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Abstract

Polarization images provide rich physical information that is fundamentally absent
from standard RGB images, benefiting a wide range of computer vision applications
such as reflection separation and material classification. However, the acquisition
of polarization images typically requires additional optical components, which
increases both the cost and the complexity of the applications. To bridge this gap,
we introduce a new task: RGB-to-polarization image estimation, which aims to
infer polarization information directly from RGB images. In this work, we establish
the first comprehensive benchmark for this task by leveraging existing polarization
datasets and evaluating a diverse set of state-of-the-art deep learning models,
including both restoration-oriented and generative architectures. Through extensive
quantitative and qualitative analysis, our benchmark not only establishes the current
performance ceiling of RGB-to-polarization estimation, but also systematically
reveals the respective strengths and limitations of different model families — such
as direct reconstruction versus generative synthesis, and task-specific training
versus large-scale pre-training. In addition, we provide some potential directions
for future research on polarization estimation. This benchmark is intended to serve
as a foundational resource to facilitate the design and evaluation of future methods
for polarization estimation from standard RGB inputs.

1 Introduction

Polarization images contain rich physical information that is not captured by standard RGB cameras,
such as birefringence, surface stress, roughness, and other material properties [48]. This polarization
information provides valuable visual cues that enhance a variety of computer vision tasks, such as
reflection separation [32| [21} [34]], material analysis tasks like classification and segmentation [48, |31}
25,158,152, 159], and shadow removal [[60].

However, polarization images are not widely accessible in practice, since their acquisition requires
specialized hardware, such as polarization cameras or standard cameras equipped with a rotating
polarizer (see Figure [I)). These devices are often expensive and inconvenient to operate, making
polarization imaging impractical for widespread or everyday use. While polarization data remains dif-
ficult to obtain, standard RGB images are widely available. This raises a fundamental question: Can
polarization information be estimated directly from RGB inputs without relying on dedicated
polarization sensors?

In response to this question, we introduce a new task: RGB-to-polarization image estimation. As
illustrated in Figure[I] the goal is to leverage neural networks to estimate polarization information
directly from RGB inputs. To the best of our knowledge, this is the first work that explores sensor-free
polarimetric imaging using neural networks. In this work, polarization information is represented
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Figure 1: Comparison between sensor-based methods and our polarization estimation approach.
Conventional methods rely on physical acquisition systems (e.g., polarization cameras or rotating
polarizers), whereas our method leverages RGB inputs and neural networks to estimate polarization
information without requiring dedicated hardware. The predicted polarization images can be readily
applied to a variety of downstream tasks.

using the Stokes parameters. We treat the RGB image—corresponding to the total intensity (Sg)—as
input, and train models to estimate the remaining polarization components, S;, So, and S3, which
respectively characterize horizontal/vertical linear polarization (0°/90°), diagonal linear polarization
(£45°), and circular polarization. These components are essential for a wide range of downstream
polarization-based vision tasks.

Building on this task, we establish a comprehensive benchmark for RGB-to-polarization image
estimation. Leveraging three of the latest RGB-polarization datasets [[17, 38 [19], we standardize
evaluation protocols to ensure consistent and comparable results across methods. Multiple deep
learning models, spanning both restoration-based and generative architectures, are further evaluated
to assess their effectiveness on this task. Through systematic analysis, our benchmark reveals the
strengths and limitations of existing approaches and offers insights for future development in sensor-
free polarization estimation. It should be noted that multiple polarization states can correspond to the
same RGB appearance, since RGB encodes only intensity and color but not the vectorial nature of
light, though this ambiguity affects all methods equally and thus does not compromise the fairness of
the benchmark. Our contributions are summarized as follows:

* Task and Benchmark: We introduce RGB-to-polarization estimation as a new computer
vision task and establish the first benchmark for sensor-free polarization imaging. Built
upon a recent RGB-polarization dataset, the benchmark features standardized evaluation
protocols that enable consistent and reproducible comparisons across methods.

* Comparative Study: We evaluate a diverse set of deep learning models, including both
restoration-based and generative approaches, to assess their performance on this task and
uncover key limitations.

* Insights for Future Research: Our analysis provides practical guidance for future model
design and highlights open challenges in estimating polarization information from RGB
images.

2 Related work

Polarization data In the field of optics, light is typically characterized by four fundamental
properties: amplitude, wavelength, phase, and polarization [3]]. Among these, polarization plays a
pivotal role in light-matter interactions, providing discriminative cues that help distinguish surface
characteristics such as smoothness, refractive index, and coating [48].



Several mathematical models have been developed to describe the polarization state of light. The Jones
vector [43|[12] describes light using two complex amplitudes for orthogonal electric field components.
However, it is limited to fully polarized light and cannot account for partial or incoherent polarization,
which are common in natural scenes. The Mueller matrix [20, [10] models the effect of materials on
polarization, including depolarization, using a 4 x4 real-valued matrix. While it accommodates both
fully and partially polarized light, it demands extensive measurements and introduces 16 parameters,
making it both experimentally demanding and computationally heavy. The polarimetric BRDF[37]]
models material-specific polarized reflectance but requires dense angular sampling. In this work, we
adopt the Stokes vector representation for its ability to comprehensively describe various polarization
states and its applicability to incoherent light analysis [42, 41,130, 8]]. A detailed explanation of how
polarization is encoded in the Stokes parameters can be found in section 3]

