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ABSTRACT

Weights play an essential role in determining the performance of deep net-
works. This paper introduces a new concept termed ”Weight Augmentation strat-
egy”(WAS), which emphasizes the exploration of weight spaces rather than tradi-
tional network structure design. The core of WAS is the utilization of randomly
transformed weight coefficients, referred to as Shadow Weights (SW), for deep
networks to calculate the loss function and update the parameters. Differently,
stochastic gradient descent is applied to Plain Weights (PW), which is referred to
as the original weight of the network before the random transformation. During
training, numerous SW collectively form a high-dimensional space, while PW is
directly learned from the distribution of SW. To maximize the benefits of WAS,
we introduce two operational modes, i.e., the Accuracy-Priented Mode (AOM)
and the Desire-Oriented Mode (DOM). To be concrete, AOM relies on PW, which
ensures that the network remains highly robust and accurate. Meanwhile, DOM
utilizes SW, which is determined by the specific objective of our proposed WAS,
such as reduced computational complexity or lower sensitivity to particular data.
These dual modes can be switched at any time as needed, thereby providing flex-
ibility and adaptability to different tasks. By extending the concept of augmenta-
tion from data to weights, our WAS offers an easy-to-understand and implement
technique that can significantly enhance almost all networks. Our experimen-
tal results demonstrate that convolutional neural networks, including VGG-16,
ResNet-18, ResNet-34, GoogleNet, MobileNetV2, and EfficientNet-Lite, benefit
substantially with little to no additional costs. On the CIFAR-100 and CIFAR-10
datasets, model accuracy increases by an average of 7.32% and 9.28%, respec-
tively, with the highest improvements reaching 13.42% and 18.93%. In addition,
DOM can reduce floating point operations (FLOPs) by up to 36.33%.

1 INTRODUCTION

learning with data augmentation (DA) has achieved great success, which significantly enhances
model performance through various preprocessing methods such as rotation, translation, scaling, and
random cropping Moreno-Barea et al. (2020); Shorten et al. (2021); Yang et al. (2022).The primary
goal of DA is to align the distribution of the original dataset more closely with that of natural scenes,
thereby increasing both the diversity and quantity of data. Wang et al. Hao & Zhili (2020) advanced
this field by improving the Mosaic data augmentation algorithm, which analyzes synthetic image
areas and randomly fills them with a certain number of training images. Additionally, researchers
at CMU Trabucco et al. (2023) proposed the DA-Fusion strategy using pre-trained text-to-image
diffusion models to generate diverse variants of real images, thereby enhancing data variety and
improving model robustness.

Although complex DA techniques can enhance model accuracy, they come with notable drawbacks
He et al. (2019); Dosovitskiy et al. (2020); Cubuk et al. (2020); Tian et al. (2020); Zoph et al.
(2020). First, intricate augmentation strategies can make models difficult to implement and cus-
tomize. Second, it is challenging to avoid generating irrelevant tasks or misleading augmented data.
For example, issues such as data over-enhancement, where the model cannot effectively learn from
the augmented data, and deviations of the augmented data from the original distribution can arise
Suresh et al. (2021); Zheng et al. (2024); Wang et al. (2022); Jiang et al. (2020); Gou et al. (2021).
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Figure 1: This figure contrasts traditional and innovative model training strategies. Panel (a) depicts
the traditional method where specific parameters are derived directly from the data, represented by
red circles. In contrast, panel (b) introduces our novel strategy where the distribution of weights,
rather than the weights themselves, is learned from the data.

Weights are the core part of model deployment and the basis for decision-making in practical ap-
plications, which do not directly interfere with the distribution of real data Zamfirescu-Pereira et al.
(2023); Alberts et al. (2023); Ghosal et al. (2023). Since the advent of deep learning, the dominant
approach to model training has been to utilize data to optimize model parameters, aiming to obtain
a set of weights that lead to superior performance. However, the outcomes are not always favorable.
Izmailov et al. Izmailov et al. (2018) proposed stochastic weight averaging, which integrates the
weights generated during the training stage by averaging multiple weights, thereby abandoning the
final weight result. In traditional training methods, inference relies on a single weight, which can be
directly obtained. However, identifying a set of parameters from the weight space that satisfies the
feature space mapping is challenging, particularly when both the weight space and the feature space
are high-dimensional. Figure 1(a) illustrates the traditional training method, where the relationship
between data and weights is many-to-one. Model training aims to find weights that correspond to
the data. The formula can be expressed as follows:

