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Abstract
We consider a robust aggregation problem in the presence of both

truthful and adversarial experts. The truthful experts will report

their private signals truthfully, while the adversarial experts can

report arbitrarily. We assume experts are marginally symmetric in

the sense that they share the same common prior and marginal pos-

teriors. The rule maker needs to design an aggregator to predict the

true world state from these experts’ reports, without knowledge of

the underlying information structures or adversarial strategies. We

aim to find the optimal aggregator that outputs a forecast minimiz-

ing regret under the worst information structure and adversarial

strategies. The regret is defined by the difference in expected loss

between the aggregator and a benchmark who aggregates optimally

given the information structure and reports of truthful experts.

We focus on binary states and reports. Under L1 loss, we show

that the truncated mean aggregator is optimal. When there are

at most k adversaries, this aggregator discards the k lowest and

highest reported values and averages the remaining ones. For L2

loss, the optimal aggregators are piecewise linear functions. All the

optimalities hold when the ratio of adversaries is bounded above by

a value determined by the experts’ priors and posteriors. The regret

only depends on the ratio of adversaries, not on their total number.

For hard aggregators that output a decision, we prove that a random

version of the truncated mean is optimal for both L1 and L2. This

aggregator randomly follows a remaining value after discarding the

𝑘 lowest and highest reported values. We evaluate our aggregators

numerically in an ensemble learning task. We also obtain negative

results for general adversarial aggregation problems under broader

information structures and report spaces.

CCS Concepts
• Theory of computation → Algorithmic game theory; Algo-
rithmic mechanism design.
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1 Introduction
You are a rule maker tasked with aggregating the scores of five

judges to assign a final score for an athlete’s performance. There is

a crucial twist: some of those scores might be tainted by bribes! The

briber’s motive is unknown, potentially inflating or deflating the

score. You have no clue about the underlying details. How should

you decide the aggregation rules?

Such concerns of aggregating information with adversarial “ex-

perts” also exist in various scenarios. For instance, when the jury

debates, some jurors may be swayed by a bribe to deliver a spe-

cific verdict. When miners are asked to reach a consensus on a

blockchain network, some malicious miners manipulate valida-

tions for personal gain. Furthermore, in ensemble learning, when

combining predictions from multiple models, some models are com-

promised by adversarial actors. Therefore, it is crucial to design

aggregation rules that are robust to adversarial attacks.

Intuitively, the truncated mean, which discards some highest

and lowest scores and averages the remaining scores, seems rea-

sonable and is widely used in practice. But the understanding of its

theoretical effectiveness is limited. A natural question is, is this the

most effective strategy?

To answer this, we need a clear evaluation criterion for aggrega-

tion methods. A common approach is average loss, which calculates

the average difference between the aggregator’s output and the

true state across various cases. Two key elements define a case: the

information structure and the adversarial behavior. The informa-

tion structure is the joint distribution of experts’ private signals

and the true state. However, average loss heavily depends on the

specific set of cases chosen and contradicts the assumption that the

adversarial behavior can be arbitrary.

Another option is the worst-case loss, focusing on the maxi-

mum loss the aggregator obtains under any case. However, if all

experts are completely uninformed, no aggregator can perform

well. Therefore, the worst-case loss cannot differentiate between

aggregators.

Instead, we adopt a robust framework commonly used in online

learning and robust information aggregation [2]. This framework

aims to minimize the aggregator’s “regret” in the worst case. Regret

measures the difference between the aggregator’s performance and

an omniscient aggregator who knows the information structure

and truthful reports.

The framework can be understood as a zero-sum game between

two players. Nature chooses an information structure and adversar-

ial strategy, aiming to maximize the regret. The rule maker picks an

aggregator to minimize the regret. Generally, solving such a min-

imax problem is challenging due to the vast action space. With a

delicate analysis, prior studies proved that among aggregators who

output decisions, the random dictator is optimal without adversar-

ial experts under L1 loss, which implies that the optimal aggregator

that outputs probability is simple averaging [3]. However, this anal-

ysis does not extend to other scenarios, such as L2 loss. We show

1
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that without adversarial experts, the problem under L2 loss lacks a

simple solution.

Paradoxically, introducing adversarial experts does not compli-

cate the problem in some scenarios, it even simplifies it! Regarding

the soft aggregators that output a probability, we discover that with

a bounded proportion of adversaries, the simple truncated mean is

optimal under L1 loss. Furthermore, in the adversarial setting with

L2 loss, we provide a closed-form solution, which is unattainable

in the non-adversarial setting. Both optimal aggregators fall within

the family of piecewise linear functions. For hard aggregators that

output a decision, a random version of the truncated mean is opti-

mal for both L1 and L2 loss. The key insight is that the presence of

at least one adversarial expert guarantees the existence of equilibria

with simple formats, which are easy to construct. These equilibria

enable us to design optimal aggregators with closed-form formulas.

In summary, we introduce a novel setting that considers adver-

sarial experts in robust information aggregation. This framework

enables us to theoretically prove the optimality of the commonly

used truncated mean method under L1 loss and provide optimal

aggregators under L2 loss, which are piecewise linear.

1.1 Summary of Results
Theoretical Results. In the original non-adversarial setting in [3],

each expert will receive and report a binary private signal, either

𝐿 (low) or 𝐻 (high), indicating the binary world state 𝜔 ∈ {0, 1}.
The experts are marginally symmetric and truthful. That is, they

share the same marginal distribution of signals and will report

their private signals truthfully. However, correlations may exist

between the signals, thus the joint distribution is not determined.

The information structure 𝜃 ∈ Θ is defined by the joint distribution

of private signals and world state.

We extend the above setting to the adversarial setting. In addition

to truthful experts, adversarial experts exist and report arbitrarily

from the signal set {𝐻, 𝐿}. We assume the adversaries can observe

the reports of others and collude. The adversarial strategy is denoted

by 𝜎 ∈ Σ.
The rule maker aims to find the optimal aggregator 𝑓 to solve

the minimax problem:

𝑅(Θ, Σ) = inf

𝑓
sup

𝜃 ∈Θ,𝜎∈Σ
E𝜃 [ℓ (𝑓 (𝒙), 𝜔) − ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)] .

We analyze the problem in two contexts: 1) soft: 𝑓 ’s output is

a forecast in [0, 1]; 2) hard: 𝑓 ’s output is a decision in {0, 1}. The
aggregator 𝑓 can be randomized in the sense that its output is

random. 𝑜𝑝𝑡 is the benchmark, which is an omniscient aggrega-

tor that knows the underlying information structure 𝜃 of truthful

experts and minimizes the expected loss. 𝒙 is the reports of all

experts, 𝒙𝑇 is the reports of truthful experts, and ℓ is a loss func-

tion. In this paper, we discuss two types of loss function, the L1

loss ℓ1 (𝑦,𝜔) = |𝑦 − 𝜔 | and the L2 loss ℓ2 (𝑦,𝜔) = (𝑦 − 𝜔)2. The
benchmark function 𝑜𝑝𝑡 should report the maximum likelihood

under L1 loss and the Bayesian posterior under L2 loss. Thus L1

loss is more suitable when we want to output decisions and L2 loss

is preferred for probabilistic forecasts. Suppose there are 𝑛 experts

in total and 𝑘 = 𝛾𝑛 adversarial experts. The theoretical results are
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Non-adversarial: Optimal Aggregator, L1 loss

Adversarial: Optimal Aggregator, L1 loss

Adversarial: Optimal Aggregator, L2 loss

Non-adversarial: Optimal Aggregator, L2 loss

Figure 1: Illustration of optimal soft aggregators for binary
aggregation.

shown in Table 1. The optimal soft aggregators are deterministic,

and illustrated in Figure 1.

Loss Function Experts Model Regret
†

Closed-form?

L1 Loss

Non-adversarial 𝑐 Yes [3]

Adversarial 𝑐 +𝑂 ( 𝛾
1−2𝛾 ) Yes

L2 Loss

Non-adversarial 𝑐 +𝑂 ( 1𝑛 ) No, 𝑂 ( 1𝜖 )
★

Adversarial 𝑐 +𝑂 ( 𝛾

(1−2𝛾 )2 ) Yes

† 𝑐 is a constant depending on the prior and the posteriors given

signals. 𝛾 is the ratio of adversarial experts and 𝑛 is the number of

experts.

★
The complexity for computing the 𝜖-optimal aggrega-

tor 𝑓𝜖 , i.e., max𝜃 ∈Θ E𝜃 [ℓ (𝑓𝜖 (𝒙), 𝜔) − ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)] ≤
min𝑓 max𝜃 ∈Θ E𝜃 [ℓ (𝑓 (𝒙), 𝜔) − ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)] + 𝜖 .

Table 1: Overview of main results.

• L1 Loss Setting
– Adversarial. We prove that under the L1 loss, the

optimal soft aggregator is 𝑘-truncated mean, where 𝑘

is the number of adversarial experts. That is, we drop 𝑘

lowest reports and 𝑘 highest reports, then average the

remaining reports. Our analysis also reveals that the

regret increases asymptotically linear with adversarial

ratio 𝛾 for small 𝛾 . Moreover, the regret is independent

of the number of experts 𝑛.

• L2 Loss Setting
– Non-adversarial. In this setting, the optimal soft ag-

gregator remains piecewise linear, with separation

points at {1, 𝑛 − 1}. Although we do not obtain the

closed-form for the optimal aggregator, we prove that

we can compute the 𝜖-optimal aggregatorwithin𝑂 (1/𝜖)
2
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time. Unlike the L1 loss, the regret under the L2 loss

increases with 𝑛. Compared to the L1 loss, the aggrega-

tor under the L2 loss is more conservative (i.e., closer

to 1/2).

– Adversarial. We provide a closed-form expression

for the optimal soft aggregator which is a hard sig-

moid function with separation points at {𝑘, 𝑛 − 𝑘} for
small 𝛾 . The regret also increases asymptotically linear

with parameter 𝛾 and is independent of the number

of experts 𝑛. Interestingly, if we set 𝛾 = 0, the formula

of the adversarial optimal aggregator cannot match

the non-adversarial optimal aggregator. The reason is

when 𝛾 > 0, we can construct an equilibrium (𝑓 , 𝜃, 𝜎)
such that the information structure 𝜃 has a zero loss

benchmark. But when 𝛾 = 0, we cannot construct an

equilibrium (𝑓 , 𝜃 ) in the same way. The worst informa-

tion structure in the equilibrium may have a non-zero

loss benchmark, which leads to a more complex opti-

mal aggregator.

We also analyze optimal hard aggregators in Appendix C. For

both L1 and L2 loss, the optimal hard aggregators are random,

whose expectation is 𝑘-truncated mean. We call it 𝑘-ignorance

random dictator. It ignores k lowest-scoring and k highest-scoring

experts, then randomly follows one of the remaining experts. It

echos the results in [3] that the random dictator is optimal for the

non-adversarial setting.

Numerical Results. In Section 5, we empirically evaluate the

above aggregators in an ensemble learning task, which aggre-

gates the outputs of multiple image classifiers. These classifiers

are trained by different subsets of the full training set. We utilize

the cifar-10 datasets [25]. Our experiments show that the theoreti-

cally derived optimal aggregator outperforms traditional methods

like majority vote and averaging, particularly under L2 loss. Under

L1 loss, the majority vote also performs well. The reason can be

that compared to L1 loss, L2 loss penalizes not only being wrong

but also how wrong it is.

Extension to General Model. In Appendix E, we extend the bi-

nary aggregation to the general model. In detail, we consider a

broader range of information structures and experts’ report space.

We show that a small group of adversaries can effectively attack the

aggregator. We introduce a metric to estimate the regret. Intuitively,

the metric is the maximum impact 𝑘 experts can make regarding

the benchmark aggregator 𝑜𝑝𝑡 . This metric allows us to establish

a bound on the minimal regret, with the help of a regularization

parameter of information structures.

2 Related Work
Robust Information Aggregation. Arieli et al. [2] first propose a

robust paradigm for the information aggregation problem, which

aims to minimize the regret under the worst information structures.

They mainly study the conditional independent setting. There is a

growing number of research on the robust information aggregation

problem. Neyman and Roughgarden [29] also use the robust regret

paradigm under the projective substitutes condition and shows

that averaging is asymptotically optimal. De Oliveira et al. [10]

consider the robust absolute paradigm and prove that we should

pay more attention to the best single information source. Pan et al.

[31] consider the optimal aggregatorwith second-order information.

Guo et al. [16] provide an algorithmic method to compute the near-

optimal aggregator for the conditional independent information

structure. We consider a different set of information structures,

and more importantly, the existence of adversaries. We also obtain

the exact optimal aggregator with closed forms in the adversarial

setting.

Our paper is most relevant to Arieli et al. [3], which considers

the symmetric agents setting with the same marginal distribution.

