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Abstract

To what extent do vision-and-language foundation models possess a realistic world1

model (observation × action→ observation) and a dynamics model (observation2

× observation→ action), when actions are expressed through language? While3

open-source foundation models struggle with both, we find that fine-tuning them to4

acquire a dynamics model through supervision is significantly easier than acquiring5

a world model. In turn, dynamics models can be used to bootstrap world models6

through two main strategies: 1) weakly supervised learning from synthetic data and7

2) inference time verification. Firstly, the dynamics model can annotate actions for8

unlabelled pairs of video frame observations to expand the training data. We further9

propose a loss-weighting mechanism for the image tokens weighted by the its10

importance predicted by a recognition model. Secondly, the dynamics models can11

assign rewards to multiple samples of the world model to score them, effectively12

guiding search at inference time. We evaluate the world models resulting from both13

strategies through the task of action-centric image editing on AURORA-BENCH.14

Our best model achieves a performance competitive with state-of-the-art image15

editing models, improving on them by a margin of 15% on real-world subsets16

according to GPT4o-as-judge, and achieving the best average human evaluation17

across all subsets of AURORA-BENCH.1.18

1 Introduction19

World models (observation× action→ observation) [1, 2, 3, 4] can be successfully trained to simulate20

future trajectories given the history of past observations and actions. World models are instrumental in21

training embodied agents to endow them with specific abilities [5], such as grounding on affordances22

[6], spatio-temporal reasoning [7, 8], and planning [9, 10, 11]. However, learning a specialised world23

model is challenging. Firstly, it requires a large amount of real-world data [12] and even this data24

volume may be insufficient within the confines of the current training paradigm [13]. Secondly, the25

benefit of creating a separate world model to train a downstream embodied agent remains unclear26

because of possible compounding errors between the two models. Conversely, foundation models,27

such as vision-language models (VLMs), are already imbued with plenty of real-world knowledge28

of both action (in language form) and perception (in vision form), because of their large-scale pre-29

training. While such knowledge is not straightforward to elicit [14, 15, 16], we propose investigating30

a promising alternative to specialised world models, by enhancing the knowledge implicitly stored31

inside foundation models.32

Firstly, we probe whether native VLMs already contain reliable world models, facilitated by model33

designs that combine various modalities into a unified representation, i.e., sequences of tokens [17]. In34

particular, we frame the assessment of world models as the ability to solve action-centric image editing35

1The code and models used in this paper will be available at [anonymised].
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Figure 1: Illustration of our two strategies to bootstrap a world model from a dynamics model in
Vision-Language Models: (i) synthesising trajectories for weak supervision (left) and (ii) inference-
time verification of candidate observations (right).

tasks [18]. In such tasks, the model predicts the next observation given the previous observation and36

an action expressed as a language instruction. Based on our evaluation, we empirically demonstrate37

that existing open-source models do not prefer ground-truth trajectories compared to adversarially38

generated ones. Hence, we verify that the world model implicit in the original VLMs per se is not39

well grounded on real-world trajectories [14, 15, 16].40

Surprisingly, we also find that acquiring a dynamics model (observation × observation→ action) via41

supervised fine-tuning is substantially easier than directly acquiring a world model (observation ×42

action→ observation). Inspired by this observation, we propose two strategies to bootstrap the world43

model from the dynamics model in a given VLM, namely (i) learning from synthetic trajectories44

in videos automatically labelled with actions by the dynamics model; and (ii) test-time verification45

of predicted observations sampled from the world model through the dynamics model.46

For the weak supervision strategy, which is reminiscent of [19], we use a dynamics model fine-tuned47

on the AURORA dataset [18] to annotate motion key-frames pairs extracted from real-world videos48

with actions (in language form). Around 45 hours of unlabelled videos are sourced from movements-49

in-time [20], Kinetics700 [21, 22] and UCF-101 [23]. Together with the ground-truth trajectories in50