Φ : Rm → x (1)

In this context, Φ represents the function that maps an m-dimensional feature space to the corre-
sponding weights. Specifically, Rm is defined as the m-dimensional Euclidean space representing
the feature vectors. Likewise, Rn denotes the n-dimensional space of potential weight vectors,
illustrating the multidimensional space where the weights reside. Figure 1(b) illustrates our innova-
tive strategy, where the relationship between data and weights is conceptualized as many-to-many.
Throughout the training process, the weight space becomes increasingly complete. With the ap-
plication of the proposed WAS, the weight space will be further expanded. Instead of seeking the
optimal weights directly, our approach involves learning the distribution of the entire weight space.
The relationship is mathematically expressed as follows:

Ψ : Rm → Rn (2)

where Ψ denotes the transformation that maps the m-dimensional feature space to the n-dimensional
weight space. To address the shortcomings of traditional methods like Dropout Srivastava et al.
(2014), which combats overfitting by randomly dropping units during training but does not reduce
computational complexity in inference, we introduce Weight Augmentation Strategy (WAS). This
technology is influenced by both dropout and data augmentation strategies and takes a novel ap-
proach by randomly transforming weights during the training phase. These transformed weights,
referred to as SW, are employed to compute the loss function and facilitate the update of model
parameters. In contrast, during the inference phase, Stochastic Gradient Descent (SGD) is applied
to PW. This dual-weight strategy ensures that the model achieves optimal performance only when
PW aligns effectively with the majority of SW. As a result, WAS allows for a more robust system
that improves upon the limitations of dropout by considering the computational demands during
inference.
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Figure 2: Sketch of WAS architecture. There exist two modes during inference, namely the
accuracy-oriented mode using PW and the desire-oriented mode using SW.

While our system utilizes two different types of weights, only the PW need to be saved. The SW
are generated through random transformations applied to PW. This approach allows us to maintain
a single set of weights that can operate in two distinct modes, which offers different functionalities
at minimal cost. Depending on the task requirements, the operational mode can be switched dynam-
ically. As depicted in Figure 2, AOM utilizes PW to ensure high robustness and optimal handling
of most data types. In contrast, DOM employs SW, which can be tailored for specific functions,
such as reducing computational complexity and enhancing sensitivity to particular data types. Our
contributions can be summarized as follows:

• We propose WAS, which enhances the robustness of model training through the random
transformation of weights.

• The concept of dual-mode weights allows for retaining just one set of model weights during
inference, enabling the model to adapt to multiple states and meet various task requirements
efficiently.

• Our approach redefines traditional training by focusing on the entire distribution of weights
rather than optimizing for a specific weight, with the goal of identifying the most effective
and robust weight configuration for diverse applications.

2 RELATED WORK

With the continuous development of deep learning, researchers have begun to seek more efficient
and economical methods to obtain model weights. WiSE-FT Wortsman et al. (2022) enhances the
robustness of fine-tuned pre-trained models by integrating the weights of zero-shot and fine-tuned
models. This method can maintain high accuracy and adapts well to changes in data distribution.
However, the performance of WiSE-FT largely depends on the pre-trained model and fine-tuning
data. Guo et al. Guo et al. (2020) introduced a collaborative knowledge distillation approach that
trains multiple student models simultaneously. This strategy enhances learning efficacy without
the need for a separate teacher model, though the selection and quantity of student models impact
the outcome and require substantial computational resources. Zhang et al. Zhang et al. (2019)
developed a self distillation technique that employs the network as both the student and the teacher,
facilitating internal knowledge transfer. It does not require an additional pre-trained teacher model
and can improve accuracy without increasing inference time. However, self distillation introduces
an additional shallow classifier, which prevents the model convergence and increases the complexity
of training.

To overcome the limitations of these methods, we introduce the Weight Augmentation Strategy
(WAS). We randomly transform PW during training to obtain SW. PW is used to be compatible
with various SW, in order to enhance the robustness of the network and reduce the sensitivity of the
model to noise.
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Figure 3: Interaction Triangle of WAS Components. SW are utilized to compute the loss function,
which influences the adjustment of PW.