Polarization datasets Several polarization datasets are developed to support the analysis of po-
larization and spectral properties, as well as downstream vision tasks. Early works [1} [7, 26, [38]]
collect small-scale data using trichromatic linear-polarization cameras, typically focusing on a limited
number of objects or controlled indoor scenes. More recent efforts expand to larger-scale datasets
designed for specific computer vision applications, such as reflection separation [22}29]] and trans-
parent object segmentation [31]]. Fan et al. [9]] present the first full-Stokes dataset that includes both
linear and circular polarization components. However, the dataset consists of only 64 flat objects,
which limits its applicability to real-world scenarios. Jeon et al. [[17] propose a large-scale dataset
that includes both trichromatic and hyperspectral Stokes measurements, covering more than 2,000
natural scenes under diverse illumination conditions. This dataset serves as the foundation for our
benchmark, enabling RGB-to-polarization estimation in realistic and varied settings.

Restoration backbones Existing image restoration backbones [24, 147, 156l 15 23| |57]] are widely
used in low-level vision tasks and can be naturally adapted for RGB-to-polarization image estimation.
Transformer-based architectures such as SwinlIR [24], Uformer [47], and Restormer [56] leverage
self-attention mechanisms to capture long-range dependencies, achieving strong performance across
denoising, deraining, and deblurring tasks. In our benchmark, we adopt Uformer and Restormer as
representative restoration backbones due to their effectiveness and generalizability.

In parallel, large-scale vision transformers pre-trained in a self-supervised manner, such as DINO [4]
and MAE [14], have shown strong representation learning capabilities across a range of tasks. These
models are trained on massive image collections without manual labels, and their pre-trained weights
can be transferred to downstream problems with limited supervision. In our setting, we explore
whether the rich semantic priors learned by MAE can facilitate RGB-to-polarization estimation.
Specifically, we initialize the MAE encoder with pre-trained weights and fine-tune the entire network
for RGB-to-polarization estimation.

Generation backbones Existing generative models, such as GANs [[11]] and diffusion models [[15]],
have demonstrated strong capabilities in modeling complex image distributions. In this work, we
explore whether diffusion models can be used to estimate polarization images from RGB inputs.
Specifically, we adopt two representative conditional diffusion models, WDiff [33]] and DiT [36],
where the RGB image guides the generation of polarization components.

In addition to training task-specific diffusion models from scratch, Stable Diffusion [40], a large-scale
pre-trained model, is leveraged to estimate polarization images. Previous works [46| 27| 49] show
that the priors of pre-trained diffusion models can be effectively transferred to downstream tasks. We
adopt two representative models, RealFill [44] and Img2ImgTurbo [35]], which are originally designed
for image inpainting and translation. These models are further fine-tuned for the RGB-to-polarization
estimation task, enabling the synthesis of polarization components guided by RGB context.

Polarization-related tasks When extended to computer vision tasks, polarization plays a criti-
cal role in distinguishing surface properties. Specifically, the polarization state of reflected light
changes depending on factors such as a material’s refractive index, surface roughness, coating, or
texture—enabling the classification of materials and object recognition [48]]. In addition, specular
reflections can be suppressed by exploiting polarization properties, and the contrast of transparent
or translucent objects can be enhanced using a polarizer [39]. Furthermore, materials exhibiting
birefringence or optical activity cause characteristic changes in polarization, often reflected in the S,
and S3 components, which are useful for biomedical imaging, tissue analysis, and fiber inspection
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Figure 2: (a) The Poincaré sphere serves as a geometric representation for describing all possible
states of polarization using the Stokes parameters. (b—d) Polarization describes how the electric field
of a light wave oscillates within the plane perpendicular to the direction of propagation. (b) Linear
polarizations at 0° and 90°. (c) Linear polarizations at £45° angles. (d) Right- and left-handed
circular polarizations.

[8l]. Finally, surface normals affect the polarization state of reflected light, which in turn provides
geometric cues for shape or depth inference in tasks such as Shape-from-Polarization (SfP) based 3D
reconstruction [18]. Beyond SfP, polarization has also been exploited for reflectance and appearance
modeling [12,[16L [13], as well as for task-specific applications including polarization-aware semantic
segmentation [28], sparse polarization sensing [[19], and wearable robotics [S0]. These cues are
absent in standard RGB images, highlighting the unique and valuable role of polarization information.

3 Method

In this section, we first provide a brief overview of the Stokes parameters that characterize the
polarization state of the light, followed by the formulation of the RGB-to-polarization estimation
task and the construction of our benchmark, including dataset preparation, evaluation protocols, and
model evaluation.

3.1 Stokes parameters and derived quantities

Stokes parameters The polarization state of light characterizes how the electric field oscillates
within the plane perpendicular to the direction of propagation. In this work, we represent the
polarization state of light using the Stokes vector and visualize it on the Poincaré sphere, as illustrated
in Figure[2] where each point corresponds to a unique polarization state[30, 53| 42| [55 43]. A light
wave’s polarization can be described using the four Stokes parameters (So, S1, So, S3), where S
denotes the total intensity of the beam, and the remaining components collectively characterize the
polarization state. Specifically, S, represents the difference in intensity between 0° and 90° linear
polarization; Sy corresponds to the difference between +45° and -45° linear polarization; and S
indicates the difference between right- and left-handed circular polarization [30 142} 54].

