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Abstract

To what extent do vision-and-language foundation models possess a realistic world
model (observation X action — observation) and a dynamics model (observation
x observation — action), when actions are expressed through language? While
open-source foundation models struggle with both, we find that fine-tuning them to
acquire a dynamics model through supervision is significantly easier than acquiring
a world model. In turn, dynamics models can be used to bootstrap world models
through two main strategies: 1) weakly supervised learning from synthetic data and
2) inference time verification. Firstly, the dynamics model can annotate actions for
unlabelled pairs of video frame observations to expand the training data. We further
propose a loss-weighting mechanism for the image tokens weighted by the its
importance predicted by a recognition model. Secondly, the dynamics models can
assign rewards to multiple samples of the world model to score them, effectively
guiding search at inference time. We evaluate the world models resulting from both
strategies through the task of action-centric image editing on AURORA-BENCH.
Our best model achieves a performance competitive with state-of-the-art image
editing models, improving on them by a margin of 15% on real-world subsets
according to GPT4o0-as-judge, and achieving the best average human evaluation
across all subsets of AURORA-BENCH/]

1 Introduction

World models (observation x action — observation) [1} 2} |3}/4] can be successfully trained to simulate
future trajectories given the history of past observations and actions. World models are instrumental in
training embodied agents to endow them with specific abilities [5]], such as grounding on affordances
[6], spatio-temporal reasoning [[7, 8], and planning [9, |10, [11]. However, learning a specialised world
model is challenging. Firstly, it requires a large amount of real-world data [12] and even this data
volume may be insufficient within the confines of the current training paradigm [[13]]. Secondly, the
benefit of creating a separate world model to train a downstream embodied agent remains unclear
because of possible compounding errors between the two models. Conversely, foundation models,
such as vision-language models (VLMs), are already imbued with plenty of real-world knowledge
of both action (in language form) and perception (in vision form), because of their large-scale pre-
training. While such knowledge is not straightforward to elicit [14} 15} [16], we propose investigating
a promising alternative to specialised world models, by enhancing the knowledge implicitly stored
inside foundation models.

Firstly, we probe whether native VLMs already contain reliable world models, facilitated by model
designs that combine various modalities into a unified representation, i.e., sequences of tokens [17]]. In
particular, we frame the assessment of world models as the ability to solve action-centric image editing

'The code and models used in this paper will be available at [anonymised].
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Figure 1: Illustration of our two strategies to bootstrap a world model from a dynamics model in
Vision-Language Models: (i) synthesising trajectories for weak supervision (left) and (ii) inference-
time verification of candidate observations (right).

tasks [18]. In such tasks, the model predicts the next observation given the previous observation and
an action expressed as a language instruction. Based on our evaluation, we empirically demonstrate
that existing open-source models do not prefer ground-truth trajectories compared to adversarially
generated ones. Hence, we verify that the world model implicit in the original VLMs per se is not
well grounded on real-world trajectories [14} [15}[16].

Surprisingly, we also find that acquiring a dynamics model (observation X observation — action) via
supervised fine-tuning is substantially easier than directly acquiring a world model (observation x
action — observation). Inspired by this observation, we propose two strategies to bootstrap the world
model from the dynamics model in a given VLM, namely (i) learning from synthetic trajectories
in videos automatically labelled with actions by the dynamics model; and (ii) test-time verification
of predicted observations sampled from the world model through the dynamics model.

For the weak supervision strategy, which is reminiscent of [19], we use a dynamics model fine-tuned
on the AURORA dataset 18] to annotate motion key-frames pairs extracted from real-world videos
with actions (in language form). Around 45 hours of unlabelled videos are sourced from movements-
in-time [20], Kinetics700 [21}[22]] and UCF-101 [23]. Together with the ground-truth trajectories in
AURORA, the synthesised trajectory triplets (observation x annotated action — observation) are then
used for supervised fine-tuning of the VLM world model. To effectively train the world model, we
additionally propose a loss-weighting method which weights the loss of each image token according
to the visual difference between the ground-truth source and target observations, as estimated by a
recognition model. In the verification strategy, we show how using the VLM dynamics model to
assign rewards to multiple samples generated by the VLM world model can effectively guide search
at inference time.

We conduct an extensive evaluation on MagicBrush, Action-Genome, Something-Something, What-
sUp and Kubric in AURORA-BENCH [[18]. We focus on Chameleon-7B as the best available open-
source foundation model, and transform it into a world model (CWM; Chameleon World Model).
We show that thanks to the synthetic data strategy to bootstrap world models from dynamics models,
our general-purpose CWM can achieve an overall performance superior to state-of-the-art diffusion
models specialised for image editing. In particular, CWM improves GPT4o0-as-a-judge scores on
the Something-Something, Action-Genome, and Kubric subsets of AURORA by 15%, 15% and 7%,
respectively. Similarly, human evaluators rate CMW image editing consistently better. Inference-time
verification can also improve AURORA-finetuned Chameleon to a comparable degree as data synthesis,
providing an effective training-free bootstrapping method. In some cases, it can even be combined
with data synthesis for compounded gains.

To summarise our contributions:
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Table 1: Model preference percentages (Reference vs. Various Negatives) across tasks for 9 VLMs.
Higher values indicate stronger preference for reference.

Model World Modelling (WM) Inverse-dynamics Modelling (IDM)
Rand. Act. Inv. Obs. Copy. Obs. Rand. Obs. Rand. Act. Inv. Obs. Copy. Obs. Rand. Obs.

Qwen2-VL-2B [24] 36.69 53.23 54.03 42.74 58.87 53.63 54.03 47.58
Qwen2-VL-7B [24] 36.69 50.40 56.85 38.31 59.68 54.84 64.52 50.40
Qwen2.5-VL-3B [25] 31.04 5242 53.63 42.74 56.45 55.24 64.91 42.34
Qwen2.5-VL-7B [25] 43.55 55.24 81.05 36.29 60.08 50.40 67.34 43.15
LLaVA-Next-7B [26] 48.79 54.44 48.79 51.61 55.65 49.60 48.39 52.02
LLaVA-Interleave [27] 56.45 46.77 31.85 58.87 56.85 47.58 30.65 58.06
Qwen-Omni-3B [28] 29.84 46.37 74.19 35.89 59.27 48.39 55.65 54.44
Qwen-Omni-7B [28 40.32 48.39 66.94 39.92 58.06 50.81 55.24 50.40
Chameleon-7B [17] 44.80 52.00 100.0 46.40 55.60 50.80 42.70 58.10

* We empirically show that VLMs like Chameleon-7B do not exhibit a clear preference for
ground-truth real-world trajectories over heuristic-generated incorrect ones.

