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Figure 1. Visualizations of our PhysXNet for phsycial 3D generation. 3D assets in our dataset have fine-grained physical property annotations,
including 1) absolute scale, 2) material, 3) affordance, 4) kinematics, and 5) function descriptions (basic, functional, and kinematical
descriptions).

Abstract

3D modeling is moving from virtual to physical. Existing001
3D generation primarily emphasizes geometries and tex-002
tures while neglecting physical-grounded modeling. Con-003
sequently, despite the rapid development of 3D generative004
models, the synthesized 3D assets often overlook rich and005
important physical properties, hampering their real-world006
application in physical domains like simulation and em-007
bodied AI. As an initial attempt to address this challenge,008
we propose PhysX, an end-to-end paradigm for physical-009
grounded 3D asset generation. 1) To bridge the critical gap010
in physics-annotated 3D datasets, we present PhysXNet -011

the first physics-grounded 3D dataset systematically anno- 012
tated across five foundational dimensions: absolute scale, 013
material, affordance, kinematics, and function description. 014
In particular, we devise a scalable human-in-the-loop an- 015
notation pipeline based on vision-language models, which 016
enables efficient creation of physics-first assets from raw 017
3D assets. 2) Furthermore, we propose PhysXGen, a feed- 018
forward framework for physics-grounded image-to-3D asset 019
generation, injecting physical knowledge into the pre-trained 020
3D structural space. Specifically, PhysXGen employs a dual- 021
branch architecture to explicitly model the latent correlations 022
between 3D structures and physical properties, thereby pro- 023
ducing 3D assets with plausible physical predictions while 024
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preserving the native geometry quality. Extensive exper-025
iments validate the superior performance and promising026
generalization capability of our framework. All the code,027
data, and models will be released to facilitate future research028
in generative physical AI.029

1. Introduction030

The creation of diverse and high-quality 3D assets has gained031
significant prominence in recent years, driven by their ex-032
panding applications across gaming, robotics, and embodied033
simulators. Substantial research efforts have been focused034
on appearance and geometry only, from high-quality 3D035
datasets [3, 7, 8, 24], efficient 3D representations, to gen-036
erative modeling. However, most of them predominantly037
emphasize structural characteristics while overlooking physi-038
cal properties inherent to real-world objects. Given the rising039
demand for physical modeling, understanding, and reason-040
ing in 3D space, we argue that a comprehensive suite for041
physics-grounded 3D objects is important, from upstream042
data annotations pipeline to downstream generative model-043
ing.044

Beyond purely structural attributes like geometry and ap-045
pearance, real-world objects intrinsically possess rich phys-046
ical and semantic characteristics comprising: 1) absolute047
scale, 2) material, 3) affordance, 4) kinematics, and 5)048
function descriptions. By integrating these fundamental049
properties with classical physical principles, we can derive050
critical dynamic metrics, including gravitational effects, fric-051
tional forces, contact region, motion trajectories, and inter-052
action. However, existing datasets/annotation pipelines only053
offer partial solutions towards physically grounded knowl-054
edge in 3D objects that cover the entire spectrum. Recent055
efforts to support articulated object applications have yielded056
datasets like PartNet-Mobility [25], which provides 2.7K057
human-annotated articulated 3D models. Yet, this collection058
still lacks essential physical descriptors - including dimen-059
sional specifications, material composition, and functional060
affordances - that are crucial for physically accurate simula-061
tions and robotics applications.062

To bridge this representational gap, we propose063
PhysXNet – the first comprehensive physical 3D dataset064
containing over 26K richly annotated 3D objects, as illus-065
trated in Figure 1. Except for the object-level annotation,066
i.e., 1), we annotate 2) and 5) for each part. Besides, for067
3), we provide the affordance rank for all parts, while we068
annotate the 4) detailed parameters of kinematic constraints,069
including motion range, motion direction, child parts, and070
parent parts. Besides, we introduce an extended version,071
PhysXNet-XL, featuring over 6 million procedurally gener-072
ated and annotated 3D objects.073