Mathematically, the Stokes parameters can be expressed in terms of the polarization azimuth angle i
and the ellipticity angle y as:

S1 = So cos(2¢)) cos(2x) )]
Se = S sin(2¢) cos(2y) 2)
S5 = S sin(2x) 3)

where Sy denotes the total light intensity, represented as an RGB image. On the Poincaré sphere, the
polarization direction is represented by the vector S = (S1, Sz, S3)/So. For instance, S = (1,0, 0)
corresponds to 0° linear polarization, (—1,0,0) to 90° linear polarization, (0, 1,0) and (0, —1,0)
to +45° linear polarization, and (0,0, +1) to right- or left-handed circular polarization. Elliptical
polarization states lie between these extremes, depending on the value of S3. Each component of the
Stokes vector carries distinct material-sensitive information: high S; values often indicate smooth
dielectric or metallic surfaces due to dominant specular reflection; elevated S, suggests birefringent or
fibrous materials; and strong Ss values arise in scattering or optically active media, such as biological
tissues or rough dielectrics [39].



Interpretable polarization features While the Stokes parameters (Sg, S1, Sz, S3) provide a com-
plete physical description of polarization, they are not always the most interpretable for human
observers or visual analysis. To better convey polarization properties, several derived representa-
tions are commonly used. One of the most fundamental is the degree of polarization (DoP), which
quantifies the fraction of total intensity carried by the polarized component[45]]:
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This unified expression relates DoP to its two physically meaningful components: the degree of linear
polarization (DoLP) and the circular polarization ratio (CoP), defined respectively as:
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DoLP characterizes the proportion of linearly polarized light, while CoP indicates the contribution of
circular polarization. In addition to magnitude, the angle of linear polarization (AoLP) describes the
orientation of linear polarization and is defined as:

&)

1
AoLP = 3 arctan ( gj) 6)

This formulation yields angles in the range [—90°, 90°], representing the azimuthal angle of the
polarization ellipse.

Together, these derived features—DoP, DoLP, CoP, and AoLP—offer more interpretable and visually
meaningful descriptions of polarization than raw Stokes components. They also exhibit distinct
gradient distributions: for example, AoLP often presents sharper local variations due to angular
wrapping, whereas DoLP and CoP follow hyper-Laplacian-like distributions[17]]. This highlights the
need for feature-specific priors and visualization strategies when analyzing polarization images.

3.2 Benchmark design

Task definition We define RGB-to-polarization image estimation as a pixel-wise prediction task,
where the goal is to estimate polarization information from a single RGB input image. Given an RGB
image Irgp € RHEXWX3 where H x W denotes the spatial resolution, the objective is to estimate
Stokes components S € RHXWx9 Each Stokes component, Sy, So, and S3, is represented as a
3-channel image. The final output is obtained by concatenating these components along the channel
dimension, resulting in S = [Sy, Sa, S3].

Dataset Next, we build our benchmark on the recent large-scale RGB-polarization dataset proposed
by Jeon et al. [17]. It provides high-quality, spatially aligned image pairs consisting of RGB inputs
So and their corresponding Stokes components [S1, S2, S3], enabling supervised training. All images
are resized to a fixed resolution of H x W before training. Both the RGB inputs and the Stokes
targets are normalized to the range [0, 1] for consistent training across models.

Evaluation metrics Following standard practices in low-level vision, we evaluate model perfor-
mance using three complementary metrics: peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and learned perceptual image patch similarity (LPIPS). PSNR and SSIM assess pixel-
level accuracy and structural fidelity, while LPIPS captures perceptual similarity in the feature space.
All metrics are computed independently for each Stokes component and then averaged to report the
overall performance. These metrics also align with the physical meaning of the Stokes components:
high PSNR and SSIM and low LPIPS indicate that the predicted Stokes maps better preserve the
spatial and structural polarization cues of the ground truth.

3.3 Baselines

With the defined benchmark, we evaluate a range of representative deep learning models that fall into
two categories: restoration-based and generation-based approaches.



Table 1: Quantitative results on RGB-to-polarization image estimation. We report PSNR, SSIM, and
LPIPS for each estimated Stokes component (S1, S, S3), as well as their averages. Higher PSNR
and SSIM and lower LPIPS indicate better performance. We highlight the best and second-best
results for each component and the averages.

| S1 | S, | S3 | Average
Method PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS
Wiff [33] 10.62 | 0.6454 | 04617 | 1465 | 07172 | 02817 | 14.05 | 0.6840 | 0.3882 | 13.11 | 0.6822 | 0.3772
DIT [36] 2096 | 0.7984 | 03238 | 24.01 | 0.8607 | 0.1680 | 25.02 | 0.8636 | 0.2424 | 23.33 | 0.8409 | 0.2447

Img2ImgTurbo [35] | 21.47 | 0.8532 | 0.3931 | 23.65 | 0.8522 | 0.3465 | 24.87 0.9122 | 0.3230 | 23.33 | 0.8725 | 0.3542

Restormer [36] | 22.54 | 0.8495 | 0.3072 | 24.42 | 0.8764 | 0.1693 | 24.99 | 0.8932 | 02341 | 23.98 | 0.8730 0.2369
22,61 | 0.8482 | 0.3007 2472 | 0.8721 | 0.1624 | 25.69 | 0.8963 | 0.2170 | 24.34 | 0.8722 | 0.2267

2273 | 0.8690 | 0.3521 = 2554 | 0.8759 | 02194 | 25.94 09179 | 0.2338 | 24.74 | 0.8876 | 0.2684

