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ABSTRACT

Large Language Models typically rely on Supervised Fine-Tuning (SFT) with
Cross-Entropy (CE) loss to specialize in downstream tasks. However, CE forces
the distribution toward one-hot targets and ignores alternative continuations,
thereby limiting output diversity—a key drawback for generative applications that
rely on sampling-based exploration. In this paper, we propose “Training with
Sparsemax+, Testing with Softmax (TS2)”. Intuitively, sparsemax and its tailored
loss mask the gradients of probabilities outside the support set, leaving excessive
probability mass on irrelevant tail classes when evaluating with softmax. To ad-
dress this issue, we propose an improved variant, Sparsemax+, for training, which
augments the sparsemax loss with a suppression term that penalizes the out-of-
support probabilities. At testing, we decode with softmax, yielding calibrated,
non-degenerate probabilities where plausible near-ties survive. We fine-tuned
Llama-3.1-8B and Qwen-2.5-7B with TS2, achieving consistent improvements
in accuracy and output diversity across chat, code, and open-domain benchmarks.
Together, these results demonstrate that TS2 provides a practical, drop-in solution
for fine-tuning LLMs that are both more accurate and more creative.

1 INTRODUCTION

Supervised fine-tuning (SFT) is one of the major steps in the Large Language Models (LLMs) post-
training stage: with a small amount of high-quality annotated data, it teaches models to organize
language better and produce instruction-following responses. The default loss function is cross-
entropy loss, mainly because it coincides with maximum likelihood and is a strictly proper scoring
rule, so minimizing it recovers the data generating conditional under well-specification (Gneiting &
Raftery, 2007). However, the same geometry drives the probability mass toward the one-hot target
and away from plausible alternatives, yielding overconfident posteriors and reduced useful diversity.
A large body of work seeks to counteract this overconfidence and recover useful diversity. One
branch changes only the decoding, e.g., nucleus sampling and best-of-N , leaving training dynamics
and calibration untouched (Holtzman et al., 2020). Another branch alters the training signal itself.
The recent GEM framework reframes SFT as reverse-KL minimization with an entropy regular-
izer, improving variety and mitigating overfitting (Li et al., 2025). These approaches highlight a
fundamental issue: promoting diversity can conflict with keeping probabilities calibrated and tails
disciplined.

We argue that the field lacks a precise operational notion of useful “diversity” for instruction follow-
ing. In many tasks, we do not want to “spread probability” indiscriminately over the entire vocab-
ulary. Instead, we want probability mass concentrated among a handful of semantically plausible
next tokens, those with a real chance of leading to a high quality continuation, while aggressively
deflating the long tail of obviously incorrect tokens toward (near) zero. The right diversity is within
the plausible set, not across the whole simplex. The forward KL KL(p∥q) is mean-seeking, incen-
tivizing probability wherever the data has support; the reverse KL KL(q ∥p) is mode-seeking, con-
centrating mass on promising regions (Minka, 2005). This lens helps explain why CE with entropy
maximization (a forward-KL-flavored objective under softmax) can inflate low-probability tokens,
while reverse-KL flavored objectives like GEM avoid gratuitous tail mass. Yet even reverse-KL does
not guarantee that clearly implausible tokens go to zero.
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Figure 1: Token Distribution for single digit generation (detailed in Appendix C.4).

Our approach takes a geometric route by decoupling the mapping from logits to probabilities
between training and testing. Specifically, we train with sparsemax and optimize a modified
Fenchel–Young loss tailored to this mapping (Martins & Astudillo, 2016; Blondel et al., 2019),
while at inference we revert to softmax, which restores calibrated and smooth probabilities on the
same logits. Our tailored loss contains a tail penalty that drives non-support tokens to zero while
ensuring the gold token is never penalized, even if it lies outside the instantaneous sparsemax sup-
port. Notably, CE with softmax collapses diversity: all non-gold logits, even plausible ones, are
pushed toward zero. In contrast, sparsemax maintains a sparse support set by zeroing gradients of
non-support tokens, preserving plausible candidates. However, if sparsemax were also used at infer-
ence, a converged model would still produce one-hot outputs—similar to CE with softmax decod-
ing—thus limiting diversity (Martins & Astudillo, 2016; Blondel et al., 2019). Figure 1 shows that
the pretrained model naturally exhibits diversity, but such diversity is lost during SFT: CE training
drives the distribution into a one-hot solution, while GEM manages to retain only a few candidates,
with most remaining probability mass assigned to irrelevant symbols. In contrast, our method de-
livers stronger and more stable diversity: the candidate set is both meaningful and varied, striking a
balance between plausibility and coverage.

This decoupled recipe, Train with Sparsemax+, Test with Softmax (TS2), has two key effects. Dur-
ing training, sparse gradients act as a principled early-stopping mechanism by avoiding wasted up-
dates on already separated tail candidates. At inference, reverting to softmax restores smooth, cal-
ibrated probabilities so that plausible near-ties survive and sampling can explore them without ag-
gressive temperature tuning. By construction, our method achieves local diversity among plausible
tokens while assigning near-zero confidence to implausible ones. We position TS2 among comple-
mentary strategies. Inference-only methods (e.g., nucleus, top-k, best-of-N ) improve sample variety
but leave training untouched; our approach reshapes training dynamics while remaining fully com-
patible with such decoders (Holtzman et al., 2020). Entropy targeting methods (e.g., GEM) promote
spread but do not enforce exact zeros on implausible tokens; our penalty term supplies this “hard”
suppression, while sparsemax ensures spread occurs where it matters (Li et al., 2025). Finally, be-
cause TS2 decouples mappings rather than altering model architecture, it integrates seamlessly into
existing SFT pipelines. The contribution of this paper are summarized in the following:

• We frame the problem as achieving Tail-Suppressed Plausible Diversity (TSPD) and propose TS2,
which decouples training and inference by using a Sparsemax+ loss with tail penalty for training
and standard softmax for decoding.

• We provide a theoretical analysis showing how TS2 avoids the distributional collapse common to
CE training via a gradient-masking mechanism, thereby preserving diversity at inference.

• We demonstrate in practice that our TS2 significantly improves winrates, sample efficiency in code
generation, and output diversity across multiple benchmarks compared to existing methods.

2 DISTRIBUTION COLLAPSE AND OUR INSIGHT

Recent studies have observed an “alignment tax” in large language models (LLMs): while super-
vised fine-tuning (SFT) improves faithfulness and task adherence (Brown et al., 2020), it often comes
at the cost of reduced output diversity and partial forgetting of pre-trained knowledge (O’Mahony
et al., 2024; Kim et al., 2025). Pre-trained LLMs naturally exhibit a broad generative repertoire, pro-
ducing multiple semantically valid outputs for the same prompt (Wang et al., 2025). However, after
SFT, models tend to respond with highly deterministic and homogeneous output (Li et al., 2025),
weakening their utility in downstream applications such as planning (Song et al., 2023), writing (Lee
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et al., 2022), or code generation (Liu et al., 2023), all of which fundamentally rely on the ability to
explore diverse candidate responses.

A central obstacle in supervised fine-tuning is that cross-entropy (CE), driving the predictive distri-
bution towards a one-hot distribution, causing all probability mass to collapse onto the gold token.
This distribution collapse ensures convergence, but comes at a severe cost: the model suppresses
all alternatives to nearly zero, leading to deterministic outputs, both in the choice of tokens and in
the semantic content of the whole responses. The mechanism destroys diversity, erasing helpful
variations preserved in the pre-trained distribution and thereby yielding monotonous generations.

2.1 OUR GUIDING INSIGHT: TAIL-SUPPRESSED PLAUSIBLE DIVERSITY

In generative modeling, output diversity is essential. A target distribution should retain a compact set
of plausible candidates with non-negligible probability while suppressing irrelevant long-tail tokens
toward zero. We formalize this as Tail-Suppressed Plausible Diversity (TSPD), which remedies the
distribution collapse commonly observed in existing SFT.