They prove the random dictator strategy is optimal under some

mild conditions. We extend their results to different loss functions

and the adversarial setting. Our results show that the optimal hard

aggregator follows a random expert after discarding some values,

which extends the random dictator strategy.

Adversarial Information Aggregation. In the crowdsourcing field,

some works aim to detect unreliable workers based on observed

labels. They mainly consider two kinds of unreliable workers, the

truthful workers but with a high error rate, and the adversarial

workers who will arbitrarily assign labels. One possible approach

is using the “golden standard” tasks, which means managers know

the ground truth [12, 26, 34]. When there are no “golden standard”

tasks, Hovy et al. [20], Jagabathula et al. [21], Kleindessner and

Awasthi [24], Vuurens et al. [36] detect the unreliable workers via

revealed labels under some behavior models such as the Dawid-

Skene model. Other works focus on finding the true labels with

adversarial workers. Steinhardt et al. [35] consider a rating task

with 𝛼𝑛 reliable workers, and others are adversarial workers. They

showed that the managers can use a small amount of tasks, which

is not scaled with 𝑛, to determine almost all the high-quality items.

Ma and Olshevsky [27] solve the adversarial crowdsourcing prob-

lem by rank-1 matrix completion with corrupted revealed entries.

Other works also focus on the data poison attacks in crowdsourc-

ing platforms [7, 8, 13, 15, 28, 37]. Unlike crowdsourcing, we do

not assume the existence of many similar tasks and focus on the

one-shot information aggregation task.

Han et al. [17] and Schoenebeck et al. [33] propose a peer predic-

tion mechanism for a hybrid crowd containing both self-interested

agents and adversarial agents. Han et al. [17] focus on the binary

label setting and propose two strictly posterior truthful mecha-

nisms. Schoenebeck et al. [33] prove their mechanism guarantees

truth-telling is a 𝜖-Bayesian Nash equilibrium for self-interested

agents. The focus of our paper is the aggregation step, thus we do

not consider the incentives of non-adversarial agents but assume

they are truth-telling.

Kim and Fey [23] study the voting problemwhen there are voters

with adversarial preferences. They prove that it is possible that a

minority-preferred candidate almost surely wins the election under

equilibrium strategies. They want to determine when the majority

vote can reveal the true ground truth while we want to find a robust

aggregator for any situation.

Robust Ensemble Learning. Ensemble learning methods lever-

age the power of multiple models to improve prediction accuracy,

similar to how aggregating predictions from a diverse crowd can

produce better forecasts than individual opinions. The earliest work

3
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of ensemble learning can date back to the last century [9]. They aim

to combine different classifiers trained from different categories

into a composite classifier. [32] provides a new algorithm to con-

vert some weak learners to strong learners. The most widely-used

ensemble learning methods include bagging [5], AdaBoost [18], ran-

dom forest [6], random subspace [19], gradient boosting [14]. Dong

et al. [11] provides a comprehensive review of ensemble learning.

The main difference between ensemble learning and information

aggregation is that ensemble learning is a training process and thus

involves multi-round aggregation. Unlike them, our method does

not assume any knowledge about the underlying learning models

and only needs the final outputs of models.

In the robust learning field, there are many works aimed at data

poison attacks to improve the robustness of learning algorithms [4,

22, 38]. In comparison, our adversaries cannot change the training

data, but alter the output of learning models.

3 Problem Statement
We define {0, 1, · · · , 𝑛} as [𝑛] and Δ𝑋 as the set of all possible dis-

tributions over 𝑋 . For a distribution 𝑃 , 𝑠𝑢𝑝𝑝 (𝑃) denotes its support
set.

Suppose the rule maker wants to determine the true state𝜔 from

a binary choice set Ω = {0, 1}. She is uninformed and asks 𝑛 experts

for advice. Each expert will receive a signal 𝑠𝑖 from a binary space

𝑆 = {𝐿,𝐻 } (low, high), indicating that with low (high) probability

the state is 1. Then they will truthfully report 𝐿 or 𝐻 according to

their signals. The binary signal assumption can be relaxed, as we

can always construct a binary signal structure from a non-binary

structure with the same joint distribution over binary reports [3].

Experts share the same prior 𝜇 = Pr[𝜔 = 1] and posterior given

signals: 𝑝0 = Pr[𝜔 = 1|𝑠𝑖 = 𝐿] and 𝑝1 = Pr[𝜔 = 1|𝑠𝑖 = 𝐻 ]. We

assume 𝑝0 < 1

2
< 𝑝1, otherwise the signals are not informative (e.g.,

if 𝑝0 < 𝑝1 < 1/2, then any signal is a low signal). We also define

their inverse probabilities 𝑎 = Pr[𝑠𝑖 = 𝐻 |𝜔 = 1], 𝑏 = Pr[𝑠𝑖 = 𝐻 |𝜔 =

0]. The joint distribution of true state and signals 𝜃 ∈ ΔΩ×𝑆𝑛 is

drawn from a family Θ. It is also called the information structure.

Since there may exist correlations between the experts’ signals, the

parameters 𝜇, 𝑎, 𝑏 alone are insufficient to determine an information

structure.

In the non-adversarial setting, the experts are truthful when

they report their signals. We could relax this assumption to rational

experts who are revenue maximizers by applying proper incentive

mechanisms. Following Arieli and Babichenko [1], we assume the

experts are anonymous, which can be relaxed due to the symmetry

of experts. Thus the rule maker only sees the number of experts

reporting 𝐻 , denoted by 𝑥 ∈ [𝑛]. Then she needs to choose a

randomized aggregator 𝑓 : [𝑛] → Δ[0,1] , which maps reports to

a (possibly random) belief ∈ [0, 1] about being in state 1. We first

focus on randomized soft aggregators and will extend the results

to randomized hard aggregators 𝑓 : [𝑛] → Δ{0,1} in Appendix C.

In the adversarial setting, there are 𝑘 = 𝛾𝑛 adversarial experts

who can arbitrarily report from {𝐿, 𝐻 }. We assume they are omni-

scient. That is, they know the true state and reports of other truthful

experts and can collude. They will follow a randomized strategy

𝜎 ∈ Σ : Ω × 𝑆𝑛−𝑘 → Δ[𝑘 ] that maps truthful reports to a (random)

number of additional 𝐻 . Suppose the set of truthful experts is 𝑇 ,

and the set of adversarial experts is 𝐴. We use 𝑥𝑇 and 𝑥𝐴 to repre-

sent the number of reports 𝐻 from truthful and adversarial experts,

respectively.

Robust Aggregation Paradigm. Given the families of information

structures Θ and strategies Σ, the rule maker aims to minimize

the regret compared to the non-adversarial setting in the worst

information structure. That is, the rule maker wants to find the

optimal function 𝑓 ∗ to solve the following minimax problem:

𝑅(Θ, Σ) = inf

𝑓
sup

𝜃 ∈𝜃,𝜎∈Σ
E𝜃,𝜎 [ℓ (𝑓 (𝑥), 𝜔)] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝑥𝑇 ), 𝜔)] .

ℓ is a loss function regarding the output of the aggregator and the

true state𝜔 .𝑜𝑝𝑡𝜃 (·) is a benchmark function, outputting the optimal

result given the joint distribution 𝜃 and truthful experts’ reports 𝑥𝑇
tominimize the expected loss:𝑜𝑝𝑡𝜃 (𝑥𝑇 ) = argmin𝑔 E𝜃 [ℓ (𝑔(𝑥𝑇 ), 𝜔)] .

We consider two commonly used loss function, L1 loss ℓ1 (𝑦,𝜔) =
|𝑦 − 𝜔 | and L2 loss ℓ2 (𝑦,𝜔) = (𝑦 − 𝜔)2. L2 loss will punish the

aggregator less when the prediction is closer to the true state. Thus

it encourages a more conservative strategy for the aggregator to

improve the accuracy in the worst case. L1 loss will encourage a

radical strategy to approximate the most possible state.

For short, we also define

𝑅(𝑓 , 𝜃, 𝜎) = E𝜃,𝜎 [ℓ (𝑓 (𝑥), 𝜔)] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝑥𝑇 ), 𝜔)],

is aggregator 𝑓 ’s regret on information structure 𝜃 and adversarial

strategy 𝜎 . 𝑅(𝑓 ,Θ, Σ) = sup𝜃 ∈Θ,𝜎∈Σ 𝑅(𝑓 , 𝜃, 𝜎) is the maximal regret

of aggregator 𝑓 among the family Θ, Σ.

4 Theoretical Results
In this section, we analyze the optimal aggregators under different

settings theoretically. Due to space limitations, all the proofs in this

section are deferred to Appendix B.

4.1 L1 loss
We start from L1 loss. In the non-adversarial setting, Arieli et al.

[3] prove the optimal hard aggregator is the random dictator, i.e.,

randomly and uniformly following an expert. With a step further,

it reveals that simple averaging 𝑓 (𝑥) = 𝑥/𝑛 is the optimal soft

aggregator.

In the adversarial setting, we prove that the optimal aggregator

is the 𝑘-truncated mean, when the adversary ratio 𝛾 = 𝑘/𝑛 is upper-

bounded (Theorem 4.2). 𝑘-truncated mean discards 𝑘 lowest and 𝑘

highest reports, then outputs the average among left reports.

Definition 4.1 (𝑘-truncated mean). We call 𝑓 is 𝑘-truncated
mean if

𝑓 (𝑥) =


1 𝑥 ≥ 𝑛 − 𝑘

0 𝑥 ≤ 𝑘

𝑥 − 𝑘

𝑛 − 2𝑘
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Theorem 4.2. When

𝛾 ≤ min

(
𝑎

1 + 𝑎
,
1 − 𝑏

2 − 𝑏
,

−(1 − 𝜇 )𝑏 + 𝜇𝑎

𝜇 − (1 − 𝜇 )𝑏 + 𝜇𝑎
,

(1 − 𝜇 ) (1 − 𝑏 ) − 𝜇 (1 − 𝑎)
(1 − 𝑏 ) (1 − 𝜇 ) + 1 − 𝜇 − 𝜇 (1 − 𝑎)

)
, the 𝑘-truncated mean is optimal under the L1 loss. Recall that 𝜇 is
the prior, 𝑎 = Pr[𝑠𝑖 = 𝐻 |𝜔 = 1] and 𝑏 = Pr[𝑠𝑖 = 𝐻 |𝜔 = 0]. Moreover,
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the regret is

𝑅(Θ, Σ) = (1 − 𝛾) (1 − (1 − 𝜇) (1 − 𝑏) − 𝜇𝑎)
1 − 2𝛾

.

Intuitively, when signals are highly informative (𝑎 = 𝑃𝑟 [𝑠𝑖 =

𝐻 |𝜔 = 1] ≈ 1 or 𝑏 = 𝑃𝑟 [𝑠𝑖 = 𝐻 |𝜔 = 0] ≈ 0), adversaries struggle

to manipulate the majority of experts’ opinions. This resilience to

adversarial attacks results in a less strict bound (𝑎/(1+𝑎), (1−𝑏)/(2−
𝑏) ≈ 1/2). On the other hand, if the signals are less informative

and distinguishable (𝑃𝑟 [𝑠𝑖 = 𝐻,𝜔 = 1] ≈ 𝑃𝑟 [𝑠𝑖 = 𝐻,𝜔 = 0] or
𝑃𝑟 [𝑠𝑖 = 𝐿,𝜔 = 1] ≈ 𝑃𝑟 [𝑠𝑖 = 𝐿,𝜔 = 0]), adversaries can more easily

distort the results, leading to a tighter bound (𝑎𝜇 − 𝑏 (1 − 𝜇) ≈ 0 or

𝜇 (1 − 𝑎) − (1 − 𝜇) (1 − 𝑏) ≈ 0).

When 𝛾 is sufficiently large, the 𝑘-truncated mean may not be

optimal. Nonetheless, we can infer by the same argument that the

optimal aggregator will be a constant, either 1 or 0. It means that

the aggregator is uninformative regardless of experts’ reports.

Proof Sketch. We prove Theorem 4.2 in two steps.

• Lower Bound: We first construct a bad case, including the

information structure and adversarial strategy 𝜃𝑏 , 𝜎𝑏 , which

establishes a lower bound 𝑅 of the regret for any aggregator.

• Upper Bound: We construct an aggregator—the 𝑘-truncated

mean. On the one hand, it matches the lower bound 𝑅 under

the bad case 𝜃𝑏 , 𝜎𝑏 . On the other hand, we prove that it

possesses some special properties, and therefore, the worst-

case scenario it corresponds to is 𝜃𝑏 , 𝜎𝑏 . Thus we prove the

optimality of the 𝑘-truncated mean.

If the Number of Adversaries 𝑘 is Unknown. To identify the opti-

mal aggregator, it is crucial to know the parameter 𝑘 . In practice,

the exact number of adversaries may be unable to know. Instead,

We may only obtain an estimator 𝑘′ of 𝑘 . In this case, Lemma 4.3

shows that the regret grows asymptotically linear with the additive

error |𝑘 − 𝑘′ |.