AURORA, the synthesised trajectory triplets (observation × annotated action→ observation) are then51

used for supervised fine-tuning of the VLM world model. To effectively train the world model, we52

additionally propose a loss-weighting method which weights the loss of each image token according53

to the visual difference between the ground-truth source and target observations, as estimated by a54

recognition model. In the verification strategy, we show how using the VLM dynamics model to55

assign rewards to multiple samples generated by the VLM world model can effectively guide search56

at inference time.57

We conduct an extensive evaluation on MagicBrush, Action-Genome, Something-Something, What-58

sUp and Kubric in AURORA-BENCH [18]. We focus on Chameleon-7B as the best available open-59

source foundation model, and transform it into a world model (CWM; Chameleon World Model).60

We show that thanks to the synthetic data strategy to bootstrap world models from dynamics models,61

our general-purpose CWM can achieve an overall performance superior to state-of-the-art diffusion62

models specialised for image editing. In particular, CWM improves GPT4o-as-a-judge scores on63

the Something-Something, Action-Genome, and Kubric subsets of AURORA by 15%, 15% and 7%,64

respectively. Similarly, human evaluators rate CMW image editing consistently better. Inference-time65

verification can also improve AURORA-finetuned Chameleon to a comparable degree as data synthesis,66

providing an effective training-free bootstrapping method. In some cases, it can even be combined67

with data synthesis for compounded gains.68

To summarise our contributions:69
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Table 1: Model preference percentages (Reference vs. Various Negatives) across tasks for 9 VLMs.
Higher values indicate stronger preference for reference.

Model World Modelling (WM) Inverse-dynamics Modelling (IDM)

Rand. Act. Inv. Obs. Copy. Obs. Rand. Obs. Rand. Act. Inv. Obs. Copy. Obs. Rand. Obs.

Qwen2-VL-2B [24] 36.69 53.23 54.03 42.74 58.87 53.63 54.03 47.58
Qwen2-VL-7B [24] 36.69 50.40 56.85 38.31 59.68 54.84 64.52 50.40
Qwen2.5-VL-3B [25] 31.04 52.42 53.63 42.74 56.45 55.24 64.91 42.34
Qwen2.5-VL-7B [25] 43.55 55.24 81.05 36.29 60.08 50.40 67.34 43.15
LLaVA-Next-7B [26] 48.79 54.44 48.79 51.61 55.65 49.60 48.39 52.02
LLaVA-Interleave [27] 56.45 46.77 31.85 58.87 56.85 47.58 30.65 58.06
Qwen-Omni-3B [28] 29.84 46.37 74.19 35.89 59.27 48.39 55.65 54.44
Qwen-Omni-7B [28] 40.32 48.39 66.94 39.92 58.06 50.81 55.24 50.40
Chameleon-7B [17] 44.80 52.00 100.0 46.40 55.60 50.80 42.70 58.10

• We empirically show that VLMs like Chameleon-7B do not exhibit a clear preference for70

ground-truth real-world trajectories over heuristic-generated incorrect ones.71

• We propose two strategies to bootstrap a world model from a dynamics model inside VLMs:72

(i) learning from unlabelled videos annotated with actions by a dynamics model, and (ii)73

verifying the generated observations with the dynamics model at inference time.74

• We conduct extensive evaluations on AURORA-BENCH: both GPT4o-as-a-judge and human75

raters demonstrate the effectiveness of our methods with a considerable margin compared to76

the state-of-the-art image editing models.77

2 VLMs Lack a Consistent Preference for Real-World Trajectories78

The first research question we investigate in this paper is: To what extent do VLMs exhibit a pref-79

erence for token sequences of actions and observations that align with real-world trajectories?80

To address this question, we evaluate 9 VLMs on ground-truth trajectories from 5 subsets of AURORA-81