Notation. We consider prompt–response pairs (x, y) ∈ D from a supervised dataset D. Let fθ
denote a pre-trained LLM parameterized by θ. For a prompt x, let z = fθ(x) ∈ RK denote the
corresponding logit vector1. We define the probability simplex as ∆K−1 = {p ∈ RK | pi ≥
0,
∑K

i=1 pi = 1}, where p = g(z) denotes a probability distribution obtained from the logits z via
a probability mapping function g(·).
Definition 1 (Tail-Suppressed Plausible Diversity (m, εhead, εtail)). Given a prompt–response pair
(x, y), let p = g(fθ(x)) ∈ ∆K−1 be a distribution over a vocabulary V . Fix an integer m ≥ 2 and
thresholds 0 < εhead ≤ 1

m and 0 ≤ εtail ≤ 1−mεhead. Let Topm(p) denote the indices of the m
largest coordinates of p. If y ∈ Topm(p), let S := Topm(p); otherwise, let S := Topm−1(p)∪{y}.
We say that p satisfies TSPD of order m if

(Head Preservation) min
j∈S

pj ≥ εhead, (1a)

(Tail Suppression)
∑
j /∈S

pj ≤ εtail. (1b)

which ensures that candidates in S retain non-negligible probability, whereas tokens outside S re-
ceive essentially zero probability, thereby preserving uncertainty and transferable knowledge at in-
ference. If one chooses εhead = 1/m exactly, then the strict requirement εtail ≥ 0 forces mεhead = 1
and pj = 0 ∀j /∈ S; therefore, in practice one can take εhead < 1/m and relax εtail > 0.
Corollary 1. If Definition 1 holds and εtail < εhead, then maxj /∈S pj ≤ εtail < εhead ≤ mini∈S pi,
so each plausible sample has strictly higher probability than any tail sample.
Corollary 2. If all probability mass collapses onto the ground-truth token, i.e., py = 1 and py′ =
0 ∀y′ ̸= y, then p fails to qualify the TSPD (m(≥ 2), εhead, εtail).

In the next section, we motivate our method that operationalizes this principle, directly countering
the diversity-reducing bias of CE loss while retaining the benefits of supervised fine-tuning.

3 ACHIEVING TAIL-SUPPRESSED PLAUSIBLE DIVERSITY

A natural way to realize TSPD in Equation (1) is to exploit the sparsity of the sparsemax mapping
sparsemax(z), which projects logits z onto the probability simplex ∆K−1, yielding exact zeros
outside a data-dependent support. Formally,

psp(z) = [z − τ(z)1]+ := sparsemax(z),

where [z]+ := max{z, 0} is applied elementwise, and the threshold is defined as τ(z) =∑
j∈Ssp(z) zj−1

|Ssp(z)| , with Ssp(z) = {j : zj − τ(z) > 0} denoting the support set. In effect, sparse-
max automatically identifies a compact support set of plausible candidates Ssp(z) and prunes away
the long tail. Compared to softmax probability mapping psf(z) = exp(z)∑K

i=1 exp(zi)
:= softmax(z), its

Jacobian is sparse. See Lemma 3 for more details.
1y and x can be sequential, where an auto-regressive formulation is used.
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Lemma 3 (Gradients vanish outside the sparsemax support). Let p = sparsemax(z) and Ssp(z) be
its support. Consider the sparsemax loss Lsp(z, y) with target y. If y ∈ Ssp(z), then ∀i /∈ Ssp(z),
∂Lsp(z,y)

∂zi
= 0.

While sparsemax provides margin-induced sparsity, it nonetheless tends to collapse into a nearly
one-hot distribution once the leading logit surpasses the margin threshold. Such collapse inevitably
reduces sampling diversity, making sparsemax undesirable for inference.

This motivates us to instead carry out decoding with softmax. Under this choice, the gradient-
vanishing property established in Lemma 3 remains advantageous during training: by nullifying gra-
dients outside the active support whenever the target is included, it mitigates the cross-entropy–style
erosion of plausible near-optimal alternatives, thereby inducing an implicit early-stopping effect.

Theorem 4 (Sparsemax expands pairwise gaps faster than softmax). Let z ∈ RK , psf =
softmax(z), and psp = sparsemax(z). For any indices i ̸= j, let u := zi − zj and we have

∂

∂u
(pspi − pspj ) = 1 ∀ i, j ∈ Ssp, sparsemax

∂

∂u

(
psfi − psfj

)
< 1, softmax

Given the same logits, Theorem 4 shows that sparsemax linearly preserves pairwise probability
gaps within its active support and collapses to a one-hot prediction once a finite margin is attained,
whereas softmax strictly contracts such gaps. Consequently, sparsemax induces sharp discrimina-
tion and faster label collapse during training, while applying softmax to the same logits at inference
preserves non-degenerate mass on plausible candidates—maintaining output diversity that is desir-
able for generative tasks.

Corollary 5 (Softmax remains TSPD-valid when sparsemax is one-hot). Let z ∈ RK with y =
argmaxj zj , and δj := zy−zj . Assume sparsemax is one-hot at y, i.e., δmin := minj ̸=y δj ≥ γ > 0
(e.g., γ = 1), and the top-m head is bounded: δ(k) := zc − z(k) ≤ B ∀k = 2, . . . ,m. Set
Am = m+ (K −m)e−γ . Then for psf = softmax(z) we have

psfy ≥
1

Am
, psf(k) ≥

e−B

Am
(∀k = 2, . . . ,m),

∑
k>m

psf(k) ≤
(K −m)e−γ

Am
.

Consequently, psf satisfies TSPD of order m with any thresholds 0 < εhead ≤ e−B

Am
, (K−m)e−γ

Am
≤

εtail ≤ 1−mεhead.

Remark 1. Without the head bound δ(k) ≤ B (∀k ≤ m), psf(m) can be made arbitrarily small even
when δmin ≥ 1, so only a vanishingly small head floor εhead can be guaranteed for general m.

According to Corollary 5, the cumulated tail mass of softmax outside the top-m satisfies∑
k>m psf(k) ≤

(K−m)e−γ

Am
. This upper bound is strictly increasing in K (for fixed m, γ) and ap-

proaches 1 as K → ∞. Thus, with large vocabularies, the admissible tail under softmax at infer-
ence becomes nearly 1, indicating that sparsemax training has not sufficiently penalized tail tokens,
contradicting the goal of suppressing irrelevant tail mass.

To address these issues, we propose a fine-tuning strategy of Training with Sparsemax+, Testing
with Softmax. Sparsemax+ builds on Sparsemax, inheriting margin-induced sparsity to introduce
gradient masking during training, thereby implicitly enforcing an early-stopping effect once the
top-1 candidate is clearly separated. It further incorporates a lightweight Tail-suppressing Loss to
explicitly penalize residual probability on tail tokens, ensuring that tail mass is sharply suppressed.
At inference, we revert to softmax over the same logits, which restores smooth, calibrated proba-
bilities across the plausible candidates within the support set, while keeping the irrelevant tail mass
negligible due to the additional suppressing effect. In this way, the model learns to separate and
prune the logits during training, yet preserve and diversify the output distribution during inference,
achieving the desired support-aware diversity.

4
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4 TS2: TRAINING WITH SPARSEMAX+, TESTING WITH SOFTMAX

In the following, we present supervised fine-tuning based on the Fenchel-Young loss, which encom-
passes both the softmax and sparsemax mappings. It then motivates our Sparsemax+ loss.

4.1 DIFFERENT PREDICTION MAPPINGS WITH THE UNIFIED FENCHEL-YOUNG LOSS

For any strictly convex regularization function Ω : ∆K−1 → R, the corresponding regularized
prediction function is p∗(z) = argmaxp∈∆K−1⟨p, z⟩ − Ω(p). The associated Fenchel-Young loss
can be represented as

LΩ(z; y) = Ω(ey)− Ω(p∗) + ⟨z,p∗ − ey⟩, (3)

where y is the gold label and ey is the corresponding one-hot vector. Different choices of Ω yield
different prediction mappings and losses.

Softmax Softmax corresponds to using the negative Shannon entropy as regularizer Ω(p) =∑K
i=1 pi log pi, which gives p∗(z) = exp(z)∑K

i=1 exp(zi)
:= softmax(z). The Fenchel-Young loss re-

duces to the standard CE loss Lsoftmax(z; y) = log
∑K

i=1 exp(zi)− zy = − log
exp(zy)∑K
i=1 exp(zi)

.

Sparsemax Sparsemax corresponds to using the negative Gini entropy as regularizer Ω(p) =
1
2

∑K
i=1 pi(1 − pi), which gives p∗(z) = [z − τ(z)1]+ := sparsemax(z). The cor-

responding Fenchel-Young loss, called the sparsemax loss, is Lsparsemax(z; y) = −zy +
1
2

∑
j∈Ssp(z)

(
z2j − τ2(z)

)
+ 1

2 .