3 METHOD

3.1 WEIGHT AUGMENTATION STRATEGY

In traditional training, it is a common occurrence that many weights generated are considered “by-
products” and typically disregarded as they are not optimal for broader data applications, despite
their effectiveness on specific datasets. These weights are usually discarded during the model se-
lection process. However, with the deepening of deep network research, the potential value of
these “by-products” has been recognized. For example, ensemble learning methods Dietterich et al.
(2002); Krawczyk et al. (2017); Huang et al. (2009) can integrate these seemingly useless weights
to form a more powerful and robust model. These conventional approaches of leveraging diverse
weights have not fully tapped into the potential of weight augmentation. A robust weight space,
where weights are learned from distributions rather than specific data points, can significantly im-
prove performance. The augmentation involves transforming weights through various methods such
as rotation, translation, and scaling, as shown in the equation:

h (x) = ReLU
(
TW

′
x
)
= ReLU

(
k∑

i=1

TiWixi + b

)
(3)

where W and W
′

denote the weight vector and its transposition, respectively, and Ti represents the
transformation applied to each weight component.

However, merely reorganizing weights does not fully capture the weight distribution and can lead
to biases and reduced generalization ability. To address the above issues, we introduce randomness
into the augmentation process, thereby enhancing the diversity and representativeness of the weight
space:

h (x) = ReLU

(
j∑

i=1

γ (Ti)Wixi + b

)
, (4)

where γ (Ti) controls the degree of randomness in the transformation, which is crucial for optimiz-
ing the efficacy of WAS. The application of randomness is adjusted based on the requirements of
convolutional layers and the specific augmentation strategy chosen, such as the degree of translation
or scaling. By integrating these elements, WAS aims to refine the way weights are used and adjusted,
promoting a more dynamic and flexible approach to deep learning model training.

WAS is an innovative strategy designed to optimize deep networks by directly applying randomness
and constraints to weights, thus enhancing the model’s capability to explore the weight space. This
approach not only addresses the limitations faced by traditional weight optimization methods, such
as a lack of flexibility and autonomy, but also revitalizes the training process by introducing dynamic
changes in weight configurations.

As training continues, the distribution of SW is refined, enhancing the overall model parameters.
The updating of model parameters is governed by the following equations:

θj = θj − α · ∂

∂θj
J(θ) (5)

θpwj = θpwj − α · ∂

∂θpwj
J(θswj ) (6)
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Table 1: Deep networks defined by WAS
Name Crop Translate Rotate

Model-C
√

Model-T
√

Model-R
√

Model-CT
√ √

Model-CTR
√ √ √

Here, θswj and θpwj represent the j-th parameters of SW and PW, respectively. α denotes the learning
rate and J(θ) is the loss function. The derivative ∂

∂θsw
j

reflects the partial derivative of the loss

function J(θswj ) with respect to the parameter θpwj .

Additionally, the interaction between SW and PW within the training process is captured by

∂J

∂θj
=
∑
x,y

∂J

∂Zxy
· · · ∂Zxy

∂θj
, (7)

where Zxy represents the feature map at position (x, y). The partial derivatives ∂J
∂Zxy

and ∂Zxy

∂θj

quantify the sensitivity of the loss function to changes in the feature map and the feature map’s
responsiveness to changes in the weights, respectively. Here, SW is employed to compute the loss
function, which assesses the discrepancy between the model’s outputs and the actual results. These
computations not only impact PW adjustments but also facilitate learning the data distribution via
SW. Thus, PW is primarily updated based on the distribution of SW, which is a significant departure
from conventional methods where direct data-driven updates are commonplace. The relationship
between PW, SW, and loss function is shown in Figure 3. The WAS incentive model integrates
hundreds of weight training iterations, leveraging the advantages of SW while mitigating potential
drawbacks. This strategy enhances model performance and allows for mode switching based on task
requirements, paving the way for more intelligent and efficient deep network training.

In related research, Ding et al. Ding et al. (2021) introduced RepVGG, a method that adjusts weights
during inference to reduce time complexity while preserving performance. This approach explores
the potential relationship between model structures and weights, although it does not directly link
the two. Meanwhile, Zheng et al. Zheng et al. (2023) introduced the “Learn From Model” concept,
emphasizing the need for deeper exploration and modification of foundation models based on model
interfaces.