Lemma 4.3. Suppose the number of adversaries is k, then for any
𝑘′, the 𝑘′-truncated mean obtains the regret

𝑅(𝑓𝑘 ′ ,Θ, Σ) = 𝑘′ − 𝑘 + (𝑛 − 𝑘) (1 − (1 − 𝜇) (1 − 𝑏) − 𝜇𝑎)
𝑛 − 2𝑘′

.

4.2 L2 loss
Wefirst show that without some prior knowledge of the information

structure, we cannot obtain non-trivial optimal aggregator. We

then show that with some partial prior knowledge, the optimal

aggregators are non-trivial.

4.2.1 Unknown Prior. In the L1 loss setting, the optimal aggregator

is independent with three parameters we defined before, the prior

𝜇 and the marginal report distributions 𝑎, 𝑏. However, in the L2

loss setting, the optimal aggregator also depends on these param-

eters. When these parameters are unknown to the rule maker, it

is impossible to obtain any informative aggregator (Lemma 4.4,

Lemma 4.5).

Lemma 4.4. When 𝜇, 𝑎, 𝑏 is unknown, the random guess is op-
timal. Formally, let (Θ𝜇,𝑎,𝑏 , Σ𝜇,𝑎,𝑏 ) includes all information struc-
tures and adversarial strategies with parameters 𝜇, 𝑎, 𝑏 and (Θ, Σ) =

⋃
0≤𝜇≤1,𝑎>𝑏 (Θ𝜇,𝑎,𝑏 , Σ𝜇,𝑎,𝑏 ). Then 𝑓 ∗ (𝑥) = 1/2 and 𝑅(Θ, Σ) = 1/4.

It holds for both adversarial and non-adversarial settings.

Lemma 4.5. When 𝜇 is known but 𝑎, 𝑏 is unknown, the prior guess
is optimal. Formally, let (Θ𝑎,𝑏 , Σ𝑎,𝑏 ) includes all information struc-
tures and adversarial strategies with parameters 𝜇, 𝑎, 𝑏 and (Θ, Σ) =⋃

𝑎>𝑏 (Θ𝑎,𝑏 , Σ𝑎,𝑏 ). Then 𝑓 ∗ (𝑥) = 𝜇 and 𝑅(Θ, Σ) = 𝜇 (1 − 𝜇). It holds
for both adversarial and non-adversarial settings.

We will obtain a non-trivial result when all three parameters

are known to the rule maker. In the rest of this section, we assume

𝜇, 𝑎, 𝑏 are known.

4.2.2 Partial Prior Knowledge: Non-adversarial Setting. First, we dis-
cuss the non-adversarial setting. Unfortunately, obtaining a closed-

form expression for the optimal aggregator is infeasible without

solving a high-order polynomial equation. However, we can calcu-

late it efficiently as Theorem 4.6 shows.

Theorem 4.6. There exists an algorithm that costs 𝑂 (1/𝜖) to find
the 𝜖-optimal aggregator 𝑓𝜖 in the non-adversarial setting. That is,
define the maximal regret of 𝑓 , 𝑅(𝑓 ,Θ) = max𝜃 ∈Θ E𝜃 [ℓ (𝑓 (𝑥), 𝜔)] −
E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝑥), 𝜔)]. 𝑓𝜖 is a 𝜖-optimal aggregator if

𝑅(𝑓𝜖 ,Θ) ≤ min

𝑓
𝑅(𝑓 ,Θ) + 𝜖.

Proof Sketch. The key idea here is to decompose the information

structures into a linear combination of several “basic” information

structures 𝜃1, 𝜃2, · · · , 𝜃𝑘 with rsupp(𝜃𝑖 ) ≤ 4, where rsupp(𝜃 ) =

𝑠𝑢𝑝𝑝 (𝑣1) ∪ 𝑠𝑢𝑝𝑝 (𝑣0) is the support of report sets. That is, there are
at most 4 possible reports in these “basic” information structures.

Using the convexity of the regret function, we can prove that for any

𝑓 , 𝜃 , the regret 𝑅(𝑓 , 𝜃 ) will be less than the linear combination of

𝑅(𝑓 , 𝜃1), · · · , 𝑅(𝑓 , 𝜃𝑘 ). Thus we only need to solve the optimization

problem among these “basic” information structures.

We then reduce the set of “basic” information structures to a

constant size, which allows efficient algorithms.

Regret. As we cannot obtain the closed form of the optimal ag-

gregator, we do not know the regret either. However, it is possible

to estimate the regret, as stated in Lemma 4.7. Figure 2 shows an

example of the regret, which is calculated by our algorithm.

Lemma 4.7. Suppose Θ𝑛 is the information structure with 𝑛 truth-
ful experts. Then the non-adversarial regret 𝑅(Θ𝑛) = 𝑐 + 𝑂 (1/𝑛),
where 𝑐 is a value related to 𝜇, 𝑎, 𝑏.

4.2.3 Partial Prior Knowledge: Adversarial Setting. Now we con-

sider the adversarial setting. Surprisingly, for low adversary ratio

𝛾 , the optimal aggregator has a closed form, which is also a hard

sigmoid function with separation points in {𝑘, 𝑛 − 𝑘}. We state the

optimal aggregator and the regret in Theorem 4.8.

Theorem 4.8. When 0 < 𝛾 ≤ min( 𝑎
1+𝑎 ,

1−𝑏
2−𝑏 ), the optimal aggre-

gator is

𝑓 ∗ (𝑥) =



𝜇 (1 − 𝛾) (1 − 𝑎)
𝜇 (1 − 𝛾) (1 − 𝑎) + (1 − 𝜇) (1 − 2𝛾 − (1 − 𝛾)𝑏) 𝑥 ≤ 𝑘

𝜇 ((1 − 𝛾)𝑎 − 𝛾)
𝜇 ((1 − 𝛾)𝑎 − 𝛾) + (1 − 𝜇) (1 − 𝛾)𝑏 𝑥 ≥ 𝑛 − 𝑘

𝑥 − 𝑘

𝑛 − 2𝑘
(𝑓 (𝑛 − 𝑘) − 𝑓 (𝑘)) + 𝑓 (𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)
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Figure 2: Illustration for the regret under non-adversarial
setting, L2 loss. We fix 𝜇 = 0.5 and vary the number of experts.
The parameters 𝑎, 𝑏 are shown in the legend.

Moreover, the regret 𝑅(Θ, Σ) is

(−1 + 𝛾) (−1 + 𝜇)𝜇
∗ (𝑏 (−1 + 𝑏 + 2𝛾 − 𝑏𝛾) − (−1 + 𝑎 + 𝑏) (𝑏 + 𝑎(−1 + 𝛾) + 𝛾 − 𝑏𝛾) 𝜇)
/ (𝑏 (−1 + 𝛾) (−1 + 𝜇) + 𝑎𝜇 − (1 + 𝑎)𝛾𝜇)
/ (−1 + 𝑏 (−1 + 𝛾) (−1 + 𝜇) + 𝑎𝜇 − 𝛾 (−2 + 𝜇 + 𝑎𝜇))

Proof Sketch. Similar to Theorem 4.2, we prove this theorem by

directly constructing an equilibrium (𝑓 ∗, 𝜃∗, 𝜎∗). On the one hand,

𝜃∗, 𝜎∗ provide a lower bound for the regret. On the other hand, 𝑓 ∗

is the best response to 𝜃∗, 𝜎∗. In addition, for a special family of

aggregators 𝑓 including 𝑓 ∗, (𝜃∗, 𝜎∗) is their corresponding worst
case. Thus 𝑓 ∗ is optimal.

Discussion. If we simply substitute 𝛾 = 0 into the formula in

Theorem 4.8, we can not obtain the optimal aggregator for the non-

adversarial setting as Theorem 4.6 computes. Thus the adversarial

setting has some essential differences from the non-adversarial

setting.Wewill use an example to show the reason.We first consider

the non-adversarial setting. Suppose there are 5 experts and we

select the average aggregator 𝑓 (𝑥) = 𝑥
𝑛 . Assume 𝑎 = 3

5
, 𝑏 = 2

5
, and

𝜇 = 1

2
.

Example 4.9 (Examples of the Non-adversarial Setting).

Consider two information structures 𝜃1, 𝜃2.

𝜃1 : Pr
𝜃1
[𝑥 |𝜔 = 1] =

{
1/2 𝑥 = 1, 5

0 else
Pr

𝜃1
[𝑥 |𝜔 = 0] =

{
1/2 𝑥 = 0, 4

0 else

𝜃2 : Pr
𝜃2
[𝑥 |𝜔 = 1] =

{
1/2 𝑥 = 1, 5

0 else
Pr

𝜃2
[𝑥 |𝜔 = 0] =


3/5 𝑥 = 0

2/5 𝑥 = 5

0 else

In the information structure 𝜃1, the loss of the aggregator is

1

2

(
1

2

(
1 − 1

5

)
2

+ 1

2

(
4

5

)
2

)
= 8

25
and the loss of the benchmark is

0. In the information structure 𝜃2, the loss of the aggregator is

1

2

(
1

2

(
1 − 1

5

)
2

+ 2

5
· 12

)
= 9

25
, which is greater than in 𝜃1. However,

the loss of the aggregator is also greater than in 𝜃1. Notice that the

regret is the difference between the loss of the aggregator and the

loss of the benchmark. Therefore, for the average aggregator, we

cannot easily determine which of 𝜃1 or 𝜃2 has the greater regret.

In fact, the worst information structure corresponding to simple

averaging is a mixture of some information structures. That is why

we need to solve it using an algorithm.

Surprisingly, when we add one adversary, the situation becomes

simpler. We consider the information structure 𝜃1 and adversarial

strategy 𝜎 (5) = 𝜎 (1) = 0, 𝜎 (4) = 𝜎 (0) = 1. In this case, we obtain

highest loss of the aggregator while keeping the zero loss bench-

mark. Thus it is easier to determine the worst information structure

in the adversary setting.

5 Numerical Experiment
This section evaluates our aggregators in ensemble learning, where

we combinemultiplemodels’ predictions to achieve higher accuracy.

There exist data poisoning attacks [22] in the ensemble learning

process in practice, which corresponds to the adversarial setting.

The theory has already provided the worst-case analysis. The exper-

iment focuses on the average performance with specific adversarial

strategies, which reflect real-world situations and are feasible.

5.1 Setup
We now apply our framework to ensemble learning for image clas-

sification.

• World State 𝜔 : it is the true class 𝑦 𝑗 of the data point 𝑑 𝑗 .
• Expert 𝑖: it is a black-box machine learning model 𝑀𝑖 ,

which will take the data point 𝑑 𝑗 as the input and output a

prediction for its class𝑀𝑖 (𝑑 𝑗 ).
• Signal 𝑠𝑖 : suppose we have a training dataset D. For each

model 𝑀𝑖 , the signal 𝑠𝑖 is defined by its training dataset

D𝑖 ⊂ D.

• Report 𝑥𝑖 : it is model𝑀𝑖 ’s output class. We do not consider

the confidence of models.

• Benchmark Function 𝑜𝑝𝑡 : it is defined by the best model

trained using the full dataset D.

In our experiment, we utilized the CIFAR-10 dataset, which com-

prises images across 10 distinct classes. To adapt this multi-class

dataset for our binary signals framework, our task is to determine

whether the image belongs to a special class (e.g. cat) or not. To

ensure the symmetric assumption and keep the diversity of the

models, we train 100 models using a consistent machine learning

backbone according to Page [30]. For each model𝑀𝑖 , we construct

the sub-dataset D𝑖 by uniformly sampling 20000 images from the

original training dataset, which contains 50000 images. We train

10 epochs by GPU RTX 3060 and CPU Intel i5-12400. The average

accuracy of models is around 85%.
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Estimation For Parameters. To apply our aggregator in Theo-

rem 4.8, we need three important parameters, the prior 𝜇, the prob-

ability 𝑎 of the “yes” answer when the true label is “yes”, and the

probability 𝑏 of the “yes” answer when the true label is “no”. In

practice, it is impossible to know the true value due to the imper-

fect knowledge of the data distribution. Instead, we can estimate

them by the empirical performance of models in the training set. If

the training set is unbiased samples from the true distribution, the

empirical estimator is also unbiased for these true parameters.

Adversary Models. We test two different kinds of adversarial

strategies. First is the extreme strategy. That is, the adversaries

always report the opposite forecast to the majority of truthful

experts. Second is the random strategy, which will randomly report

“yes” or “no” with equal probability.

Aggregators. We compare our aggregators to two benchmarks:

the majority vote-outputting the answers of the majority of experts;

and the averaging-outputing the ratio of models answering “yes”.