Uformer [47]
MAE [14]

|
|
|
Realfill @] | 2043 | 0.8194 | 02964 | 21.92 | 0.7573 | 02292 | 23.07 | 0.8308 | 02707 | 21.81 | 0.8025 | 0.2654
|
|
|
|

Restoration-based approaches Two representative restoration backbones, Restormer [56] and
Uformer [47]], are selected for evaluation. Both models are originally designed for image-to-image
restoration tasks, where the input and output are 3-channel RGB images. They have demonstrated
strong performance on tasks such as denoising, deraining, and deblurring, making them suitable
baselines for pixel-wise polarization prediction. In our implementation, we modify the output layer
to produce 9 channels, corresponding to the concatenated Stokes components S € R *Wx9 for
supervision. The models are trained using an L, loss between the predicted and ground-truth Stokes
components.

Then we further evaluate Masked Autoencoder (MAE) [[14]], a vision transformer pre-trained using
self-supervised learning on large-scale image datasets. MAE learns strong visual representations by
reconstructing randomly masked image patches. With the pre-trained parameters, it can extract robust
features for a variety of downstream tasks. In our setting, we modify the output channels of the final
predictor projection layer to 9, corresponding to the concatenated Stokes components S € R xWx9
used for supervision. Both the MAE encoder and decoder are initialized with pre-trained weights.
The predictor projection layer is initialized by inflating the original parameters through channel-wise
replication to match the 9-channel output. The entire model is then fine-tuned end-to-end using an L;
loss between the predicted and ground-truth Stokes components.

Generation-based approaches Next, we explore generative diffusion models for RGB-to-
polarization estimation. Two types of models are evaluated: (1) task-specific diffusion models
trained from scratch, and (2) large-scale pre-trained models adapted to our task.

For the first type, we adopt WDiff [33] and DiT [36]], two representative conditional diffusion models.
Both are trained to iteratively denoise a latent polarization representation conditioned on the input
RGB image. In our setting, we treat the RGB image as the conditioning input and train the diffusion
process to generate the 9-channel Stokes output S € R *Wx9_ The training objective minimizes the
denoising error over the diffusion steps using standard diffusion loss formulations.

For the second type, we adapt pre-trained diffusion models to the polarization estimation task.
Specifically, we fine-tune RealFill [44] and Img2ImgTurbo [35]], which are originally developed for
image inpainting and translation. These models are built upon Stable Diffusion [40] and leverage
rich visual priors learned from large-scale image-text datasets. Instead of modifying the model
architecture, we train a separate model for each Stokes component, i.e., S1, So, and Sz, where each
component is represented as a 3-channel image. This allows us to directly reuse the pre-trained UNet
decoder without altering the output layer. Each model is fine-tuned in a conditional generation setting,
where the RGB image serves as guidance. During training, we follow the default configurations and
hyperparameters provided in the original implementations.

4 Experiments

In our experiments, we primarily adopt the dataset provided by Jeon et al. [17] as the training and
evaluation benchmark. Specifically, the first 1,000 RGB—Stokes image pairs are used for training, and
the last 200 pairs from the dataset are reserved for testing. For a fair comparison, all image pairs are



Table 2: Quantitative results on RGB-to-polarization image estimation across datasets. We report
average PSNR, SSIM, and LPIPS over Stokes components on Jeon et al. [[17], Qiu et al. [38]], and
Kaurita et al. [19] datasets. Higher PSNR/SSIM and lower LPIPS indicate better performance. We

highlight the best and second-best results for each column.

Method | Jeon et al. [17] | Qiu et al. [38] | Kurita et al. [19]

‘ PSNR SSIM  LPIPS ‘ PSNR SSIM  LPIPS ‘ PSNR SSIM  LPIPS
Wdiff [33] 13.11 0.6822 0.3772 | 11.44 0.6523 0.4042 | 11.56 0.6945 0.4311
DiT [36] 23.33  0.8409 0.2447 | 14.74 0.7328 0.2829 | 17.86 0.8191 0.2874
RealFill [44] 21.81 0.8025 0.2654 | 15.19 0.7241 0.3028 | 18.09 0.8252 0.2654
Img2ImgTurbo [35] | 23.33 0.8725 0.3542 | 15.65 0.7566 0.3811 | 18.78 | 0.8504 0.3115
Restormer [56] 2398 0.8730 0.2369 | 14.77 0.5325 0.5186 | 18.85 0.8394 0.2697
Uformer [47] 2434 0.8722 0.2267 | 14.68 0.7278 0.3160 | 18.74 0.8381 ' 0.2627
MAE [14] 2474 0.8876 0.2684 | 15.02 0.7401 0.3238 | 18.81 0.8499 0.2772

resized to 256256 for training and testing across all baseline models. In addition to the in-dataset
evaluation, we further assess the generalization ability of the trained models on two external datasets:
Qiu et al. [38]] and Kaurita et al. [[19].

4.1 Implementation details

All experiments are conducted on a server equipped with four NVIDIA RTX A5000 GPUs, each
with 24 GB of memory. To ensure reproducibility, we will release all code, model checkpoints, and
configuration files upon acceptance. The following paragraphs describe the network architectures of
all evaluated models, while detailed training hyperparameters are deferred to the Appendix.