Our approach takes a step further by advocating for weight-based training over traditional data-
driven methods. By focusing on weight distributions rather than direct data features, our method
allows the model to learn from a broader array of potential configurations, encompassing even flawed
weights that can still capture specific data nuances. This two-stage training process—alternating
between learning from data distributions and flawed weight distributions—leads to a model that
optimizes its structure and weights autonomously without human intervention.

WAS not only encourages exploration of a wider weight space to find high-performance configura-
tions but also enhances computational efficiency. This reduces resource consumption during both
training and inference. Moreover, WAS can be tailored to specific model functions, such as pro-
cessing particular types of data or reducing computational complexity, which aligns with the unique
needs of various applications.

3.2 DUAL WORKING MODE OF NETWORK MODEL

The core of WAS is to encourage the generation of a large number of weights, which enriches
the weight distribution and enhances the generalization and robustness of the model. The model
operates in two distinct modes during training: AOM and DOM.

AOM operates similarly to traditional deep learning models and is utilized directly in inference.
The innovation in AOM lies in its dynamic weight formation mechanism, which emerges through a
competitive process during training. This competition drives continual optimization of the model’s
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Table 2: Comparison of top-1 accuracy (%) and average FLOPs (M) on CIFAR10 and CIFAR100
datasets

Model CIFAR10 CIFAR100 Average
FLOPs (M)

AOM Top1 DOM Top1 AOM Top1 GOM Top1

VGG 87.42 - 59.01 - 333
VGG16-C 89.29 88.95 62.19 60.53 321

VGG16-CT 91.15 90.60 63.53 61.96 279

ResNet18 85.53 - 59.70 - 608
ResNet18-C 88.15 87.38 63.42 62.44 542

ResNet18-CT 89.83 88.64 63.40 61.50 315

ResNet34 86.54 - 58.64 - 1214
ResNet34-C 89.18 88.81 62.19 61.24 1099

ResNet34-CT 91.71 90.73 60.64 58.73 709

GoogleNet 90.55 - 72.04 - 1457
GoogleNet-C 91.99 91.43 73.05 72.02 1237

GoogleNet-CT 92.68 92.04 73.08 72.01 772

MobileNetV2 73.2 - 47.02 - 47
MobileNetV2-C 82.58 82.43 55.43 54.65 45

MobileNetV2-CT 83.02 82.88 55.92 53.95 37

EfficientNetLite 73.05 - 43.13 - 8.00
EfficientNetLite-C 80.96 79.97 49.08 48.47 6.37

EfficientNetLite-CT 83.72 81.23 50.31 47.41 4.66

performance. Within this framework, SW that demonstrate superior performance can significantly
reduce the loss function, thereby influencing the determination of PW. Weights that perform poorly
exert less influence on the final weight determination.

DOM is specifically tailored to meet unique operational requirements such as enhancing model
specificity, sparsity, and computational efficiency. In DOM, we can devise WAS tailored to the par-
ticular demands of the task and implement it within training. This adaptive strategy allows for the
tuning of PW for use during inference. Although DOM may result in lower prediction accuracy
compared to AOM, it offers substantial benefits for specialized tasks. For example, implementing
strategies like random weight cropping can increase the sparsity of the weight matrix, thereby dras-
tically reducing the computational load—sometimes by several orders of magnitude. This reduction
is particularly valuable in scenarios involving large-scale data processing or in resource-constrained
environments.

As a consequence, WAS provides a flexible model management strategy that only requires the stor-
age of one set of weights while enabling two distinct functional modes. During inference, the model
can switch between these modes based on the specific requirements of the application scenario. This
dual-mode operation not only simplifies the management of model storage and maintenance but also
enhances the algorithm’s resilience and adaptability to varying conditions.

4 EXPERIMENTS

To evaluate the effectiveness of the proposed WAS, we conducted a series of ablation studies and
comparative analyses on the CIFAR-10 and CIFAR-100 datasets Krizhevsky et al. (2009). The main
objective of these experiments was to demonstrate the impact that WAS integration has on the mod-
els. Furthermore, we evaluate to delineate the distinctions and performance implications of dual
operational modes. The results from these studies consistently confirm the advantages of incorpo-
rating WAS, showcasing substantial enhancements in model performance across various metrics.
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Table 3: Comparison of AOM and DOM Top-1 Drop Rates under Different WAS