In conclusion, when training with sparsemax but performing inference with softmax, although
softmax(z) does not yield a one-hot output like sparsemax(z), it still assigns the highest probabil-
ity to the correct class. Importantly, it naturally enables early stopping and preserves distributional
diversity across all classes, which is consistent with the goal of diversifying plausible candidates.

Given prompt–response pairs (x, y) from a supervised dataset, let z ∈ RK be a logit vector and
p be probability mapping either via softmax or sparsemax. If the gradient of the sparsemax loss
vanishes, i.e., ∇zLsparsemax(z; y) = 0, then it follows that sparsemax(z)y = 1. For any index
∀j ̸= y, sparsemax(z)j = 0, it holds that softmax(z)j > 0. That is, softmax assigns non-zero
probability to all entries, including those which sparsemax maps to zero. According to Corollary 5,
the cumulated tail mass of softmax outside the top-m satisfies

∑
k>m psf(k) ≤

(K−m)e−γ

Am
. With

large vocabularies, the admissible tail under softmax at inference becomes nearly 1. This behavior
is undesirable, as assigning non-negligible probabilities to clearly incorrect classes may lead the
model to produce semantically meaningless outputs.

Sparsemax+ To address this issue, we introduce a lightweight tail-suppressing loss that explicitly
suppresses probabilities assigned to the non-plausible candidates. Given logits z ∈ RK , let psf =
softmax(z) ∈ ∆K−1. The tail-suppressing loss is defined as

Lsup(p; y) = − log(1−
∑
i/∈S

psfi ),

where S is defined in Definition 1. This penalty drives the probabilities of tail tokens toward zero,
thereby avoiding residual mass on clearly implausible candidates.

Remark 2. The tail suppressing loss can be interpreted as a direct generalization of the standard
softmax CE to the group-label setting. Specifically, given logits z and softmax distribution psf =
softmax(z), the suppressing term can be written as

Lsup(z) = − log(1−
∑
i/∈S

psfi ) = − log
∑
i∈S

psfi ,

which is exactly the softmax cross-entropy with the target label being the merged “super-class” S.
In the special case where S = {y} is a singleton, this reduces to the usual CE loss − log psfy . Thus,
the suppressing loss can be viewed as encouraging the softmax probability mass to concentrate on
a set of plausible candidates while retaining the probabilistic interpretation of cross-entropy.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 TS2: Training with Sparsemax+, Testing with Softmax

Input: pre-trained model fθ; training dataset Dtr = {(x, y)}; test dataset Dte = {x}.
Hyperparameters: epochs T ; batch size B; learning rate η > 0; suppression weight α > 0.

1: for t = 1 to T do ▷ Training Phase
2: for mini-batch {(xb,yb)}Bb=1 ⊂ Dtr do
3: Compute logits zb ← fθ(xb), ∀b = 1, 2, . . . , B
4: Compute loss Lb ← Lspm+(zb;yb),∀b = 1, 2, . . . , B ▷ Sparsemax+ loss
5: end for
6: Update θ ← θ − η∇θ

1
B

∑B
b=1 Lb

7: end for
8: for test input x ∈ Dte do ▷ Testing Phase
9: Compute logits z ← fθ(x)

10: Predict probability p← softmax(z)
11: Evaluation on p ▷ Use for decoding
12: end for

Combining sparsemax with the tail-suppressing loss yields our proposed Sparsemax+ loss:

Lspm+(z; y) = −zy + 1
2

∑
j∈Ssp(z)

(
z2j − τ2(z)

)
+ α

(
− log

(
1−

∑
i/∈Ssp(z),i̸=y

psfi
))

, (4)

where τ(z) is the sparsemax threshold and α > 0 controls the strength of the suppression. For sim-
plicity, we find that directly implementing the candidate set S from Definition 1 using the sparsemax
support Ssp(z) achieves superior performance.

We summarize our fine-tuning strategy of Training with Sparsemax+, Testing with Softmax in
Algorithm 1. From Lspm+(z;y) in equation 4, we see that it prevents CE-style erosion of plausible
near-ties by amplifying relative ratios among top logits while nulling the rest, thereby achieving two
goals: sparsemax selects a stable support set with early stopping of gradient flow, and the suppress-
ing term explicitly drives unreasonable tokens toward zero to prevent spurious mass at inference.

5 EXPERIMENTS

To situate our work within the current state-of-the-art, we build upon the experimental foundation of
GEM (Li et al., 2025), adopting a similar training setup. Our primary methodological difference is
the substitution of the GEM objective with our proposed TS2 loss. Furthermore, while GEM eval-
uates OpenLLM Leaderboard tasks using a standard one shot setting, we employ a multi-response,
best-of-N protocol. We argue this is a more faithful and informative evaluation for diversity aware
models, as it measures model’s latent ability to find the correct answer rather than penalizing it for
plausible ”hesitation” in a single attempt.

Setup. We conduct experiments on two powerful, open source base models: Llama-3.1-8B and
Qwen-2-7B . For supervised finetuning, we use the high quality UltraFeedback dataset (Cui
et al., 2024), a large-scale corpus of preference aligned responses generated by a diverse set of
models. All models are finetuned for 3 epochs using the AdamW optimizer with an effective batch
size of 128. We employ a cosine learning rate schedule with an initial rate of 2 × 10−5 and a
warm-up ratio of 0.03, a standard practice for fine-tuning modern LLMs (Yu et al., 2024; Liu et al.,
2024). The maximum sequence length is capped at 2,048 tokens. For our proposed TS2 method,
the suppression weight α (see Equation 4) is empirically determined for each model architecture,
with optimal values reported alongside results. Further implementation details are provided in the
Appendix B.

We compare TS2 against a suite of strong and relevant baselines to provide a comprehensive evalu-
ation: Cross-entropy (CE): The standard SFT objective, which serves as our primary baseline. CE
with Weight Decay (CE+WD): A common regularization technique shown to help preserve diver-
sity in instruction tuning (Ouyang et al., 2022; Bai et al., 2022). We use a weight decay coefficient
of 0.1. NEFTune (NEFT): A regularization method that adds noise to word embeddings during
training to mitigate overfitting and improve generalization (Jain et al., 2023). GEM: The current

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

state-of-the-art method for diversity preserving SFT, which we use as our main point of comparison
(Li et al., 2025).

5.1 IMPROVING ACCURACY AND DIVERSITY IN OPEN-ENDED GENERATION

We first evaluate TS2 in open ended domains to assess its ability to navigate the critical trade-
off between response quality and diversity. While standard fine-tuning often improves quality at
the cost of collapsing the output distribution, we hypothesize that TS2 can break this trade-off by
simultaneously enhancing generation quality and fostering a rich, useful diversity beneficial for
sampling-based decoding. To test this, we evaluate on two distinct benchmarks. For conversational
chat, we use the AlpacaEval dataset (Dubois et al., 2024) with a best-of-32 (BoN@32) protocol;
a state-of-the-art reward model, FsfairX-LLaMA3-RM-v0.1 (Lambert et al., 2024), selects the
best response, which is then compared against GPT-4 to determine a win rate. For code generation,
we measure the pass@k metric on the HumanEvalbenchmark (Chen et al., 2021), which assesses
the model’s ability to generate functionally correct Python code via execution.

Figure 2: Performance of Llama-3.1-8B on open-ended tasks. Left: Win rate on AlpacaEval vs.
sampling budget (N). Right: Pass rate on HumanEval vs. sampling budget (k). TS2 consistently
outperforms baselines.

Model Method Win Rate (%) ↑ N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑

LLaMA-3.1-8B

CE 29.77 17.78 47.04 9.97
CE+WD 29.72 17.78 47.14 10.03
NEFT 29.77 17.74 47.41 10.07
GEM 31.53 20.32 49.82 11.16
TS2 (Ours) 33.12 23.78 53.87 12.80

Qwen-2-7B

CE 31.41 17.23 16.77 7.95
CE+WD 31.05 17.43 17.08 8.06
NEFT 30.36 16.59 24.59 8.06
GEM 33.89 24.35 31.19 9.25
TS2 (Ours) 37.48 30.15 39.04 9.81

Table 1: Win rate (Best of N@32) and diversity metrics for Llama-3.1-8B and Qwen-2-7B on Al-
pacaEval. TS2 achieves the best results across both quality and diversity on both architectures.