BENCH [18]: MagicBrush, Something-Something, Action-Genome, Whatsup, and Kubric. Each82

subset contains 50 trajectory triplets of the form (os, a, ot), where os is the source observation, a the83

action text, and ot the next observation. 284

We then manually curate four types of negative trajectories using rules: two that manipulate the85

observation of the trajectory triplet, and two that manipulate the action. We design two kinds of86

action-level manipulation: 1) Random Action: for a given pair of observations, we substitute the87

original action with another randomly sampled within the same subset. 2) Random Observation: we88

randomly substitute the target observation with another in the same subset. We also test the following89

observation-level manipulations. 3) Copy Observation: we directly copy the source observation as90

the target observation. 4) Inverse Observation: we swap the source and target observations.91

In Table 1, we compare the negative log-likelihood VLMs assign to each ground-truth trajectory92

against its corresponding manipulated one. We evaluate the VLMs in two tasks: action prediction93

(i.e., as a dynamics model) and next-observation prediction (i.e., as a world model). For each kind94

of negative trajectory, we report the percentage of samples where the model favours the reference95

trajectory over the negative trajectory. From Table 1, it emerges that VLMs display a very limited96

preference for the ground-truth trajectories in a zero-shot setting (around 50%). In the action97

prediction task (right panel), there is a slightly higher tendency to favour the ground-truth over the98

group with random actions; however, even in the best case, Qwen2.5-VL-7B prefers the reference in99

only 60.08% of the samples. The only negative group that seems to be identifiable for VLMs is the100

inverse observation, where Qwen2.5-VL-7B has 67.34% of correct preference. In the next-observation101

prediction task (left panel), the VLM mostly fails in effectively differentiating the ground truth from102

the negatives. An exception to this is the copy manipulation, where the Chameleon can always tell103

them apart. Although the underlying reason remains uncertain, one plausible explanation for this104

behaviour is that the model’s ability to solve next-observation prediction tasks depends on their105

alignment with training sequences: for instance, it is plausible that Chameleon’s data rarely features106

two identical adjacent images. We provide a breakdown discussion for Chameleon in Appendix A.5.107

2We choose these 9 VLMs with the consideration of 1) they are public accessible and 2) we ensure that they
have been exposed to interleaved data during their pre-training.
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Figure 2: Heatmap visualization of image token weights predicted by the recognition model on
examples from UCF-101, Something-Something, MagicBrush, and Kubric.

3 Bootstrapping a World Model from a Dynamics Model in VLMs108

Since we showed in Section 2 that Chameleon-7B displays a higher proclivity as for action prediction109

than next-observation prediction, we first verify that this tendency is intensified when Chameleon-7B110

is fine-tuned on image editing trajectories (Section 3.1), as this results in the VLM acting reliably as111

a dynamics model. Motivated by this, we propose two strategies to leverage the VLMs as dynamics112

models to enhance VLMs as world models: (i) generating synthetic trajectories by annotating large-113

scale key-frame pairs from videos with actions predicted by the dynamics model, then using these114

as weak supervision to train the world model (Section 3.2); and (ii) using the dynamics model as a115

verifier at test time to score candidate next observations sampled from the world model (Section 3.3).116

3.1 Fine-tuning Chameleon as a Dynamics Model117

First, we fine-tune Chameleon as a Dynamics Model (CDM) pCDM(a | os, ot), which predicts the118

probability of an action given the previous and next observations. As training data, we rely on119

high-quality triplets from AURORA [18] and the action recognition track of EPIC-Kitchen [29], which120

is based on videos with an egocentric view. We use the first and last frame in the EPIC-Kitchen video121

clips as the source and target observation os and ot and the annotated action as a. We provide full122

details on CDM training data and experimental setting Appendix A.9.1. Foreshadowing the results in123

Section 4.2, this significantly enhances action-prediction capabilities of Chameleon by a wide margin.124

3.2 Weakly Supervised Learning from Unlabelled Videos125

Synthetic Trajectories. Taking advantage of the resulting high-quality CDM, we then explore the126

first of our strategies to bootstrap a world model in VLMs: we annotate pairs of motion key-frames127

of unlabelled videos with a textual description of the action with the CDM. To ensure both scale128

and quality, we collect approximately 45 hours of video from Moments-in-Time [20], Kinetics-700129