Most importantly, PhysXNet is built with an efficient, ro-074
bust, and scalable labeling pipeline. We introduce a human-075

in-the-loop annotation pipeline to annotate the properties 076
for the existing object-level 3D dataset, i.e., PartNet [17]. 077
The pipeline proceeds in three stages: 1) target visual isola- 078
tion, in which we render each component via alpha com- 079
positing to get the best visual prompts with minimized 080
visual interference. 2) automatic VLM labeling, where a 081
large vision-language model (VLM) to annotate most of the 082
properties; and 3) expert refinement, combining systematic 083
spot-checks with focused human annotation of complex kine- 084
matic behaviors. To the best of our knowledge, PhysXNet is 085
the first 3D dataset with abundant properties for each part. 086

To bridge the modeling gap of physical-grounded 3D as- 087
sets, we further introduce PhysXGen, a feedforward model 088
for physical 3D generation. Given the fact that physical prop- 089
erties are spatially related to geometry and appearance, we 090
repurpose pretrained 3D generative priors to generate phys- 091
ical 3D assets, enabling efficient training with reasonable 092
generalizability. Specifically, PhysXGen leverages a dual- 093
branch architecture to jointly model the latent correlations 094
between 3D geometric structures and physical properties, 095
which is naturally compatible with existing 3D native gen- 096
erative priors. Moreover, this formulation makes the best 097
use of pretrained latent space, leading to plausible physical 098
predictions while keeping the decent geometry quality from 099
the pretrained model. Comprehensive experiments prove the 100
promising performance of PhysXGen. We hope our work re- 101
veals new observations, challenges, and potential directions 102
for future research in embodied AI and robotics. 103

To summarize, our main contributions are: 104

• We pioneer the first end-to-end paradigm for physical- 105
grounded 3D asset generation, advancing the research 106
frontier in physical-grounded content creation and unlock- 107
ing new possibilities for downstream applications in simu- 108
lation. 109

• We build the first physical-grounded 3D dataset, 110
PhysXNet, and propose a human-in-the-loop annotation 111
pipeline to convert existing geometry-focused datasets into 112
fine-grained physics-annotated 3D datasets efficiently and 113
robustly. In addition, we present an extended version, 114
PhysXNet-XL, which includes over 6 million annotated 115
3D objects generated through procedural methods. 116

• We design a dual-branch feed-forward framework, PhysX- 117
Gen. It can model the latent interdependencies between 118
structural and physical features to achieve plausible phys- 119
ical predictions while maintaining the native geometry 120
quality. 121

2. Related Work 122

2.1. 3D Datasets and Benchmarks 123

Due to the time-consuming and expensive in realistic data 124
collection, current large-scale 3D datasets prefer to collect 125
data online [3, 7, 8]. According to the type of 3D data, 126
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Table 1. Comparison of related datasets which can support research in physical 3D generation. While the ABO dataset [6] contains material
metadata and keywords, its object-level annotation granularity constrains part-aware applications like robotic manipulation or physical
simulation. In contrast, PhysXNet provides part-level annotations.

Dataset # Objs Part anno Physical Dim Material Affordance Kinematic Description Year

ShapeNet [3] 51K ✗ ✗ ✗ ✗ ✗ ✗ 2015
PartNet [17] 26K ✓ ✗ ✗ ✗ ✗ ✗ 2019
PartNet-Mobility [25] 2.7K ✓ ✗ ✗ ✗ ✓ ✗ 2020
GAPartNet [9] 1.1K ✓ ✗ ✗ ✗ ✓ ✗ 2022
ABO [6] 7.9K ✗ ✓ Obj-level ✗ ✗ Obj-level 2022
OmniObject3D [24] 6K ✗ ✗ ✗ ✗ ✗ ✗ 2023
Objaverse [8] 818K ✗ ✗ ✗ ✗ ✗ ✗ 2023

PhysXNet (ours) 26K ✓ ✓ Part-level ✓ ✓ Part-level 2025
PhysXNet-XL (ours) 6M ✓ ✓ Part-level ✓ ✓ Part-level 2025

existing 3D datasets can be divided into synthetic and real-127
world datasets. To facilitate the development of 3D vision,128
ShapeNet [3] collects 51,300 CAD models. Building upon it,129
the PartNet dataset [17] introduces an annotation framework130
that provides part annotations at significantly finer granular-131
ity levels. Furthermore, PartNet-Mobility [25] annotates the132
kinematic constraints and provides 2.7K articulated 3D ob-133
jects for 3D vision, especially for embodied AI and robotics.134
ABO [6] is a high-quality datasets with around 7.9K CAD135
models with fine-grained geometric and textures. Compared136
with prior work, it includes the physical dimension, ma-137
terial, and keywords. However, the material information138
and descriptions focus on object-level, limiting the part-139
aware applications. Recently, Objaverse [8] has alleviated140
the scarcity of 3D data. It collects and filters over 800K141
3D data. To bridge the gap between synthetic and real data,142
Omniobject3D [24] provides over 6k high-quality 3D scans.143
A detailed comparison is shown in Table 1.144

