wang, Minghua Ma, Zekun Wang, Jingchang Chen, Huiming Fan, Liping Shan, Qing Yang,
Dongliang Xu, Ming Liu, and Bing Qin. Cfsp: An efficient structured pruning framework for
IIms with coarse-to-fine activation information. arXiv preprint arXiv:2409.13199, 2024b.

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang Xiang, Jun Chen, and Yong Liu. Structured
optimal brain pruning for large language models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 13991-14007, 2024.

Gregory J Wolff, B Hassibi, and D Stork. Optimal brain surgeon and general network pruning.
Technical report, Technical report, 1992.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang. Loretta: Low-rank economic tensor-
train adaptation for ultra-low-parameter fine-tuning of large language models. arXiv preprint
arXiv:2402.11417, 2024.

Yifan Yang, Kai Zhen, Bhavana Ganesh, Aram Galstyan, Goeric Huybrechts, Markus Miiller,
Jonas M Kiibler, Rupak Vignesh Swaminathan, Athanasios Mouchtaris, Sravan Babu Bodap-
ati, et al. Wanda++: Pruning large language models via regional gradients. arXiv preprint
arXiv:2503.04992, 2025.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xin Zhang, Jiachen Wen, Yujun Zhou, Zhongzhi Huang, Xianglong Liu, and Dahua Lin. Plug-
and-play: Hardware-aware semi-structured pruning for large language models. arXiv preprint
arXiv:2402.07883, 2024.

12



Under review as a conference paper at ICLR 2026

A CLAIM OF LLM USAGE

In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
for clarity and readability.

B APPENDIX

B.1 ACTIVATION VARIANCE-GUIDED WEIGHT PRUNING METRIC
B.1.1 DERIVATION OF VARP IMPORTANCE METRIC

Given the loss function L(W), its Taylor expansion around the current weights W is:

1
L(W + AW) =~ L(W) + VL(W)TAW + §AWTHAW (14)

where: - VL(W) is the gradient, - H = V2 L(W) is the Hessian (second derivative matrix). To min-
imize the loss variation after pruning, we focus on the second-order term %AWTHAW. However,
calculating the full Hessian is computationally expensive for large models. SparseGPT approxi-
mates the Hessian using the input data matrix X. Specifically, for MSE loss or linearized networks,
H ~ XTX and I is added as a regularization term to stabilize the inverse. Thus, the approximate
local Hessian becomes:

H~X"X+ ) (15)
The pruning metric used in SparseGPT is:

(W}
Sij = | = T -
diag ((X X+ AI) ) .

(16)

which captures how important a weight is, normalized by the local curvature (second-order sensi-
tivity) of the loss surface. If X € R'*™ is an input: - X© € R™*1 - XTX € R"*", a rank-1 matrix
uv? whereu = v = X7, Using the Sherman-Morrison formula, we have:

1 1w’
V-1 _
Specifically, the ¢-th diagonal element is:
11 X?
(XTX+AD) 7], =~ - 5 — (18)
it [IX]1
k AN 14 Sk
where || X||2 = 37| X?. Then, we have :
1 X3
diag (XTX+ MDY, = = = —0—L— 19
iag (( + AI) )J X A X2 (19)

Each diagonal element depends on the square of the corresponding feature in X. Then, we have:

1 _ AP
diag (X"X+ D)7, A+ |[IX[]2 — X;

(20)

Note that the input X have been normalized, so ||X||? can be approximately viewed as a constant,
we can denote it as k. The pruning metric can be simplified as:

L (Wi [?
Y diag (XTX+AD)7Y)

A+k

=|W;;]? —— .
Wil A k—X2

21

13
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Since A is a constant, we can omit it and we can get:
(Wi, |°
Sij = . T
diag (X' X + AI)~1)

1
= |Wi|* ——%
J

J L= x3%

(22)

where A + k is a constant as well and we can omit it. We can use more input to calculate their mean
value of calibration data and get our final pruning metric:

1

Spar, = E[Si;] = Wy 2 'E[W]
J

(23)

B.1.2 EFFICIENCY ANALYSIS

Now we analyze the efficiency of VarP. Wanda assumes the denominator of Equation [16| can be
approximated:

1 1
diag (XTX +AD)~1) (diag(X"X + AT)); !