5.2 Results
We evaluated the performance of different aggregators across a

range of adversaries and Figure 3 shows our results for L2 loss. For

the random adversaries, we sample 50 independent groups of ad-

versarial experts and draw an error bar of standard deviation. More

results are presented in Appendix D. Our piecewise linear aggrega-

tor (Theorem 4.8) outperforms other aggregators in any situation.

Notably, the majority has a close performance to our aggregator,

which means it is a good approximation in the ensemble learning

setting. This is mainly due to the high accuracy of each model.

When the group of adversaries is small, the averaging performs

well. However, when the group becomes large, the effectiveness of

averaging significantly diminishes. Thus averaging is very sensitive

to the number of adversaries.

When the adversaries use the random strategy, all aggregators

generally perform better. In particular, the majority vote will not be

affected by the adversaries in expectation since it will not change

the majority. When the number of adversaries is small, the averag-

ing even outperforms our aggregator, as our aggregator is overly

conservative in this case.

Figure 4 illustrates the accuracy of various aggregation methods.

The benchmark aggregator, which represents the model trained

on the full dataset, achieves approximately 98% accuracy. The k-

Truncated Random Select, a randomized variant of the k-Truncated

Mean, performs similarly to themajority vote, both reaching around

96% accuracy. In contrast, the Random Select, which randomly

follows one model, performs poorly, especially when the number

of adversaries increases.

6 Conclusion
We analyze the robust aggregation problem under both truthful

and adversarial experts. We show that the optimal aggregator is

piecewise linear across various scenarios. In particular, the trun-

cated mean is optimal for L1 loss. We evaluate our aggregators by

an ensemble learning task. For the general setting with more flexi-

ble information structures and experts’ reports space, we provide
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Figure 3: The performance of different aggregators under
fifferent adversarial strategies. The x-axis is the number of
adversaries we add. The number of truthful experts is 100.
The y-axis is the regret.
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Figure 4: The accuracy of different aggregators under extreme
strategy. The x-axis is the number of adversaries we added
to experts. The number of truthful experts is 100. The y-axis
is the accuracy.

some negative results that the optimal aggregator is vulnerable to

adversarial experts.

For future work, it would be interesting to extend the binary

world state into a multi-state case, where the adversarial strate-

gies are more diverse. Another possible direction is exploring the

performance of the truncated mean in other general information

structures, such as the substitute information structure [29]. More-

over, we wonder what if we connect behavioral economics by con-

sidering other types of experts, such as experts who only report

truthfully with some probability.
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A Auxiliary Tools
In this section, we first give some useful notations. We define two

important distributions 𝑣1, 𝑣0 ∈ Δ[𝑛] , which are the distributions

of reports conditioning on the world state: 𝑣1 (𝑡) = Pr𝜃,𝜎 [𝑥 = 𝑡 |𝜔 =

1], 𝑣0 (𝑡) = Pr𝜃,𝜎 [𝑥 = 𝑡 |𝜔 = 0]. Notice that 𝑣1, 𝑣0 are related to both

𝜃 and 𝜎 . Similarly, we define 𝑢1 (𝑡) = Pr𝜃 [𝑥𝑇 = 𝑡 |𝜔 = 1], 𝑢0 (𝑡) =
Pr𝜃 [𝑥𝑇 = 𝑡 |𝜔 = 0] which are the conditional distributions of truth-

ful experts’ reports. Notice that 𝑢1, 𝑢0 ∈ Δ[𝑛−𝑘 ] .
The expected loss of the aggregator can be decomposed by 𝑣1, 𝑣0:

E𝜃,𝜎 [ℓ (𝑓 (𝑥), 𝜔)] = 𝜇𝐸𝑥∼𝑣1 [ℓ (𝑓 (𝑥))] + (1 − 𝜇)𝐸𝑥∼𝑣0 [ℓ (1 − 𝑓 (𝑥))] .
By simple calculation, we can obtain the closed-form of the bench-

mark 𝑜𝑝𝑡𝜃 (𝑥) under different loss function ℓ .

L1 loss

𝑜𝑝𝑡𝜃 (𝑥𝑇 ) =
{
1 𝜇𝑢1 (𝑥𝑇 ) ≥ (1 − 𝜇)𝑢0 (𝑥𝑇 )
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The expected loss is 1 −∑
𝑥 max(𝜇𝑢1 (𝑥), (1 − 𝜇)𝑢0 (𝑥)).

L2 loss

𝑜𝑝𝑡𝜃 (𝑥𝑇 ) =
𝜇𝑢1 (𝑥𝑇 )

𝜇𝑢1 (𝑥𝑇 ) + (1 − 𝜇)𝑢0 (𝑥𝑇 )
.

The expected loss is

∑
𝑥

𝜇 (1−𝜇 )𝑢1 (𝑥 )𝑢0 (𝑥 )
𝜇𝑢1 (𝑥 )+(1−𝜇 )𝑢0 (𝑥 )

Before considering the optimal aggregator, we first characterize

all feasible information structures. Lemma A.1 fully formalizes the

distribution 𝑢1, 𝑢0, i.e., the possible reports of 𝑛 −𝑘 truthful experts.

Lemma A.1 ([3]). For any distribution 𝑢1, 𝑢0 ∈ Δ2

[𝑛−𝑘 ] , there
exists an information structure 𝜃 such that 𝑢1 (𝑡) = Pr𝜃 [𝑥𝑇 = 𝑡 |𝜔 =

1], 𝑢0 (𝑡) = Pr𝜃 [𝑥𝑇 = 𝑡 |𝜔 = 0] if an only if E𝑥∼𝑢1
[𝑥] = (𝑛 −𝑘)𝑎 and

E𝑥∼𝑢0
[𝑥] = (𝑛 − 𝑘)𝑏.

The following lemma is an extension of Lemma A.1. It shows that

there is also some restriction on the expectation of the distribution

of inputs for adversarial experts and truthful experts.

Lemma A.2. For any information structure 𝜃 and adversarial strat-
egy 𝜎 , the corresponding 𝑣1, 𝑣0 satisfy (𝑛 − 𝑘)𝑎 ≤ E𝑥∼𝑣1 [𝑥] ≤
(𝑛 − 𝑘)𝑎 + 𝑘 and (𝑛 − 𝑘)𝑏 ≤ E𝑥∼𝑣0 [𝑥] ≤ (𝑛 − 𝑘)𝑏 + 𝑘 .

Proof. By A.1, E𝑥∼𝑢1
[𝑥] = (𝑛 − 𝑘)𝑎 and E𝑥∼𝑢0

[𝑥] = (𝑛 − 𝑘)𝑏.
Consider E𝑥∼𝑣1 [𝑥] − E𝑥∼𝑢1

[𝑥], which is the expectation of reports

of adversaries. Since there are at most 𝑘 adversaries. Then 0 ≤
E𝑥∼𝑣1 [𝑥] −E𝑥∼𝑢1

[𝑥] ≤ 𝑘 . Thus (𝑛−𝑘)𝑎 ≤ E𝑥∼𝑣1 [𝑥] ≤ (𝑛−𝑘)𝑎+𝑘 .
Similarly, (𝑛 − 𝑘)𝑏 ≤ E𝑥∼𝑣0 [𝑥] ≤ (𝑛 − 𝑘)𝑏 + 𝑘 . □
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Now we give a useful lemma for our main theorems.

Definition A.3 (A Bad Information Structure). If 𝑘 < (𝑛 −
𝑘)𝑎, (𝑛 − 𝑘)𝑏 < 𝑛 − 2𝑘 , we define a bad information structure 𝜃𝑏 , 𝜎𝑏
such that

Pr

𝜃𝑏
[𝑥 = 𝑛 − 𝑘 |𝜔 = 1] = (𝑛 − 𝑘)𝑎 − 𝑘

𝑛 − 2𝑘

Pr

𝜃𝑏
[𝑥 = 𝑘 |𝜔 = 1] = 𝑛 − 𝑘 − (𝑛 − 𝑘)𝑎

𝑛 − 2𝑘

Pr

𝜃𝑏
[𝑥 = 𝑛 − 2𝑘 |𝜔 = 0] = (𝑛 − 𝑘)𝑏

𝑛 − 2𝑘

Pr

𝜃𝑏
[𝑥 = 0|𝜔 = 0] = 𝑛 − 2𝑘 − (𝑛 − 𝑘)𝑏

𝑛 − 2𝑘

and

𝜎𝑏 (𝑥) =
{
𝑘 𝑥 = 0, 𝑛 − 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

Lemma A.4. If the aggregator 𝑓 satisfies the following conditions:

• non-decreasing
• ℓ (𝑓 (𝑥), 0) is convex in [𝑘, 𝑛 − 𝑘]
• ℓ (𝑓 (𝑥), 1) is convex in [𝑘, 𝑛 − 𝑘]
• 𝑓 (𝑥) is constant in [0, 𝑘] and [𝑛 − 𝑘, 𝑘].

Then 𝑅(𝑓 ,Θ, Σ) = 𝑅(𝑓 , 𝜃𝑏 , 𝜎𝑏 ).

Proof.

E𝜃,𝜎 [ℓ (𝑓 )] = 𝜇
∑︁
𝑥

E𝜎 [𝑣1 (𝑥)ℓ (𝑓 (𝑥 + 𝜎 (𝑥)), 1)]

+ (1 − 𝜇)
∑︁
𝑥

E𝜎 [𝑣0 (𝑥)ℓ (𝑓 (𝑥 + 𝜎 (𝑥)), 0)]

≤ 𝜇
∑︁
𝑥

𝑢1 (𝑥)ℓ (𝑓 (𝑥), 1) + (1 − 𝜇)
∑︁
𝑥

𝑢0 (𝑥)ℓ (𝑓 (𝑥 + 𝑘), 0)

(𝑓 is non-decreasing)

= 𝜇
∑︁

𝑛−𝑘≥𝑥≥𝑘
𝑢1 (𝑥) (𝛼 (𝑥)𝑘

+ (1 − 𝛼 (𝑥)) (𝑛 − 𝑘)ℓ (𝑓 (𝑥), 1)

+ 𝜇
∑︁
𝑥<𝑘

𝑢1 (𝑥)ℓ (𝑓 (𝑥), 1) (𝛼 (𝑥) = 𝑛−𝑘−𝑥
𝑛−2𝑘 )

+ (1 − 𝜇)
∑︁

𝑥≤𝑛−2𝑘
𝑢0 (𝑥) (𝛽 (𝑥)0

+ (1 − 𝛽 (𝑥)) (𝑛 − 2𝑘))ℓ (𝑓 (𝑥 + 𝑘), 0)

+ (1 − 𝜇)
∑︁

𝑥>𝑛−2𝑘
𝑢′
0
(𝑥)ℓ (𝑓 (𝑥), 0) (𝛽 (𝑥) = 𝑛−2𝑘−𝑥

𝑛−2𝑘 )

≤ 𝜇
∑︁

𝑥∈{𝑘,𝑛−𝑘 }
𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1) + 𝜇

∑︁
𝑥<𝑘

𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1)

(ℓ (𝑓 (𝑥), 1) is convex in [𝑘, 𝑛 − 𝑘])

+ (1 − 𝜇)
∑︁

𝑥∈{0,𝑛−2𝑘 }
𝑢′
0
(𝑥)ℓ (𝑓 (𝑥 + 𝑘), 0)

+ (1 − 𝜇)
∑︁

𝑥>𝑛−2𝑘
𝑢′
0
(𝑥)ℓ (𝑓 (𝑥 + 𝑘), 0)

(ℓ (𝑓 (𝑥), 0) is convex in [𝑘, 𝑛 − 𝑘])

where 𝑢′
1
(𝑥) = 𝑢1 (𝑥) for any 𝑥 < 𝑘 , 𝑢′

0
(𝑥) = 𝑢0 (𝑥) for any

𝑥 > 𝑛 − 2𝑘

𝑢′
1
(𝑘) =

∑︁
𝑘≤𝑥≤𝑛−𝑘

𝛼 (𝑥)𝑢1 (𝑥),

𝑢′
1
(𝑛 − 𝑘) =

∑︁
𝑘≤𝑥≤𝑛−𝑘

(1 − 𝛼 (𝑥))𝑢1 (𝑥).

𝑢′
0
(0) =

∑︁
0≤𝑥≤𝑛−2𝑘

𝛽 (𝑥)𝑢0 (𝑥),

𝑢′
1
(𝑛 − 2𝑘) =

∑︁
0≤𝑥≤𝑛−2𝑘

(1 − 𝛽 (𝑥))𝑢0 (𝑥).

By simple calculation we have

∑
𝑥 𝑢

′
1
(𝑥) = 1,

∑
𝑥 𝑥𝑢

′
1
(𝑥) = (𝑛 −

𝑘)𝑎 and

∑
𝑥 𝑢

′
0
(𝑥) = 1,

∑
𝑥 𝑥𝑢

′
0
(𝑥) = (𝑛 − 𝑘)𝑏.