Despite significant advances in 3D data acquisition, pre-145
vailing 3D datasets primarily emphasize geometry and ap-146
pearance fidelity or narrowly defined physical attributes, cre-147
ating a critical bottleneck for developing physics-aware 3D148
vision models and their real-world applications. To bridge149
this foundational gap, we present PhysXNet – a 3D dataset150
with comprehensive physical properties encompassing phys-151
ical dimension, part-level material, affordance rank, kine-152
matic parameters, and part-level description. Furthermore,153
we extend our dataset with PhysXNet-XL, comprising more154
than 6 million annotated 3D objects created via procedural155
generation.156

2.2. 3D Generative Models157

As one of the most representative optimization-based method158
in 3D generation, DreamFusion [18] proposed the SDS loss159
function. By utilizing the prior knowledge of the 2D diffu-160
sion model, it achieves impressive generative performance.161
Despite various works, optimization-based methods still suf-162
fer from the multi-face Janus problem and low optimization163
efficiency. Recently, benefiting from its impressive efficiency164
and robustness, feed-foward models [1, 2, 4, 11, 22, 26, 28]165

have gained more and more attention. However, those meth- 166
ods still focus on geometry and appearance quality, neglect- 167
ing the physical properties of 3D assets. 168

2.3. Articulated and Physical 3D Object Modeling 169

Articulated object modeling mainly consists of tasks like 170
perception, reconstruction, and generation. Some works 171
try to estimate articulation pose [15] and identify articula- 172
tion parts [29], while others [21] focus on learn joint pa- 173
rameters from images. In the reconstruction field, existing 174
works try to reconstruct articulated models from RGB [5], 175
RGBD [23], and point cloud [12]. Recently, some meth- 176
ods have tried to generate articulated 3D assets by utilizing 177
a vision-language model [13] or adopting an optimization- 178
based framework [19]. To bridge the critical gap between 179
existing methods with real applications, many works aim to 180
incorporate the physical properties into 3D modeling. Some 181
works try to learn material parameters from videos [31] or 182
images [30], while other methods aim to introduce physical 183
guidance via simulation [16, 27] or physical principles [10]. 184

In contrast to fragmented paradigms in physical 3D mod- 185
eling, this work introduces PhysXGen – a unified physics- 186
integrated generative framework capable of learning cross- 187
property consistency to generate 3D assets with all necessary 188
physical properties. By exploiting the relationship between 189
physical and structural features, our method achieves promis- 190
ing performance in physical 3D generation. 191

3. PhysXNet Dataset 192

In this section, we will introduce physical properties and 193
the human-in-the-loop annotation pipeline. Besides, we 194
will report the statistics and distribution of PhysXNetand 195
PhysXNet-XL. 196

3.1. Definition of Physical Properties 197

As shown in Figure 2, we systematically categorize object 198
properties into three progressive stages: a) Identification 199
- determining the basic nature of the object; b) Function - 200
understanding its potential applications; and c) Operation 201
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Figure 2. Top: Definition of properties in PhysXNet . By defining and annotating properties across three categories, common physical
quantities can be systematically calculated to enable physical simulations. Bottom: Overview of our human-in-the-loop annotation
pipeline. We utilize GPT-4o to gather foundational raw data, which is subsequently verified through human oversight. The kinematic
parameters are then rigorously determined and finalized through human review.