* We propose two strategies to bootstrap a world model from a dynamics model inside VLMs:
(i) learning from unlabelled videos annotated with actions by a dynamics model, and (ii)
verifying the generated observations with the dynamics model at inference time.

* We conduct extensive evaluations on AURORA-BENCH: both GPT40-as-a-judge and human
raters demonstrate the effectiveness of our methods with a considerable margin compared to
the state-of-the-art image editing models.

2 VLMs Lack a Consistent Preference for Real-World Trajectories

The first research question we investigate in this paper is: To what extent do VL.Ms exhibit a pref-
erence for token sequences of actions and observations that align with real-world trajectories?

To address this question, we evaluate 9 VLMs on ground-truth trajectories from 5 subsets of AURORA-
BENCH [18]]: MagicBrush, Something-Something, Action-Genome, Whatsup, and Kubric. Each
subset contains 50 trajectory triplets of the form (o, a, 0;), where o4 is the source observation, a the
action text, and o; the next observation.

We then manually curate four types of negative trajectories using rules: two that manipulate the
observation of the trajectory triplet, and two that manipulate the action. We design two kinds of
action-level manipulation: 1) Random Action: for a given pair of observations, we substitute the
original action with another randomly sampled within the same subset. 2) Random Observation: we
randomly substitute the target observation with another in the same subset. We also test the following
observation-level manipulations. 3) Copy Observation: we directly copy the source observation as
the target observation. 4) Inverse Observation: we swap the source and target observations.

In Table [T} we compare the negative log-likelihood VLMs assign to each ground-truth trajectory
against its corresponding manipulated one. We evaluate the VLMs in two tasks: action prediction
(i.e., as a dynamics model) and next-observation prediction (i.e., as a world model). For each kind
of negative trajectory, we report the percentage of samples where the model favours the reference
trajectory over the negative trajectory. From Table[T] it emerges that VLMs display a very limited
preference for the ground-truth trajectories in a zero-shot setting (around 50%). In the action
prediction task (right panel), there is a slightly higher tendency to favour the ground-truth over the
group with random actions; however, even in the best case, Qwen2.5-VL-7B prefers the reference in
only 60.08% of the samples. The only negative group that seems to be identifiable for VLMs is the
inverse observation, where Qwen2.5-VL-7B has 67.34% of correct preference. In the next-observation
prediction task (left panel), the VLM mostly fails in effectively differentiating the ground truth from
the negatives. An exception to this is the copy manipulation, where the Chameleon can always tell
them apart. Although the underlying reason remains uncertain, one plausible explanation for this
behaviour is that the model’s ability to solve next-observation prediction tasks depends on their
alignment with training sequences: for instance, it is plausible that Chameleon’s data rarely features
two identical adjacent images. We provide a breakdown discussion for Chameleon in Appendix[A.3]

2We choose these 9 VLMs with the consideration of 1) they are public accessible and 2) we ensure that they
have been exposed to interleaved data during their pre-training.
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Figure 2: Heatmap visualization of image token weights predicted by the recognition model on
examples from UCF-101, Something-Something, MagicBrush, and Kubric.

3 Bootstrapping a World Model from a Dynamics Model in VLMs

Since we showed in Section 2] that Chameleon-7B displays a higher proclivity as for action prediction
than next-observation prediction, we first verify that this tendency is intensified when Chameleon-7B
is fine-tuned on image editing trajectories (Section [3.1)), as this results in the VLM acting reliably as
a dynamics model. Motivated by this, we propose two strategies to leverage the VLMs as dynamics
models to enhance VLMs as world models: (i) generating synthetic trajectories by annotating large-
scale key-frame pairs from videos with actions predicted by the dynamics model, then using these
as weak supervision to train the world model (Section[3.2)); and (ii) using the dynamics model as a
verifier at test time to score candidate next observations sampled from the world model (Section [3.3).

3.1 Fine-tuning Chameleon as a Dynamics Model

First, we fine-tune Chameleon as a Dynamics Model (CDM) pcpm(a | 05, 0t), which predicts the
probability of an action given the previous and next observations. As training data, we rely on
high-quality triplets from AURORA [18] and the action recognition track of EPIC-Kitchen [29], which
is based on videos with an egocentric view. We use the first and last frame in the EPIC-Kitchen video
clips as the source and target observation os and o; and the annotated action as a. We provide full
details on CDM training data and experimental setting Appendix [A.9.1] Foreshadowing the results in
Section[#.2] this significantly enhances action-prediction capabilities of Chameleon by a wide margin.

3.2 Weakly Supervised Learning from Unlabelled Videos

Synthetic Trajectories. Taking advantage of the resulting high-quality CDM, we then explore the
first of our strategies to bootstrap a world model in VLMs: we annotate pairs of motion key-frames
of unlabelled videos with a textual description of the action with the CDM. To ensure both scale
and quality, we collect approximately 45 hours of video from Moments-in-Time [20], Kinetics-700
[22]], and UCF-101 [23]], all of which consist of curated clips focused on human actions. To
ensure the selected pairs of motion key-frames are meaningful, i.e., they express a valid action, we
then calculate the optical flow to quantify the dynamics per frame in the video clips, and select
the top-Ky frames while ensuring that the interval between two selected frames is I;. Specifically,
we set Iy = 20 and Ky = 6 for all three datasets. This results in approximately 20K, 46K, and
21K annotated trajectory triplets from Moments-in-Time, Kinetics-700, and UCF-101, respectively.
Finally, we apply a filtering strategy to further guarantee the quality of the resulting triplets. We
use the CDM’s predicted likelihood for each trajectory triplet (o5, acpm, 0+) as a score, and apply
stratified Top-K samplinﬂ to select a subset of CDM-annotated trajectory triplets. We show statistics
of the scores and action classes for the selected triplets in Figure[I0] We also provide one example
for each dataset in Figure 2]

Fine-tuning Chameleon as a World Model. Afterwards, we fine-tune Chameleon as a World
Model (CWM), pcwm(o: | a,05) on both AURORA’s supervised triplets Dy, and unsupervised
triples Dypsup With actions sampled from the CDM. The world model CWM is trained with maximum

3The details of this algorithm are provided in Appendix
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where 6 are the parameters for CWM, and & is action sampled from the CDM.