Now we calculate the maximum of∑︁
𝑥∈{𝑘,𝑛}

𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1) +

∑︁
𝑥<𝑘

𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1)

subject to ∑︁
𝑥

𝑢′
1
(𝑥) = 1∑︁

𝑥

𝑥𝑢′
1
(𝑥) = (𝑛 − 𝑘)𝑎

Notice that 𝑓 (𝑥) is constant when 𝑥 ≤ 𝑘 . For any 𝑥 ≤ 𝑘 , we

write 𝛼 (𝑥) = 𝑛−𝑥
𝑛−2𝑘 , then

𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1) = 𝑢′

1
(𝑥) (𝛼 (𝑥)ℓ (𝑓 (𝑥), 1) + (1 − 𝛼 (𝑥))ℓ (𝑓 (𝑥), 1))

≤ 𝑢′
1
(𝑥) (𝛼 (𝑥)ℓ (𝑓 (𝑘), 1) + (1 − 𝛼 (𝑥))ℓ (𝑓 (𝑛 − 𝑘), 1)

(𝑓 (𝑥) = 𝑓 (𝑘) ≤ 𝑓 (𝑛 − 𝑘) for 𝑥 ≤ 𝑘)

Thus we can replace any 𝑥 < 𝑘 with the linear combination of

𝑘, 𝑛 − 𝑘 until there are only reports 𝑘, 𝑛 − 𝑘 left. That is,∑︁
𝑥∈{𝑘,𝑛−𝑘 }

𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1) +

∑︁
𝑥<𝑘

𝑢′
1
(𝑥)ℓ (𝑓 (𝑥), 1)

≤
∑︁

𝑥={𝑘,𝑛−𝑘 }
𝑢′′
1
(𝑥)ℓ (𝑓 (𝑥), 1)

where ∑︁
𝑥

𝑢′′
1
(𝑥) = 1∑︁

𝑥

𝑥𝑢′′
1
(𝑥) = (𝑛 − 𝑘)𝑎

Similarly, we have∑︁
𝑥∈{0,𝑛−2𝑘 }

𝑢′
0
(𝑥)ℓ (𝑓 (𝑥), 0) + (1 − 𝜇)

∑︁
𝑥>𝑛−𝑘

𝑢′
0
(𝑥)ℓ (𝑓 (𝑥), 0)

≤
∑︁

𝑥={0,𝑛−2𝑘 }
𝑢′′
0
(𝑥)ℓ (𝑓 (𝑥), 0)

where ∑︁
𝑥

𝑢′′
0
(𝑥) = 1∑︁

𝑥

𝑥𝑢′′
0
(𝑥) = (𝑛 − 𝑘)𝑏

In fact, 𝑢′′
1
, 𝑢′′

0
is the same as 𝜃𝑏 . Thus 𝑅(𝑓 , 𝜃, 𝜎) ≤ 𝑅(𝑓 , 𝜃𝑏 , 𝜎𝑏 )

for any 𝜃, 𝜎 , which completes our proof. □
9
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B Omitted Proofs in Section 4
B.1 Proof of Theorem 4.2
On the one hand, it is easy to verify that 𝑘-truncated mean satisfies

the condition in Lemma A.4. Thus 𝑅(𝑓 ∗, 𝜃𝑏 , 𝜎𝑏 ) = 𝑅(𝑓 ∗,Θ, Σ)
On the other hand, we have

Pr

𝜃𝑏 ,𝜎𝑏
[𝑥 |𝜔 = 1] =


(𝑛 − 𝑘)𝑎 − 𝑘

𝑛 − 2𝑘
𝑥 = 𝑛 − 𝑘

(𝑛 − 𝑘) (1 − 𝑎)
𝑛 − 2𝑘

𝑥 = 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

and

Pr

𝜃𝑏 ,𝜎𝑏
[𝑥 |𝜔 = 0] =


(𝑛 − 𝑘)𝑏
𝑛 − 2𝑘

𝑥 = 𝑛 − 2𝑘

𝑛 − 2𝑘 − (𝑛 − 𝑘)𝑏
𝑛 − 2𝑘

𝑥 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

Since 𝜇𝑢1 (𝑛−𝑘) ≥ (1− 𝜇)𝑢0 (𝑛− 2𝑘) and 𝜇𝑢1 (𝑘) ≤ (1− 𝜇)𝑢0 (0),
the 𝑜𝑝𝑡𝜃𝑏 ,𝜎𝑏 (𝑛 − 𝑘) = 1, 𝑜𝑝𝑡𝜃𝑏 ,𝜎𝑏 (𝑘) = 0.

Thus 𝑅(𝑓 ,Θ, Σ) ≥ 𝑅(𝑓 , 𝜃𝑏 , 𝜎𝑏 ) ≥ 𝑅(𝑓 ∗, 𝜃𝑏 , 𝜎𝑏 ).
Combine these two claims we complete our proof.

B.2 Proof of Lemma 4.3
Proof. On the one hand, by Lemma A.2, (𝑛 − 𝑘)𝑎 ≤ E𝑥∼𝑣1 [𝑥]

and E𝑥∼𝑣0 [𝑥] ≤ (𝑛 − 𝑘)𝑏 + 𝑘 , then

𝑅(𝑓 ∗𝑡 ) = 𝜇 (1 − E𝑥∼𝑣1 𝑓
∗
𝑡 (𝑥)) + (1 − 𝜇)E𝑥∼𝑣0 𝑓 ∗𝑡 (𝑥)

≤ 𝜇 (1 − (𝑛 − 𝑘)𝑎
𝑛 − 2𝑘′

) + (1 − 𝜇) (𝑛 − 𝑘)𝑏 + 𝑘
𝑛 − 2𝑘′

=
𝑘′ − 𝑘 + (𝑛 − 𝑘) (1 − (1 − 𝜇) (1 − 𝑏) − 𝜇𝑎)

𝑛 − 2𝑘′

On the other hand, let

Pr

𝜃𝑏 ,𝜎𝑏
[𝑥 |𝜔 = 1] =


(𝑛 − 𝑘)𝑎 − 𝑘

𝑛 − 2𝑘
𝑥 = 𝑛 − 𝑘

(𝑛 − 𝑘) (1 − 𝑎)
𝑛 − 2𝑘

𝑥 = 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

and

Pr

𝜃𝑏 ,𝜎𝑏
[𝑥 |𝜔 = 0] =


(𝑛 − 𝑘)𝑏
𝑛 − 2𝑘

𝑥 = 𝑛 − 2𝑘

𝑛 − 2𝑘 − (𝑛 − 𝑘)𝑏
𝑛 − 2𝑘

𝑥 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

We have𝑅(𝑓 ∗𝑡 , 𝜃, 𝜎) =
𝑘 ′−𝑘+(𝑛−𝑘 ) (1−(1−𝜇 ) (1−𝑏 )−𝜇𝑎)

𝑛−2𝑘 ′ , which com-

pletes our proof.

□

B.3 Proofs of Lemma 4.4 and Lemma 4.5
Proof of Lemma 4.4. We first consider the non-adversarial set-

ting. On the one hand, since ℓ (1/2) = 1/4, for any 𝜃, 𝜎 ,
𝑅(𝑓 ∗, 𝜃, 𝜎) ≥ Pr

𝜃
[𝜔 = 1]ℓ (1/2) + Pr

𝜃
[𝜔 = 0]ℓ (1/2)

= 1/4
Thus 𝑅(𝑓 ∗,Θ, Σ) = 1/4.
On the other hand, we select 𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 𝑛−1, 𝑥4 = 𝑛, and

𝜇 = 0.5. Consider the mixture of two information structures with

uniform distribution. In the first one, 𝑠𝑢𝑝𝑝 (𝑣1) = {𝑥1, 𝑥4}, 𝑠𝑢𝑝𝑝 (𝑣0) =
{𝑥2, 𝑥3}. In the second one, 𝑠𝑢𝑝𝑝 (𝑣1) = {𝑥2, 𝑥3}, 𝑠𝑢𝑝𝑝 (𝑣0) = {𝑥1, 𝑥4}.
Let 𝑏 = 2/𝑛, consider a sequence {𝑎𝑡 } such that lim𝑡→∞ 𝑎𝑡 = 𝑏 and

𝑎𝑡 > 𝑏.

By this sequence of parameter 𝑎 we construct a sequence of

mixed information structures 𝜃𝑡 . We will find that lim𝑡→∞ 𝑅(𝜃𝑡 ) =
1/4 since the Bayesian posterior of 𝜃𝑡 is 𝑓 (𝑥1) = 𝑓 (𝑥1) = 𝑓 (𝑥3) =
𝑓 (𝑥4) = 1/2. Thus 𝑅(𝑓 ,Θ, Σ) ≥ 1/4 for any 𝑓 .

For the adversarial setting, the random guess will still obtain

regret 1/4. the regret of other aggregators will not decrease. Thus
we complete our proof for both adversarial and non-adversarial

setting. □

Proof of Lemma 4.5. Similarly, we first consider the non-adversarial

setting. On the one hand,

𝑅(𝑓 ∗, 𝜃, 𝜎) ≥ Pr

𝜃
[𝜔 = 1]ℓ (𝜇) + Pr

𝜃
[𝜔 = 0]ℓ (1 − 𝜇)

= 𝜇 (1 − 𝜇)
Again, we select 𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 𝑛 − 1, 𝑥4 = 𝑛. Consider the

mixture of two information structures. In the first one, 𝑠𝑢𝑝𝑝 (𝑣1) =
{𝑥1, 𝑥4},𝑠𝑢𝑝𝑝 (𝑣0) = {𝑥2, 𝑥3}. In the second one, 𝑠𝑢𝑝𝑝 (𝑣1) = {𝑥2, 𝑥3},
𝑠𝑢𝑝𝑝 (𝑣0) = {𝑥1, 𝑥4}. Using the same argument in Lemma 4.4 we

will obtain that for any 𝑓 , 𝑅(𝑓 , 𝜃, 𝜎) ≥ 𝜇 (1 − 𝜇). Thus 𝑓 ∗ is the

optimal aggregator. □

B.4 Proof of Theorem 4.6
We prove this theorem in several steps. First, similar to the flow in

Arieli et al. [2], we do the basic dimension reduction on Θ, which
allows us to consider information structures with at most 4 possible

reports (Lemma B.1).

Lemma B.1. Let Θ4 = {𝜃 ∈ Θ|𝑠𝑢𝑝𝑝 (𝑢1) ≤ 2, 𝑠𝑢𝑝𝑝 (𝑢0) ≤ 2}.
Then for any 𝑓 , we have 𝑅(𝑓 ,Θ, Σ) = 𝑅(𝑓 ,Θ4, Σ).

Proof. Consider the distribution vector 𝑢1, it should satisfy the

following two linear constraints:∑︁
𝑥

𝑢1 (𝑥) = 1∑︁
𝑥

𝑥𝑢1 (𝑥) = 𝑛𝑎

By the basic theorem of linear programming, we can decompose

𝑢1 with a linear combination of some extreme distribution vectors.

That is, there exists 𝑡1, · · · , 𝑡𝑚 and 𝜆1, · · · , 𝜆𝑚 such that

𝑢1 (𝑥) =
∑︁
𝑖

𝜆𝑖𝑡𝑖 (𝑥)∑︁
𝑥

𝑡𝑖 (𝑥) = 1

10
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∑︁
𝑥

𝑥𝑡𝑖 (𝑥) = 𝑛𝑎

The extreme point here means that 𝑠𝑢𝑝𝑝 (𝑡𝑖 ) ≤ 2 for any 𝑖 . Now

fix 𝑢0, we can create a new information structure 𝜃𝑖 by setting the

𝑡𝑖 (𝑥) = Pr𝜃𝑖 [𝑋 = 𝑥 |𝜔 = 1] and 𝑢0 (𝑥) = Pr𝜃𝑖 [𝑋 = 𝑥 |𝜔 = 0].
Since the benchmark aggregator

𝑢1 (𝑥 )𝑢0 (𝑥 )
𝑢1 (𝑥 )+𝑢0 (𝑥 ) is concave with

𝑢1 (𝑥) given 𝑢0 (𝑥), and E𝜃 [ℓ (𝑓 )] is linear in 𝑢1 given 𝑓 . Thus for

any 𝑓 ,

𝑅(𝑓 , 𝜃 ) ≤
∑︁
𝑖

𝜆𝑖𝑅(𝑓 , 𝜃𝑖 ) ≤ max

𝑖
𝑅(𝑓 , 𝜃𝑖 ).

Then following the same argument in 𝑢0 we obtain that we can

decompose 𝑢0 with some extreme vectors with support space less

than 2, which completes our proof for 𝑅(𝑓 ,Θ) = 𝑅(𝑓 ,Θ4).
□

However, we still have around

(𝑛
4

)
possible information struc-

tures. Furthermore, we show that we can only consider those “ex-

treme information structures” with extreme report support space

(Lemma B.2). “Extreme” here means reports in {0, 1, 𝑛 − 1, 𝑛}. Thus
the meaningful information structures are reduced to constant size.