Performance on Chat and Code Generation. As shown in Figure 2, TS2 demonstrates a clear
performance advantage on Llama-3.1-8B. In chat generation, its win rate at a budget of N=32 re-
sponses, reaches 33.12%, which is an improvement of 11.2% relative over the baseline cross entropy
loss and a 5.0% relative improvement over the strong GEM baseline. This advantage extends to
structured problem solving, on HumanEval, TS2 achieves a pass@100 of 87.00%, which is 4.3%
increase relative to GEM and 19.8% to that of CE. Notably, the diversity fostered by our method
translates to superior sample efficiency: the pass@50 rate for TS2 (82.70%) nearly matches GEM’s
pass@100 performance (83.40%), indicating that correct solutions can be found with fewer sam-
ples. Similar results are also observed for Qwen-2-7B model. Detailed breakdown of results for
both Llama-3.1-8B and Qwen-2-7B are detailed in the Table 3.
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Crucially, these performance gains do not come at the cost of diversity. As detailed in Table 1,
TS2 not only achieves the highest win rate but also scores best across all three diversity metrics.
It improves N-gram diversity by 17.0% ,BLEU diversity by 8.1% and sentence-bert diversity by
10.7% over GEM for LLama-3.1-8B. Similarly for Qwen-2-7B, the same metrics are improved by
23.8%, 25.1% and 6% respectievely over GEM. This result confirms that TS2 successfully breaks
the quality-diversity trade-off, producing responses that are simultaneously judged as higher quality
by a reward model while being measurably more varied.

5.1.1 DIVERSITY ON CREATIVE WRITING TASKS

To further probe the nature of the diversity generated by TS2, we evaluate it on purely creative
tasks: generating poems from 573 titles in the poetry8 dataset and stories from 500 prompts from
ROCStories (Mostafazadeh et al., 2016). As shown in Table 2, TS2 once again achieves the
highest scores across all three diversity metrics on both tasks, confirming its ability to produce a
wider range of high-quality, creative outputs compared to all baselines.

Method Poem Story

N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑ N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑
CE 38.87 55.38 14.83 44.47 67.20 22.15
CE+WD 38.92 55.69 14.17 44.43 67.26 22.22
NEFT 38.80 55.68 14.13 44.31 67.21 22.04
GEM 46.59 57.50 14.70 50.05 69.15 24.02
TS2 (Ours) 49.70 59.41 16.52 52.10 70.36 24.98

Table 2: Diversity evaluation on creative writing tasks for Llama-3.1-8B. Higher is better.

5.2 PRESERVING PRE-TRAINED CAPABILITIES ON STANDARD BENCHMARKS

To assess generalization and knowledge retention, we evaluate models on six tasks from the Open-
LLM Leaderboard: ARC, GSM8K, HellaSwag, MMLU, TruthfulQA, and WinoGrande. Instead of
the standard greedy one-shot decoding that penalizes models preserving multiple reasoning paths,
we propose a best-of-n (BoN) strategy on the OpenLLM leaderboard, which is better aligned with
evaluating the capabilities of diversity-preserving models.

Figure 3: Average Best-of-N accuracy across six OpenLLM Leaderboard tasks. While competitive
in few-shot settings (@2), TS2’s performance scales far more effectively with the sampling budget,
revealing its superior knowledge retention.

We argue that a more faithful metric is Best-of-N (BoN) accuracy. This protocol measures the
model’s latent ability to identify the correct answer within a small sampling budget, which better
reflects the true underlying capabilities of a well-calibrated, diverse model. For fair comparision, all
methods are evaluated under the same BoN protocol and we report the average accuracy across all
tasks.

Figure 3 validates this hypothesis. While all methods are competitive at a small sampling budget,
TS2’s performance scales significantly better as ‘N‘(responses) increases. On Llama-3.1-8B, the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

average accuracy of TS2 at N=32 reaches 88.88%, a massive 13.2-point absolute (+17.4% relative)
improvement over GEM (75.69%). The trend is consistent on Qwen-2-7B, where TS2 again achieves
the highest accuracy, demonstrating the robustness of our TS2 across different model architectures.

This shows that TS2 effectively preserves the model’s pre-trained knowledge. Unlike CE, which
collapses the distribution and discards valid alternatives, TS2 maintains a clean, calibrated set of
high-quality reasoning paths. With sampled responses, the model consistently finds the correct
solution. A detailed breakdown of performance on each of the six tasks is provided in the Table 5.

5.3 ABLATION STUDY

To assess the contribution of each component, we run an ablation study on AlpacaEval, comparing
win rate against GPT-4 and BLEU diversity. TS2 integrates three elements: (1) sparsemax-based
training, (2) softmax decoding, and (3) a tail-suppression penalty. We evaluate three variants: De-
coupling Only (sparsemax training, softmax inference, no penalty), Unified Sparsemax (sparsemax
for both training and inference), and Suppression Only (CE loss with suppression term).

Figure 4: Ablation study on Llama-3.1-8B and Qwen-2-7B.

Figure 4 demonstrates that all components of TS2 are essential. First, using the Decoupling Only
strategy results in a massive increase in diversity, high BLEU diversity score, but a catastrophic drop
in win rate. This shows that while decoupling unlocks variety, the suppression penalty is crucial for
ensuring that this diversity is high-quality and not just uncalibrated noise.

Conversely, the Unified Sparsemax approach achieves a competitive win rate but offers lesser diver-
sity than our full method. This confirms that the switch to softmax at inference is key to translating
the learned logit geometry into a rich, sample-able probability distribution. Finally, applying the
Suppression Only penalty to a standard CE baseline fails on both metrics, proving it is not a stan-
dalone improvement but works in synergy with the sparsemax-defined support set.

Meanwhile, the TS2 method successfully integrates these components, achieving the best balance
of high win rate and high diversity across both model architectures. This analysis confirms that
the sparsemax objective, the decoupled inference, and the suppression penalty are all necessary and
synergistic elements of our approach.

6 CONCLUSION

In this work, we make the first step toward decoupling training and inference by adopting different
prediction mappings in supervised finetuning. By combining Sparsemax+ loss; a tailored design
that leverages margin induced sparsity with an additional suppression term for non plausible tokens;
with softmax decoding at inference, our approach achieves significant improvements over existing
SFT paradigms. It preserves support-aware diversity while maintaining high accuracy, thereby al-
leviating the alignment tax. Despite its simplicity, our method consistently outperforms CE and
GEM across both chat and code tasks, achieving the highest win rates and more diverse generations.
Unlike prior methods that inevitably trade off diversity against accuracy, our paradigm improves
both, providing a natural remedy to distribution collapse and open up new directions for advancing
alignment with broad and long term impact.
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ETHICS STATEMENT

This work investigates new algorithms for supervised fine-tuning of large language models. Our
objective is to improve training stability and output diversity, thereby broadening the range of down-
stream applications. The methods introduced in this paper are purely algorithmic and evaluated on
public datasets.

REPRODUCIBILITY STATEMENT

Experiment details for reproducing our numerical results can be found in Appendix B and Ap-
pendix C. To ensure anonymity and prevent potential information leakage during the review process,
our source code will be released publicly after the blind review phase.

LLM USAGE STATEMENT

We used large language model to correct grammar errors, polish the writing, and adjust the format-
ting of the paper.
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A RELATED WORK

Our work, TS2, intersects with three primary areas of research: supervised finetuning (SFT) and its
inherent limitations, methods for enhancing generative diversity in large language models (LLMs),
and the use of sparse activation functions in neural networks.

A.1 SUPERVISED FINETUNING AND THE ALIGNMENT TAX

Supervised finetuning is a major landmark in adapting pre-trained LLMs to downstream applica-
tions, enabling them to follow instructions and adhere to specific conversational styles (Ouyang
et al., 2022; Touvron et al., 2023). The standard practice involves minimizing a cross-entropy (CE)
loss on a dataset of high quality datasets. While effective, this approach is known to induce an
“alignment tax” (O’Mahony et al., 2024), where models become overly specialized to the finetuning
distribution. This often leads to a reduction in creative capacity, a phenomenon sometimes termed
“knowledge forgetting” or a collapse in output diversity (Kim et al., 2025; Li et al., 2025). The
CE objective, by driving the model’s posterior towards a one-hot representation of the target token,
aggressively penalizes all alternative continuations, including those that are semantically plausible.
This results in overconfident and deterministic models. Our work directly addresses this limita-
tion by replacing the CE objective with a loss that preserves a set of plausible next-tokens, thereby
mitigating the distributional collapse and retaining more of the pre-trained model’s capabilities.