[21, 22], and UCF-101 [23], all of which consist of curated clips focused on human actions. To130

ensure the selected pairs of motion key-frames are meaningful, i.e., they express a valid action, we131

then calculate the optical flow to quantify the dynamics per frame in the video clips, and select132

the top-Kf frames while ensuring that the interval between two selected frames is If . Specifically,133

we set If = 20 and Kf = 6 for all three datasets. This results in approximately 20K, 46K, and134

21K annotated trajectory triplets from Moments-in-Time, Kinetics-700, and UCF-101, respectively.135

Finally, we apply a filtering strategy to further guarantee the quality of the resulting triplets. We136

use the CDM’s predicted likelihood for each trajectory triplet (os, aCDM, ot) as a score, and apply137

stratified Top-K sampling3 to select a subset of CDM-annotated trajectory triplets. We show statistics138

of the scores and action classes for the selected triplets in Figure 10. We also provide one example139

for each dataset in Figure 2.140

Fine-tuning Chameleon as a World Model. Afterwards, we fine-tune Chameleon as a World141

Model (CWM), pCWM(ot | a, os) on both AURORA’s supervised triplets Dsup and unsupervised142

triples Dunsup with actions sampled from the CDM. The world model CWM is trained with maximum143

3The details of this algorithm are provided in Appendix A.6.
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likelihood estimation as an objective:144

min
θ

E(a,os,ot)∼Dsup [− log pθ(ot | a, os)] + E(os,ot)∼Dunsup

[
Eâ∼pCDM(a|os,ot) [− log pθ(ot | â, os)]

]
,

(1)
where θ are the parameters for CWM, and â is action sampled from the CDM.145

Recognition-Weighted Training Loss. Nevetheless, the objective in Equation 1 is limited by146

treating all regions of the target observation equally, even if some of them remain identical to the147

source whereas others change. This may result in degenerate solutions such as always copying the148

source. As an alternative, we therefore propose a novel training objective for world models that149

overcomes this assumption. This objective weights the loss of next-observation image tokens based150

on their importance. The intuition is that not all image patches in source and target observations151

contribute equally to modelling real-world transitions; instead, the model should focus on patches most152

indicative of the action’s consequences. To this end, we leverage a recognition model frec(w|os, ot),153

which outputs token-level weights aligned with Chameleon’s image token representations. These154

weights modulate the loss during training, emphasising learning on semantically meaningful regions155

and down-weighting irrelevant ones. We formulate our alternative objective as:156

min
θ

L∑
l=1

frec(w|os, ot)(l) ·
(
− log pθ(o

(l)
t | o

(<l)
t , os, a)

)
, (2)

where θ are the parameters of CWM and a L is the number of tokens used to represent an image157

in Chameleon. o
(l)
t and o

(<l)
t represent the image tokens of ot at position l and the history of158

previous positions, respectively. For simplicity, we use the pre-trained vector-quantised model of159

Chameleon as the recognition model, by computing the squared L2 norm of pre-quantized features160

zos ∈ Zos and zot ∈ Zot where Zos and Zot are the sets of features of source and target observations,161

respectively. We visualise the token weights in Figure 2, which capture the effects of acting on the162

source observation to yield the target one.163

3.3 Test-time Verification164

Finally, we introduce an inference-time strategy which harnesses the CDM as a verifier to enhance165

CWM performance. Inspired by recent work on scaling test-time compute [30, 31], we let the CWM166

generate N candidate observations. Each candidate is paired with the source and scored by the CDM,167

which assigns each a predicted likelihood, interpreted as a reward. The final prediction of the CWM168

is selected by maximising the CDM’s reward:169

ôt = argmax
i∈{1,...,N}

pCDM

(
a | os, o(i)t

)
, where o

(i)
t ∼ pCWM(ot | os, a),

where ôt is the selected prediction.170

4 Experiments and Results171

4.1 Experimental Setting172

Benchmarks. We select AURORA-BENCH [18] for evaluation of both dynamics and world models.173