=X2+ A (24)

Taking the difference of the right sides between Equation [20]and Equation [24} we have (||X||? can
be approximately replaced by k):

AN+ k) 9 A 9
Applying the power series expansion, we have:
A XZ kX3
|7X3 fxffA\:\)\(lJr)\_:k)fX?fM:)\+Jk (26)
1=x3%

If we have more sequences with length of L as input, we can take the average of the X?, then we
can the dfference between VarP and Wanda’s as:

EoOX3 XL+ X2 k
diff = : : = = E[| X, 27
i =5 - I P @)
Since the A is a constant, we can make it equals to nk, then:
dif f = B[ X, %] = ——E[|IX;| (28)
e A | J

We can see from the above Equation that if L is small, the difference between these two methods
will be large, which demonstrates the calibration efficiency of our proposed method.

B.2 MORE EXPERIMENT RESULTS

B.2.1 MORE RESULTS OF PPL AND PRUNING TIME ON MORE MODELS

Tables [I2] provides the pruning time of OPT series models of our method comparing with base-
lines. Table [T3]and Table [T4] present the overall pruning time of the VarP method on the Qwen2.5
and Mistral-MoE models and PPL of Qwen2.5 models. It can be observed that, compared with the
baseline, our method slightly increases the pruning time consumption. However, compared with the
original baseline using a 2048 sequence length, the pruning time is significantly reduced. In exper-
iments with Qwen2.5 and Mixtral-MoE models, we observe that our method performs similarly to
the baselines under 50% sparsity. However, in semi-structured sparsity 2:4 and 4:8, our approach
outperforms the baselines. For example, in the Qwen2.5-14B experiments, RIA+VarP achieves ap-
proximately a 0.3 reduction in PPL compared to RIA with 16 sequence lengths, while Wanda+VarP
shows about a 0.5 reduction in PPL compared to Wanda with 16 sequence lengths. In terms of time,
compared to Wanda with 2048 sequence lengths, the entire pruning process took only about 66% of
Wanda’s time while achieving an approximate 0.4 reduction in PPL.
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Table 12: Pruning Time (s) (/) of OPT model series on WikiText-2 at different sparsity levels

Sparsity | Method Seq-Len OPT
350M 13B 27B 6.7B 13B 30B
Wanda 2048 314 394 493 675 98.8 1835
Wanda 16 178 17.8 21.2 257 31.3 452
50% Wanda+VarP (ours) 16 258 27.1 332 372 451 63.7
RIA 16 16.1 19.8 21.8 244 316 448
RIA+VarP (ours) 16 242 254 316 338 431 59.6
Wanda 2048 389 508 694 111.7 160.7 300.6
Wanda 16 248 344 478 658 97.8 1713
2:4 Wanda+VarP (ours) 16 338 441 577 784 1125 1785
RIA 16 23.1 324 468 638 95.7 1615
RIA+VarP (ours) 16 324 410 592 761 1106 1772
Wanda 2048 350 428 581 876 129.8 2404
Wanda 16 207 259 347 452 633 1023
4:8 Wanda+VarP (ours) 16 310 348 460 582 764 1203
RIA 16 202 245 348 455 645 101.9
RIA+VarP (ours) 16 289 340 463 553 759 117.0

