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including 1) absolute scale, 2) material, 3)
descriptions).

Abstract

3D modeling is moving from virtual to physical. Existing
3D generation primarily emphasizes geometries and tex-
tures while neglecting physical-grounded modeling. Con-
sequently, despite the rapid development of 3D generative
models, the synthesized 3D assets often overlook rich and
important physical properties, hampering their real-world
application in physical domains like simulation and em-
bodied Al. As an initial attempt to address this challenge,
we propose PhysX, an end-to-end paradigm for physical-
grounded 3D asset generation. 1) To bridge the critical gap
in physics-annotated 3D datasets, we present PhysXNet -

o

Figure 1. Visualizations of our PhysXNet for phsycial 3D generation. 3D assets in our dataset have fine-grained physical property annotations,

, 4) kinematics, and 5) function descriptions (basic, functional, and kinematical

the first physics-grounded 3D dataset systematically anno-
tated across five foundational dimensions: absolute scale,
material, , kinematics, and function description.
In particular, we devise a scalable human-in-the-loop an-
notation pipeline based on vision-language models, which
enables efficient creation of physics-first assets from raw
3D assets. 2) Furthermore, we propose PhysXGen, a feed-
forward framework for physics-grounded image-to-3D asset
generation, injecting physical knowledge into the pre-trained
3D structural space. Specifically, PhysXGen employs a dual-
branch architecture to explicitly model the latent correlations
between 3D structures and physical properties, thereby pro-
ducing 3D assets with plausible physical predictions while
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preserving the native geometry quality. Extensive exper-
iments validate the superior performance and promising
generalization capability of our framework. All the code,
data, and models will be released to facilitate future research
in generative physical Al

1. Introduction

The creation of diverse and high-quality 3D assets has gained
significant prominence in recent years, driven by their ex-
panding applications across gaming, robotics, and embodied
simulators. Substantial research efforts have been focused
on appearance and geometry only, from high-quality 3D
datasets [3, 7, 8, 24], efficient 3D representations, to gen-
erative modeling. However, most of them predominantly
emphasize structural characteristics while overlooking physi-
cal properties inherent to real-world objects. Given the rising
demand for physical modeling, understanding, and reason-
ing in 3D space, we argue that a comprehensive suite for
physics-grounded 3D objects is important, from upstream
data annotations pipeline to downstream generative model-
ing.

Beyond purely structural attributes like geometry and ap-
pearance, real-world objects intrinsically possess rich phys-
ical and semantic characteristics comprising: 1) absolute
scale, 2) material, 3) , 4) kinematics, and 5)
function descriptions. By integrating these fundamental
properties with classical physical principles, we can derive
critical dynamic metrics, including gravitational effects, fric-
tional forces, contact region, motion trajectories, and inter-
action. However, existing datasets/annotation pipelines only
offer partial solutions towards physically grounded knowl-
edge in 3D objects that cover the entire spectrum. Recent
efforts to support articulated object applications have yielded
datasets like PartNet-Mobility [25], which provides 2.7K
human-annotated articulated 3D models. Yet, this collection
still lacks essential physical descriptors - including dimen-
sional specifications, material composition, and functional
affordances - that are crucial for physically accurate simula-
tions and robotics applications.

To bridge this representational gap, we propose
PhysXNet — the first comprehensive physical 3D dataset
containing over 26K richly annotated 3D objects, as illus-
trated in Figure 1. Except for the object-level annotation,
i.e., 1), we annotate 2) and 5) for each part. Besides, for
3), we provide the affordance rank for all parts, while we
annotate the 4) detailed parameters of kinematic constraints,
including motion range, motion direction, child parts, and
parent parts. Besides, we introduce an extended version,
PhysXNet-XL, featuring over 6 million procedurally gener-
ated and annotated 3D objects.

Most importantly, PhysXNet is built with an efficient, ro-
bust, and scalable labeling pipeline. We introduce a human-

in-the-loop annotation pipeline to annotate the properties

for the existing object-level 3D dataset, i.e., PartNet [17].

The pipeline proceeds in three stages: 1) target visual isola-

tion, in which we render each component via alpha com-

positing to get the best visual prompts with minimized

visual interference. 2) automatic VLM labeling, where a

large vision-language model (VLM) to annotate most of the

properties; and 3) expert refinement, combining systematic
spot-checks with focused human annotation of complex kine-
matic behaviors. To the best of our knowledge, PhysXNet is
the first 3D dataset with abundant properties for each part.