This dataset provides high-quality data for action-centric edits, covering a wide array of phenomena174

and assessing a model’s alignment with the physical world, including temporal and spatial reason-175

ing. We choose 5 subsets: MagicBrush for specialised image editing, Action-Genome (AG) and176

Something-Something (Something) for real-world actions and scenarios. Whatsup focuses on177

spatial reasoning, whereas Kubric contains synthetic samples from a physical engine [32].178

Baselines. We report Chamelon’s zero-shot performance (C-ZS). We also fine-tune Chameleon179

on AURORA’s training set as our first baseline (C-FT). We compare CWM with C-FT in both a180

single-prediction setting and in a best-of-N setting. The latter provides a ceiling performance for181

inference-time verification with CDM. Additionally, we include three state-of-the-art diffusion models182

specialised for image editing as baselines, such as PixInstruct [33], GoT [34] and SmartEdit [35].183

As a sanity check, we also report the metric scores obtained by simply copying the source observation184

input as the next-observation prediction (Copy).185
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Table 2: Performance of dynamics models performance on action prediction, measured by text
similarity metrics: BERTScore (BS; [36]), ROUGE-1/2/L (R-1, R-2, R-L; [37]) and BLEU [38].

BS R-1 R-2 R-L BLEU
VILA-U Fine-tuned 0.40 0.38 0.20 0.37 0.15
Chameleon Zero-Shot (C-ZS) 0.05 0.09 0.02 0.08 0.00
Chameleon Fine-Tuned (CDM) 0.40 0.39 0.20 0.37 0.17
Chameleon Fine-Tuned (CDM) + DS 0.45 0.45 0.27 0.44 0.20
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Figure 3: Comparison of negative log-likelihoods (lower values indicate stronger model preference)
of the action predicted by CDM for ground-truth trajectories versus four types of negative trajectories.

Metrics. For next-observation prediction evaluation, following [34], we rely on GPT4o-as-a-judge186

as it is the only metric that reliably penalises Copy. In Appendix A.3, we show four other metrics,187

e.g., CLIP, which assign high scores to Copy. GPT4o-as-a-judge scores consider two criteria, one for188

the editing success rate and one for visual consistency with the original. We take the minimum of the189

two as the final score. The prompt for GPT4o-as-a-judge is provided in Appendix A.7.190

4.2 Chameleon Dynamics Model191

We evaluate the dynamics models based on the textual similarity of the predicted action with the192

ground-truth action in AURORA-BENCH, as shown in Table 2. Our results demonstrate that fine-193

tuning is necessary to elicit Chameleon’s ability to verbalise the dynamics from two observations.194

We then compare Chameleon fine-tuned on action prediction (CDM) with the fine-tuned version195

of another state-of-the-art VLM, VILA-U [39]. CDM is on par or superior to VILA-U fine-tuned,196

justifying our choice of Chameleon as a foundation model for our experiments. Table 2 also provides197

an ablation showing that downsampling trajectories from Kubric (DS) in the training data further198

boosts CDM performance (CDM + DS). This suggests that data sourced from simulations do not199

necessarily translate into better dynamics modelling in real-world examples. We use the DS version200

of CDM in the rest of the experiments as the best-performing dynamics model. In Figure 3, we further201

evaluate CDM on discriminating between ground-truth and negative trajectories, as in Section 2. Now,202

we observe that CDM is mostly successful in identifying manipulated trajectories as such, except for203

Copy. These results corroborate the feasibility of annotating actions for key-frame pairs.204

4.3 Chameleon World Model205

Automatic evaluation. Next, we test CWM on next-observation prediction for each of the AURORA-206