Table 13: PPL () of Qwen-2.5 model series on WikiText-2

Sparsity | Method | SeqLen | 1.5B 3B 7B 14B 32B
Wanda 2048 12.54  10.21 7.74 6.58  6.49
Wanda 16 13.32 1075  7.88 693 6.63
50% ‘Wanda+VarP (ours) 16 1297 1033 7.70 6.64  6.50
RIA 16 1246 998 7.59 6.51 6.50
RIA+VarP (ours) 16 1242 9.94 7.55 649 6.46
Wanda 2048 4230 21.16 13.10 1237 8.90
Wanda 16 4396 2341 1355 1153 8.71
2:4 ‘Wanda+VarP (ours) 16 42.02 2373 1293 1098 8.45
RIA 16 4546 2211 1253 11.28 8.59
RIA+VarP (ours) 16 4520 21.64 1248 11.02 8.32
Wanda 2048 19.39 13.67 9.34 838 7.32
‘Wanda 16 20.35 14.13 958 797 745
4:8 Wanda+VarP (ours) 16 20.13  13.99 940 7.80 7.35
RIA 16 20.37 13.54 9.18 797 733
RIA+VarP (ours) 16 20.03 13.47 9.18 7.59 7.14

B.2.2 MORE RESULTS ON ZERO-SHOT TASKS

Tables [I3] to Table [I§] present more zero-shot evaluation accuracy of LLaMA models and OPT
models. It can be observed that our method generally outperforms the baseline methods in evaluation
accuracy. For example, in the 4:8 semi-structured pruning task of the OPT-13B model, our method
achieves nearly a 2% higher average evaluation accuracy compared to the baseline.

B.2.3 ROBUSTNESS ANALYSIS

To evaluate the robustness and stability of our method, we conduct experiments across multiple
calibration data sampling configurations We select three different random seeds, therefore three
different calibration data subsets, and repeat the pruning process for each of them on LLaMA-7B
model using WikiText-2 dataset. It’s shown in Table[I9]that our method exhibits better results across
different random seeds.
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Table 14: Pruning time (s) (1) of Qwen-2.5 and Mixtral-MoE model series on WikiText-2 at different
sparsity levels

Sparsity | Method Seq_Len Qwen-2.5 Mixtral-MoE
1.5B 3B 7B 14B 32B 8x7B-v0.1  8x7B-Instruct
Wanda 2048 289 40.6 747 1259 2182 174.3 180.8
Wanda 16 16.7 20.8 175 46.0 64.8 99.3 99.8
50% Wanda+VarP (ours) 16 2277 288 240 66.6 95.8 159.3 160.1
RIA 16 198 206 17.6 46.8 65.6 102.2 103.4
RIA+VarP (ours) 16 234 279 254 67.2 96.3 160.5 161.8
Wanda 2048 363 542 113.6 197.8 3535 410.0 410.0
Wanda 16 258 332 369 1220 203.8 332.9 330.0
2:4 Wanda+VarP (ours) 16 32.1 419 426 1472 238.6 387.2 389.5
RIA 16 250 339 378 1219 2053 3353 331.5
RIA+VarP (ours) 16 31.5 436 458 1463 2363 390.1 391.4
Wanda 2048 324 462 938 1597 2852 292.5 295.7
Wanda 16 206 265 263 83.5 1314 214.6 212.5
4:8 ‘Wanda+VarP (ours) 16 28.0 350 335 1064 146.5 271.0 273.4
RIA 16 21.0 267 28.6 824 1325 217.4 214.6
RIA+VarP (ours) 16 28.0 347 354 1055 1645 275.3 277.2