Restoration baselines Restormer [56] consists of four hierarchical levels, each containing a series
of transformer blocks. The numbers of transformer blocks in the four levels are set to 4, 6, 6, and
8, respectively. The embedding dimension is set to 48. Uformer [47] follows an encoder—decoder
architecture with four encoder layers and four decoder layers. Each layer contains two transformer
blocks, and the embedding dimension is set to 32. MAE [14] adopts an asymmetric encoder—decoder
design, where the encoder and decoder contain 24 and 8 transformer blocks, respectively.

Generation baselines WDiff [33] adopts a hierarchical U-Net architecture with six resolution
levels, each containing two residual blocks. Attention is applied at the 16 x 16 resolution. DiT [36] is
a Vision Transformer-based diffusion model with 10 transformer blocks, each using 6 attention heads
and a hidden size of 768. RealFill [44] is built on top of Stable Diffusion, using a U-Net backbone
with cross-attention. It incorporates Low-Rank Adaptation (LoRA) modules with rank 8 and dropout
0.1 to fine-tune both the UNet and the text encoder. Only LoRA parameters are updated during
training, while the base model remains frozen. Img2ImgTurbo [35] also builds on Stable Diffusion,
but improves generation efficiency by directly injecting the RGB latent into the denoising UNet. It
integrates LoRA adapters into both the UNet and VAE components, with LoRA ranks set to 8 and 4,
respectively, enabling lightweight and flexible fine-tuning.

4.2 Quantitative evaluation

Table[T]shows the quantitative results for RGB-to-polarization estimation across all baseline models.
For each method, we evaluate the predicted Stokes components (S1, So, and S3) using three commonly
used metrics: PSNR, SSIM, and LPIPS. Among all methods, MAE [[14] achieves the best overall
performance, attaining the highest average PSNR (24.74), SSIM (0.8876), and a competitive LPIPS
(0.2684). While Restormer [56]] and Uformer [47]] are trained from scratch, both models also exhibit
strong performance, particularly in structural fidelity and perceptual similarity. Notably, Uformer
achieves the lowest average LPIPS score of 0.2267 across all evaluated methods.

Diffusion-based models exhibit inconsistent performance across different architectures. WDiff [33]]
shows relatively low reconstruction quality, while DiT [36] demonstrates notable improvements
across all metrics. Among the pre-trained diffusion models, Img2ImgTurbo [35] consistently out-
performs RealFill [44] on most metrics, particularly in PSNR and SSIM. These results establish a
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Figure 3: Qualitative comparison of estimated polarization components from RGB input. Results are
shown for Uformer [47], MAE [[14], DiT [36], and Img2ImgTurbo [33].
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Figure 4: Qualitative comparison of estimated polarization components from RGB input. Results are
shown for Uformer [47]], MAE [[14]], DiT [36]], and Img2ImgTurbo [33].

clear performance landscape across different model families and provide a foundation for further
comparative analysis.

These quantitative trends can also be understood from the perspective of physical polarization
properties. We find that estimating the S; component is more difficult than So and S3. Physically,
S1 represents the difference between horizontal and vertical polarization, which tends to be more
sensitive to surface orientation and material properties. In many natural scenes, this component is
weaker or more spatially uniform due to diffuse reflection, leading to a lower signal-to-noise ratio
and making it harder for the model to learn accurate patterns from RGB inputs.

To further assess the generalization ability of RGB-to-polarization estimation, we evaluate models
trained on the dataset provided by Jeon et al. using two additional benchmarks: Qiu et al. [38] and
Kurita et al. [T9]]. As shown in Table[2] the results exhibit consistent trends across datasets: restoration-
based and pre-trained models (e.g., MAE, Uformer) generally achieve stronger performance, while
diffusion-based models lag behind in quantitative metrics.

4.3 Qualitative evaluation

Figures[3]and @] show qualitative results of the estimated Stokes components generated by DiT [36],
Img2ImgTurbo [33], Uformer [47)], and MAE [14]. Each column visualizes the reconstructed
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Figure 5: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-
nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [14], DiT [36]], and Img2ImgTurbo [35].
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Figure 6: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-
nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [14], DiT [36]], and Img2ImgTurbo [35].

S1, S2, and S3 components produced by each method. The results reveal diverse reconstruction
characteristics across models, including differences in texture sharpness, structural consistency, and
polarization pattern styles. Overall, MAE and Uformer demonstrate superior visual quality compared
to diffusion-based approaches. MAE is particularly effective in preserving fine structural details and
material boundaries, with minimal artifacts across all Stokes components. However, the restored
details from restoration-based methods still deviate from the correct results, indicating that such
models may still lack the capacity to capture the underlying polarization cues precisely. In contrast,
diffusion-based methods struggle to reconstruct the correct appearance and structure of polarization
components, indicating difficulty in modeling these signals. Although Img2ImgTurbo achieves higher
PSNR scores than DiT, its visual results are less faithful to the ground truth, particularly in terms of
structural detail. This suggests a trade-off between pixel-level accuracy and perceptual quality among
diffusion-based models.

Furthermore, Figures [5|and [f] visualize the corresponding DoLP and AoLP maps derived from the
estimated Stokes components. These results provide an alternative perspective by directly reflecting
the physical polarization cues. The restoration-based Uformer generally produces more accurate
and stable DoLP patterns, whereas the diffusion-based DiT achieves relatively better AoLP maps,
highlighting their complementary strengths in capturing polarization information.

These qualitative observations highlight that both restoration-based and generative-based methods
have limitations in RGB-to-polarization estimation. Restoration models may lack fine polarization
accuracy, while generative models often struggle with structural consistency.