BENCH subsets, reporting GPT4-as-a-judge scores in Figure 3. We first notice that the state-of-the-art207

image editing models (i.e., PixInstruct, GoT, SmartEdit) tend to specialise in the image editing208

benchmark, MagicBrush (5.96 and 6.71 GPT4o scores for GoT and SmartEdit). Nevertheless, in the209

action-centric subsets, including Action-Genome (AG), Something and Kubric, they are mostly behind210

CWM and even C-FT. In particular, CWM outperforms all other models in these 3 subsets, achieving211

gains of 18%, 4%, and 86%, respectively, over the best diffusion baselines. In addition, it boasts the212

highest average performance across subsets, with an 8% increase. Crucially, comparing CWM and213

C-FT reveals the benefit of augmenting the training data with synthetic triplets bootstrapped from the214

CDM, as it yields a 13% performance margin. CWM also outperforms C-FT on the best-of-N setting215

[40], indicating the potential for inference-time verification as best-of-N is effectively an oracle for216

its performance.217
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Table 3: Model performance on MagicBrush, AG, Something, WhatsUp, and Kubric from AURORA-
BENCH in terms of GPT-4o scores. For C-FT and CWM, we report their performance for both single
prediction and best-of-N. The average scores for each model are shown at the bottom. We bold the
best model overall for each subset and highlight the best and worst scores among our variants for
each setting. SE: SmartEdit.

Datasets Models
Copy PixInstruct GoT SE C-ZS C-FT +Best-of-3 CWM +Best-of-3

MagicBrush 0.000 3.120 5.960 6.710 0.000 2.520 3.270 3.920 3.920
AG 0.000 1.200 1.610 3.080 0.170 2.480 2.740 3.640 3.640
Something 0.000 0.957 2.620 2.810 0.370 3.110 3.110 2.920 3.310
WhatsUp 0.000 0.000 1.580 0.755 0.146 0.880 0.980 0.540 0.540
Kubric 0.000 1.880 3.920 3.700 0.140 7.300 7.300 7.320 7.780
Average 0.000 1.430 3.140 3.410 0.165 3.260 3.480 3.670 3.840

Figure 4: Ablation study of synthetic trajecto-
ries (Synth.) and loss weighting (LW) in CWM.
Numbers are GPT-4o-as-judge scores (↑, aver-
age of 3 runs). MB: MagicBrush, AG: Action-
Genome, ST: Something-Something, WU: What-
sUp, KU: Kubric.

CWM w/o Synth. w/o LW

MB 3.48 -0.28 -0.22
AG 3.02 -0.35 -0.08
ST 3.06 -0.18 -0.19
WU 0.46 0.40 0.08
KU 7.14 -0.03 -0.33

All 3.43 -0.09 -0.15

Figure 5: Human evaluation results. † indicates
all results whose gap with respect to CWM is
significant, based on a Wilcoxon signed-rank
test (p = 0.05). MB: MagicBrush, AG: Action-
Genome, ST: Something-Something, WU: What-
sUp, KU: Kubric.

GoT SE C-FT CWM

MB 0.06† 0.29† -0.32† -0.03
AG -0.23† -0.46† 0.32 0.37
ST 0.00 -0.37† 0.18 0.20
WU 0.25 -0.38† 0.14 0.00
KU -0.52† -0.22† 0.34 0.40

All -0.09† -0.23† 0.13 0.19

Table 4: Detailed scores of GPT4o-as-a-judge eval-
uation for loss-weighting and standard training.
We report the scores for Editing Success (ES) and
Minimal Editing (ME). MB: MagicBrush, AG:
Action-Genome, ST: Something-Something, WU:
WhatsUp, KU: Kubric. We highlight the best and
worst scores for each category.