To bridge the modeling gap of physical-grounded 3D as-
sets, we further introduce PhysXGen, a feedforward model
for physical 3D generation. Given the fact that physical prop-
erties are spatially related to geometry and appearance, we
repurpose pretrained 3D generative priors to generate phys-
ical 3D assets, enabling efficient training with reasonable
generalizability. Specifically, PhysXGen leverages a dual-
branch architecture to jointly model the latent correlations
between 3D geometric structures and physical properties,
which is naturally compatible with existing 3D native gen-
erative priors. Moreover, this formulation makes the best
use of pretrained latent space, leading to plausible physical
predictions while keeping the decent geometry quality from
the pretrained model. Comprehensive experiments prove the
promising performance of PhysXGen. We hope our work re-
veals new observations, challenges, and potential directions
for future research in embodied Al and robotics.

To summarize, our main contributions are:

* We pioneer the first end-to-end paradigm for physical-
grounded 3D asset generation, advancing the research
frontier in physical-grounded content creation and unlock-
ing new possibilities for downstream applications in simu-
lation.

* We build the first physical-grounded 3D dataset,
PhysXNet, and propose a human-in-the-loop annotation
pipeline to convert existing geometry-focused datasets into
fine-grained physics-annotated 3D datasets efficiently and
robustly. In addition, we present an extended version,
PhysXNet-XL, which includes over 6 million annotated
3D objects generated through procedural methods.

* We design a dual-branch feed-forward framework, PhysX-
Gen. It can model the latent interdependencies between
structural and physical features to achieve plausible phys-
ical predictions while maintaining the native geometry
quality.

2. Related Work
2.1. 3D Datasets and Benchmarks

Due to the time-consuming and expensive in realistic data
collection, current large-scale 3D datasets prefer to collect
data online [3, 7, 8]. According to the type of 3D data,
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Table 1. Comparison of related datasets which can support research in physical 3D generation. While the ABO dataset [6] contains material
metadata and keywords, its object-level annotation granularity constrains part-aware applications like robotic manipulation or physical

simulation. In contrast, PhysXNet provides part-level annotations.

Dataset \ # Objs Part anno Physical Dim Material Kinematic Description Year
ShapeNet [3] 51K X X X X X X 2015
PartNet [17] 26K v X X X X X 2019
PartNet-Mobility [25] 2.7K v X X X v X 2020
GAPartNet [9] 1.1IK v X X X v X 2022
ABO [6] 79K X v Obj-level X X Obj-level 2022
OmniObject3D [24] 6K X X X X X X 2023
Objaverse [8] 818K X X X X X X 2023
PhysXNet (ours) 26K 4 v Part-level v v Part-level 2025
PhysXNet-XL (ours) 6M v v Part-level 4 v Part-level 2025

existing 3D datasets can be divided into synthetic and real-
world datasets. To facilitate the development of 3D vision,
ShapeNet [3] collects 51,300 CAD models. Building upon it,
the PartNet dataset [17] introduces an annotation framework
that provides part annotations at significantly finer granular-
ity levels. Furthermore, PartNet-Mobility [25] annotates the
kinematic constraints and provides 2.7K articulated 3D ob-
jects for 3D vision, especially for embodied Al and robotics.
ABO [6] is a high-quality datasets with around 7.9K CAD
models with fine-grained geometric and textures. Compared
with prior work, it includes the physical dimension, ma-
terial, and keywords. However, the material information
and descriptions focus on object-level, limiting the part-
aware applications. Recently, Objaverse [8] has alleviated
the scarcity of 3D data. It collects and filters over 800K
3D data. To bridge the gap between synthetic and real data,
Omniobject3D [24] provides over 6k high-quality 3D scans.
A detailed comparison is shown in Table 1.

Despite significant advances in 3D data acquisition, pre-
vailing 3D datasets primarily emphasize geometry and ap-
pearance fidelity or narrowly defined physical attributes, cre-
ating a critical bottleneck for developing physics-aware 3D
vision models and their real-world applications. To bridge
this foundational gap, we present PhysXNet — a 3D dataset
with comprehensive physical properties encompassing phys-
ical dimension, part-level material, affordance rank, kine-
matic parameters, and part-level description. Furthermore,
we extend our dataset with PhysXNet-XL, comprising more
than 6 million annotated 3D objects created via procedural
generation.