LemmaB.2. LetΘ𝑒 = {𝜃 ∈ Θ4 |𝑠𝑢𝑝𝑝 (𝑢1) ⊂ {0, 1, 𝑛−1, 𝑛}, 𝑠𝑢𝑝𝑝 (𝑢0) ⊂
{0, 1, 𝑛 − 1, 𝑛}}. We have 𝑅(Θ, Σ) = 𝑅(Θ𝑒 , Σ).

Proof. Consider the optimal aggregator 𝑓 ∗ = argmin𝑓 𝑅(𝑓 ,Θ𝑒 ).
We extend 𝑓 ∗ by linear interpolation in the non-extreme input:

𝑓 (𝑥) =

𝑓 ∗ (𝑥) 𝑥 = {0, 1, 𝑛 − 1, 𝑛}
𝑓 ∗ (𝑛 − 1) − 𝑓 ∗ (1)

𝑛 − 2

∗ (𝑥 − 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

Then for any 2 ≤ 𝑥 ≤ 𝑛−2, we can write 𝑥 as linear combination

of 1 and 𝑛 − 1, 𝑥 = 𝛼 (𝑥) ∗ 1 + (1 − 𝛼 (𝑥)) ∗ (𝑛 − 1) where 𝛼 (𝑥) =
𝑛−1−𝑥
𝑛−2 ∈ [0, 1]. Since both (1 − 𝑓 (𝑥))2 and 𝑓 (𝑥)2 is convex in

[1, 𝑛 − 1],

E𝜃 [ℓ (𝑓 )]

= 𝜇
∑︁
𝑥

𝑢1 (𝑥) (1 − 𝑓 (𝑥))2 + (1 − 𝜇)
∑︁
𝑥

𝑢0 (𝑥) 𝑓 (𝑥)2

≤ 𝜇
∑︁

𝑥∈{0,1,𝑛−1,𝑛}
𝑢1 (𝑥) (1 − 𝑓 (𝑥))2

+ 𝜇
∑︁

𝑥∉{0,1,𝑛−1,𝑛}
𝑢1 (𝑥)

(
𝛼 (𝑥) (1 − 𝑓 (1))2 + (1 − 𝛼 (𝑥)) (1 − 𝑓 (𝑛 − 1))2

)
+ (1 − 𝜇)

∑︁
𝑥∈{0,1,𝑛−1,𝑛}

𝑢0 (𝑥) 𝑓 (𝑥)2

+ (1 − 𝜇)
∑︁

𝑥∉{0,1,𝑛−1,𝑛}
𝑢0 (𝑥)

(
𝛼 (𝑥) 𝑓 (1)2 + (1 − 𝛼 (𝑥)) 𝑓 (𝑛 − 1)2

)
(Convexity)

= 𝜇
∑︁

𝑥∈{0,1,𝑛−1,𝑛}
𝑣 ′
1
(𝑥) (1 − 𝑓 (𝑥))2

+ (1 − 𝜇)
∑︁

𝑥∈{0,1,𝑛−1,𝑛}
𝑣 ′
0
(𝑥) 𝑓 (𝑥)2

where 𝑢′
1
(0) = 𝑢1 (0), 𝑢′

1
(𝑛) = 𝑢1 (𝑛) and

𝑢′
1
(1) = 𝑢1 (1) +

∑︁
2≤𝑥≤𝑛−2

𝛼 (𝑥)𝑢1 (𝑥)

𝑢′
1
(𝑛 − 1) = 𝑢1 (1) +

∑︁
2≤𝑥≤𝑛−2

(1 − 𝛼 (𝑥))𝑢1 (𝑥)

Thus we have∑︁
𝑥

𝑢′
1
(𝑥)

= 𝑢′
1
(0) + 𝑢′

1
(1) + 𝑢′

1
(𝑛 − 1) + 𝑢′

1
(𝑛)

= 𝑢1 (0) + 𝑢1 (1) + 𝑢1 (𝑛 − 1) + 𝑢1 (𝑛)

+
∑︁

2≤𝑥≤𝑛−2
𝛼 (𝑥)𝑢1 (𝑥) + (1 − 𝛼)𝑢1 (𝑥)

= 𝑢1 (0) + 𝑢1 (1) + 𝑢1 (𝑛 − 1) + 𝑢1 (𝑛) +
∑︁

2≤𝑥≤𝑛−2
𝑢1 (𝑥)

= 1

and

∑︁
𝑥

𝑥𝑢′
1
(𝑥)

= 𝑢′
1
(1) + (𝑛 − 1)𝑢′

1
(𝑛 − 1) + 𝑛𝑢′

1
(𝑛)

= 𝑢1 (1) + (𝑛 − 1)𝑢1 (𝑛 − 1) + 𝑛𝑢1 (𝑛)

+
∑︁

2≤𝑥≤𝑛−2
𝛼 (𝑥)𝑢1 (𝑥) + (1 − 𝛼) (𝑛 − 1)𝑢1 (𝑥)

= 𝑢1 (0) + 𝑢1 (1) + (𝑛 − 1)𝑢1 (𝑛 − 1) + 𝑛𝑢1 (𝑛) +
∑︁

2≤𝑥≤𝑛−2
𝑥𝑢1 (𝑥)

= 𝑎

Similarly we have

∑
𝑥 𝑢

′
0
(𝑥) = 1,

∑
𝑥 𝑥𝑢

′
0
(𝑥) = 𝑏. We can create a

new information structure 𝜃 ′ by setting𝑢′
1
(𝑥) = Pr𝜃𝑖 [𝑋 = 𝑥 |𝜔 = 1]

and 𝑢′
0
(𝑥) = Pr𝜃𝑖 [𝑋 = 𝑥 |𝜔 = 0]. Notice that 𝜃 ′ ∈ Θ𝑒 . Thus for any

𝜃 ∈ Θ, we have 𝑅(𝑓 , 𝜃 ) ≤ 𝑅(𝑓 , 𝜃 ′). So

𝑅(Θ) = min

𝑓 ′
𝑅(𝑓 ′,Θ) ≤ 𝑅(𝑓 ,Θ) ≤ 𝑅(𝑓 ,Θ𝑒 ) = 𝑅(𝑓 ∗,Θ𝑒 ) = 𝑅(Θ𝑒 )

.

However, since Θ𝑒 ⊂ Θ, 𝑅(Θ𝑒 ) ≤ 𝑅(Θ). So we obtain that

𝑅(Θ) = 𝑅(Θ𝑒 ). □

Combining these two lemmas we only need to consider informa-

tion structures with at most 4 possible reports and the reports are

in {0, 1, 𝑛 − 1, 𝑛}. In addition, 𝑠𝑢𝑝𝑝 (𝑢1) ≤ 2, 𝑠𝑢𝑝𝑝 (𝑢0) ≤ 2. There

are at most 16 possible information structures and there exists an

FPTAS for solving the finite number of information structures by

Guo et al. [16].

Lemma B.3 ([16]). Suppose |Θ| = 𝑛, There exists an FPTAS which
can find the 𝜖-optimal aggregator in 𝑂 (𝑛/𝜖).

If we apply the FPTAS inΘ𝑒 wewill find the 𝜖-optimal aggregator

in 𝑂 (1/𝜖), which completes our proof.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

B.5 Proof of Lemma 4.7
Suppose 𝑅𝑛 is the regret when the number of experts is 𝑛. We want

to estimate the difference𝑅𝑛−𝑅𝑛+1. Let 𝑓1 = argmin𝑓 max𝜃 ∈Θ𝑛+1 𝑅(𝑓 , 𝜃 ).
As we prove in Lemma B.2, we only need to consider point 0, 1, 𝑛 −
1, 𝑛. Then for any information structure 𝜃1 in Θ𝑛+1, we map it to

another information structure 𝜃2 ∈ Θ𝑛 by the following rules. If

𝜃1 contains report 0, 1, let 𝜃2 contains report 0, 1; if 𝜃1 contains

report 𝑛 or 𝑛 + 1, let 𝜃2 contains report 𝑛 or 𝑛 − 1. Then the joint

distribution is determined by the report space. Now we construct

an aggregator 𝑓2:

𝑓2 (𝑥) =
{
𝑓1 (𝑥) 𝑥 = 0, 1

𝑓1 (𝑥 − 1) 𝑥 = 𝑛, 𝑛 − 1

(9)

Then we have

𝑅(𝑓2, 𝜃2) − 𝑅(𝑓1, 𝜃1) = E𝑥∼𝜃2 [(𝑓 (𝑥) − 𝑜𝑝𝑡𝜃2 (𝑥))
2]

− E𝑥∼𝜃1 [(𝑓 (𝑥) − 𝑜𝑝𝑡𝜃1 (𝑥))
2]

=
∑︁
𝑥

Pr

𝜃2
[𝑥] (𝑓 (𝑥) − 𝑜𝑝𝑡𝜃2 (𝑥))

2

− Pr

𝜃1
[𝑥] (𝑓 (𝑥) − 𝑜𝑝𝑡𝜃1 (𝑥))

2

≤
∑︁
𝑥

����Pr
𝜃2
[𝑥] − Pr

𝜃1
[𝑥]

����
((𝑓 (𝑥) − 𝑜𝑝𝑡𝜃2 (𝑥))2 ≤ 1)

≤ 𝑂

(
1

𝑛(𝑛 + 1)

)
Thus𝑅(Θ𝑛) ≤ 𝑅(𝑓2,Θ𝑛+1) ≤ 𝑅(𝑓1,Θ𝑛)+𝑂

(
1

𝑛 (𝑛+1)

)
= 𝑅(Θ𝑛+1)+

𝑂

(
1

𝑛 (𝑛+1)

)
.

Add up all 𝑛 we have 𝑅(Θ𝑛) ≤
∑
𝑘 𝑂

(
1

𝑘 (𝑘+1)

)
= 𝑐 +𝑂 ( 1𝑛 )

B.6 Proof of Theorem 4.8
On the one hand, it is easy to verify that 𝑘-truncated mean satisfies

the condition in Lemma A.4. Thus 𝑅(𝑓 ∗, 𝜃𝑏 , 𝜎𝑏 ) = 𝑅(𝑓 ∗,Θ, Σ)
On the other hand, we have

Pr

𝜃𝑏 ,𝜎𝑏
[𝑋 = 𝑥 |𝜔 = 1] =


(𝑛 − 𝑘)𝑎 − 𝑘

𝑛 − 2𝑘
𝑥 = 𝑛 − 𝑘

(𝑛 − 𝑘) (1 − 𝑎)
𝑛 − 2𝑘

𝑥 = 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

and

Pr

𝜃𝑏 ,𝜎𝑏
[𝑋 = 𝑥 |𝜔 = 0] =


(𝑛 − 𝑘)𝑏
𝑛 − 2𝑘

𝑥 = 𝑛 − 2𝑘

𝑛 − 2𝑘 − (𝑛 − 𝑘)𝑏
𝑛 − 2𝑘

𝑥 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

By simple calculate we find that 𝑜𝑝𝑡𝜃𝑏 ,𝜎𝑏 (𝑥) = Pr𝜃𝑏 ,𝜎𝑏 [𝜔 =

1|𝑥] = 𝑓 ∗.
Thus 𝑅(𝑓 ,Θ, Σ) ≥ 𝑅(𝑓 , 𝜃𝑏 , 𝜎𝑏 ) ≥ 𝑅(𝑓 ∗, 𝜃𝑏 , 𝜎𝑏 ).
Combine these two claims we complete our proof.

C Hard Aggregators
In this section, we discuss a special family of aggregators-the

hard aggregators that can randomly output a decision in {0, 1}.
In this case, L1 loss and L2 loss are equivalent. We prove that the

𝑘-ignorance random dictator is optimal. It echos the results in [3]

that the random dictator is optimal for the non-adversarial setting.

Definition C.1 (𝑘-ignorance random dictator). We call 𝑓 is
𝑘-ignorance random dictator if

𝑓 (𝑥) =


1 𝑥 ≥ 𝑛 − 𝑘

0 𝑥 ≤ 𝑘

𝑟𝑒𝑝𝑜𝑟𝑡 1𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑥 − 𝑘

𝑛 − 2𝑘
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

Theorem C.2. When 𝛾 ≤ min

(
𝑎𝜇−(1−𝜇 )𝑏

𝜇+𝑎𝜇−(1−𝜇 )𝑏 ,
𝑎
1+𝑎 ,

1−𝑏
2−𝑏

)
, the 𝑘-

ignorance random dictator is optimal for both L1 and L2 loss. Moreover,
the regret

𝑅(Θ, Σ) = 𝜇 + (1 − 𝜇) ((1 − 𝛾)𝑏 + 𝛾) − 𝜇 (1 − 𝛾)𝑎
1 − 2𝛾

.