Recognition-Weighted Training Loss. Nevetheless, the objective in Equation [1fis limited by
treating all regions of the target observation equally, even if some of them remain identical to the
source whereas others change. This may result in degenerate solutions such as always copying the
source. As an alternative, we therefore propose a novel training objective for world models that
overcomes this assumption. This objective weights the loss of next-observation image tokens based
on their importance. The intuition is that not all image patches in source and target observations
contribute equally to modelling real-world transitions; instead, the model should focus on patches most
indicative of the action’s consequences. To this end, we leverage a recognition model fre(w|os, 0t),
which outputs token-level weights aligned with Chameleon’s image token representations. These
weights modulate the loss during training, emphasising learning on semantically meaningful regions
and down-weighting irrelevant ones. We formulate our alternative objective as:

L
Il’lein Zfrec(w‘osaot)(l) : (_ 1ng0(01(5l) ‘ O§<l)a087a)) , )
=1

where 6 are the parameters of CWM and a L is the number of tokens used to represent an image
in Chameleon. ogl) and o§<l) represent the image tokens of o; at position [ and the history of
previous positions, respectively. For simplicity, we use the pre-trained vector-quantised model of
Chameleon as the recognition model, by computing the squared Lo norm of pre-quantized features
Z,, € Z,, and z,, € Z,, where Z,_ and Z,, are the sets of features of source and target observations,
respectively. We visualise the token weights in Figure[2] which capture the effects of acting on the
source observation to yield the target one.

3.3 Test-time Verification

Finally, we introduce an inference-time strategy which harnesses the CDM as a verifier to enhance
CWM performance. Inspired by recent work on scaling test-time compute [30} 31], we let the CWM
generate NV candidate observations. Each candidate is paired with the source and scored by the CDM,
which assigns each a predicted likelihood, interpreted as a reward. The final prediction of the CWM
is selected by maximising the CDM’s reward:
Oy = argmax pcpm (a | 0s, ogl)) . where ogz) ~ pewm (ot | 05, a),
ie{l,...,N}

where 0; is the selected prediction.

4 Experiments and Results

4.1 Experimental Setting

Benchmarks. We select AURORA-BENCH [18]] for evaluation of both dynamics and world models.
This dataset provides high-quality data for action-centric edits, covering a wide array of phenomena
and assessing a model’s alignment with the physical world, including temporal and spatial reason-
ing. We choose 5 subsets: MagicBrush for specialised image editing, Action-Genome (AG) and
Something-Something (Something) for real-world actions and scenarios. Whatsup focuses on
spatial reasoning, whereas Kubric contains synthetic samples from a physical engine [32]].

Baselines. We report Chamelon’s zero-shot performance (C-ZS). We also fine-tune Chameleon
on AURORA'’s training set as our first baseline (C-FT). We compare CWM with C-FT in both a
single-prediction setting and in a best-of- N setting. The latter provides a ceiling performance for
inference-time verification with CDM. Additionally, we include three state-of-the-art diffusion models
specialised for image editing as baselines, such as PixInstruct [33]], GoT [34] and SmartEdit [35]].
As a sanity check, we also report the metric scores obtained by simply copying the source observation
input as the next-observation prediction (Copy).
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Table 2: Performance of dynamics models performance on action prediction, measured by text
similarity metrics: BERTScore (BS; [36]), ROUGE-1/2/L (R-1, R-2, R-L; [37]) and BLEU [38]].

BS R-1 R-2 R-L BLEU

VILA-U Fine-tuned 040 0.38 020 0.37 0.15
Chameleon Zero-Shot (C-ZS) 0.05 0.09 0.02 0.08 0.00
Chameleon Fine-Tuned (CDM) 040 039 020 037 0.17

Chameleon Fine-Tuned (CDM)+DS 045 045 0.27 044 0.20

Reference vs Random Act. Reference vs Inverse Obs.  Reference vs Copy Obs.  Reference vs Count. Act.

o T Ref: 73.2% T Ref: 60.1% 1 Ref: 46.4% T Ref: 722% P
© 5 4 || Random Act.: 26.8% L | || Inverse Obs.: 39.9% - | 1!l CopyObs.: 53.6% | || Count. Act.: 27.8% |
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Figure 3: Comparison of negative log-likelihoods (lower values indicate stronger model preference)
of the action predicted by CDM for ground-truth trajectories versus four types of negative trajectories.

Metrics. For next-observation prediction evaluation, following [34]], we rely on GPT4o0-as-a-judge
as it is the only metric that reliably penalises Copy. In Appendix[A.3] we show four other metrics,
e.g., CLIP, which assign high scores to Copy. GPT40-as-a-judge scores consider two criteria, one for
the editing success rate and one for visual consistency with the original. We take the minimum of the
two as the final score. The prompt for GPT40-as-a-judge is provided in Appendix

4.2 Chameleon Dynamics Model

We evaluate the dynamics models based on the textual similarity of the predicted action with the
ground-truth action in AURORA-BENCH, as shown in Table E} Our results demonstrate that fine-
tuning is necessary to elicit Chameleon’s ability to verbalise the dynamics from two observations.
We then compare Chameleon fine-tuned on action prediction (CDM) with the fine-tuned version
of another state-of-the-art VLM, VILA-U [39]. CDM is on par or superior to VILA-U fine-tuned,
justifying our choice of Chameleon as a foundation model for our experiments. Table 2]also provides
an ablation showing that downsampling trajectories from Kubric (DS) in the training data further
boosts CDM performance (CDM + DS). This suggests that data sourced from simulations do not
necessarily translate into better dynamics modelling in real-world examples. We use the DS version
of CDM in the rest of the experiments as the best-performing dynamics model. In Figure[3] we further
evaluate CDM on discriminating between ground-truth and negative trajectories, as in Section[2] Now,
we observe that CDM is mostly successful in identifying manipulated trajectories as such, except for
Copy. These results corroborate the feasibility of annotating actions for key-frame pairs.

4.3 Chameleon World Model

Automatic evaluation. Next, we test CWM on next-observation prediction for each of the AURORA-
BENCH subsets, reporting GPT4-as-a-judge scores in Figure[3] We first notice that the state-of-the-art
image editing models (i.e., PixInstruct, GoT, SmartEdit) tend to specialise in the image editing
benchmark, MagicBrush (5.96 and 6.71 GPT4o scores for GoT and SmartEdit). Nevertheless, in the
action-centric subsets, including Action-Genome (AG), Something and Kubric, they are mostly behind
CWM and even C-FT. In particular, CWM outperforms all other models in these 3 subsets, achieving
gains of 18%, 4%, and 86%, respectively, over the best diffusion baselines. In addition, it boasts the
highest average performance across subsets, with an 8% increase. Crucially, comparing CWM and
C-FT reveals the benefit of augmenting the training data with synthetic triplets bootstrapped from the
CDM, as it yields a 13% performance margin. CWM also outperforms C-FT on the best-of-N setting
[40], indicating the potential for inference-time verification as best-of-N is effectively an oracle for
its performance.
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Table 3: Model performance on MagicBrush, AG, Something, WhatsUp, and Kubric from AURORA-
BENCH in terms of GPT-40 scores. For C-FT and CWM, we report their performance for both single
prediction and best-of-N. The average scores for each model are shown at the bottom. We bold the
best model overall for each subset and highlight the best and worst scores among our variants for
each setting. SE: SmartEdit.