2.2. 3D Generative Models

As one of the most representative optimization-based method
in 3D generation, DreamFusion [ 18] proposed the SDS loss
function. By utilizing the prior knowledge of the 2D diffu-
sion model, it achieves impressive generative performance.
Despite various works, optimization-based methods still suf-
fer from the multi-face Janus problem and low optimization
efficiency. Recently, benefiting from its impressive efficiency
and robustness, feed-foward models [1, 2, 4, 11, 22, 26, 28]

have gained more and more attention. However, those meth-
ods still focus on geometry and appearance quality, neglect-
ing the physical properties of 3D assets.

2.3. Articulated and Physical 3D Object Modeling

Articulated object modeling mainly consists of tasks like
perception, reconstruction, and generation. Some works
try to estimate articulation pose [15] and identify articula-
tion parts [29], while others [21] focus on learn joint pa-
rameters from images. In the reconstruction field, existing
works try to reconstruct articulated models from RGB [5],
RGBD [23], and point cloud [12]. Recently, some meth-
ods have tried to generate articulated 3D assets by utilizing
a vision-language model [13] or adopting an optimization-
based framework [19]. To bridge the critical gap between
existing methods with real applications, many works aim to
incorporate the physical properties into 3D modeling. Some
works try to learn material parameters from videos [31] or
images [30], while other methods aim to introduce physical
guidance via simulation [16, 27] or physical principles [10].

In contrast to fragmented paradigms in physical 3D mod-
eling, this work introduces PhysXGen — a unified physics-
integrated generative framework capable of learning cross-
property consistency to generate 3D assets with all necessary
physical properties. By exploiting the relationship between
physical and structural features, our method achieves promis-
ing performance in physical 3D generation.

3. PhysXNet Dataset

In this section, we will introduce physical properties and
the human-in-the-loop annotation pipeline. Besides, we
will report the statistics and distribution of PhysXNetand
PhysXNet-XL.

3.1. Definition of Physical Properties

As shown in Figure 2, we systematically categorize object
properties into three progressive stages: a) Identification
- determining the basic nature of the object; b) Function -
understanding its potential applications; and c) Operation
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Definition of physical and semantic properties

Identification Function Operation
Material T T e
10 - d B s Kinematic types
KA vtz Dy ; '|‘Af, —> Hl.g ?St —> _ @ — A. No constraints It can be lifted with
Lij&g Mass & > priority ) & b
Mesh —> Volume in Ph\l/sical N .y ?/ KAt B. Prismatic joint
3D space volume L -
[ﬁﬂ f lctionkc Mesh __, Find the part that holds Parentand  C.Revolute joint Unlimited
=, _, Name & Category& Child parts D. Hinge joint ~ —>
30cm and supports the plant t
Absolute  Physical dimension . - o movemen
e Function Description E. Rigid joint
Human-in-the-loop annotation pipeline
Visual Input @ VLM Output and Human check £ £ Kinematic parameters determination

Name: Wall Cabinet,
Category: Furniture,
Dimension: 200*40*180,
parts: [{name: cabinet_frame, material: Wood, density: 0.65 g/cm”"3,
priority_rank: 10,
neighbors: [{
. 1 labels_of _movement_group: "0-3", movement_type: "C",
@purent_label: 0, child_label: "3"
Ll
Basic_description: "The main structural frame of the cabinet
made of wood.",
Functional_description: "Provides support and structure for all
other components.",
Movement_description: "Fixed and rigid, does not move.",}...],

e S

(2.a) Calculate
contact region

(2.b) Plane fitting

Rotation axis: cyan axis
Location: blue point
Rotation range: [-45,45]
Child group: Red part
Parent group: Gray part

)
3

Rotation axis: [-1,0,0]
Location: [-0.12,0.3,-0.08]
Rotation range: [-0.25,0.25]
Child group: [7,]

Parent group: “0”

(2.d) Determine
parameters

Final Annotations

(2.c) Candidate generation
and selection

Figure 2. Top: Definition of properties in PhysXNet . By defining and annotating properties across three categories, common physical
quantities can be systematically calculated to enable physical simulations. Bottom: Overview of our human-in-the-loop annotation
pipeline. We utilize GPT-40 to gather foundational raw data, which is subsequently verified through human oversight. The kinematic
parameters are then rigorously determined and finalized through human review.