Model Data
Augmentation Parameters AOM Top-1

Drop Rate(%)
GOM Top-1

Drop Rate(%)
(0◦, 15◦) 5.09 4.86
(0◦, 45◦) 39.52 25.58

VGG16-R rotate (0◦, 90◦) 46.29 42.74
(0◦, 90◦) (0◦, 135◦) 54.61 53.65

(0◦, 180◦) 58.40 57.76

(10%,10%) 1.72 2.33
VGG16-T translate (20%,20%) 6.62 8.47
(30%,30%) (30%,30%) 14.42 18.21

(40%,40%) 25.76 31.76

(0.8,1.0) 3.34 2.79
VGG16-C crop (0.6,1.0) 6.49 6.71
(0.8,1.0) (0.4,1.0) 13.04 12.12

(0.2,1.0) 24.19 22.42

4.1 WAS FOR CLASSIFICATION

To evaluate the effectiveness of WAS, we have chosen six prominent deep learning architectures
as our experimental models: VGG-16 Simonyan & Zisserman (2014), ResNet18 He et al. (2016),
ResNet34 He et al. (2016), GoogLeNet Szegedy et al. (2015), EfficientNet-Lite Tan & Le (2019),
and MobileNetV2 Sandler et al. (2018). The results of these comparative experiments are detailed
in Table 1, showing improvements against baseline models.

We deliberately eschewed the incorporation of additional techniques, primarily to mitigate the im-
pact of extraneous variables. On a solitary GPU, we established a global batch size of 128. We
employed the conventional SGD, initializing the learning rate at 0.01. Furthermore, we fine-tuned
the SGD optimizer, assigning a momentum coefficient of 0.9, thereby augmenting the model’s sta-
bility and hastening convergence throughout the training regimen.

Table 2 demonstrates the performance improvement achieved by Model-C and Model-CT under
different architectures. On the CIFAR-10 dataset, AOG for the models demonstrated discernible en-
hancements. Specifically, the accuracy of VGG16-C and VGG16-CT saw an increase of 2.13% and
4.27% relative to the baseline VGG16, respectively. For ResNet18, ResNet18-C and ResNet18-CT
attained an accuracy improvement of 3.06% and 5.03%. Similarly, the ResNet34-C and ResNet34-
CT models realized respective accuracy improvements of 3.05% and 5.97%. The GoogleNet-C
and GoogleNet-CT models recorded accuracy enhancements of 1.59% and 2.35%. Within the Mo-
bileNetV2 series, the accuracy for MobileNetV2-C and MobileNetV2-CT marked a significant rise
of 12.76% and 13.42% over MobileNetV2. Lastly, the EfficientNetLite-C and EfficientNetLite-CT
models secured accuracy improvements of 9.52% and 13.23%.

On the CIFAR-100 dataset, WAS also demonstrated enhanced performance across various mod-
els. The VGG16-C and VGG16-CT models showed accuracy improvements of 5.39% and 7.66%,
respectively.The ResNet18-C and ResNet18-CT models recorded increases of 6.23% and 6.19%,
while the ResNet34-C and ResNet34-CT achieved accuracy gains of 6.05% and 3.41%, respectively.
GoogleNet-C and GoogleNet-CT noted slight improvements with gains of 1.40% and 1.44%. Re-
markably, MobileNetV2-C and MobileNetV2-CT marked significant advancements with increases
of 17.89% and 18.93%. Finally, the EfficientNetLite-C and EfficientNetLite-CT models displayed
notable accuracy enhancements of 13.78% and 18.93%, respectively, illustrating the substantial im-
pact of WAS on model performance.

The performance of Model-C and Model-CT under DOM is slightly lower than under AOM, both
models still outperform their baseline by approximately 1% to 2%. This indicates that both oper-
ational modes enhance model performance, with particularly notable gains in lightweight models.
Furthermore, while not the primary focus, it is important to acknowledge the reductions in compu-
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Table 4: Comparison of AOM and DOMTop-1 drop rates of different WAS under different data
enhancements

Model Data
Augmentation Parameters AOM Top-1

Drop Rate(%)
DOM Top-1

Drop Rate(%)
(0.8,1.0) 2.33 2.50

corp (0.6,1.0) 5.93 5.15
(0.4,1.0) 11.35 11.70

VGG16-R (0.2,1.0) 22.31 23.08
(0◦,90◦) (10%,10%) 2.56 3.27

translate (20%,20%) 9.96 10.39
(30%,30%) 19.95 20.45
(40%,40%) 32.45 32.71

(0◦,15◦) 5.09 5.27
(0◦,45◦) 28.39 27.97

rotate (0◦,90◦) 46.80 47.28
VGG16-T (0◦,135◦) 55.18 56.28
(30%,30%) (0◦,180◦) 58.96 59.67