Table 15: Accuracy (1) of OPT-13B on 7 zero-shot tasks

Sparsity Method | SeqLen | BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg. | Avg. A
Wanda 16 6575 5343 4839 62.66 6410 2978 2620 | 50.04 | .
sog | WandatVarP (Ours) 16 6511 5668  50.23 63.70 6590 3174 2620 | 51.36 -
‘0
RIA 16 6586 5411 49.01 62.84 6431 3090 2660 | 5052 | o
RIA+VarP (Ours) 16 6300 5524  49.94 63.14 6549 3191 2500 | 5052 |
Wanda 16 6431 5270  43.80 60.93 5955 2611 2260 | 4714 | oo
54 | WandatVarP Ours) 16 5893  53.07 4731 63.07 6153 28.67 2420 | 48.11 ‘
: RIA 16 6565 5270 4457 61.88 5863 2705 2160 | 4744 |
RIA+VarP (Ours) 16 62.14 5379 4678 62.51 60.86  28.07  22.60 | 48.10 :
Wanda 16 6529 5307  46.16 62.66 6081 2730 2480 | 4858 | oo
4g | Wanda+VarP Ours) 16 6230 5957 4874 63.30 63.68 3105 2520 | 5055 :
: RIA 16 6544 5234 4654 63.38 60.86  27.64 2480 | 4871 | |
RIA+VarP (Ours) 16 6145 5777 4847 62.83 6296 3029 2500 | 49.82 :

Table 16: Accuracy (1) of LLaMA-3.1-8B on 7 zero-shot tasks

Sparsity Method | SeqLen | BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg. | Avg A
Wanda 16 7590 6101 5130 67.88 7087 3957 2720 | 5624 | .
sog | Wanda+VarP (ours) 16 7655 5631 51.23 69.22 7312 4028 2680 | 5621 :
0
RIA 16 7740 5631 5153 69.21 7281 4146 2820 [ 5670 |
RIA+VarP (ours) 16 7821 5523 5173 69.14 7272 4096 2680 | 56.39 :
Wanda 16 6461 5451 3731 59.74 5820 2525 1900 |4ss2 |
5.4 | Wanda+VarP (ours) 16 66.62 5235 3870 59.98 60.32 2646 1860 | 46.15 o
: RIA 16 6654 5307 3831 59.27 5997 832 1940 [ 464l | oo
RIA-+VarP (ours) 16 6634 5309 3839 59.89 5081  28.62  19.40 | 4650 :
Wanda 16 6672 5343 4410 66.22 6536 3080 2340 [ 5000 | o
4y | WandatVarP (ours) 16 67.34 5380  44.83 65.68 6541 3312 2420 | 50.62 :
: RIA 16 6772 5342 4448 65.11 6484 3224 2500 | 5040 [ o
RIA+VarP (ours) 16 6832 5307 4439 64.96 6538 3320 2400 | 5048 :
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Table 17: Accuracy (1) of LLaMA-2-7B on 7 zero-shot tasks

Sparsity Method ‘ Seq_Len ‘ BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA ‘ Avg. ‘ Avg. A
Wanda 16 7444 5559 51.29 66.12 71.63 37.25 2940 | 55.10 0.18
0% Wanda+VarP (Ours) 16 73.70  57.76 51.01 66.15 70.38 37.30 2820 | 54.92 ’
J ‘0
RIA 16 73.70  55.59 51.37 66.45 69.69 35.66 28.60 | 54.43 +0.44
RIA+VarP (Ours) 16 7372 55.62 51.53 66.08 70.48 37.47 29.20 | 54.87 ’
Wanda 16 67.83 5343 39.85 59.59 59.30 27.04 21.80 | 46.98 073
24 Wanda+VarP (Ours) 16 65.85 5345 42.18 60.93 63.55 28.41 19.60 | 47.71 o
’ RIA 16 66.90 53.39 40.27 59.59 60.77 27.98 21.80 | 47.24 +0.65
RIA+VarP (Ours) 16 65.34  54.20 4245 61.29 62.54 28.62 20.80 | 47.89 ’
Wanda 16 71.56  54.15 45.29 63.69 65.48 3251 24.80 | 51.07 +032
43 Wanda+VarP (Ours) 16 70.33  53.80 46.80 64.71 66.29 34.39 23.40 | 51.39 ’
’ RIA 16 7288 54.14 45.82 64.15 66.27 32.75 24.80 | 51.54 +0.14
RIA+VarP (Ours) 16 69.70  54.51 47.30 64.72 66.37 34.56 24.60 | 51.68 ’