- detailed usage methodologies. To streamline the annota-
tion process, we posit that the internal composition of a
component is homogeneous, exhibiting uniform property
invariance throughout its structure. For stages a), we set
absolute scaling and material (material name, Young’s
modulus, Poisson’s ratio, and density). Besides, for b), we
establish functional analysis and function de-
scriptions (basic, functional, and kinematic descriptions).
Finally, we use kinematic parameter quantification to repre-
sent c). Specifically, we grade the priority of being touched
on all available parts to obtain the affordance score for all
parts from 1 to 10. We set five possible kinematic types: A.
No movement constraints (like water in a bottle), B. Pris-
matic joints (like a drawer), C. Revolute joints (like a laptop),
D. Hinge joint (like a hose in a shower system), or E. Rigid
joint and a combined kinematic type: CB. Revolute and Pris-
matic joints (like a lid of a bottle). Except for A and E, we
will annotate the parent, child parts, and detailed kinematic
parameters (such as rotation direction, rotation range, and so
on). Note that, due to the challenges in precisely quantify-
ing the absolute physical movement range of B, we use the
movement range within the 3D coordinate system. Besides,
to avoid the unnecessary and meaningless annotation of over-
fine-grained parts in PartNet, we merge the tiny parts whose
vertices and area are smaller than a pre-defined threshold
with their neighboring parts. We manually refine the results
of the merging process to ensure that the merged outputs are

reasonable and consistent.

3.2. Human-in-the-loop Annotation Pipeline

Following the establishment of target annotation specifica-
tions, we implement a systematic and streamlined semi-
automated annotation framework, structured into two distinct
operational phases (see Figure 2): 1) Preliminary Data Ac-
quisition and 2) Kinematic Parameter Determination. Specif-
ically, we utilize GPT-40 to obtain the basic information.
Besides, to ensure the quality of raw data, a human candi-
date will check and refine the output of the vision-language
model (VLM).

For the second phrase, we split it into four subtasks: (2.a)
calculate contact region, (2.b) plane fitting, (2.c) candidate
generation and selection, and (2.d) kinematic parameters.
Note that (2.c) and (2.d) are accomplished by human can-
didate. For all constraint movable parts (kinematic type is
not A or E), we will calculate the contact region with the
neighboring parts. We first extract point cloud data from
the child-parent mesh pair, formally designated as P, and
P,, respectively. The workflow subsequently calculates Eu-
clidean distance between points in P, and P, followed by
spatial filtration that eliminates point pairs failing to meet a
predetermined distance threshold. Subsequently, we employ
a plane-fitting algorithm. We sample several axes uniformly
on the fitted plane as candidates. Note that for kinematic
type C, we additionally need to determine the location of
the rotation axis. Therefore, we will perform a k-means
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Figure 3. Statistics and distribution of PhysXNet and PhysXNet-
XL. (a) Distribution histogram of part number in PhysXNet. (b)
Dimensional distribution analysis in PhysXNet, showing physical
measurements (length/width/height) frequency. (c) Proportional
composition of kinematic states and material, including density,
Young’s modulus, and Poisson’s ratio distribution in PhysXNet,
visualized through sectoral ratios. (d) Tag frequency statistics for
prevalent object labels in PhysXNet-XL. (¢) Component-Category
distribution of procedurally generated 3D objects in PhysXNet-XL.

algorithm in the contact region for type C to generate several
candidates. After selecting the candidate location, we can
finalize the kinematic parameters.

3.3. Statistics and Distribution of PhysXNet

Comprises over 26K physical 3D objects, the part number
of objects in PhysXNet exhibits a long-tailed distribution
illustrated in Figure 3, where each object contains an aver-
age of around 5 constituent parts. Besides, we document the
length-width-height distributions of objects in (b). Given
that PhysXNet encompasses objects spanning from relatively
small-scale indoor entities to large-scale outdoor structures,
the physical dimension exhibits significant variation among
objects. For kinematic types and material in PhysXNet, we
show detailed proportional composition. Note the density in
our PhysXNetadheres to the metric standardization frame-
work, i.e., g/ em?. Furthermore, Figure 3 (d) shows the
frequency of the popular object tags, including the name and
category. Finally, we also report the component category in
our procedurally generated 3D objects, including a) intra-
category combination: cabinet, bottle, faucet, chair, oven,
shower, knife, table, and laptop; b) cross-category combina-
tion: drawer and door. More details about PhysXNet-XL are

released in the appendix.