A.2 ENHANCING GENERATIVE DIVERSITY

Efforts to counteract the loss of diversity in finetuned LLMs can be broadly categorized into
decoding-time and training-time strategies.
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Decoding-Time Strategies: A popular line of work focuses on modifying the sampling process at
inference. Techniques such as temperature scaling, top-k sampling, and nucleus (top-p) sam-
pling (Holtzman et al., 2020) manipulate the output probability distribution to encourage variety.
Similarly, best-of-N sampling, where multiple candidate responses are generated and ranked by
a reward model (Bai et al., 2022), can improve output quality by exploring a wider search space.
While widely used and effective, these methods are applied post-hoc and do not address the under-
lying overconfidence of the model’s learned distribution. TS2 is complementary to these techniques
but fundamentally different, as it reshapes the logit geometry during training to produce a more
inherently diverse and well-calibrated posterior.

Training-Time Strategies: Another branch of research modifies the training objective itself. Label
smoothing (Szegedy et al., 2016) is a regularization technique that discourages overconfidence by
training on soft targets. More recently, unlikelihood training was proposed to explicitly penalize
undesirable tokens or repetitive patterns (Welleck et al., 2019). Closest to our work is the recent
GEM framework (Li et al., 2025), which recasts SFT as a reverse-KL minimization problem with
an entropy regularizer. GEM successfully improves diversity by preventing the model’s posterior
from collapsing. However, it does not enforce a hard separation between plausible and implausible
tokens, potentially leaving residual mass on the long tail of the distribution. TS2 offers a more direct
approach: the sparsemax function provides a principled mechanism for identifying a compact sup-
port set of plausible tokens, while our proposed suppression penalty explicitly drives the probability
of out-of-support tokens to zero, achieving a cleaner and more decisive separation.

A.3 SPARSE ACTIVATIONS IN NEURAL NETWORKS

The sparsemax function, which we leverage for our training objective, is a projection onto the proba-
bility simplex that can produce exact zeros (Martins & Astudillo, 2016). It was originally introduced
as a sparse alternative to softmax for attention mechanisms and structured prediction tasks, valued
for its ability to select a small subset of relevant inputs. The sparsemax loss is a specific instance
of a Fenchel-Young loss, a broader class of losses that provides a unified framework for various
structured prediction mappings (Blondel et al., 2019). While sparsemax has been explored for clas-
sification and attention, its application to generative LLM fine-tuning for diversity preservation is
novel. Critically, our work is the first to propose a decoupled paradigm: we use the desirable prop-
erties of sparsemax (e.g., gradient masking for non-support tokens) during training but revert to the
smooth, fully-supported softmax for inference. This decoupling is the key to unlocking calibrated
diversity, a concept not explored in prior work that typically uses the same mapping for both training
and testing.

B EXPERIMENT DETAILS

We conduct all training on H200-141GB GPUs, employing the DeepSpeed framework with ZeRO-2
optimization and gradient checkpointing enabled. Offloading is disabled. For efficient and repro-
ducible training, we adopt flash-attention-2 with deterministic backward passes. Our base models
are Llama-3.1-8B and Qwen-2-7B, optimized using AdamW with a total batch size of 128.
The learning rate is initialized at 2 × 10−5 with a warm-up ratio of 0.03 and follows a cosine
decay schedule, as suggested by prior work (Yu et al., 2024; Liu et al., 2024; Cui et al., 2024),.
Training is run for 3 epochs. All supervised datasets are reformatted into the chat style with the
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct tokenizer. For inference, we em-
ploy vLLM to accelerate response generation.

The supervised finetuning is done on the binarized UltraFeedback dataset curated by the Hug-
gingfaceH4 team2, which contains 61,135 training examples and 1,000 held-out test prompts. Inputs
longer than 2,048 tokens are truncated, while shorter ones are padded. To achieve a global batch
size of 128, we use 4 GPUs, each with a per-device batch size of 8 and gradient accumulation of
4. A single training run requires roughly 12 GPU hours. For CE+WD baselines, the weight decay
coefficients is 0.1. For NEFT, we set the noise scale to 5, consistent with Jain et al. (2023).

Evaluation Protocol For chatting, we use 805 prompts from AlpacaEval and score outputs with
the FsfairX-LLaMA3-RM-v0.1 reward model. The maximum decoding length is 2,048, and

2https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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each prompt yields 32 samples using temperature=0.6, top-k=50, and top-p=0.9. Win rate is com-
puted against GPT-43 responses via the Bradley–Terry model:

P (y ≻ y′|x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
.

For code generation, we adopt the HumanEval benchmark (164 Python problems). Prompts follow
the template of (Wei et al., 2024).

You are an exceptionally intelligent coding assistant that consistently
delivers accurate and reliable responses to user instructions.
@@ Instruction
{instruction}

For each task, we sample 200 outputs with the same decoding configuration. The evaluation metric
is pass rates, which are computed using execution-based evaluation scripts from Magicoder4.

C ADDITIONAL RESULTS

C.1 CHAT AND CODE GENERATION

Chat LLaMA-3.1-8B Qwen-2-7B
CE+WD NEFT CE GEM TS2(α = 0.25) CE+WD NEFT CE GEM TS2(α = 0.5)

@2 20.14 19.35 19.88 20.26 19.43 18.35 18.13 18.4 18.06 18.72
@4 23.02 22.33 22.78 23.34 23.37 21.59 21.49 21.78 21.93 22.54
@8 25.44 25.19 25.74 26.67 26.61 24.58 24.39 27.9 26.26 27.66
@16 27.82 27.51 27.97 29.26 29.85 27.76 27.02 27.9 30.02 32.77
@32 29.77 29.72 29.77 31.53 33.12 31.05 30.36 31.41 33.89 37.48

Code LLaMA-3.1-8B Qwen-2-7B
CE+WD NEFT CE GEM TS2(α = 0.25) CE+WD NEFT CE GEM TS2(α = 0.5)

@1 30.30 28.50 24.60 31.90 32.80 45.10 45.30 44.90 41.80 42.20
@10 60.40 57.00 55.30 64.80 67.00 76.80 76.50 76.00 78.50 78.20
@20 65.90 63.60 62.20 71.80 74.70 81.30 81.00 81.10 84.50 84.60
@50 71.30 70.00 69.10 79.00 82.70 84.10 83.20 83.50 87.20 87.80
@100 74.50 73.30 72.60 83.40 87.00 87.20 85.40 86.60 90.20 91.50

Table 3: Performance comparison of different methods on LLaMA-3.1-8B and Qwen-2-7B models
for the chat and code geneartion tasks

Table 3 details the performance of both models on the open-ended generation tasks. For chat gen-
eration, it presents the win rate against GPT-4 across various best-of-N sampling budgets (N = 2, 4,
8, 16, 32). For code generation, it shows the corresponding pass@k rates for k = 1, 10, 20, 50, and
100.

C.2 CREATIVE WRITING

We further investigate output diversity on two creative writing tasks: poetry and short stories. For
poetry, we use 573 titles drawn from the Huggingface poetry8 dataset, which covers themes such
as love, nature, and mythology. For stories, we construct 500 prompts from the ROCStories dataset
(Mostafazadeh et al., 2016). In both settings, the instruction is to write a piece titled “[X]” in under
200 words, where [X] is sampled from the corresponding dataset.

Diversity is measured along three dimensions following Kirk et al. (2024): N-gram, the fraction of
distinct n-grams within a single response (intra-diversity); Self-BLEU, computed by treating each
sample as the reference for the others (inter-diversity); Sentence-BERT dissimilarity, the mean

3https://github.com/tatsu-lab/alpaca_eval/tree/main/results/gpt4_1106_
preview

4https://github.com/ise-uiuc/magicoder/blob/main/experiments/text2code.
py
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cosine distance between generated responses in the embedding space. All scores are scaled to the
range [0, 100], with higher values indicating greater diversity.

For evaluation, each model generates 16 completions per prompt using temperature=0.6, top-k=50,
and top-p=0.9. Results are summarized in Table 4. It is evident that methods such as CE+WD
and NEFT bring only marginal improvements in diversity. GEM consistently improves intra- and
inter-diversity, while TS2 achieves the highest scores.