Models
Copy PixInstruct GoT SE C-ZS C-FT +Best-of<3 CWM +Best-of-3

MagicBrush 0.000 3.120 5960 6.710 0.000 | 2.520 3.270 3.920 3.920
AG 0.000 1.200 1.610 3.080 0.170 | 2.480 2.740 3.640 3.640
Something 0.000 0.957 2,620 2.810 0.370 | 3.110 3.110 2.920 3.310
WhatsUp 0.000 0.000 1.580 0.755 0.146 | 0.880 0.980 0.540 0.540
Kubric 0.000 1.880 3.920 3.700 0.140 | 7.300 7.300 7.320 7.780

Average 0.000 1.430 3.140 3.410 0.165 | 3.260 3.480 3.670 3.840

Datasets

Figure 4: Ablation study of synthetic trajecto- ~ Figure 5: Human evaluation results. { indicates
ries (Synth.) and loss weighting (LW) in CWM.  all results whose gap with respect to CWM is
Numbers are GPT-40-as-judge scores (f, aver- ~ Significant, based on a WIICOXOH s1gned—rgnk
age of 3 runs). MB: MagicBrush, AG: Action-  test (p = 0.05). MB: MagicBrush, AG: Action-
Genome, ST: Something-Something, WU: What- ~ Genome, ST: Something-Something, WU: What-

sUp, KU: Kubric. sUp, KU: Kubric.

CWM  w/o Synth. w/o LW GoT SE C-FT CWM
MB  3.48 -0.28 022 MB 0.06" 0297 -0.32f -0.03
AG  3.02 -0.35 -0.08 AG -0.23" -046f 032 0.37
ST 3.06 -0.18 -0.19 ST 0.00 -0.377  0.18 0.20
WU 046 0.40 0.08 WU 025 -038"7 0.14 0.00
KU 7.4 -0.03 -0.33 KU -0.52F -022t 034 0.40
Al 343 -0.09 -0.15 Al 009" 023t 0.13 0.19

Human Evaluation. Following [18], we con- Table 4: Detailed scores of GPT40-as-a-judge eval-
duct a blind human evaluation comparing GoT, uation for loss-weighting and standard training.
SmartEdit, C-FT, and our proposed CWM. We  We report the scores for Editing Success (ES) and
randomly sample 5 examples from each sub- Minimal Editing (ME). MB: MagicBrush, AG:
set within AURORA-BENCH and present the Action-Genome, ST: Something-Something, WU:
outputs generated by each of the four mod- wharsUp, KU: Kubric. We highlight the best and
els. Human annotators are asked to identify worst scores for each category

the best and worst generated observations based ’

on three criteria: (1) Realism: the generated im- Weighted Standard
age should exhibit natural textures and lighting ES(1) ME() ES(M) ME®)
while remaining faithful to the input scene; (2)
Instruction-Following Ability: the edit should IZIB 3.73 8.17 3.68 8.46
clearly reflect the given instruction; and (3) G . ol e Sl
S . . A ST 3.32 7.01 2.78 7.20

Over-Editing: the modification should be mini-

| and f d. alter; 1v what i WU 0.54 7.25 0.76 7.19
mal and focused, altering only what is necessary. KU 775 8.49 724 870
Each model receives +1 point for being selected
as the best, -1 for the worst, and 0 otherwise. We Avg. 3.71 7.80 3.37 7.94
compute the average scores over 350 annotated GPT4o 3.67 3.58

samples, as reported in Table[5] The results align

with automatic evaluations: image-editing models excel in the MagicBrush domain, but fall short
on action-centric datasets such as Action-Genome, Something-Something, and Kubric. In contrast,
CWM outperforms C-FT on all three of these datasets, highlighting its strength in next-observation
prediction in real-world, action-centric trajectories.

Ablation Study on Synthetic Trajectories. To assess the importance of extra supervision from
CDM-synthetic trajectories, Table [ reports GPT-40’s scores for this ablation. We see performance
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Figure 6: GPT-40 scores for test-time verification with K samples, where K € {1,2,4,8}. We use a
blue line for C-FT and a red line for CWM, plotting the standard deviation as the shaded area. We
indicate the scores for GoT (GT) and SmartEdit (SE) as horizontal lines.

drops on most datasets—particularly on Something and AG—when the additional training data from
unlabelled videos is removed, highlighting the effectiveness of bootstrapping CWM with large-scale
real-world data via CDM. An exception is the WhatsUp dataset, which focuses on specific actions
within a fixed scene; in this case, training in an open-domain setting may not transfer effectively.

Ablation Study on Loss Weighting. Based on Table[d] we also observe consistent degradation
when loss weighting is removed, demonstrating the benefit of explicitly incorporating the recognition
model into visual next-token prediction. To better understand the effect of loss weighting, Table[d]
reports the average scores for two criteria used in the GPT-40-as-a-judge evaluation separately:
Editing Success (ES), which measures how well the model captures the intended action and performs
the corresponding edit, and Minimal Editing (ME), which assesses whether the model introduces
unnecessary modifications. The full distribution of GPT-4o scores is provided in Appendix [A.§]
Our analysis reveals that the primary bottleneck for CWM remains its ability to reliably follow the
instruction, as reflected by the fact that ES scores are significantly lower than ME scores. Loss
weighting partly solves this problem, increasing the editing success and reducing copying behaviour,
albeit at the cost of sometimes over-editing the source observation.

Verification at Test Time. We evaluate test-time verification using
CDM in Figure[6] comparing C-FT and CWM with K € 1,2,4,8.