4. PhysXGen Framework

As mentioned above, physical 3D generation is still a chal-
lenging and promising task. Most prior works only focus on
a single or specific physical property. In this section, we aim
to build a unified generative framework to generate physical
3D assets directly. While our PhysXNet dataset contains
26K assets, this scale remains insufficient for training SOTA
generative architectures from scratch. Therefore, we lever-
age a model pre-trained on massive geometry-only 3D scans
and fine-tune it to adapt to physical 3D generation. Building
upon the well-established 3D representation space of it, we
present PhysXGen, a novel yet straightforward framework
that combines physical properties with geometry and appear-
ance shown in Figure 4. Our approach achieves this dual
objective by simultaneously integrating fundamental physi-
cal properties into the generation process while optimizing
the structural branch through targeted fine-tuning. This joint
optimization enables the production of physically consistent
3D assets that maintain impressive geometry and appearance
fidelity.

4.1. Physical 3D VAE Encoding and Decoding

In this subsection, we take the textured mesh output as an
example. To reduce the influence caused by the domain gap
between geometric and physical latent space, we build a
similar physical VAE for property encoding, following [26].
Besides, considering the interdependencies among physi-
cal properties, we encode them into a unified latent space.
We adopt 4 physical properties: physical scaling (converted
by physical dimension) Py, € RV*!, affordance priority
Pusp € RVX1 density P, € RV*!, and kinematic param-
eters P, € RYV>1! (including child R™V*! and parent
group index RV !, movement direction R %3, movement
location RV %3, movement range R™ %2, and kinematic type
RN 1) where N is the number of voxel. The physical prop-
erties (Ppny € RN %14y can be obtained by channel-wise
concatenation. For the function descriptions, we adopt the
CLIP model [20] to obtain the text embedding. Similarly,
the description features (P;,,,, € RY*768%3) are formed by
concatenating the basic, functional, and kinematic descrip-
tion embeddings. Besides, the structural branch adopts the
DINOV2 to extract features. Therefore, the dimensions of
structural feature is P,., € RY*1024 For clarification, we
denote the pretrain VAE encoder and decoder as &,.; and
Dges while the physical VAE encoder and decoder as Eppy
and D,y,,,. The physical latent Ppq; € RN*8 and structured
latent Py;o; € R™ %8 can be formulated as follows:

Pplat = gphy(Pphya Psem)7 Pyar = gaes (Paes) . (D

To study the effects of physical properties on geometry and
appearance quality, we introduce a branch from Dy, to
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Physical 3D Assets VAE Encoding & Decoding
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Figure 4. The architecture of PhysXGen framework. PhysXGen features a two-stage architecture comprising: a physical 3D VAE
framework for latent space learning, and a physics-aware generative process for structured latent. The former focuses on establishing a
compressed yet information-rich latent representation that encodes physical properties, while the latter specializes in generating physical

latents.

Des via a residual connection. We will analyze the perfor-
mance of the independent and dependent VAE decoder in
the experiments. After decoding the structured and physical
latents, we can implement a loss function £ as follows:

‘Cvae - [:ZZZSOT ‘szgme”y + Ephy + ‘Csem + ACkl + Ereg )
(2)

where £90°" and L€tV represent the color loss (includ-
ing L2loss, Ipip loss) and geometry loss (including mask,
normal, and depth loss). For £, and L.,,, we normalize
the groundtruth respectively and adopt a L2 loss. Ly; aims
to constraint the distribution of Py, while L,..4 can reduce

the unnecessary structures of textured mesh.