- detailed usage methodologies. To streamline the annota-202
tion process, we posit that the internal composition of a203
component is homogeneous, exhibiting uniform property204
invariance throughout its structure. For stages a), we set205
absolute scaling and material (material name, Young’s206
modulus, Poisson’s ratio, and density). Besides, for b), we207
establish functional affordance analysis and function de-208
scriptions (basic, functional, and kinematic descriptions).209
Finally, we use kinematic parameter quantification to repre-210
sent c). Specifically, we grade the priority of being touched211
on all available parts to obtain the affordance score for all212
parts from 1 to 10. We set five possible kinematic types: A.213
No movement constraints (like water in a bottle), B. Pris-214
matic joints (like a drawer), C. Revolute joints (like a laptop),215
D. Hinge joint (like a hose in a shower system), or E. Rigid216
joint and a combined kinematic type: CB. Revolute and Pris-217
matic joints (like a lid of a bottle). Except for A and E, we218
will annotate the parent, child parts, and detailed kinematic219
parameters (such as rotation direction, rotation range, and so220
on). Note that, due to the challenges in precisely quantify-221
ing the absolute physical movement range of B, we use the222
movement range within the 3D coordinate system. Besides,223
to avoid the unnecessary and meaningless annotation of over-224
fine-grained parts in PartNet, we merge the tiny parts whose225
vertices and area are smaller than a pre-defined threshold226
with their neighboring parts. We manually refine the results227
of the merging process to ensure that the merged outputs are228

reasonable and consistent. 229

3.2. Human-in-the-loop Annotation Pipeline 230

Following the establishment of target annotation specifica- 231
tions, we implement a systematic and streamlined semi- 232
automated annotation framework, structured into two distinct 233
operational phases (see Figure 2): 1) Preliminary Data Ac- 234
quisition and 2) Kinematic Parameter Determination. Specif- 235
ically, we utilize GPT-4o to obtain the basic information. 236
Besides, to ensure the quality of raw data, a human candi- 237
date will check and refine the output of the vision-language 238
model (VLM). 239

For the second phrase, we split it into four subtasks: (2.a) 240
calculate contact region, (2.b) plane fitting, (2.c) candidate 241
generation and selection, and (2.d) kinematic parameters. 242
Note that (2.c) and (2.d) are accomplished by human can- 243
didate. For all constraint movable parts (kinematic type is 244
not A or E), we will calculate the contact region with the 245
neighboring parts. We first extract point cloud data from 246
the child-parent mesh pair, formally designated as Pc and 247
Pp, respectively. The workflow subsequently calculates Eu- 248
clidean distance between points in Pc and Pp, followed by 249
spatial filtration that eliminates point pairs failing to meet a 250
predetermined distance threshold. Subsequently, we employ 251
a plane-fitting algorithm. We sample several axes uniformly 252
on the fitted plane as candidates. Note that for kinematic 253
type C, we additionally need to determine the location of 254
the rotation axis. Therefore, we will perform a k-means 255
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Figure 3. Statistics and distribution of PhysXNet and PhysXNet-
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Young’s modulus, and Poisson’s ratio distribution in PhysXNet,
visualized through sectoral ratios. (d) Tag frequency statistics for
prevalent object labels in PhysXNet-XL. (e) Component-Category
distribution of procedurally generated 3D objects in PhysXNet-XL.

algorithm in the contact region for type C to generate several256
candidates. After selecting the candidate location, we can257
finalize the kinematic parameters.258

3.3. Statistics and Distribution of PhysXNet259

Comprises over 26K physical 3D objects, the part number260
of objects in PhysXNet exhibits a long-tailed distribution261
illustrated in Figure 3, where each object contains an aver-262
age of around 5 constituent parts. Besides, we document the263
length-width-height distributions of objects in (b). Given264
that PhysXNet encompasses objects spanning from relatively265
small-scale indoor entities to large-scale outdoor structures,266
the physical dimension exhibits significant variation among267
objects. For kinematic types and material in PhysXNet, we268
show detailed proportional composition. Note the density in269
our PhysXNetadheres to the metric standardization frame-270
work, i.e., g/cm3. Furthermore, Figure 3 (d) shows the271
frequency of the popular object tags, including the name and272
category. Finally, we also report the component category in273
our procedurally generated 3D objects, including a) intra-274
category combination: cabinet, bottle, faucet, chair, oven,275
shower, knife, table, and laptop; b) cross-category combina-276
tion: drawer and door. More details about PhysXNet-XL are277

released in the appendix. 278

4. PhysXGen Framework 279

As mentioned above, physical 3D generation is still a chal- 280
lenging and promising task. Most prior works only focus on 281
a single or specific physical property. In this section, we aim 282
to build a unified generative framework to generate physical 283
3D assets directly. While our PhysXNet dataset contains 284
26K assets, this scale remains insufficient for training SOTA 285
generative architectures from scratch. Therefore, we lever- 286
age a model pre-trained on massive geometry-only 3D scans 287
and fine-tune it to adapt to physical 3D generation. Building 288
upon the well-established 3D representation space of it, we 289
present PhysXGen, a novel yet straightforward framework 290
that combines physical properties with geometry and appear- 291
ance shown in Figure 4. Our approach achieves this dual 292
objective by simultaneously integrating fundamental physi- 293
cal properties into the generation process while optimizing 294
the structural branch through targeted fine-tuning. This joint 295
optimization enables the production of physically consistent 296
3D assets that maintain impressive geometry and appearance 297
fidelity. 298