4.4 Discussion

Restoration vs. Generation Table|[I|reveals a clear performance gap between restoration-based
and generation-based approaches. Restoration models, such as Restormer and Uformer, consistently
achieve higher PSNR and SSIM scores than diffusion-based models like WDiff and DiT. Among



the pre-trained baselines, MAE also outperforms both Img2ImgTurbo and RealFill by a substantial
margin across most metrics. These results suggest that the restoration backbones are more effective
for Stokes component prediction, likely due to their capacity for precise pixel-level estimation.

Although WDiff struggles to produce accurate reconstructions, more advanced diffusion models
such as DiT demonstrate marked improvements across all metrics. This indicates that task-specific
diffusion models still hold promise for polarization estimation, particularly with further architectural
or training enhancements.

Pre-training vs. Training from scratch Pre-trained models exhibit clear advantages in RGB-to-
polarization estimation. MAE achieves the highest average PSNR and SSIM, outperforming Uformer
by a noticeable margin, demonstrating the effectiveness of transferring rich visual representations
learned from large-scale RGB data. Img2ImgTurbo also outperforms task-specific diffusion models
like WDiff and DiT by leveraging the strong generative prior of Stable Diffusion. In contrast,
RealFill fine-tunes only the LoORA modules in the UNet while keeping the VAE frozen. This leads to
information loss during latent encoding and decoding, which degrades the quality of polarization
prediction.

One contributing factor to the improved performance is the intrinsic correlation between RGB
images and polarization information. Since RGB images encode overall light intensity and structural
patterns, models pre-trained on RGB data are better equipped to extract cues relevant for polarization
estimation, even in the absence of direct supervision. These findings indicate that incorporating
pre-trained weights, whether through self-supervised representation learning or large-scale generative
modeling, is a promising strategy to enhance the accuracy and robustness of sensor-free polarization
prediction.

Insights for future research Our benchmark reveals several insights for future research. First,
although both restoration-based and generation-based methods achieve promising results, there
remains significant room for improvement in fine-grained detail reconstruction and polarization
fidelity. Second, our benchmark leverages existing state-of-the-art backbones to establish strong
baselines. However, future research may benefit from incorporating physical constraints, as the Stokes
components inherently encode rich physical properties of light. Third, since acquiring large-scale
paired data for RGB-to-polarization training is challenging, future work may explore self-supervised
methods using unlabeled polarization data. Fourth, although our benchmark adapts image pre-trained
models for polarization estimation, the adaptation is not specifically tailored to this task. Future
research may explore more effective adaptation or fine-tuning methods to better capture polarization-
related features. Finally, as the estimated polarization information may contain inaccuracies, it can
affect downstream applications. Estimating polarization along with a confidence map is therefore an
important direction for future research.

5 Conclusion

This paper introduces and benchmarks a new task: RGB-to-polarization image estimation, which aims
to infer polarization information from standard RGB inputs without requiring specialized sensors.
We formalize the task using Stokes parameters and construct the first comprehensive benchmark
based on a recent large-scale dataset. Our evaluation covers various deep learning models, including
restoration-based backbones and generation-based backbones. Through extensive quantitative and
qualitative analysis, we reveal the strengths and limitations of existing approaches, providing a
detailed performance landscape for this underexplored problem. Our results indicate that pre-trained
models, such as MAE and Stable Diffusion with LoRA, offer strong prior knowledge that can be
effectively transferred to polarization estimation, leading to consistently improved performance. We
hope this benchmark will serve as a foundation for future research, fostering the development of
accurate and efficient polarization estimation methods from RGB images alone.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are consistent with the paper’s
actual contributions and scope, as detailed in Lines 7-16.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include any theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary implementation details, including hyper-parameters and training
settings, are provided in Section 4.1 and Section [A] ensuring that the main experimental
results can be reproduced.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The implementation code is publicly available at the following GitHub reposi-
tory: https://github.com/bb12346/Polarization2RGB

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All necessary settings/details are provided in Section[d.1)and Section[A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Following common practice in low-level vision tasks, we do not report error
bars, as the results are deterministic and evaluation metrics (e.g., PSNR/SSIM) are consistent
across runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details are provided in Section[4.1]

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have fully adhered to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A discussion of the potential societal impacts of our work is provided in the
supplementary material.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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12.

13.

Answer: [NA]

Justification: The paper does not involve data or models with high risk of misuse, so
safeguards are not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets are properly credited, and their licenses and terms of use
are respected, as detailed in Section[d.1]

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentation alongside our code submission to ensure clarity
and reproducibility.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research involving human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines: The paper does not involve crowdsourcing nor research with human subjects.
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Implementation details

Training details of restoration baselines The training steps for Restormer [56]], Uformer [47]], and
MAE [14] are set to 70,000, 70,000, and 40,000, respectively. Due to differences in patch size and
network depth, we adopt different batch sizes for training. For each model, we use the maximum
batch size that fits within GPU memory constraints, which are 16, 48, and 128, respectively. During
training, we use the Adam optimizer with an initial learning rate of 1.5x 104

Training details of generation baselines The training steps for WDiff, DiT, RealFill, and
Img2ImgTurbo are set to 90,000, 90,000, 10,000, and 8,000, respectively. We use the Adam
optimizer with an initial learning rate of 1.5x10~* for WDiff and DiT, and adopt batch sizes of
128 and 258, respectively. For RealFill and Img2ImgTurbo, due to higher memory consumption,
the batch sizes are limited to 12 and 4, respectively. To simulate a larger effective batch size, we
apply gradient accumulation with a factor of 4 for Img2ImgTurbo. Following [44]], we adopt separate
learning rates for LORA modules in RealFill: 2e-4 for the UNet and 4e-5 for the text encoder. For
Img2ImgTurbo [35], we set a unified learning rate of Se-6 for all learnable parameters.