4.2. Physical Latent Generation

Following the acquisition of the compressed physical la-
tent representation, we construct a transformer-architecture
diffusion model to jointly generate physical and structural
attributes. To effectively leverage the inherent correlations
between physical properties and structural features while
maintaining compatibility with pre-trained components, we
implement a dual-branch architecture that integrates struc-
tural guidance through residual connections. Specifically, the
additional branch from the structural module is fused with
the primary physical generation module via learnable skip-
connection layers, enabling cross-domain feature interaction.
Comprehensive ablation studies quantitatively validate the
design rationale through systematic component comparisons.
Following [26], we adopt the Conditional Flow Matching
(CFM) as the objective of optimization. Therefore, the loss
of the geometric branch is formulated:

Lacs = Eragel|f(2.8) — (e = z0)|l3 , S

where € and ¢ represent the noise and timestep while x is
sampled from Pjg,;. Adopting a similar objective for the

physical branch, the final loss of the latent diffusion model
can be calculated as: Lyiff = Laes + Lphy-

5. Experiments

5.1. Implementation details

In our experiments, we partition PhysXNet dataset into 24K
training samples, 1K validation samples, and 1K test cases.
By analyzing the performance on the test cases, we can eval-
uate the generalizability of our method. During the VAE and
diffusion model training, we adopt AdamW with an initial
learning rate of 1 x 10~* to optimize the models. The inher-
ent correlation between geometric configuration and physical
properties in our methodology creates a critical dependency
where the structural fidelity of the 3D representation will
affect the final generative performance. In this paper, we re-
purpose the geometry- and appearance-rich structural space
of TRELLIS [26] for our task. Our PhysXGen is trained on
8 NVIDIA A100 GPUS. More details about the architecture
are released in the supplementary.

5.2. Evaluation Metrics

Physical properties evaluation. Our framework establishes
a multi-property feature space encompassing five core at-
tributes: absolute scale, material, , kinematics,
and function descriptors. Note that the kinematics attribute
manifests as dual configuration parameters: 1) structural
grouping (parent-child part hierarchies) and 2) kinematic
parameters. Specifically, we evaluate absolute scale using
Euclidean distance, density and affordance images via Peak
Signal-to-Noise Ratio (PSNR), kinematics with instantiation
distance [14], and functional description through PSNR on
cosine similarity score maps.

Geometry evaluation. For appearance evaluation, we
sample 30 random views from a unit sphere to calculate the
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Table 2. Quantitative comparison of different methods on the test sets of our PhysXNet. There are two types of evaluations: structural and
physical property evaluations. PhysPre represents a separate physical property predictor after TRELLIS.

Geometry

Kinematic parameters

Methods ‘PSNR + CD| F-Score Absolute scale | Material 1 T COV+ MMD | Description 1
TRELLIS [26] 2431 132 76.9 - - - - - -
TRELLIS + PhysPre | 2431 132 76.9 13.21 8.63 7.23 0.24 0.12 6.55
PhysXGen 2453 127 71.3 7.24 13.01 11.30 0.33 0.08 10.11

Image Prompts Geometry and appearance

f

(]
( .-7’-—

-

Physical properties

Absolute Scale Function Description

Physical Find the part that
dimension: Used to turn water
27.51x19.8x6.76 on/off or adjust T T
cm temperature.
Kinematics

Material
2 Child part

Kinematic type: rotation
Range: [-92.3,87]
Dir: [0.18,0.736,0.02]
Pos: [-0.56,-0.04,-0.073]

Absolute Scale Function Description

{"h}/SIC-UI Find the mesh
dimension: fabric backrest
98.92x69.2x64.3 surface of the chair
cm

Kinematics
Child part

Material

Kinematic type: rotation
Range: [-190.8,143.1]
Dir: [0.02,0.864,-0.03]
Pos: [0.032,-0.11,0.11]

,ﬂ

Figure 5. Visualization of the generated results. Given a single image as the prompt, our PhysXGen can generate the physical-grounded

3D assets.

mean PSNR. Besides, to evaluate the quality of geometry,
we calculate the standard shape metrics of Chamfer Distance
(CD) (x10~3) and F-score (FS) (x 10~2) with thresholds of
0.05.