4.1. Physical 3D VAE Encoding and Decoding 299

In this subsection, we take the textured mesh output as an 300
example. To reduce the influence caused by the domain gap 301
between geometric and physical latent space, we build a 302
similar physical VAE for property encoding, following [26]. 303
Besides, considering the interdependencies among physi- 304
cal properties, we encode them into a unified latent space. 305
We adopt 4 physical properties: physical scaling (converted 306
by physical dimension) Pdim ∈ RN×1, affordance priority 307
Paff ∈ RN×1, density Pρ ∈ RN×1, and kinematic param- 308
eters Pmov ∈ RN×11 (including child RN×1 and parent 309
group index RN×1, movement direction RN×3, movement 310
location RN×3, movement range RN×2, and kinematic type 311
RN×1), where N is the number of voxel. The physical prop- 312
erties (Pphy ∈ RN×14) can be obtained by channel-wise 313
concatenation. For the function descriptions, we adopt the 314
CLIP model [20] to obtain the text embedding. Similarly, 315
the description features (Psem ∈ RN×768×3) are formed by 316
concatenating the basic, functional, and kinematic descrip- 317
tion embeddings. Besides, the structural branch adopts the 318
DINOv2 to extract features. Therefore, the dimensions of 319
structural feature is Paes ∈ RN×1024. For clarification, we 320
denote the pretrain VAE encoder and decoder as Eaes and 321
Daes while the physical VAE encoder and decoder as Ephy 322
and Dphy . The physical latent Pplat ∈ RN×8 and structured 323
latent Pslat ∈ RN×8 can be formulated as follows: 324

Pplat = Ephy(Pphy, Psem), Pslat = Eaes(Paes) . (1) 325

To study the effects of physical properties on geometry and 326
appearance quality, we introduce a branch from Dphy to 327
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Figure 4. The architecture of PhysXGen framework. PhysXGen features a two-stage architecture comprising: a physical 3D VAE
framework for latent space learning, and a physics-aware generative process for structured latent. The former focuses on establishing a
compressed yet information-rich latent representation that encodes physical properties, while the latter specializes in generating physical
latents.

Daes via a residual connection. We will analyze the perfor-328
mance of the independent and dependent VAE decoder in329
the experiments. After decoding the structured and physical330
latents, we can implement a loss function L as follows:331

Lvae = Lcolor
aes + Lgeometry

aes + Lphy + Lsem + Lkl + Lreg ,

(2)332

where Lcolor
aes and Lgeometry

aes represent the color loss (includ-333
ing L2loss, lpip loss) and geometry loss (including mask,334
normal, and depth loss). For Lphy and Lsem, we normalize335
the groundtruth respectively and adopt a L2 loss. Lkl aims336
to constraint the distribution of Pplat while Lreg can reduce337
the unnecessary structures of textured mesh.338

4.2. Physical Latent Generation339

Following the acquisition of the compressed physical la-340
tent representation, we construct a transformer-architecture341
diffusion model to jointly generate physical and structural342
attributes. To effectively leverage the inherent correlations343
between physical properties and structural features while344
maintaining compatibility with pre-trained components, we345
implement a dual-branch architecture that integrates struc-346
tural guidance through residual connections. Specifically, the347
additional branch from the structural module is fused with348
the primary physical generation module via learnable skip-349
connection layers, enabling cross-domain feature interaction.350
Comprehensive ablation studies quantitatively validate the351
design rationale through systematic component comparisons.352
Following [26], we adopt the Conditional Flow Matching353
(CFM) as the objective of optimization. Therefore, the loss354
of the geometric branch is formulated:355

Laes = Et,x0,ϵ||f(x, t)− (ϵ− x0)||22 , (3)356

where ϵ and t represent the noise and timestep while x0 is357
sampled from Pslat. Adopting a similar objective for the358

physical branch, the final loss of the latent diffusion model 359
can be calculated as: Ldiff = Laes + Lphy . 360