Method (Llama-3.1-8B) Poem Story

N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑ N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑
CE+WD 38.92 55.69 14.17 44.43 67.26 22.22
NEFT 38.80 55.68 14.13 44.31 67.21 22.04
CE 38.87 55.38 14.83 44.47 67.20 22.15
GEM 46.59 57.50 14.70 50.05 69.15 24.02
TS2 (α = 0.25) 49.70 59.41 16.52 52.10 70.36 24.98

Method (Qwen-2-7B) Poem Story

N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑ N-gram ↑ 100 - Self-BLEU ↑ Sent-BERT ↑
CE+WD 44.29 44.9 8.66 56.62 50.06 19.01
NEFT 44.37 45.09 8.55 59.66 52.2 18.94
CE 43.94 44.92 8.56 56.44 49.83 18.86
GEM 50.29 48.62 9.54 60.91 56.05 20.98
TS2 (α = 0.5) 53.46 51.10 10.26 62.13 57.17 20.95

Table 4: Diversity evaluation on creative writing tasks (poem and story). Higher values indicate
greater diversity (N-gram, 100 - Self-BLEU, and Sentence-BERT.

C.3 OPENLLM LEADERBOARD TASKS

Table 5 reports results on six representative OpenLLM leaderboard tasks under varying sampling
budgets. These benchmarks collectively reflect a broad spectrum of model capabilities: ARC focuses
on grade-school science questions, reflecting commonsense reasoning; GSM8K requires multi-step
solutions, capturing mathematical reasoning; HellaSwag emphasizes physical commonsense and
narrative continuation, probing contextual understanding; MMLU spans 57 subjects, testing broad
factual knowledge; TruthfulQA challenges models with common misconceptions, measuring ro-
bustness; and WinoGrande is a coreference benchmark, assessing pronoun disambiguation and
fine-grained language understanding.

Building on this setup, we observe that other methods exhibit only limited gains as the sampling
budget increases. In contrast, TS2 consistently improves performance across tasks, achieving the
largest boosts under larger budgets, often surpassing all baselines by a substantial margin. The
improvements are especially pronounced for LLaMA-3.1-8B, where diversity-oriented training
translates into 10–15 point gains under BoN sampling. For Qwen-2-7B, whose baseline win rates
already exceed 90%, the relative gains appear smaller but still confirm the benefits of preserving
diversity during training.

C.4 MACRO- AND MICRO-LEVEL ANALYSIS OF TOKEN DISTRIBUTIONS

To understand why our method simultaneously improves accuracy and diversity, we analyze token
probability distributions from two complementary perspectives: (i) a macro-level analysis of model
outputs on a real benchmark, and (ii) a micro-level controlled probing task.

Macro-level distribution. We evaluate the models(Llama) on the AlpacaEval dataset. For
each generated response, we record the probability of every selected token and compute the average
probability of that response. We then plot these values across all responses to obtain a global view
of the distribution. As shown in Figure 5, CE exhibits the highest mean probability (≈ 0.90) with
the smallest variance, indicating collapsed and overly uniform predictions. GEM lowers the mean
probability to about 0.86 with a larger variance, consistent with its entropy-regularized updates
that discourage overconfidence. Moving along the sequence CE → GEM → Sparsemax (sparse
inference) → TS2, we observe a systematic trend: mean probability decreases (remaining above
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(a) Llama-3.1-8B
Method ARC@2 ARC@4 ARC@8 ARC@16 ARC@32 Hella@2 Hella@4 Hella@8 Hella@16 Hella@32

CE+WD 75.59 80.27 80.27 83.28 83.61 66.95 70.55 72.95 74.37 75.05
NEFT 75.67 79.26 81.27 81.61 81.61 65.45 69.53 72.17 73.66 74.35
CE 76.59 79.50 71.27 82.60 83.60 67.03 61.96 63.06 63.85 64.33
GEM 78.60 82.27 83.94 85.28 85.61 66.51 71.71 74.84 76.96 77.95
TS2(α = 0.25) 78.93 85.95 88.96 90.30 91.63 65.47 76.76 84.43 88.55 90.81

Method Wino@2 Wino@4 Wino@8 Wino@16 Wino@32 MMLU@2 MMLU@4 MMLU@8 MMLU@16 MMLU@32

CE+WD 59.65 61.48 63.30 64.01 64.96 60.75 63.12 65.42 66.93 67.98
NEFT 61.24 63.14 64.64 66.46 66.77 61.20 63.85 66.24 68.03 69.19
CE 59.75 80.27 80.27 83.28 83.61 60.86 63.98 66.23 67.90 68.90
GEM 61.80 64.64 66.69 68.43 69.85 62.04 66.12 69.32 71.85 73.54
TS2(α = 0.25) 66.14 75.77 80.51 83.98 87.21 64.19 73.64 81.24 85.82 88.42

Method Truth@2 Truth@4 Truth@8 Truth@16 Truth@32 GSM@2 GSM@4 GSM@8 GSM@16 GSM@32

CE+WD 43.02 45.29 46.88 48.59 49.20 53.84 64.59 74.37 82.03 86.66
NEFT 46.74 50.06 51.41 52.39 53.12 54.21 66.87 75.06 82.03 85.67
CE 43.21 45.04 47.86 49.82 50.67 54.66 66.87 76.72 82.49 86.96
GEM 47.86 51.29 55.32 57.04 59.73 54.44 66.72 75.59 82.64 87.49
TS2(α = 0.25) 51.16 62.42 71.85 80.05 87.39 50.27 64.67 75.06 82.49 87.87

(b) Qwen2-7B
Method ARC@2 ARC@4 ARC@8 ARC@16 ARC@32 Hella@2 Hella@4 Hella@8 Hella@16 Hella@32

CE+WD 84.61 87.62 88.96 89.96 89.96 80.20 85.50 88.76 90.67 91.44
NEFT 84.94 87.29 88.62 89.96 89.96 80.20 85.39 88.67 90.59 91.40
CE 84.61 87.95 89.62 90.30 90.30 80.45 85.60 88.79 90.62 91.42
GEM 84.94 88.96 92.30 92.60 93.64 80.01 87.54 91.94 94.52 95.62
TS2(α = 0.5) 83.27 89.63 92.97 93.97 94.31 75.39 87.36 94.18 96.97 98.21

Method Wino@2 Wino@4 Wino@8 Wino@16 Wino@32 MMLU@2 MMLU@4 MMLU@8 MMLU@16 MMLU@32

CE+WD 70.79 77.34 81.84 83.34 83.89 69.42 77.86 84.53 90.37 93.56
NEFT 71.19 77.26 82.00 83.58 83.97 69.28 71.49 79.83 85.97 91.28
CE 70.63 77.26 82.16 83.66 84.13 69.37 76.65 83.89 89.46 93.40
GEM 73.63 81.76 87.05 89.50 90.37 69.91 80.36 88.86 93.86 96.82
TS2(α = 0.5) 71.11 84.37 91.31 95.26 95.97 69.01 82.11 90.67 94.84 97.65

Method Truth@2 Truth@4 Truth@8 Truth@16 Truth@32 GSM@2 GSM@4 GSM@8 GSM@16 GSM@32

CE+WD 45.65 49.69 52.75 55.07 55.93 66.72 77.86 84.53 90.37 93.56
NEFT 45.41 49.32 52.50 54.46 55.69 67.32 71.49 79.83 85.97 91.28
CE 45.16 49.32 52.63 54.71 55.69 68.16 76.65 83.89 89.46 93.40
GEM 46.87 52.14 57.89 62.66 65.97 68.08 80.36 88.86 93.86 96.82
TS2(α = 0.5) 46.63 55.55 64.01 72.70 78.82 68.99 82.11 90.67 94.84 97.65

Table 5: Pass Rate (%) of Different Methods on 6 OpenLLM leaderboard tasks under Various Sam-
pling Budgets.
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0.8), while variance increases, revealing a more balanced allocation of probability mass to plausible
alternatives.

Figure 5: Macro-level analysis: average selected token probability distribution on AlpacaEval.

Micro-level probing. To complement the macro-level view, we design a controlled probing task to
test whether models can distribute probability mass across relevant candidates. We prompt the model
with the few-shot instruction to generate a single-digit number. Each model is queried 100 times.
Whenever a digit is generated, we record the probability distribution of the top-300 tokens. Finally,
we compute the average probability of each token across the 100 trials, resulting in a fine-grained
view of how probability mass is allocated.