Table 18: Accuracy (1) of LLaMA-2-13B on 7 zero-shot tasks

Sparsity Method ‘ Seq_Len ‘ BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA ‘ Avg. ‘ Avg. A
Wanda 16 78.66 6245 56.61 70.56 76.72 42.58 32.00 | 59.94 031
0% Wanda+VarP (Ours) 16 78.84  62.10 56.97 69.54 75.80 41.80 3240 | 59.63 ’
J ‘0
RIA 16 79.90  62.09 56.31 70.00 76.18 40.27 31.00 | 59.39 4072
RIA+VarP (Ours) 16 80.57  60.94 57.49 70.16 76.94 42.49 32.20 | 60.11 ’
Wanda 16 7742 59.55 46.01 66.92 68.57 33.10 23.60 | 53.59 03
24 Wanda+VarP (Ours) 16 77.03  56.32 48.74 65.12 69.02 36.18 25.00 | 53.91 ’
' RIA 16 77.18 58.84 46.83 66.69 68.77 33.27 2340 | 53.57 +0.49
RIA+VarP (Ours) 16 76.97 5842 49.07 64.03 69.79 34.97 25.20 | 54.06 ’
Wanda 16 79.35  60.29 51.67 68.03 74.03 38.90 27.80 | 57.15 +037
43 Wanda+VarP (Ours) 16 78.78  61.73 5345 68.48 72.89 38.57 28.80 | 57.52 ’
’ RIA 16 79.75  60.29 51.85 68.51 73.10 38.31 27.00 | 56.97 4043
RIA+VarP (Ours) 16 7749  62.77 53.63 67.94 73.18 37.60 29.20 | 57.40 ’

Table 19: Perplexity for pruned LLaMA-7B models with different random seeds on WikiText-2

Model Method seed#1 seed#2 seed#3
Wanda-16 7.89 8.19 7.76

LLaMA-7B  RIA with 16 sequence lengths 7.27 7.28 7.26
Wanda+VarP (Ours) 7.18 7.18 7.120

Table 20: Perplexity of pruned LLaMA-7B model with different sequence lengths on WikiText-2

Model Method Sequence Lengths
16 32 128 512 1024 2048
Wanda 789 752 728 727 7.27 7.26
LLaMA-7B RIA 727 722 715 7.13 7.12 7.2
WandatVarP 516 719 700 725 726 725
(Ours)
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B.2.4 IMPACT OF SEQUENCE LENGTHS

We present the impact of sequence lengths on the LLaMA-7B model for WikiText-2 under 50%
unstructured sparsity in Table It’s shown that our method consistently achieves better pruning
performance, especially when the sequence length is relatively small, yielding much lower perplex-
ity compared to both RIA and Wanda. This aligns with our theoretical analysis: with the decreasing
of the input sequence length, our method has higher advantage over Wanda, empirically supporting
the theoretical derivation provided in the Appendix While RIA shows improved performance
with longer sequences, it also incurs more expensive time costs. Therefore, our approach offers a
balanced trade-off, maintaining both accuracy and time efficiency.

18



	Introduction
	Related Work
	Methodology
	Activation Variance-guided Weight Pruning Metric (VarP)
	Calibration Data Efficiency Analysis

	Experiments
	Experimental Setup
	Generation Task
	Zero-shot Tasks
	Performance on LLMs with Various Scales
	Performance on MoE-based LLMs
	Calibration Efficiency Analysis on Different LLMs
	Impact of Different Sparsity

	Conclusion
	Claim of LLM usage
	Appendix
	Activation Variance-guided Weight Pruning Metric
	Derivation of VarP Importance Metric
	Efficiency Analysis

	More Experiment Results
	More results of PPL and pruning time on more models
	More Results on Zero-shot Tasks
	Robustness Analysis
	Impact of Sequence Lengths