Proof. Notice that for both L1 and L2 loss

ℓ (𝑦,𝜔) =
{
1 𝑦 = 𝜔

0 𝑦 ≠ 𝜔
(13)

As the soft aggregators include hard aggregators, we only need to

prove that the 𝑘-ignorance random dictator 𝑓1 has the same regret

as the 𝑘-truncated mean 𝑓2 under L1 loss. In fact,

𝑅(𝑓1,Θ, Σ) = sup

𝜃 ∈𝜃,𝜎∈Σ
E𝑓1,𝜃,𝜎 [ℓ1 (𝑓 (𝑥), 𝜔)] − E𝜃 [ℓ1 (𝑜𝑝𝑡𝜃 (𝑥𝑇 ), 𝜔)]

= sup

𝜃 ∈𝜃,𝜎∈Σ
E𝜃,𝜎 (Pr[𝑓1 (𝑥) = 1]ℓ1 (1, 𝜔)

+ Pr[𝑓1 (𝑥) = 0]ℓ1 (0, 𝜔)) − E𝜃 [ℓ1 (𝑜𝑝𝑡𝜃 (𝑥𝑇 ), 𝜔)]
= sup

𝜃 ∈𝜃,𝜎∈Σ
E𝜃,𝜎 (𝑓2 (𝑥)ℓ1 (1, 𝜔) + (1 − 𝑓2 (𝑥))ℓ1 (0, 𝜔))

− E𝜃 [ℓ1 (𝑜𝑝𝑡𝜃 (𝑥𝑇 ), 𝜔)]
= sup

𝜃 ∈𝜃,𝜎∈Σ
E𝜃,𝜎 ℓ1 (𝑓2 (𝑥), 𝜔) + (1 − 𝑓2 (𝑥))ℓ1 (0, 𝜔))

− E𝜃 [ℓ1 (𝑜𝑝𝑡𝜃 (𝑥𝑇 ), 𝜔)]
=𝑅(𝑓2,Θ, Σ)

Thus the 𝑘-ignorance random dictator is optimal. □

D Numerical Experiment
Figure 5 shows the results under L1 loss. The optimal aggregator and

majority vote have close performance. It also reflects our discussion

that L1 loss will encourage the aggregators to output a decision,

which is beneficial for the majority vote.

E Extension
In this section, we extend our adversarial information aggregation

problem into a general case. In the general setting, we can capture

a non-binary state space Ω, other families of information structures

Θ, and other kinds of reports 𝑥𝑖 such as the posterior forecast

𝑥𝑖 = Pr𝜃 [𝜔 |𝑠𝑖 ].
12
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(b) Random Strategy

Figure 5: The performance of different aggregators under
different adversarial strategies. The x-axis is the number of
adversaries we added to experts. The number of truthful
experts is 100. The y-axis is the regret.

E.1 Problem Statement
Suppose the world has a state 𝜔 ∈ Ω, |Ω | =𝑚. There are 𝑛 experts

and each expert 𝑖 receives a private signal 𝑠𝑖 in a signal space S𝑖 .
Let S = S1 × S2 × ... × S𝑛 . They are asked to give a report from a

feasible choice set 𝑋 according to their private signals. We denote

the joint distribution, or information structure, over the state and

signals by 𝜃 ∈ ΔΩ×S . For simplicity, we denote 𝒙𝑇 = (𝑥𝑡 )𝑡 ∈𝑇 as

the sub-vector for any vector 𝒙 and index set 𝑇 .

We assume the experts are either truthful or adversarial. Let

𝑇 denote the set of truthful experts who will give their best re-

port truthfully. 𝐴 is the set of adversarial experts who will collude

and follow a randomized strategy 𝜎𝐴 : S𝐴 → Δ𝑋𝑘 depending on

their private signals, where 𝑘 = 𝛾𝑛 is the number of adversarial ex-

perts. The family of all possible strategies is Σ. We assume 𝛾 < 1/2
such that there exist at least half truthful experts, otherwise no

aggregators can be effective.

Notice that the ability of adversarial experts can be modeled

by their private signals. For example, the omniscient adversarial

experts can know truthful experts’ signals S𝑅 and the world’s true

state 𝜔 . The ignorant adversarial experts are non-informative, i.e.

receiving nothing.

The aggregator is an anonymous function 𝑓 (·) ∈ F which maps

𝒙 ∈ 𝑋𝑛
to a distribution 𝒚 ∈ ΔΩ over the world state. We de-

fine a loss function ℓ (𝒚, 𝜔) : ΔΩ × Ω → 𝑅+, indicating the loss

suffered by the aggregator when the aggregator’s predicted distri-

bution of the state is 𝒚 and the true state is 𝜔 . The expected loss

is E𝜃,𝜎 [ℓ (𝑓 (𝒙), 𝜔)]. We assume ℓ is symmetric and convex for any

state, which means we can abbreviate ℓ (𝒚, 𝜔) by ℓ (𝑦𝜔 ). Without

loss of generality, we assume ℓ (0) = 1, ℓ (1) = 0 and ℓ (·) is de-
creasing. In particular, we consider the L1 loss (or absolute loss)

ℓ1 (𝑦) = 1 − 𝑦 and the L2 loss (or square loss), ℓ2 (𝑦) = (1 − 𝑦)2. We

define a benchmark function, that gives the optimal result given

the joint distribution and truthful experts’ reports:

𝑜𝑝𝑡𝜃 (𝒙𝑇 ) = argmin

𝑓 ′∈F
E𝜃 [ℓ (𝑓 ′ (𝒙𝑇 )𝜔 )]

to minimize the expected loss.

Under the L1 loss, 𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 = 1(𝜔 = argmax𝜔 Pr𝜃 [𝜔 |𝒙𝑇 ]),
which is the maximum likelihood. Under the L2 loss, 𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 =

Pr𝜃 [𝜔 |𝒙𝑇 ], which is the Bayesian posterior.

Regret Robust Paradigm. Given a family of joint distributions

Θ and a family of strategies Σ, a set of aggregators F , we aim to

minimize the expected loss in the worst information structure. That

is, we want to find an optimal function 𝑓 ∗ to solve the following

min-max problem:

𝑅(Θ, Σ) = inf

𝑓 ∈F
sup

𝜃 ∈𝜃,𝜎∈Σ
E𝜃,𝜎 [ℓ (𝑓 (𝒙)𝜔 )] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 )] .

Againwe define𝑅(𝑓 , 𝜃, 𝜎) = E𝜃,𝜎 [ℓ (𝑓 (𝒙)𝜔 )]−E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 )]
and 𝑅(𝑓 ,Θ, Σ) = sup𝜃 ∈Θ,𝜎∈Σ 𝑅(𝑓 , 𝜃, 𝜎) for short.

E.2 Negative Results For General Model
We first provide an auxiliary lemma to characterize the behavior of

adversaries.

Lemma E.1. Assume Σ𝑝 = {𝜎 |𝜎 ∈ Σ 𝑎𝑛𝑑 𝜎 𝑖𝑠 𝑎 𝑝𝑢𝑟𝑒 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦}.
Then 𝑅(𝑓 ,Θ, Σ) = 𝑅(𝑓 ,Θ, Σ𝑝 ) for any 𝑓 and Θ.

Proof. On the one hand, Σ𝑝 ∈ Σ, so 𝑅(𝑓 , 𝜃, Σ) ≥ 𝑅(𝑓 , 𝜃, Σ𝑝 ).
On the other hand, for any 𝑓 , 𝜃, 𝜎 ,

𝑅(𝑓 , 𝜃, 𝜎) = E𝜃E𝜎 [ℓ (𝑓 (𝒙𝑇 , 𝜎 (𝒔𝐴)), 𝜔)] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 )]
≤ E𝜃 [max

𝒙′
𝐴

ℓ (𝑓 (𝒙𝑇 , 𝒙′𝐴 (𝒔𝐴)), 𝜔)] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 )]

Fix the aggregator 𝑓 and distribution 𝜃 , we can let 𝜎′ (𝒔𝐴) =

argmax𝒙′
𝐴
E𝜃 [ℓ (𝑓 (𝒙𝑇 , 𝒙′𝐴 (𝒔𝐴)), 𝜔)] (We arbitrarily select one 𝒙′

𝐴

when there is multiple choices). Since 𝜎′ is a pure strategy, 𝜎′ ∈
Σ𝑑 . For any 𝜎 ∈ Σ, 𝑅(𝑓 , 𝜃, 𝜎′) ≥ 𝑅(𝑓 , 𝜃, 𝜎). Thus 𝑅(𝑓 , 𝜃, Σ) ≤
𝑅(𝑓 , 𝜃, Σ𝑝 ), which completes our proof. □

E.3 Extension to Multi-State Case
For the multi-state case: |Ω | > 2, we can also define the sensitive

parameter by enumerating each state:

Definition E.2 (sensitive parameter, multiple). When |Ω | >
2, for any benchmark function 𝑜𝑝𝑡 , the sensitive parameter is defined
by

𝑆 (𝑜𝑝𝑡, 𝑘) = max

𝜃,𝜃 ′∈Θ,𝑑 (𝒙𝑇 ,𝒙′
𝑇
)≤𝑘,𝜔∈Ω

|𝑜𝑝𝑡𝜃 (𝒙𝑇 )𝜔 − 𝑜𝑝𝑡𝜃 ′ (𝒙′𝑇 )𝜔 |.

First, we prove that for the general model, aggregators are vulner-

able to adversaries. A direct observation is that fixing the number

of experts 𝑛 while increasing the number of adversaries 𝑘 will not

decrease the regret 𝑅(Θ, Σ). Since the new adversaries can always

pretend to be truthful experts. In most cases, when 𝛾 ≈ 1/2, it is im-

possible to design any informative aggregator since an adversarial

expert can report opposite views to another truthful expert.

One natural question is how many adversaries we need to at-

tack the aggregator. For this question, we provide a negative result.

The following lemma shows that for a large family of information

structures, a few adversaries are enough to fool the aggregator. Sur-

prisingly, the number of adversaries is independent of the number

of truthful experts but grows linearly with the number of states.

In special, in the binary state setting, one adversary is enough to

completely fool the aggregator.

Lemma E.3. Assume the truthful experts are asked to report the
posterior 𝑥𝑖 (𝜔) = Pr𝜃 [𝜔 |𝑠𝑖 ]. We define the fully informative expert
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who always knows the true state and the non-informative expert
who only knows the prior. If Θ includes all information structures
consisting of these two types of experts, then for 𝑘 ≥ 𝑚−1, the optimal
aggregator is the uniform prediction. That is, 𝑓 ∗ = ( 1

𝑚 , · · · , 1

𝑚 ) and
𝑅(𝜃, 𝜎) = ℓ ( 1

𝑚 ).

Proof. We select one fully informative expert, which means

she will report a unit vector 𝒆𝑖 = (0, · · · , 1, 0, · · · , 0) with 𝑒𝑖 = 1 and

𝑒 𝑗 = 0 for any 𝑗 ≠ 𝑖 . Other experts are non-informative and will

always report the uniform prior ( 1

𝑚 , · · · , 1

𝑚 ). Then let the𝑚 − 1

adversaries report other unit vectors 𝒆 𝑗 for 𝑖 ≠ 𝑗 . Other adversaries

also report the uniform prior. In that case, the aggregator will

always see the same reports 𝒙0, and the benchmark can follow

the informative expert and suffer zero loss. Since ℓ is convex and∑
𝜔∈Ω 𝑓 (𝒙0)𝜔 = 1, then for any 𝑓 , 𝑅(𝑓 , 𝜃, 𝜎) = ∑

𝜔∈Ω ℓ (𝑓 (𝒙0)𝜔 ) ≥
ℓ ( 1

𝑚 ). Thus 𝑅(Θ, Σ) ≥ ℓ ( 1

𝑚 ).
On the other hand, when 𝑓 ∗ = ( 1

𝑚 , · · · , 1

𝑚 ),

𝑅(𝑓 ∗, 𝜃, 𝑔) =
∑︁
𝜔∈Ω

Pr[𝜔]ℓ ( 1
𝑚
) = ℓ ( 1

𝑚
)

for any 𝜃, 𝜎 . So the uniform prediction is the optimal aggregator

and 𝑅(Θ, Σ) = ℓ ( 1

𝑚 ).
□

The uniform prediction means that we cannot obtain any ad-

ditional information from reports. It is almost impossible in the

non-adversarial setting. We provide a common setting as an exam-

ple.

Example E.4 (Conditionally Independent Setting). Condi-
tionally independent setting Θci means that every expert receives
independent signals conditioning on the world state 𝜔 . Formally, for
each 𝜃 ∈ Θci, for all 𝑠𝑖 ∈ S𝑖 , 𝜔 ∈ Ω = {0, 1}, Pr𝜃 [𝑠1, · · · , 𝑠𝑛 |𝜔] =

Π𝑖 Pr𝜃 [𝑠𝑖 |𝜔].