Each experiment is repeated three times, and we visualise the mean SMQA ESB
and standard deviation. By increasing exploration on more candidate C-ZS 26.1 15.0
next observations, C-FT benefits from test-time verification on most CM-F 258 21.2

datasets with real-world trajectories (e.g., AG, Something, What- CWM 272 175
sUp), suggesting the effectiveness of CDM’s trajectory preferences.
Increasing K does not always improve performance (MagicBrush, Table 5: Performance on Spa-
Kubric), suggesting that bootstrapping with a dynamics model that tialMQA (SMQA) and Embo-
shares the same foundation model backbone may be limiting. In diedSpatial-Bench (ESB).
contrast, CWM shows no clear gain, likely because it was trained

with the synthetic trajectories and has already internalised CDM’s preferences—as is evident from
its strong /X = 1 performance. In summary, CDM-based verification boosts C-FT’s performance to
the same level as CWM, by leveraging more diverse samples at inference time rather than during
training.

Image Editing as an Auxiliary Task. Training on action-centric image editing task exposes the
model to interactive supervision, where it receives action and predicts subsequent observations. It
should encourages the model to ground concepts more effectively and to generalise beyond editing.
Since AURORA includes a rich variety of spatial relations (e.g., left/right orientation), we further
evaluated our trained models on two spatial reasoning benchmarks: SpatialMQA (SMQA) [41] and
EmbodiedSpatial-Bench (ESB) [42]. Table[5]shows our trained models with the world-modelling
objective achieves improvements over the baseline. These findings demonstrate that CWM transfers
beyond image editing to broader spatial reasoning tasks, underscoring world modelling as a valuable
training signal for strengthening model’s other fundamental capabilities such as spatial understanding.
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Figure 7: A qualitative case of real-world observation prediction, demonstrating CWM’s ability to
steer predictions using language and perform sequential predictions. More cases from AURORA-
BENCH are in Appendix [A.4}

Qualitative Example. Figure[7]presents a real-world example demonstrating that CWM’s predicted
observations can be guided through language expressing actions. CWM is also capable of iteratively
generating future observations in multiple steps while maintaining consistency with previous frames.

5 Related Work

Despite the surge in interest for world modelling [, 43 [44]), previous works focused mostly on
building specialised ad-hoc world models. These world models can be explicitly learnt as a visual
simulator [2, 3 [4]], or enable planning with model-based reinforcement learning (43, [T1].
Instead, we focus on leveraging large-scale multimodal foundation models [49} 50, 39] to develop
world models, which is more attractive due to the inductive bias they provide from their extensive
training. This is possible thanks to frameworks that integrate observations, actions, and rewards into
a unified sequence of tokens in autoregressive Transformers [51]], building on pioneering works such
as Decision Transformers [52]] and GATo [33]]. Related to our work, [54] initialise the parameters
of RL policies with VLMs, thus taking advantage of the abundant and general world knowledge
encoded in their representations. 3D-VLA [53]] introduces a set of interaction tokens into a Large
Language Model to engage with the environment as an embodied agent. [56] explore large-scale
self-supervised learning via next token or frame prediction to build a unified model absorbing internet
knowledge, learning from interaction via video.

AURORA-BENCH was the first to approach world modelling through the lens of an action-centric
image editing task. With advanced native VLMs capable of the interleaved generation [17} 58], we
systematically investigate how this data may help us bootstrap a world model, implicitly stored in
the VLMs, with an easier-to-train dynamics model. Most similar to our work, train a dynamics
model which aims to uncover the underlying action between video frames in unlabelled video frames
from the Minecraft game. Through this model, they synthesise trajectories to train a policy for
sequential decision making. In contrast with [19], we focus on next-observation prediction as a task
to evaluate world modelling. First, this allows us to port the observation space to real-world frames,
rather than simulated ones, hence assessing whether world models are well aligned with the physical
environment. Second, this broadens the space of actions from a few choices to the combinatorially
infinite and expressive space of language, capturing a significantly more diverse range of dynamics.

6 Conclusion

In this work, we explored whether we can develop word models from VLMs. By evaluating them
on action-centric image editing AURORA-BENCH [18]], we first show that these models lack a clear
preference for ground-truth real-world trajectories. To address this, we induce a dynamics model
from the same VLM to bootstrap a world model using automatic annotation of unlabelled real-world
videos and inference-time verification. Experiments confirm the effectiveness of both strategies,
with our general-purpose world model achieving state-of-the-art performance compared to existing
approaches specialised for image editing.
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A Appendix

A.1 Limitations

While our approach demonstrates the effectiveness of our approaches across AURORA-BENCH, the
authors would like to highlight few limitations we have discovered:

* Despite efforts to guide the model via supervised fine-tuning with loss weighting or inference-
time verification (Table[3), we observe that the model may still resort to copying the source
observation, especially under low sampling temperatures or ambiguous instructions.

* While we show preliminary results of language-steered observation prediction in Figure[7]
fine-grained control remains limited, and understanding subtle instructions (e.g., spatial or
quantitative edits) remains challenging.

* We observe variance across different runs of experiments, likely due to the sensitivity of
sampling for generation in multimodal models. To address this, we report results averaged
over multiple runs and include performance under the best-of-/N sampling distribution
during inference for a robust comparison.

* We mostly conduct experiments using the native and unified VLM, Chameleon, as it is
currently the only open-source VLM that supports interleaved image-text generation by
default. This choice allows for fair and consistent benchmarking across our tasks. Moreover,
Chameleon has demonstrated competitive performance in our settings. For example, its
results are comparable to VILA-U in our dynamics prediction task. Future work should
explore the generalisation to other multimodal foundation models with stronger capabilities.

A.2 Broader Impact

This work develops models for action-centric image editing for visual world modelling. While our
primary aim is to advance fundamental research in world modelling, we acknowledge potential risks,
particularly in the generation of realistic future observations.

A core concern is the potential misuse of the models for creating deceptive visual content, including
fabricated action sequences or manipulated images that imply false causality. Although the model
is not explicitly designed for these tasks, its ability to generate coherent visual predictions from the
linguistic action could be adapted for such uses if deployed irresponsibly.

Even in intended use, risks include over-reliance on generated outputs in downstream tasks such as
robotic control, or interactive systems. Model failures—e.g., copying artefacts, hallucinations, or
broken object continuity—can lead to incorrect inferences or reinforce dataset biases.

To mitigate potential misuse, we limit our model release to research purposes under a non-commercial
license and clearly communicate its capabilities and limitations. We urge caution when adapting
them for deployment, particularly in settings with high societal or ethical sensitivity.