5. Experiments 361

5.1. Implementation details 362

In our experiments, we partition PhysXNet dataset into 24K 363
training samples, 1K validation samples, and 1K test cases. 364
By analyzing the performance on the test cases, we can eval- 365
uate the generalizability of our method. During the VAE and 366
diffusion model training, we adopt AdamW with an initial 367
learning rate of 1× 10−4 to optimize the models. The inher- 368
ent correlation between geometric configuration and physical 369
properties in our methodology creates a critical dependency 370
where the structural fidelity of the 3D representation will 371
affect the final generative performance. In this paper, we re- 372
purpose the geometry- and appearance-rich structural space 373
of TRELLIS [26] for our task. Our PhysXGen is trained on 374
8 NVIDIA A100 GPUS. More details about the architecture 375
are released in the supplementary. 376

5.2. Evaluation Metrics 377

Physical properties evaluation. Our framework establishes 378
a multi-property feature space encompassing five core at- 379
tributes: absolute scale, material, affordance, kinematics, 380
and function descriptors. Note that the kinematics attribute 381
manifests as dual configuration parameters: 1) structural 382
grouping (parent-child part hierarchies) and 2) kinematic 383
parameters. Specifically, we evaluate absolute scale using 384
Euclidean distance, density and affordance images via Peak 385
Signal-to-Noise Ratio (PSNR), kinematics with instantiation 386
distance [14], and functional description through PSNR on 387
cosine similarity score maps. 388

Geometry evaluation. For appearance evaluation, we 389
sample 30 random views from a unit sphere to calculate the 390
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Table 2. Quantitative comparison of different methods on the test sets of our PhysXNet. There are two types of evaluations: structural and
physical property evaluations. PhysPre represents a separate physical property predictor after TRELLIS.

Methods Geometry Absolute scale ↓ Material ↑ Affordance ↑ Kinematic parameters Description ↑PSNR ↑ CD ↓ F-Score ↑ COV ↑ MMD ↓

TRELLIS [26] 24.31 13.2 76.9 – – – – – –
TRELLIS + PhysPre 24.31 13.2 76.9 13.21 8.63 7.23 0.24 0.12 6.55
PhysXGen 24.53 12.7 77.3 7.24 13.01 11.30 0.33 0.08 10.11

Image Prompts Geometry and appearance Physical properties

Material Kinematics

Function DescriptionAffordanceAbsolute Scale

Physical 
dimension: 

27.51×19.8×6.76 
cm

Find the part that 
Used to turn water 
on/off or adjust 
temperature.

𝜌 ≈ 8.2 𝑔/𝑐𝑚3

Range: [-92.3,87]

Dir: [0.18,0.736,0.02]

Pos: [-0.56,-0.04,-0.073]

Child part Parent part
Kinematic type: rotation

0

0.5

1

Material Kinematics

Function DescriptionAffordanceAbsolute Scale

Physical 
dimension: 

98.92×69.2×64.3 
cm

Find the mesh 
fabric backrest 
surface of the chair

𝜌 ≈ 8.0 𝑔/𝑐𝑚3

Range: [-190.8,143.1]

Dir: [0.02,0.864,-0.03]

Pos: [0.032,-0.11,0.11]

Child part Parent part
Kinematic type: rotation

0

0.5

1

Figure 5. Visualization of the generated results. Given a single image as the prompt, our PhysXGen can generate the physical-grounded
3D assets.

mean PSNR. Besides, to evaluate the quality of geometry,391
we calculate the standard shape metrics of Chamfer Distance392
(CD) (×10−3) and F-score (FS) (×10−2) with thresholds of393
0.05.394

5.3. Quantitative Results395

As shown in Table 2, we implement the quantitative evalua-396
tions on two types of metrics: 1) geometry and appearance397
evaluation; and 2) physical properties evaluation. Note that398
TRELLIS+PhysPre is our baseline that adopts the indepen-399
dent structure to predict the properties. Compared with the400
separate physical property predictor, our PhysXNet utilizes401
the correlation between physical and pre-defined 3D struc-402
tural space, achieving significant improvement in physical403
property generation while enhancing the aesthetic quality.404