Corollary E.5. In the conditionally independent setting, if we
select ℓ as the L2 loss, then for any 𝑛 and 𝑘 ≥ 1, 𝑅 = 1/4.

Notice that in the non-adversarial setting, when 𝑛 → ∞, 𝑅 →
1/4 [2], which is a strict condition. However, in the adversarial

setting, we only use one adversary to obtain the same bad regret.

E.4 Estimate the Regret 𝑅(Θ, Σ)
We have provided a negative result when there are enough adversar-

ial experts. In this section, we want to extend our result regarding

the regret to any number of adversarial experts setting. It will give

us a further understanding of the effect of adversaries.

Intuitively, when there exist important experts, it is easier to

disturb the aggregator because adversaries can always imitate an

important expert but hold the opposite view. In other words, the

regret will increase because the DM is non-informative while the

benchmark can predict accurately. Thus we can use the importance

of an expert to bound the regret. The remaining question is, how to

quantify the importance of an expert? We find that the benchmark

function is a proper choice. We state our main result as Theorem E.6.

Theorem E.6. If Θ is 𝛼-regular as defined in Definition E.11, for
L2 loss function ℓ2, there exists a function 𝑆 (𝑜𝑝𝑡, 𝑘) depending on the

benchmark function 𝑜𝑝𝑡 and number of adversaries 𝑘 such that

𝑆 (𝑜𝑝𝑡, 𝑘)2 ≥ 𝑅(Θ, Σ) ≥ 𝛼

4

𝑆 (𝑜𝑝𝑡, 𝑘)2 .

The theorem shows that we can only use the benchmark func-

tion to design a metric for the difficulty of adversarial information

aggregation. Now we give the formula of 𝑆 (·). First, we define the
distance of reports.

Definition E.7 (distance of reports). For any vector 𝒙 , we can
define its histogram function ℎ𝒙 (𝑥) =

∑
𝑖 1(𝑥𝑖 = 𝑥). For any pair of

reports 𝒙1, 𝒙2 with the same size, their distance is defined by the total
variation distance between ℎ𝒙1

(𝑥) and ℎ𝒙2
(𝑥).

𝑑 (𝒙1, 𝒙2) = 𝑇𝑉𝐷 (ℎ𝒙1
, ℎ𝒙2

) = 1/2
∑︁
𝑥

��ℎ𝒙1
(𝑥) − ℎ𝒙1

(𝑥)
�� .

If 𝑑 (𝒙1, 𝒙2) = 0, we say that 𝒙1 and 𝒙2 are indistinguishable, which
means they only differ in the order of reports. In fact, 𝑑 (𝒙1, 𝒙2) is the
minimal number of adversaries needed to make two reports indistin-
guishable. We also denote 𝑑 (𝒙) = ∑

𝑥 ℎ𝒙 (𝑥).

Lemma E.8. Suppose the truthful experts will report 𝒙1 ∈ 𝑋𝑛−𝑘

or 𝒙2 ∈ 𝑋𝑛−𝑘 . If and only if 𝑘 ≥ 𝑑 (𝒙1, 𝒙2), there exists 𝒙1𝐴, 𝒙
2

𝐴
∈ 𝑋𝑘

such that 𝑑 ((𝒙1, 𝒙1𝐴), (𝒙2, 𝒙
2

𝐴
)) = 0. That is, 𝑑 (𝒙1, 𝒙2) is the minimal

number of adversaries needed to ensure the aggregator sees the same
report vector 𝒙 in these two cases.

Proof of Lemma E.8. Consider the final report vector 𝒙 seen

by the aggregator, we have ℎ𝒙 (𝑥) ≥ max(ℎ𝒙1
(𝑥), ℎ𝒙2

(𝑥)) for any
𝑥 . Thus to convert 𝒙2 to 𝒙 , we need at least∑︁
𝑥

|ℎ𝒙 (𝑥) − ℎ𝒙2
(𝑥) | ≥

∑︁
𝑥

max(ℎ𝒙1
(𝑥) − ℎ𝒙2

(𝑥), 0)

= 1/2
∑︁
𝑥

(
|ℎ𝒙1

(𝑥) − ℎ𝒙2
(𝑥) | + ℎ𝒙1

(𝑥) − ℎ𝒙2
(𝑥)

)
= 1/2

∑︁
𝑥

|ℎ𝒙1
(𝑥) − ℎ𝒙2

(𝑥) |

(

∑
𝑥 ℎ𝒙1

(𝑥) = ∑
𝑥 ℎ𝒙2

(𝑥) = 𝑛)

Similarly, to convert 𝒙1 to 𝒙 , we need |ℎ𝒙1
(𝑥) − ℎ𝒙2

(𝑥) | adver-
saries, which complete our proof. □

Now we define the sensitive parameter in the binary state case,

where the benchmark function can be represented by a real number.

Intuitively, it measures the greatest change 𝑘 experts can make

regarding the benchmark function.

Definition E.9 (sensitive parameter, binary). When |Ω | = 2,
for any benchmark function 𝑜𝑝𝑡 , the sensitive parameter is defined
by

𝑆 (𝑜𝑝𝑡, 𝑘) = max

𝜃,𝜃 ′∈Θ,𝑑 (𝒙𝑇 ,𝒙′
𝑇
)≤𝑘

|𝑜𝑝𝑡𝜃 (𝒙𝑇 ) − 𝑜𝑝𝑡𝜃 ′ (𝒙′𝑇 ) |

We define the sensitive parameter in the binary state case. How-

ever, it is easy to generalize it to multi-state cases. We will discuss

it later. Now we prove our main theorem.

Proof of Theorem E.6. First, we construct a naive aggregator

in the binary setting.
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Definition E.10 (naive aggregator). We use the average of
the maximum and minimal prediction over all possible situations as
the naive aggregator. Formally, we define 𝑢 (𝒙) = max𝜃 𝑜𝑝𝑡𝜃 (𝒙) and
𝑙 (𝒙) = min𝜃 𝑜𝑝𝑡𝜃 (𝒙) for any 𝒙 ∈ 𝑋𝑛−𝑘 . The naive aggregator is

𝑓 𝑛𝑎 (𝒙) = 1/2 max

𝑑 (𝒙′ )=𝑛−𝑘,𝑑 (𝒙,𝒙′ )=𝑘
𝑢 (𝒙′)+1/2 min

𝑑 (𝒙′ )=𝑛−𝑘,𝑑 (𝒙,𝒙′ )=𝑘
𝑙 (𝒙′).

By the definition of 𝑆 (𝑜𝑝𝑡, 𝑘), for any 𝜃 ∈ Θ, 𝜎 ∈ Σ,

𝑅(𝜃, 𝜎) ≤ 𝑅(𝑓 𝑛𝑎, 𝜃, 𝜎)
≤ sup

𝜃 ∈Θ,𝜎∈Σ
E𝜃,𝜎 [ℓ (𝑓 𝑛𝑎 (𝒙), 𝜔)] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)]

= sup

𝜃 ∈Θ,𝜎∈Σ
E𝜃,𝜎 [ℓ (𝑓 𝑛𝑎 (𝒙), 𝜔) − ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)]

≤ max

𝜃 ∈Θ,𝜎∈Σ
ℓ ( |𝑓 𝑛𝑎 (𝒙) − 𝑜𝑝𝑡𝜃 (𝒙𝑇 ) |)

≤ ℓ (𝑆 (𝑜𝑝𝑡, 𝑘)/2)

However, The proof fails in the multi-state case since 𝑓 𝑛𝑎 (𝒙)
is not a distribution, thus illegal in this setting. Instead, we need

another aggregator.

Suppose𝑢 (𝒙)𝜔 = max𝜃 𝑜𝑝𝑡𝜃 (𝒙)𝜔 . Then it is obvious that
∑
𝜔 𝑢 (𝒙)𝜔 ≥∑

𝜔 𝑜𝑝𝑡𝜃 (𝒙)𝜔 = 1. Similarly we have 𝑙 (𝒙)𝜔 = min𝜃 𝑜𝑝𝑡𝜃 (𝒙)𝜔 and∑
𝜔 𝑙 (𝒙)𝜔 ≤ ∑

𝜔 𝑜𝑝𝑡𝜃 (𝒙)𝜔 = 1.

Thus for every 𝒙 there exists a vector 𝑓 ′ (𝒙) such that for any

𝜔 ∈ Ω, 𝑙 (𝒙)𝜔 ≤ 𝑓 ′ (𝒙)𝜔 ≤ 𝑢 (𝒙)𝜔 and

∑
𝜔 𝑓 (𝒙)𝜔 = 1. We can pick

𝑓 ′ (𝒙) as the aggregator and for any 𝜃 ∈ Θ, 𝜎 ∈ Σ,

𝑅(𝜃, 𝜎) ≤ 𝑅(𝑓 ′, 𝜃, 𝜎)
≤ sup

𝜃 ∈Θ,𝜎∈Σ
E𝜃,𝜎 [ℓ (𝑓 ′ (𝒙), 𝜔)] − E𝜃 [ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)]

= sup

𝜃 ∈Θ,𝜎∈Σ
E𝜃,𝜎 [ℓ (𝑓 ′ (𝒙), 𝜔) − ℓ (𝑜𝑝𝑡𝜃 (𝒙𝑇 ), 𝜔)]

≤ max

𝜃 ∈Θ,𝜎∈Σ
ℓ ( |𝑓 ′ (𝒙) − 𝑜𝑝𝑡𝜃 (𝒙𝑇 ) |)

≤ ℓ (𝑆 (𝑜𝑝𝑡, 𝑘))

Now we consider the lower bound of 𝑅(Θ, Σ) (Lemma E.12). A

basic idea is that we can construct a coupling of two information

structures whose reports have a distance smaller than 𝑘 . Then the

adversaries can make the coupling indistinguishable. However, if

the probability of the worst case is too small, then their contribu-

tion to the regret is also negligible. Thus we need to constrain the

information structures (Definition E.11).

Definition E.11 (𝛼-regular information structure). An
information structure 𝜃 is 𝛼-regular if every possible report vector 𝒙
will appear with probability at least 𝛼 :

min

𝒙 :Pr𝜃 [𝒙 ]>0
Pr

𝜃
[𝒙] > 𝛼.

Lemma E.12. If 𝜃 is 𝛼-regular, for any benchmark function 𝑜𝑝𝑡

and L2 loss ℓ2, 𝑅(Θ, Σ) ≥ 𝛼
4
𝑆 (𝑜𝑝𝑡, 𝑘)2.

Proof. Fix𝛼 , let themaximumof𝑆 (𝑜𝑝𝑡, 𝑘) is obtained by𝜃, 𝜃 ′, 𝒙𝑇 , 𝒙′𝑇 .
We construct an information structure as follows. Suppose the

joint distribution 𝜃 ′′ is the mixture of 𝜃 and 𝜃 ′ with equal prob-

ability. By the definition of 𝑑 (𝒙𝑇 , 𝒙′𝑇 ), there exists 𝜎′ such that

ℎ𝒙𝑇 ,𝜎 ′ (𝒙𝑇 ) = ℎ𝒙′
𝑇
,𝜎 ′ (𝒙′

𝑇
) . Then we have

𝑅(𝜃, 𝜎) ≥ 𝑅(𝜃 ′′, 𝜎′)
≥ min

𝑓
E𝜃 ′′,𝜎 ′ [ℓ (𝑓 (𝒙), 𝜔)] − E𝜃 ′′ [ℓ (𝑜𝑝𝑡 ′′

𝜃
(𝒙′′𝑇 ), 𝜔)]

= min

𝑓
E𝜃 ′′,𝑔′ [(𝑓 (𝒙) − 𝑜𝑝𝑡𝜃 ′′ (𝒙′′𝑇 ))2]

= 1/2min

𝑓
Pr

𝜃
[𝒙𝑇 ] (𝑓 (𝒙) − 𝑜𝑝𝑡𝜃 (𝒙𝑇 ))2 + Pr

𝜃 ′
[𝒙′𝑇 ] (𝑓 (𝒙) − 𝑜𝑝𝑡𝜃 ′ (𝒙′𝑇 ))

2

≥
Pr𝜃 [𝒙𝑇 ] Pr𝜃 ′ [𝒙′

𝑇
]

2(Pr𝜃 [𝒙𝑇 ] + Pr𝜃 ′ [𝒙′
𝑇
]) (𝑜𝑝𝑡𝜃 (𝒙𝑇 ) − 𝑜𝑝𝑡𝜃 ′ (𝒙′𝑇 ))

2

≥ 𝛼

4

𝑆 (𝑜𝑝𝑡, 𝑘)2

□

Combining the lower bound and upper bound, we infer Theo-

rem E.6. □
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