B More experiments

B.1 More qualitative results

We present supplementary qualitative results of the estimated Stokes components generated by
DiT [36], Img2ImgTurbo [35], Uformer [47], and MAE [14]. The results are illustrated in Fig-
ures Among the methods, MAE and Uformer produce consistently better visual quality than
the diffusion-based approaches. Nonetheless, there remains substantial room for improvement in
accurately estimating polarization data.

Figures 24H30] present additional results, visualizing the corresponding DoLP and AoLP maps derived
from the estimated Stokes components. Similar to the main paper, these results provide a physical
perspective by directly reflecting polarization cues. While the restoration-based Uformer continues to
yield more accurate and stable DoLP patterns, and the diffusion-based DiT demonstrates relatively
better AoLP predictions, the overall performance of all models still leaves room for improvement,
particularly in handling challenging lighting conditions and fine-grained polarization details.

B.2 Downstream task evaluation

To further investigate the practical utility of estimated polarization images, we conduct preliminary
experiments on a downstream task of polarization-aware semantic segmentation. Following Liu
et al. [28]], we evaluate segmentation performance by replacing ground-truth polarization inputs
with estimated polarization channels. Table 3| summarizes the results. We observe that performance
degrades when replacing real polarization with estimated counterparts, especially when all four
channels are substituted (mIoU drops from 92.45 to 45.56). However, the relatively smaller gap when
substituting only one or two channels indicates that estimated polarization still provides useful cues
for segmentation. This highlights both the current limitations and the potential of RGB-to-polarization
estimation for downstream vision tasks.

Table 3: Segmentation performance (mloU) on UPLight dataset using ShareCMP when replacing
real polarization inputs with estimated ones.

Inputs mloU (%) 1
107145,190,1135 (all real) 92.45
Estimated I, others real 76.91
Estimated 1,5, others real 92.40
Estimated Igg, others real 57.40
Estimated I35, others real 75.68
All estimated 45.56
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Table 4: Model complexity comparison including FLOPs, number of parameters, runtime, and
memory usage. Runtime is measured on a single NVIDIA RTX A5000 GPU. FLOPs and parameter
counts are taken from the original papers.

Method FLOPs Parameters Runtime (s) Training Memory Test Memory
WDiff [33] 16 GFLOPs 109.7M 0.25 4 x 24G GPUs ~1G
DiT [36] 19 GFLOPs 108.7M 0.19 4 x 24G GPUs ~1G
RealFill [44] 86 GFLOPs 1.7M 5.00 4 x 24G GPUs ~3G
Img2ImgTurbo [35] 86 GFLOPs 9.5M 0.20 4 x 24G GPUs ~6G
Restormer [56] 38 GFLOPs 26.1M 0.04 2 x 24G GPUs ~1G
Uformer [47] 11 GFLOPs 5.3M 0.01 2 x 24G GPUs ~1G
MAE [14] 64 GFLOPs 330.0M 0.01 4 x 24G GPUs ~2G

Table 5: Stability at larger resolutions. Quantitative results at both 256256 and 512x512 input sizes
are reported.

Method Input size: 256 x256 Input size: 512x512
PSNR SSIM LPIPS PSNR SSIM LPIPS
WDiff [33] 13.11 0.6822 0.3772 12.53 0.6765 0.3997
DiT [36] 23.33 0.8409 0.2447 18.65 0.8303 0.2394
RealFill [44] 21.81 0.8025 0.2654 23.74 0.8238 0.2349
Img2ImgTurbo [35] 23.33 0.8725 0.3542 22.52 0.8372 0.3602
Restormer [56] 23.98 0.8730 0.2369 23.35 0.8757 0.2379
Uformer [47] 24.34 0.8722 0.2267 24.11 0.8883 0.2092
MAE [14] 24.74 0.8876 0.2684 23.63 0.8650 0.2810

B.3 Depth estimation frameworks for polarization

To investigate whether depth estimation frameworks can be applied to polarization estimation, we
conducted experiments using Depth Anything v2 [S1]]. Specifically, we modified the last layer to
output 9 channels for predicting S, So, and S3, while keeping the pre-trained parameters for the
remaining layers. The averaged PSNR, SSIM, and LPIPS are 25.75, 0.8777, and 0.3765, respectively.

Although this model achieves higher pixel-level metrics compared to MAE, the perceptual quality is
noticeably worse. This suggests that pre-trained depth-based models provide strong structural priors
and achieve better pixel-level metrics. However, their outputs tend to be over-smoothed, leading
to worse perceptual quality. In contrast, restoration-based methods like MAE better preserve fine
textures, resulting in lower LPIPS.

B.4 Model complexity comparison

A comparison of model complexity, including FLOPs, number of parameters, runtime, and memory
usage, is summarized in Table El}

B.5 Stability at larger resolutions

In our benchmark, all image pairs are resized to 256x256 to ensure a fair comparison across methods.
Additionally, we performed inference at a higher resolution of 512x512. The detailed quantitative
results are shown in Table [5] and the accuracy trends indicate stable performance at larger input
resolutions.