A.3 Model Performance on AURORA-BENCH with 5 Metrics

In addition to GPT40-as-a-judge evaluation, we further employ a diverse set of automatic metrics
covering both low-level and semantic fidelity: 1) we compute the L1 distance between the predicted
and target observation as a pixel-level metric. 2) We extract visual features and compute the cosine
similarity in their respective embedding spaces for several image encoders, including (CLIP-I and
DINO), to assess semantic similarity. Additionally, to measure alignment between image content and
the action semantics, we compute CLIP-T, the similarity between the edited image and its BLIP-
generated caption. These metrics are evaluated in addition to GPT40-as-a-judge metric following
previous works in image editing [35] [34. [18]]. We report the detailed results with 5 metrics in Table 6]
We notice that copy baseline exhibits the best performance as measured by the distance-based and
visual encoder-based approach, as indicated in Table[3] This poses a challenge to the reliability of
the traditional metrics in fairly evaluating the action-centric image editing task. On the other hand,
GPT4o0-as-a-judge metric robustly assigns 0 score to Copy, indicating its robustness in detecting
copying generation while putting GPT-as-a-judge as the most reliable metric to interpret.
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Table 6: Model performance at MagicBrush, Action-Genome, Something, WhatsUp and Kubric on
AURORA-BENCH. For C-FT and CWM We report both the model performance and their performance
in the best-of-N distribution. We report the average GPT4o scores for each model at the bottom. We
the better GPT-40 scores for C-FT and CWM. We bold the best performance among all
models, except Copy and best-of-N performances. SE: SmartEdit.
Models
Copy PixInstruct GoT SE CM C-FT +Best-of-3 CWM +Best-of-3

L1 0.027 0.114 0.063 0.068 0.287 0.075 0.075 0.090 0.078
CLIP-I  0.959 0.877 0.930 0.937 0.671 0913 0914 0.906 0.909
MagicBrush CLIP-T  0.289 0.275 0.286 0.290 0.227 0.289 0.289 0.291 0.291

Datasets Metrics

AG CLIP-T 0279 0254 0280 0268 0214 0280 0284 0284 0284

Something CLIP-T 0275 0238 0269 0265 0232 0271 0269 0268 0268

WhatsUp ~ CLIP-T 0326 0287 0316 0312 0243 0309 0310 0306 0307

Kubric  CLIP-T 0282 0259 0281 0271 0213 0287 0287 0287 0288
DINO 0955 0676 0857 0798 0.161 0906 0906 0902 0902
GPT-40 0000 1880 3920 3700 0140 7300  7.300

All GPT-40  0.000 1.430 3.140 3.410 0.165 3.260 3.480

A.4 Qualitative Cases

In this section, we present additional qualitative examples from AURORA-BENCH in Figure[§] We
observe several common failure modes in image editing models. First, they sometimes fail to preserve
the scene from the source observation (e.g., PixInstruct on Action-Genome and MagicBrush). Second,
some models generate near-identical copies of the source as the target (e.g., GoT on Something-
Something). Third, producing realistic outputs remains difficult, as seen in GoT’s result on Kubric.
Finally, maintaining object consistency is also a challenge—SmartEdit alters the object in WhatsUp,
and CWM does so in Something-Something.

Despite the challenges, we also observe several positive editing behaviours from CWM. On Action-
Genome, CWM correctly predicts spatial changes, such as opening and closing a drawer, which
requires a strong understanding of the spatial concepts. In Something-Something, it is the only model
to accurately capture the spatial concept of “falling down.” On Kubric, it demonstrates basic counting
ability by correctly adding one keyboard. In WhatsUp, CWM correctly grounds the action to the
laptop, while other models mistakenly edit the monitor.
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Figure 9: Comparison of predicted negative log-likelihoods (lower values indicate stronger model
preference) for ground-truth real-world trajectories versus four types of negative trajectories. Top:
Action prediction task for the dynamics model (observation x observation — action). Bottom: Next
observation prediction task for the world model (observation x action — observation). The legend
shows the percentage of times the model prefers the ground-truth trajectory (1) over the negatives ({).

Action (MagicBrush): Let the laptop screen be blank

Action (Act:l.on Genome) Make h1m fully close the drawer

Jnmzm\.ﬁm\m

Act:.on (Somethlng Somethlng) Make remote fall down

Move the book under the table

Action (WhatsUp):

Act:.on (Kubric): Add 1 white keyboard to the platform

Input Output PixInstruct GoT SmartEdit-7B C-FT CWM

Figure 8: Qualitative examples of the predicted next observation from the state-of-the-art specialised
image editing models, and our models including C-FT and CWM, on AURORA-BENCH.

A.5 Detailed Discussion for Chameleon’s Predicted Likelihoods

From Figure 0] it emerges that Chameleon-7B displays a very limited preference for the ground-truth
trajectories in a zero-shot setting. In the action prediction task (top panel), there is a slightly higher
tendency to favour the ground-truth; however, even in the best case (counterfactual action), the model
prefers the reference in only 58.1% of the samples. The high correlation in likelihoods indicates that
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Table 7: Dataset statistics for the video and triplets from the trajectories annotated by CDM. OPV:
observations (i.e., extracted key-frames) per video, APV: actions per video, WPA: words per action.

Dataset Video Triplet
Avg. Length Total Length | #Samples #Avg. OPV  #Avg. APV  #Avg. WPA
MIT 3.04 seconds 2.57 hours 19,658 2.05 1.05 7.10
UCF-101 7.24 seconds 26 hours 10,965 3.00 2.00 8.96
Kinetics700 9.02 seconds 18 hours 26,959 2.71 1.71 7.39

the VLM struggles also on visual manipulations. In the next-observation prediction task (bottom
panel), the VLM mostly fails in effectively differentiating the ground truth from the negatives. An
exception to this is the copy manipulation, where the model can always tell them apart. Although the
underlying reason remains uncertain, one plausible explanation for this behaviour is that the model’s
ability to solve next-observation prediction tasks depends on their alignment with training sequences:
for instance, it is plausible that Chameleon’s data rarely features two identical adjacent images. In
summary, Chameleon-7B does not exhibit a preference for ground-truth trajectories over negative
ones, constructed through action- or observation-based manipulations.