You’re an AI assistant, I will give you an example of following question.
Example:
User: Give me a word of fruit.
Assistant: Apple.
Now you follow the format of the example,
Give me a single-digit number,
Answer:

The results, shown in Figure 1, reveal stark differences. CE collapses to a one-hot distribution:
the chosen digit monopolizes probability, while the tail is filled with irrelevant tokens. GEM re-
tains a few candidate digits but remains nearly one-hot, yielding limited diversity. Sparsemax
(Sparsemax-infer) distributes mass across more digits, but still assigns non-negligible probability
to spurious tokens. In contrast, TS2 combines sparsemax, which preserves probability on relevant
digits, with the suppressing loss, which eliminates unrelated characters. This synergy results in
distributions that are both diverse and accurate.

Figure 6: Macro- and Micro-level probling: Sparsemax Training and Softmax Inference

As a special case, we also examine the strategy of sparsemax training with softmax infer-
ence(shown in Figure 6). In the macro-level probing, this setting produces a distribution that is close
to uniform, suggesting that the model does not exhibit clear preferences over candidate tokens. In
the micro-level probing task, we observe that although some valid numerical answers (such as “42”
or “125”) appear, a large number of irrelevant tokens also receive comparable probability mass. As
a result, the model’s outputs become difficult to interpret, and its effective generation ability is di-
minished. This illustrates why conventional diversity metrics may report artificially high scores in
this case: while probability is spread across many tokens, much of it corresponds to spurious rather
than meaningful outputs.
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C.5 HARD THRESHOLD

CE 0.25-top3 0.5-top3 1.0-top3 0.5-top5 0.5-top10 1.0-top10 0.25-TS2 0.5-TS2

50.00 50.16 52.58 48.80 49.86 47.58 46.61 53.73 51.03

Table 6: Results on Llama-3.2-1B with different α and sparsification strategies. All tokens
except target are thrown out the support set.

We also evaluate the Llama-3.2-1B under different values of α and supersession strategies. Here,
“top-k” means only the largest k logits are preserved in the defined support set, while all other
tokens (except the target) are thrown out the support set, and “TS2” denotes our proposed two-stage
suppression method. We take the vanilla cross-entropy (CE) training as the baseline, which yields a
score of 50.

From the results, we observe two main trends: (i) Increasing α from 0.25 to 1.0 generally decreases
performance, indicating that larger α values reduce the model’s output diversity. (ii) Within the top-
k setting, smaller k (e.g., top-3 vs. top-10) leads to higher diversity and better scores, while larger k
values dilute the distribution and hurt performance. Overall, both reducing α and carefully selecting
smaller k encourage the model to maintain useful diversity, while our TS2 method further boosts
results beyond simple top-k truncation.

D DETAILED PROOFS

Corollary 1 If Definition 1 holds and εtail < εhead, then maxj /∈S pj ≤ εtail < εhead ≤ mini∈S pi,
so each plausible sample has strictly higher probability than any tail sample.

Proof. From tail suppression,
∑

j /∈S pj ≤ εtail, hence maxj /∈S pj ≤ εtail. From head preservation,
mini∈S pi ≥ εhead. Combine with the condition εtail < εhead, we complete the proof.

Corollary 2 If all probability mass collapses onto the ground-truth token, i.e., py = 1 and py′ =
0 ∀y′ ̸= y, then p fails to qualify the TSPD (m(≥ 2), εhead, εtail).

Proof. For m ≥ 2, S = Topm(p) contains y and some y′ ̸= c with py′ = 0, violating minj∈S pj ≥
εhead > 0.

Lemma 3 [Gradients vanish outside the sparsemax support] Let p = sparsemax(z) and Ssp(z) be
its support. Consider the sparsemax loss Lsp(z, y) with target y. If y ∈ Ssp(z), then ∀i /∈ Ssp(z),
∂Lsp(z,y)

∂zi
= 0.

Proof. The gradient satisfies∇zLsp(z, y) = p− ey . For i /∈ Ssp(z) we have pi = 0, and under the
assumption y ∈ Ssp(z) we have i ̸= y, hence ∂Lsp(z, y)/∂zi = 0.

Theorem 4 [Sparsemax expands pairwise gaps faster than softmax] Let z ∈ RK , psf = softmax(z),
and psp = sparsemax(z). For any indices i ̸= j, let u := zi − zj and we have

∂

∂u
(pspi − pspj ) = 1 ∀ i, j ∈ Ssp sparsemax

∂

∂u

(
psfi − psfj

)
< 1 softmax

Proof. Inside the sparsemax support, we have pspj = zj − τ(z) and pspi − pspj = (zi− τ(z))− (zj −
τ(z)) = zi − zj , thus ∂

∂u (p
sp
i − pspj ) = 1. For softmax, using the Jacobian ∇psf = diag(psf) −

psf(psf)⊤ and differentiating only in the direction zi ↑, zj ↓ (other logits fixed) yields ∂
∂u (p

sf
i −psfj ) =

psfi + psfj − (psfi − psfj )
2, which is strictly < 1 for finite z.

Corollary 5 [Softmax remains TSPD-valid when sparsemax is one-hot] Let z ∈ RK with y =
argmaxj zj , and δj := zy−zj . Assume sparsemax is one-hot at y, i.e., δmin := minj ̸=y δj ≥ γ > 0
(e.g., γ = 1), and the top-m head is bounded: δ(k) := zc − z(k) ≤ B ∀k = 2, . . . ,m. Set
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Am = m+ (K −m)e−γ . Then for psf = softmax(z) we have

psfy ≥
1

Am
, psf(k) ≥

e−B

Am
(∀k = 2, . . . ,m),

∑
k>m

psf(k) ≤
(K −m)e−γ

Am
.

Consequently, psf satisfies TSPD of order m with any thresholds 0 < εhead ≤ e−B

Am
, (K−m)e−γ

Am
≤

εtail ≤ 1−mεhead.

Proof. For any j,

psfj =
ezj∑
k e

zk
=

e−(zy−zj)

1 +
∑

k ̸=y e
−(zy−zk)

=
e−δj

Ω
, where Ω := 1 +

∑
k ̸=y

e−δk .

Then, ∀2 ≤ k ≤ m, we have e−δ(k) ∈ [e−B , 1] according to the head bound δ(k) ≤ B; ∀k > m, we
have e−δ(k) ≤ e−γ according to the sparsemax one-hot margin δ(k) ≥ γ.

To lower-bound psfj , we upper-bound C by taking the largest possible contributions in each group:

C = 1 +
m∑

k=2

e−δ(k) +
∑
k>m

e−δ(k) ≤ 1 + (m− 1) · 1 + (K −m) e−γ = Am.

Therefore, we have

psfy =
1

C
≥ 1

Am
, psf(k) =

e−δ(k)

C
≥ e−B

Am
(k = 2, . . . ,m).

For k > m, δ(k) ≥ γ gives
∑

k>m psf(k) ≤
(K−m)e−γ

Am
. We complete the proof.

E ADDITIONAL TECHNICAL ANALYSIS

E.1 A NEW TRAINING PARADIGM

Training with CE loss leads to distribution collapse: under gradient descent, the predictive distribu-
tion p converges to the target y. This causes over-confident and degenerate predictions at inference.

To address this issue, we discuss a new paradigm consisting of three steps:

1. Inflation during training. Given psf = softmax(z), we define an inflated distribution

p̃i =
f(psfi )∑K
j=1 f(p

sf
j )

, i = 1, 2, . . . ,K,

where f : [0, 1]→ R+ is strictly increasing and satisfies a ratio amplification property:

psfi > psfj =⇒ f(pi)

f(pj)
>

psfi
psfj

.

2. Loss applied on the inflated distribution. We train by minimizing a tailored loss ℓ(p̃, y).
Ratio-amplifying inflation accelerates the collapse of p̃ to one-hot.

3. Softmax inference. At test time, predictions are made with the original p, which remains
smooth and calibrated.

This paradigm improves optimization dynamics while preserving smooth probabilistic predictions.
Theorem 6 (Invertible ϕ-mappings training prevents collapse at inference). Given the predictive
distribution p, let ℓ be a strictly proper loss and f : [0, 1]→ R+ be strictly increasing and invertible.
Define the inflated distribution

p̃ = Φ(p), Φ(p)i =
f(pi)∑K
j=1 f(pj)

where i = 1, 2, . . . ,K.
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1. (Training) Under gradient descent, p̃y = 1 when this loss converges to 0, i.e., the inflated
distribution collapses to the one-hot label.

2. (Inference) Define the recovered distribution

p∗i =
f−1(p̃i)∑K
j=1 f

−1(p̃j)
, i = 1, 2, . . . ,K.

Then, p∗ remains strictly inside the simplex, that is

K∑
j=1

p∗j = 1, and 0 < p∗j < 1 ∀j.