C Physical constraints

To ensure a fair comparison, our main benchmark experiments adopted existing restoration and
generation backbones with minimal modifications, avoiding additional priors that could introduce
discrepancies across methods. Nevertheless, to address the concern of physical validity, we provide
an additional analysis here by explicitly incorporating physically grounded constraints.
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C.1 DoP range constraint

The degree of polarization (DoP) is theoretically bounded within [0, 1] [45] [6]. We enforce this
property with a penalty loss:

Lpop-phys = E [max(0, DoP — 1) + max(0, —DoP)?] , @

which ensures physically valid DoP values and prevents over-polarization artifacts. This formulation
illustrates how physically grounded constraints can be incorporated into learning frameworks to guide
models toward valid polarization states, without introducing task-specific biases. In practice, adding
this constraint yields slight but consistent improvements across both perceptual and polarization-
related metrics.

C.2 Potential extension: stokes consistency

Beyond DoP, polarization theory also imposes the inequality S3+S3+53 < S2 [30], which guarantees
consistency between the polarized and total intensities. While not included in our current benchmark
implementation to maintain fairness, such constraints remain promising for future extensions.

D Discussion

D.1 Relationship between numerical metrics and stokes components

In our benchmark, PSNR and SSIM are used to evaluate pixel-level fidelity and structural similarity
between the predicted and ground-truth Stokes components (S1, So, S3). LPIPS, on the other hand,
provides a perceptual similarity score that captures differences in the spatial structure and appearance
of the Stokes maps.

The Stokes components represent physical polarization information, and accurate reconstruction,
reflected by high PSNR and SSIM, and low LPIPS, indicates better prediction quality. These metrics
offer a quantitative assessment of how well the model captures the spatial and structural details of the
polarization cues encoded in Sy, So, and S3.

E Limitations

Although our benchmark provides a comprehensive evaluation of RGB-to-polarization estimation, it
still has several limitations due to practical constraints. First, our evaluation is based on the dataset
provided by Jeon et al. [[17]. While it includes more than 2000 scenes, the diversity of materials and
surface types is limited. As a result, polarization estimation under complex material properties, such
as metals, birefringent materials, and biological tissues, remains underexplored. Second, adverse
conditions such as weather-induced degradations or extreme noise can degrade image quality and
thus affect polarization estimation. Our benchmark does not evaluate these cases due to the lack of
such scenarios in existing datasets. Expanding the dataset to include more challenging and diverse
environments is an important direction for future work.

F Societal impact

Polarization data has proven useful in many computer vision tasks, such as reflection separation and
material classification. However, it remains difficult to obtain polarization data on consumer devices,
limiting the practical use of polarization-based methods. This paper introduces a new task: RGB-
to-polarization image estimation, which aims to infer polarization information directly from RGB
images. By reducing reliance on specialized sensors, this approach has the potential to democratize
access to polarization imaging and enable broader adoption in both scientific and industrial settings.
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Figure 7: Qualitative comparison of estimated polarization components from RGB input. Results are
shown for Uformer [47], MAE [[14]], DiT [36]], and Img2ImgTurbo [33].
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Figure 8: Qualitative comparison of estimated polarization components from RGB input. Results are
shown for Uformer [47], MAE [[14]], DiT [36]], and Img2ImgTurbo [33].
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Figure 9: Qualitative comparison of estimated polarization components from RGB input. Results are
shown for Uformer [47], MAE [[14]], DiT [36]], and Img2ImgTurbo [33].
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Figure 10: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 11: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 12: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 13: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 14: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 15: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 16: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 17: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 18: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 19: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 20: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 21: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]), MAE [14]], DiT [36]], and Img2ImgTurbo [33]].
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Figure 22: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47]], MAE [14]], DiT [36]], and Img2ImgTurbo [35].
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Figure 23: Qualitative comparison of estimated polarization components from RGB input. Results
are shown for Uformer [47], MAE [14]], DiT [36]], and Img2ImgTurbo [35]].
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Figure 24: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-
nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [[14], DiT [36]], and Img2ImgTurbo [35].
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Figure 25: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-
nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [14], DiT [36], and Img2ImgTurbo [35].
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Figure 26: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-
nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [[14], DiT [36], and Img2ImgTurbo [35].
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Figure 27: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-

nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [14], DiT [36], and Img2ImgTurbo [35].
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Figure 28: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-

nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [14], DiT [36], and Img2ImgTurbo [35].
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Figure 29: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-
nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47]], MAE [[14], DiT [36], and Img2ImgTurbo [35].
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Figure 30: Qualitative comparison of predicted DoLP and AoLP maps, derived from Stokes compo-

nents estimated from RGB input. Ground-truth maps are provided for reference, along with results
from Uformer [47], MAE [14], DiT [36]], and Img2ImgTurbo [35].

31



	Introduction
	Related work
	Method
	Stokes parameters and derived quantities
	Benchmark design
	Baselines

	Experiments
	Implementation details
	Quantitative evaluation
	Qualitative evaluation
	Discussion

	Conclusion
	Implementation details
	More experiments
	More qualitative results
	Downstream task evaluation
	Depth estimation frameworks for polarization
	Model complexity comparison
	Stability at larger resolutions

	Physical constraints
	DoP range constraint
	Potential extension: stokes consistency

	Discussion
	Relationship between numerical metrics and stokes components

	Limitations
	Societal impact