A.6 Details of Processing CDM Annotations for Unlabelled Videos

Algorithm 1 Stratified Top-K Sampling with Action Class Uniformity

Require: Trajectory triplet set X = {(o%, 0}, a’, s, ¢*)}\,, where s; is the predicted likelihood of
a’, ¢; € Cis the class, number of samples K

1: Sort X descending by score s;

2: Initialize S < (), and class_counts[c] « 0 forall ¢ € C
3: while |S| < K do

4: for all class ¢ € C in round-robin order do

5: X, + top unsampled item from class c in X
6: if X. # () then

7: S+ SU{X.}

8: Remove X, from X

9: class_counts|c] < class_counts|c] 4 1
10: end if
11: if |S| = K then
12: break
13: end if

14: end for
15: end while
16: return S

We present the raw dataset statistics before sampling for Movements-in-Time, UCF-101 and Kinet-
ics700 in Table[7} Figure [I0]shows the distribution of CDM’s predicted scores across action classes
in Movements-in-Time, Kinetics700, and UCF-101. The predicted likelihoods are nearly uniform
within each class, indicating that our sampling method maintains both class diversity and high overall
likelihoods. The sampling procedure for CDM-annotated trajectories is detailed in Algorithm [I]

A.7 Prompt template for using GPT40-as-a-Judge evaluation.

We provide the prompts used for evaluating image editing performance with GPT-40 in Figure|A.7
We use GPT-40-2024-11-20. The final score is the average of the minimum value of the two scores
for each sample, as in [34].
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Figure 10: Distributions of triplet log-likelihoods predicted by CDM on Movements-in-Time, UCF-
101, and Kinetics-700, based on 7K synthetic triplets per dataset. Triplets are uniformly sampled
from each action class while maximising overall predicted likelihoods.
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Prompt Template for GPT40-as-a-judge Evaluation

You are a professional digital artist. You will have to evaluate the effectiveness of the
Al-generated image(s) based on the given rules.

You will have to give your output in a valid way of a Python dictionary format (Keep your
reasoning concise and short.):

{{"score": [...], "reasoning": "..." }}

and don’t output anything else. Two images will be provided:
* The first being the original Al-generated image
* The second being an edited version of the first.

The objective is to evaluate how successfully the editing instruction has been executed in the
second image. Note that sometimes the two images might look identical due to a failure in image
editing. From a scale of 0 to 10:

* A score from 0 to 10 will be given based on the success of the editing.
— O indicates that the scene in the edited image does not follow the editing instruction
at all.
— 10 indicates that the scene in the edited image follows the editing instruction text
perfectly.
— If the object in the instruction is not present in the original image at all, the score
will be 0.

* A second score from 0 to 10 will rate the degree of minimal editing in the second image.
— 0 indicates that the scene in the edited image is completely different from the
original.
— 10 indicates that the edited image can be recognised as a minimally edited yet
effective version of the original.

Put the score in a list such that: output score = [scorel, score2], where scorel evaluates
the editing success and score2 evaluates the degree of the minimal editing.
Editing instruction: {instruction}
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A.8 Detailed GPT40 Scores for Editing Success and Minimal Editing
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(a) Detailed GPT4o scores for CWM trained with the standard loss.
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(b) Detailed GPT4o scores for CWM trained with the La-weighted loss.

Figure 11: GPT4o scores’ distributions of editing success (ES) and minimal editing (OE) for CWM
trained with standard loss or our loss-weighting method.

Figure|l 1|shows the distribution of editing success (ES) and minimal editing (ME) scores for standard
training and loss-weighted training. Loss weighting tends to improve editing success, with a modest
trade-off in minimal editing quality in most of the datasets.

A.9 Implementation Details

A.9.1 Chameleon Dynamics Model

We fine-tune the Chameleon-7B checkpoint from the Anole-7B version [58] to predict the action given
a pair of observations, framed as an action-prediction task. The model is trained on a merged dataset
from Action-Genome, Kubric, MagicBrush, Something-Something from AURORA’s annotated
trajectories, and 15K EPIC-Kitchens processed by us. We downsample Kubric’s trajectories to 10K.
Training is performed for 10 epochs with a batch size of 64, using a learning rate of 2e-4 and cosine
scheduling (500 warm-up steps). We use bfloat16 mixed-precision training and apply LoRA [59] for
parameter-efficient fine-tuning (rank 16, & = 32, dropout 0.05). Only the completion loss is used to
optimise the generation of action. Training is conducted on 4 NVIDIA-H100-80GB-HBM3 GPUs
using DeepSpeed for distributed optimisation.

A.9.2 C-FT Baseline

We fine-tune the Chameleon-7B checkpoint from the Anole-7B version [58]. The model is trained on
a combined dataset from Action-Genome, Kubric, MagicBrush, and Something-Something, formatted
as the image editing task. We downsample Kubric’s trajectories to 10K. Training is conducted for
40 epochs with a batch size of 96 using the AdamW optimiser and a cosine learning rate scheduler
(learning rate of Se-4, 400 warm-up steps). We use mixed-precision training with bfloat16 and
apply LoRA [59] for efficient fine-tuning (rank 16, o = 32, dropout 0.05). We only train the model
with the truncated loss from the completion part. We use 4 NVIDIA-H100-80GB-HBM3 GPUs
with DeepSpeed for distributed training. During inference, we apply a logits processor to mask out
non-image tokens, set the temperature to 1, and use top-1 sampling. We observe that temperature
is critical in controlling model behaviour: lower values often cause the model to copy the source
observation instead of generating meaningful edits.
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A.9.3 Chameleon World Model

We fine-tune the Chameleon-7B checkpoint from the Anole-7B version [38]]. The model is trained
on a combined dataset from Action-Genome, Kubric, MagicBrush, Something-Something from
AURORA’s annotated trajectories, together with 7K trajectories from Movements-in-Time, 7K
trajectories from UCF-101 and 7K trajectories from Kinetics700, formatted as the image editing task.
Again, we downsample Kubric’s trajectories to 10K. Training is conducted for 40 epochs with a batch
size of 96 using the AdamW optimiser and a cosine learning rate scheduler (learning rate of 5e-4, 400
warm-up steps). We use mixed-precision training with bfloat16 and apply LoRA [59] for efficient
fine-tuning (rank 16, o = 32, dropout 0.05). We only train the model with the truncated loss from the
completion part, but we weight the image tokens using L, strategy as introduced in Section[3] We
use 4 NVIDIA-H100-80GB-HBM3 GPUs with DeepSpeed for distributed training. We use the same
hyperparameters as C-FT during the inference time.

A.9.4 Computing Resources

All training experiments were conducted on a compute node equipped with 4x NVIDIA H100 80GB
GPUs, 256 CPU cores, and 256GB of memory. The total GPU hours required for training C-FT,
CWM, and CDM were approximately 200, 400, and 100 hours, respectively.

For inference, we used a single NVIDIA A100 80GB GPU with 8 CPU cores and 128GB memory.
Inference for C-FT and CWM takes approximately 1 GPU hour per model. When applying verification
with K = 8, inference time increases to around 8 GPU hours. CDM only takes around 0.3 GPU
hours for inference.