(0.8,1.0) 2.69 2.61
crop (0.6,1.0) 5.16 6.11

(0.4,1.0) 10.12 12.18
(0.2,1.0) 21.53 25.10

(0◦,15◦) 4.80 4.85
(0◦,45◦) 26.68 28.14

rotate (0◦,90◦) 46.10 45.59
VGG16-C (0◦,135◦) 54.84 53.04
(0.8,1.0) (0◦,180◦) 58.98 56.51

(10%,10%) 2.56 3.24
translate (20%,20%) 8.50 9.87

(30%,30%) 17.70 18.21
(40%,40%) 28.81 33.70

tational load as measured by FLOPs. For Model-C, FLOPs decreased by about 5% to 20%, whereas
Model-CT saw a more substantial reduction, with FLOPs decreasing by up to 47%.

4.2 CHARACTERISTIC OF WAS

WAS endows models with unique capabilities that can be tailored to specific needs during inference.
These capabilities encompass a range of enhancements, including reduced computational complex-
ity and decreased sensitivity to particular types of data. This functionality is achieved by switching
to SW during inference, allowing for customizable adjustments according to specific requirements.
Consequently, WAS enables the model to adapt effectively to unique operational environments.

Table 3 showcases three representative WAS strategies implemented following the official PyTorch
example Imambi et al. (2021): rotation (random rotation angles set between 0° and 90°), transla-
tion (random translation of weights up to 30% in horizontal and vertical directions), and cropping
(random cropping of weights with ratios between 0.8 and 1.0). To assess the effectiveness of these
strategies for processing specific data, we conducted random data augmentation on the test set.

After using WAS, the network operates in two modes: AOM, which does not apply WAS during
inference, and DOM, which applies WAS during inference. As detailed in Table 3, when employing
a random rotation strategy for WAS training (0° to 90°), AOM consistently outperforms DOM in
Top-1 accuracy. Notably, with rotations limited to 0° to 45° and 0° to 90°, the accuracy losses in
DOM compared to AOM are significantly reduced by 13.84% and 3.55%, respectively. For other
rotation angles, the accuracy loss in DOM is approximately 1% lower than in AOM.

Additionally, when implementing the cropping strategy, as the weight cropping ratio increases, the
accuracy loss in DOM compared to AOM decreases progressively by 0.58%, 0.22%, 0.92%, and
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Table 5: Comparison of the impact of Top-1 drop rates of different randomly cropped WAS on
rotation data

WAS
Strategy

AOM
Top-1 acc

DOM
Top-1 acc Parameters AOM Top-1

Drop Rate(%)
DOM Top-1

Drop Rate(%)
(0◦,15◦) 4.80 4.85
(0◦,45◦) 26.68 28.14

Crop (0.8,1.0) 89.72 88.95 (0◦,90◦) 46.10 45.59
(0◦,135◦) 54.84 53.04
(0◦,180◦) 58.98 56.51

(0◦,15◦) 5.58 5.04
(0◦,45◦) 27.85 26.85

Crop (0.6,0.8) 90.34 89.71 (0◦,90◦) 46.54 45.82
(0◦,135◦) 56.18 53.37
(0◦,180◦) 59.98 56.16

(0◦,15◦) 5.79 4.51
(0◦,45◦) 27.44 24.62

Crop (0.4,0.6) 88.54 87.99 (0◦,90◦) 45.67 43.25
(0◦,135◦) 54.66 51.57
(0◦,180◦) 58.01 53.99

(0◦,15◦) 5.96 4.43
(0◦,45◦) 27.57 25.72

Crop (0.2,0.4) 87.09 86.19 (0◦,90◦) 45.85 44.4
(0◦,135◦) 54.52 52.77
(0◦,180◦) 58.01 54.88

1.77%. This indicates that the disparity in accuracy loss between DOM and AOM first narrows
and then widens, reflecting the impact of increasing random crop ratios during training, which can
degrade model performance if parameters exceed certain thresholds.