Ablation studies. The core design of our framework is to405
integrate both geometry and physics in 3D modeling. There-406
fore, we conduct ablation studies to validate its effectiveness407
(reported in Table 3). By introducing geometry and appear-408
ance features in the diffusion model, the generative model409
can gain improvement in physics generation compared with410

the independent models, PhysPre. Additionally, the corre- 411
lation between geometry and physics in VAE can enhance 412
the geometry of generated assets. Finally, relying on the 413
dual-architecture and joint training, our PhysXGen obtains 414
impressive performance in all physical property generation. 415

5.4. Qualitative Results 416

Figure 5 showcases the physical-grounded 3D assets gener- 417
ated by our PhysXGen. By learning the interdependencies 418
between physical and structural space, PhysXGen achieves 419
impressive performance in generating physical properties. 420
Besides, we perform qualitative comparisons with our base- 421
line shown in Figure 6. As we mentioned above, for absolute 422
scaling, we use the Euclidean distance while we adopt PSNR 423
to evaluate the material maps, affordance maps, function 424
description similarity score maps. By utilizing the interde- 425
pendencies between physical properties and structural infor- 426
mation, especially geometry, our PhysXNet obtains higher 427
overall scores. Furthermore, our PhysXGen can distinguish 428
the properties of different parts and achieve more stable 429
and robust performance in physical property generation of 430
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Table 3. Ablation studies about the physical 3D VAE and diffusion model. Dep-VAE and Dep-Diff represent the model that utilizes the
interdependencies between structural and physical information. Thus, Trellis+PhysPre and PhysXGen are corresponding to the first and last
lines.

Dep-VAE Dep-Diff Geometry Absolute scale ↓ Material ↑ Affordance ↑ Kinematic parameters Description ↑PSNR ↑ CD ↓ F-Score ↑ COV ↑ MMD ↓

✗ ✗ 24.31 13.2 76.9 13.21 8.63 7.23 0.24 0.12 6.55
✗ ✓ 24.31 13.2 76.9 12.01 10.69 8.95 0.26 0.11 7.71
✓ ✗ 24.32 12.9 77.0 10.57 9.86 9.32 0.28 0.11 7.54
✓ ✓ 24.53 12.7 77.3 7.24 13.01 11.30 0.33 0.08 10.11

Prompts Property

TRELLIS+PhysPre PhysXGen

Function 
DescriptionFind the part that serves as the main surface for placing items

PhysXGen Ground Truth TRELLIS+PhysPre

Affordance

PhysXGen

PhysXGenTRELLIS+PhysPre

PhysXGenTRELLIS+PhysPre

Material & 
Density

Kinematics

Absolute 
Scale

TRELLIS+PhysPre

Physical Dimension: 
72.3×71.5×97.1 cm

Physical Dimension: 
61.2×62.4×88.9 cm

Ground Truth

Physical Dimension: 
60×60×90 cm

0.583 g/cm^3 3.448 g/cm^3 7.48 g/cm^3

Child part Parent part Child part Parent part

Type: E
Range: [-174.6, -169.2]
Dir: [-0.42,-0.53,0.26]
Pos: [0.32,0.16,0.52]

Type: C
Range: [-159.8, 160.8]
Dir: [0.13,0.05,0.86]
Pos: [0.06,0.01,0.83]

Figure 6. Qualitative comparison of different methods. Compared with our baseline, PhysXGen achieves significant improvements,
clearly demonstrating its strong performance in physics-grounded 3D generation.

neighboring structures, especially in function description,431
material , and affordance. More experimental results are432
shown in the supplementary.433

6. Conclusion434

In this paper, to fill the gap between existing synthesized435
3D assets and real-world applications, we propose an end-436
to-end generative paradigm for physical-grounded 3D asset437
generation, including the first physical-grounded 3D dataset438
and the novel physical property generator. Specifically, we439

develop a human-in-the-loop annotation pipeline that trans- 440
forms current 3D repositories into physics-enabled datasets. 441
Meanwhile, the novel end-to-end generative framework, 442
PhysXGen, can integrate physical priors into structural- 443
focused architectures to achieve robust generation perfor- 444
mance. Through comprehensive experiments on PhysXNet, 445
we reveal the fundamental challenges and direction in phys- 446
ical 3D generation. We believe that our dataset will attract 447
research attention from different communities, including but 448
not limited to embedded AI, robotics, and 3D vision. 449
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