5.3. Quantitative Results

As shown in Table 2, we implement the quantitative evalua-
tions on two types of metrics: 1) geometry and appearance
evaluation; and 2) physical properties evaluation. Note that
TRELLIS+PhysPre is our baseline that adopts the indepen-
dent structure to predict the properties. Compared with the
separate physical property predictor, our PhysXNet utilizes
the correlation between physical and pre-defined 3D struc-
tural space, achieving significant improvement in physical
property generation while enhancing the aesthetic quality.
Ablation studies. The core design of our framework is to
integrate both geometry and physics in 3D modeling. There-
fore, we conduct ablation studies to validate its effectiveness
(reported in Table 3). By introducing geometry and appear-
ance features in the diffusion model, the generative model
can gain improvement in physics generation compared with

the independent models, PhysPre. Additionally, the corre-
lation between geometry and physics in VAE can enhance
the geometry of generated assets. Finally, relying on the
dual-architecture and joint training, our PhysXGen obtains
impressive performance in all physical property generation.

5.4. Qualitative Results

Figure 5 showcases the physical-grounded 3D assets gener-
ated by our PhysXGen. By learning the interdependencies
between physical and structural space, PhysXGen achieves
impressive performance in generating physical properties.
Besides, we perform qualitative comparisons with our base-
line shown in Figure 6. As we mentioned above, for absolute
scaling, we use the Euclidean distance while we adopt PSNR
to evaluate the material maps, maps, function
description similarity score maps. By utilizing the interde-
pendencies between physical properties and structural infor-
mation, especially geometry, our PhysXNet obtains higher
overall scores. Furthermore, our PhysXGen can distinguish
the properties of different parts and achieve more stable
and robust performance in physical property generation of



Table 3. Ablation studies about the physical 3D VAE and diffusion model. Dep-VAE and Dep-Dift represent the model that utilizes the
interdependencies between structural and physical information. Thus, Trellis+PhysPre and PhysXGen are corresponding to the first and last

lines.
. Geometry S Kinematic parameters s
Dep-VAE Dep-Diff PSNR+ CD | F-Score | Absolute scale | Material 1 0 COV{ MMD | Description 1
X X 2431 132 76.9 13.21 8.63 7.23 0.24 0.12 6.55
X v 24.31 13.2 76.9 12.01 10.69 8.95 0.26 0.11 7.71
v X 2432 129 77.0 10.57 9.86 9.32 0.28 0.11 7.54
v v 2453 127 713 7.24 13.01 11.30 0.33 0.08 10.11
Prompts Property

TRELLIS+PhysPre

TRELLIS+PhysPre

Physical Dimension:
72.3x71.5x97.1 cm

TRELLIS+PhysPre

1
1 ! . Ve
l L
1 J J }{

PhysXGen

- SRS EO

Find the part that serves as the main surface for placing items

PhysXGen

Physical Dimension:
61.2x62.4x88.9 cm

Ground Truth

S
0.583 g/cm~"3

TRELLIS+PhysPre

Child part Parent part

Type: E

3.448 g/cmA3

Range: [-174.6, -169.2]
Dir: [-0.42,-0.53,0.26]
Pos: [0.32,0.16,0.52]

PhysXGen
e
Function
Description
K
Ground Truth lmm!
Physical Dimension: 30cm
60x60x90 cm Absolute
Scale
PhysXGen
(]
TS
QNg,
Material &
] .
7.48 g/emrz DENSItY
PhysXGen
Type: C
Range: [-159.8, 160.8] Vi

Dir: [0.13,0.05,0.86]
Pos: [0.06,0.01,0.83]

Kinematics

Child part Parent part

Figure 6. Qualitative comparison of different methods. Compared with our baseline, PhysXGen achieves significant improvements,
clearly demonstrating its strong performance in physics-grounded 3D generation.

neighboring structures, especially in function description,
material , and . More experimental results are
shown in the supplementary.

6. Conclusion

In this paper, to fill the gap between existing synthesized
3D assets and real-world applications, we propose an end-
to-end generative paradigm for physical-grounded 3D asset
generation, including the first physical-grounded 3D dataset
and the novel physical property generator. Specifically, we

develop a human-in-the-loop annotation pipeline that trans-
forms current 3D repositories into physics-enabled datasets.
Meanwhile, the novel end-to-end generative framework,
PhysXGen, can integrate physical priors into structural-
focused architectures to achieve robust generation perfor-
mance. Through comprehensive experiments on PhysXNet,
we reveal the fundamental challenges and direction in phys-
ical 3D generation. We believe that our dataset will attract
research attention from different communities, including but
not limited to embedded Al robotics, and 3D vision.
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