A.9.5 Assets and Licenses

In this section, we list the public assets we used in this paper and the corresponding links.
Datasets. We include the detailed license and URL for the datasets we used in this paper.
* AURORA and AURORA-BENCH [18]: MIT license, the reader can find the corresponding
version we use in this paper in https://github.com/McGill-NLP/AURORA.

¢ Movements-in-Time [20]]: BSD-2-Clause license and its own License for Non-Commercial
Use, the reader can find the corresponding version we use in this paper inhttp://moments |
csail.mit.edu/.

* UCF-101 [23]: unknown license, the reader can find the corresponding version we use in
this paper in https://huggingface.co/datasets/flwrlabs/ucf101,

¢ Kinetics700 [21}, 22]: Creative Commons Attribution 4.0 International License, the reader
can find the corresponding version we use in this paper in https://research.google/
pubs/the-kinetics-human-action-video-dataset/.

* EPIC-Kitchens [29]: Creative Commons Attribution-NonCommercial 4.0 International
License, the reader can find the corresponding version we use in this paper in https:
//epic-kitchens.github.io/.

Implementation. We use the other following code for the implementations:

* Transformers [60]: Apache-2.0 license. We use the 4.47.0 version, following the link at
https://github.com/huggingface/transformers,

* DeepSpeed: We use the 0.14.4 version, following the link at https://github.com/
deepspeedai/DeepSpeed.
Model. We use the following models or checkpoints for the implementations:
e Chameleon [17]: Chameleon Research License, the reader can find the corresponding
version we use in this paper in https://github.com/facebookresearch/chameleon.

¢ Anole-7B [58]]: Chameleon Research License and MIT License, the reader can find the
corresponding version we use in this paper in https://github.com/GAIR-NLP/anolel
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Instruction for Editing: let the chair be red

Input Image

= =4

Anonymous Model Outputs

V.2

Model 1 Model 2 Model 3 Model 4

Select the best and worst model according to these three
criterions.

Select the BEST/WORST candidate which satisfies/contradicts with the following criterions as many as
possible.

If none of them satisfies the criterions, please prioritise in this order:

Criterion 1: Realism > Criterion 2: Instruction Followed > Criterion 3: Over-editing

M) Criterion 1: Realism

«  Good: The generated image looks like a real photo with natural textures and lighting, mostly follows
the scene in the input image.

«  Bad: Artifacts, distortions, or unnatural results.

“\\ Criterion 2: Instruction Followed

« Good: The edit reflects the instruction clearly (e.g., "add a tree" results in a tree in the scene).
«  Bad: The edit misses the point or wrongly changes something irrelevant.

@ Criterion 3: Over-editing

*  Good: The edit is focused and minimal, changing only what was requested.
«  Bad: The entire image is edited correctly, but more than what was requested is changed (e.g., adding
or altering extra objects).

Select the BEST model:

© Model 1 Model 2 Model 3 Model 4

Select the WORST model:

O Model1 Model 2 Model 3 Model 4

Submit Evaluation

Figure 12: The screenshot for the instructions given to participants and the interface developed for
conducting the evaluation.

e VILA-U [58]: MIT License, the reader can find the corresponding version we use in this
paper inhttps://github.com/mit-han-1lab/vila-u,

 SmartEdit [33]: Apache-2.0, the reader can find the corresponding version we use in this
paper in https://huggingface.co/TencentARC/SmartEdit-7Bl

¢ GoT [34]: MIT License, the reader can find the corresponding version we use in this paper
inhttps://github.com/rongyaofang/GoT.

 PixInstruct [33]: PixInstruct customised license, the reader can find the corre-
sponding version we use in this paper in https://github.com/timothybrooks/
instruct-pix2pix.
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A.10 Details of Human Evaluation

We conducted a human evaluation using a custom-built interface, with the full interface and instruc-
tions shown in Figure A total of 14 participants were recruited, all of whom are PhD-level
graduate students or higher. Participation was voluntary. Each participant was asked to evaluate 25
samples, which typically required 15-20 minutes to complete.

The evaluation process, including recruitment, instructions, and data processing and storage, followed
our institution’s ethical guidelines for human subject research. All participants were informed of the
purpose of the study and provided consent. No personally identifiable information was collected, and
all data were stored and analysed in accordance with privacy standards.

A.11 Safeguards

CWM performs observation prediction through image generation and, while its outputs are task-
specific, we acknowledge that any generative model may carry potential for misuse. To mitigate these
risks, we commit to the following safeguards upon release:

The model will be released solely for research purposes under a license that prohibits commercial use
or any other harmful applications. The GitHub repository will include clear usage guidelines and
terms of use, aligned with responsible Al principles.

We will include a disclaimer that the model is intended only for academic research in controlled
environments. The datasets used for training are publicly available, action-centric image editing
benchmarks that do not include sensitive or personally identifiable content.

Given the targeted nature of our model and the safeguards in place, we believe the risk of misuse
is limited. Nonetheless, we encourage responsible use and welcome feedback from the community
regarding potential improvements to safety.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction include claims made in this paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we provide the description of limitations of our paper in Appendix
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix [A.9] for the implementation details to reproduce the results
in this paper. We also provide the detailed creation of training data used in this paper
in Section [3.2] and experiment settings in Section 4] for ensuring the reproducibility. To
maximise the reproducibility, we will also release the code for reproducing CWM, together
with all used data resources we have curated in this paper to the supplementary material and
the public.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code for reproducing CWM, together with all used data
resources we have curated in this paper to the supplementary material and the public.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix [A.9]for the implementation details to reproduce the results
in this paper. We also provide the detailed creation of training data used in this paper in
Section and experiment settings in Section 4| for ensuring the reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We suitably provide the significant test for the applicable experiments such as
human evaluation in Table[5] as well as the standard deviation of results in Figure 6] for the
test-time verification.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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9.

10.

Justification: We provide the description of compute resources needed to conduct the
experiments in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We will make sure to follow the NeurIPS code of ethics and the policy that
preserves anonymity.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we provide the description of broader impact of our paper in Ap-
pendix[A.2]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Check the safeguards statement in the Appendix [A.TT]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide the description of licenses for the used assets in Appendix[A.9.5]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will properly provide the documentation for the releasing code and our
trained models used in this paper, together with the necessary license.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See Appendix [A.T0|for the details of human evaluation, and Figure [T2|for a
screenshot of the platform developed for the evaluation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The human evaluation conducted in this project has been reviewed and ap-
proved by the ethical panel of [anonymised] with the case ID: 912488.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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