In particular, p∗ never collapses to a one-hot vector.

Proof. (1) For any strictly proper loss ℓ, the stationary condition

∇pℓ(p, y) = 0 ⇐⇒ py = 1

=⇒ the predictive distribution p converges to the one-hot label. Since Φ is a bijection onto
the simplex (as f is strictly increasing), minimizing ℓ(Φ(p), y) w.r.t. p is equivalent to minimizing
ℓ(p̃, y) w.r.t. p̃. Thus, under gradient descent in the inflated space, we obtain p̃y = 1.

(2) For inference, we recover p∗ from p̃ via

p∗i =
f−1(p̃i)∑K
j=1 f

−1(p̃j)
, i = 1, 2, . . . ,K.

Since p̃ ∈ ∆K−1, we have 0 ≤ p̃i ≤ 1 and
∑

i p̃i = 1. Because f−1 is strictly increasing and
continuous, we have f−1(p̃i)0 ∀i. Hence p∗i ≥ 0 ∀i, and normalization ensures

∑
i p

∗
i = 1.

To show non-collapse, suppose by contradiction that p∗y = 1. Then p∗j = 0 ∀j ̸= y. But this would
require f−1(p̃j) = 0 ∀j ̸= y, i.e. p̃j = f(0). Since p̃j > 0 (strictly inside the simplex), this is
impossible. Thus p∗ cannot be a one-hot vector.

Therefore, p∗ remains a smooth distribution in the simplex, preventing distribution collapse at in-
ference.

Limit analysis. Suppose py = 1− ϵ with ϵ > 0 distributed among other coordinates so that pj > 0
for some j ̸= y. Then

p̃y
p̃j

=
f(1− ϵ)

f(ϵ)
.

Since f is strictly increasing and satisfies ratio amplification, we have

lim
ϵ→0+

f(1− ϵ)

f(ϵ)
= +∞.

Therefore,
lim

ϵ→0+
p̃y = 1, lim

ϵ→0+
p̃j = 0.

In contrast, for the original distribution p we only have

py = 1− ϵ < 1, pj = ϵ > 0.

Thus, the inflated distribution {̃p} achieves the one-hot collapse strictly earlier, while the underlying
p remains smooth with strictly positive mass on all coordinates.

At inference time, we return to p by applying the original activation function (e.g., softmax). This
ensures the predicted distribution is smoother and less degenerate than one-hot, even though the
training dynamics in the inflated space enforced early collapse.
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Theorem 7 (Sparsemax as a piecewise ratio-amplifying ϕ-mapping of softmax). Let z ∈ RK be a
logit vector, psf = softmax(z) ∈ ∆K−1 with

psfi =
ezi∑K
j=1 e

zj
, i = 1, 2, . . . ,K;

and psp = sparsemax(z) ∈ ∆K−1 with

pspi = max{zi − τ(z), 0},
∑
i

pspi = 1.

Then we define

pspi = Φ(p)i =
f(pi)∑K
j=1 f(pj)

,

where f : [0, 1]→ R≥0 is the piecewise function f(x) = max{log x− θ, 0},∀θ ∈ R.

Proof. According to psfi = ezi∑K
j ezj

, we have zi = log psfi + C with C = log
∑

j e
zj . Substituting

this into the definition of sparsemax,

pspi = max{log psfi + C − τ(z), 0}.

Letting θ = τ(z)− C, we obtain

pspi = max{log pi − θ, 0}.

Since
∑

i p
sp
i = 1, normalizing yields

pspi =
max{log pi − θ, 0}∑
j max{log pj − θ, 0}

.

We now analyze the following two cases.

Case 1 (support set Ssp(z) = {i : log psfi > θ}). For i ∈ S, f(psfi ) = log psfi − θ > 0. On (0, 1],
log x is strictly increasing; subtracting θ preserves this property. Therefore ∀i, j ∈ S with psfi > psfj ,
we obtain the ratio amplification property:

Φ(p)i
Φ(p)j

=
log psfi − θ

log psfj − θ
>

psfi
psfj

.

Thus Φ inflates the relative ratios within the support.

Case 2 (outside the support Ssp(z)). For j /∈ Ssp(z), we have log psfj ≤ θ and hence f(psfj ) = 0.
Therefore,

Φ(p)j =
0∑

i∈Ssp(z) f(p
sf
i )

= 0.

By contrast, psfj > 0 since p = softmax(z) has full support. Thus sparsemax(z) coincides with
Φ(p), where Φ is generated by the piecewise ratio-amplifying function f .

Overall, sparsemax(z) is a piecewise ratio-amplifying inflation of softmax(z). Training on Φ(p)
drives the inflated distribution to collapse to one-hot on its support, while inference with the original
softmax p preserves strictly positive mass on all coordinates. This prevents the predictive distribu-
tion from degenerating into an exact one-hot vector at inference.

Having established sparsemax as a concrete instance of ratio-amplifying inflation, it is natural to
ask whether other mappings f might be equally effective, or perhaps even more suitable in specific
contexts. To answer this, we next examine the general collapse condition in the binary case.
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E.2 GENERAL COLLAPSE CONDITION IN THE BINARY CASE

Consider binary classification with p = (p, 1− p) and label y = 1. The inflated distribution is

p̃1 =
f(p)

f(p) + f(1− p)
, p̃2 = 1− p̃1.

Define the ratio

R(p) =
f(1− p)

f(p)
.

Then
p̃1 =

1

1 +R(p)
.

For a precision parameter ϵ > 0, we say collapse occurs if

p̃1 ≥ 1− ϵ ⇐⇒ R(p) ≤ ϵ

1− ϵ
.

1. Power inflation. For f(x) = xα, α > 1,

R(p) =
(1− p

p

)α

.

Collapse condition:

p >
1

1 +
(

ϵ
1−ϵ

)1/α
.

2. Exponential inflation. For f(x) = eγx, γ > 0,

R(p) = eγ(1−2p).

Collapse condition:

p > 1
2 +

1

2γ
log

1− ϵ

ϵ
.

3. Logarithmic inflation. For f(x) = log(x+ δ) with δ > 0,

R(p) =
log(1− p+ δ)

log(p+ δ)
.

Collapse condition:
log(1− p+ δ)

log(p+ δ)
<

ϵ

1− ϵ
.

E.3 GRADIENT DYNAMICS UNDER RATIO AMPLIFICATION

The ratio-amplifying property of ϕ-mappings not only accelerates the collapse of p̃, but also re-
shapes the gradient dynamics during training. For a strictly proper loss ℓ, the gradient w.r.t. logits z
is assumed to be

∇zℓ(z; y) = p− ey, p = g(z),

where g(·) denotes a probability distribution obtained from the logits z and ey is a one-hot vector
with the y-th entry equals 1.

When training on the inflated distribution p̃ = Φ(p), the chain rule gives

∇zℓ(p̃, y) =
∂p̃

∂p
· (p̃− y),

where ∂p̃
∂p is the Jacobian of the inflation operator.
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Effect of ratio amplification. Suppose f : [0, 1]→ R+ is strictly increasing and ratio-amplifying,
so that

p̃y
p̃j

>
py
pj

, ∀j ̸= y.

This guarantees that the relative gap between the correct and incorrect probabilities grows under Φ.
Hence, even if the exact magnitude of each gradient entry depends on the Jacobian structure, the
ratio

|∇zy |
|∇zj |

is enlarged compared to the original probability space. In other words, the margin zy − zj receives
stronger effective gradient pressure to grow. Intuitively, because p̃y > py and p̃j < pj for j ̸= y,
the gradient signal on the correct logit zy is reinforced, while the signals on the incorrect logits zj
are diminished. This rescaling accelerates the suppression of false classes and boosts the dominance
of the true class. Although the absolute gradient values are determined by both p̃ and the Jacobian
∂p̃
∂p , the effective separation between correct and incorrect classes is consistently larger under ratio-
amplifying mappings.

Summary. Any ϕ-mapping with ratio amplification reshapes the optimization dynamics by pre-
conditioning the gradient flow:

• The relative strength of gradients is tilted further in favor of the true class.
• Incorrect classes are suppressed earlier, as their probabilities are diminished more aggres-

sively.

Consequently, the system reaches effective one-hot collapse earlier than when training directly on p.
Crucially, since inference is carried out with the original distribution p, the final predictions remain
smooth and non-degenerate, preserving diversity while benefiting from sharper supervision during
training.
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