In summary, WAS helps to promote the ability to process specific data. However, when WAS in-
volves random translation, the accuracy loss in DOM exceeds that in AOM, contradicting initial
expectations. Upon integrating random cropping with translation, it appears that the reduction in
model parameters may diminish the fitting capabilities of the model.

As depicted in Table 4, evaluated the effects of random translations within the test dataset through
our AD pipeline, which deviates from traditional AD approaches. As the random translation param-
eter increased from 10% to 40%, the Top-1 accuracy drop rate in AOM escalated from 2.56% to
32.45%. Concurrently, DOM experienced a rise in the Top-1 drop rate from 3.27% to 33.70%. As
the cropping ratio decreased from 1.0 to 0.2, both modes saw an increase in the Top-1 accuracy drop
rate. For AOM, the drop rate increased from 2.69% to 21.53%,while for DOM, it rose from 2.61%
to 25.10%.Notably, DOM exhibited a more pronounced performance decline, especially at higher
cropping ratios. Based on the preliminary analysis of the above data, we can conclude that AOM has
stronger generalization when the WAS strategy is inconsistent with the data augmentation strategy.

Similarly, as the rotation angle of the test set increases from 0° to 180°, using a random translation
WAS strategy, the drop rate for AOM escalates from 5.09% to 58.96%. In DOM, the drop rate rises
from 5.27% to 59.67%. Conversely, when employing a random cropping WAS strategy, the drop rate
for AOM increases from 4.80% to 58.98%, while for DOM, it climbs from 4.85% to 56.51%. Under
extreme augmentation conditions, the drop rate in AOM is unexpectedly higher than in DOM, which
is contrary to initial expectations. This indicates that DOM may handle extreme data manipulations
more robustly than AOM.

To explore the above phenomenon, Table 5 presents the models trained with varying random crop-
ping ratios for WAS, while DA employs random rotation. On the test set, despite changes in training
parameters, the drop rate of AOM remains relatively stable. However, as the random cropping ratio
in WAS increases, the Top-1 accuracy drop rates for DOM are 2.47%, 3.82%, and 4.02% lower than
those for AOM respectively, which suggests that DOM is more adept at processing rotated data.
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Table 6: Training results on CIFAR10 datasets using different WAS
Cropping

parameters
Translation
parameters

Mode Two
Acc

FLOPs
(M)

Average
sparsity rate(%)

(1.0,1.0) - 87.42 333 -
(0.8,1.0) - 88.95 320.68 3.70
(0.6,0.8) - 89.71 259.67 22.02
(0.4,0.6) - 87.99 223.08 33.01
(0.2,0.4) - 86.19 212.02 36.33

- (30%,30%) 90.37 230.63 30.74
(0.8,1.0) (30%,30%) 90.60 277.42 16.69

As cropping ratios range from 0.2 to 0.4, the disparity in Top-1 accuracy drop rates between AOM
and DOM narrows, which is likely due to a decrease in parameters which affects the model’s abil-
ity to fit data. This underscores how data rotation, similar to cropping, can lead to information
loss, yet DOM (employing weight-based random cropping) exhibits a lower drop rate than AOM,
highlighting its robustness.

Further analysis of the model’s structural efficiency is shown in Table 6. When cropping parameters
are set at (0.4,0.6), the model achieves a sparsity rate of 33.01% with zero elements and maintains
an accuracy of 87.99%, which is comparable to the base model. When the Cropping parameters
are reduced to (0.2,0.6), the accuracy decreases by 1.41%, but the proportion of 0 elements in-
creases by 3.32%, and the FLOPs are reduced by 11.06M. When introducing translation parameters
(30%,30%), even without cropping, the sparsity rate is increased to 30.74%, floating-point opera-
tions(FLOPs) are reduced to 230.63M, and the accuracy is improved by 3.26% compared to the base
model. Combining cropping with translation through WAS not only enhances model accuracy but
also significantly lowers computational costs, demonstrating the dual benefits of this approach in
improving model performance and efficiency.

5 CONCLUSION

We introduce WAS as a training method for deep learning models. Central to WAS is the imple-
mentation of a dual-mode inference system, which allows the weights to be tailored to meet diverse
task requirements effectively. This approach facilitates the fine-tuning of weights to address specific
needs precisely. In AOM, WAS has demonstrated the capability to enhance model accuracy by as
much as 18.93% without additional computational expenses. In DOM, it can reduce FLOPs by up
to 36.33%, while maintaining robust accuracy levels.
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