Weighted Standard
ES (↑) ME (↑) ES (↑) ME (↑)

MB 3.73 8.17 3.68 8.46
AG 3.18 8.03 2.37 8.13
ST 3.32 7.01 2.78 7.20
WU 0.54 7.25 0.76 7.19
KU 7.75 8.49 7.24 8.70

Avg. 3.71 7.80 3.37 7.94
GPT4o 3.67 3.58

Human Evaluation. Following [18], we con-218

duct a blind human evaluation comparing GoT,219

SmartEdit, C-FT, and our proposed CWM. We220

randomly sample 5 examples from each sub-221

set within AURORA-BENCH and present the222

outputs generated by each of the four mod-223

els. Human annotators are asked to identify224

the best and worst generated observations based225

on three criteria: (1) Realism: the generated im-226

age should exhibit natural textures and lighting227

while remaining faithful to the input scene; (2)228

Instruction-Following Ability: the edit should229

clearly reflect the given instruction; and (3)230

Over-Editing: the modification should be mini-231

mal and focused, altering only what is necessary.232

Each model receives +1 point for being selected233

as the best, -1 for the worst, and 0 otherwise. We234

compute the average scores over 350 annotated235

samples, as reported in Table 5. The results align236

with automatic evaluations: image-editing models excel in the MagicBrush domain, but fall short237

on action-centric datasets such as Action-Genome, Something-Something, and Kubric. In contrast,238

CWM outperforms C-FT on all three of these datasets, highlighting its strength in next-observation239

prediction in real-world, action-centric trajectories.240

Ablation Study on Synthetic Trajectories. To assess the importance of extra supervision from241

CDM-synthetic trajectories, Table 4 reports GPT-4o’s scores for this ablation. We see performance242
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drops on most datasets—particularly on Something and AG—when the additional training data from243

unlabelled videos is removed, highlighting the effectiveness of bootstrapping CWM with large-scale244

real-world data via CDM. An exception is the WhatsUp dataset, which focuses on specific actions245

within a fixed scene; in this case, training in an open-domain setting may not transfer effectively.246

Ablation Study on Loss Weighting. Based on Table 4, we also observe consistent degradation247

when loss weighting is removed, demonstrating the benefit of explicitly incorporating the recognition248

model into visual next-token prediction. To better understand the effect of loss weighting, Table 4249

reports the average scores for two criteria used in the GPT-4o-as-a-judge evaluation separately:250

Editing Success (ES), which measures how well the model captures the intended action and performs251

the corresponding edit, and Minimal Editing (ME), which assesses whether the model introduces252

unnecessary modifications. The full distribution of GPT-4o scores is provided in Appendix A.8.253

Our analysis reveals that the primary bottleneck for CWM remains its ability to reliably follow the254

instruction, as reflected by the fact that ES scores are significantly lower than ME scores. Loss255

weighting partly solves this problem, increasing the editing success and reducing copying behaviour,256

albeit at the cost of sometimes over-editing the source observation.257

SMQA ESB
C-ZS 26.1 15.0
CM-F 25.8 21.2
CWM 27.2 17.5

Table 5: Performance on Spa-
tialMQA (SMQA) and Embo-
diedSpatial-Bench (ESB).

Verification at Test Time. We evaluate test-time verification using258

CDM in Figure 6, comparing C-FT and CWM with K ∈ 1, 2, 4, 8.259

Each experiment is repeated three times, and we visualise the mean260

and standard deviation. By increasing exploration on more candidate261

next observations, C-FT benefits from test-time verification on most262

datasets with real-world trajectories (e.g., AG, Something, What-263

sUp), suggesting the effectiveness of CDM’s trajectory preferences.264

Increasing K does not always improve performance (MagicBrush,265

Kubric), suggesting that bootstrapping with a dynamics model that266

shares the same foundation model backbone may be limiting. In267

contrast, CWM shows no clear gain, likely because it was trained268

with the synthetic trajectories and has already internalised CDM’s preferences—as is evident from269

its strong K = 1 performance. In summary, CDM-based verification boosts C-FT’s performance to270

the same level as CWM, by leveraging more diverse samples at inference time rather than during271

training.272

Image Editing as an Auxiliary Task. Training on action-centric image editing task exposes the273

model to interactive supervision, where it receives action and predicts subsequent observations. It274

should encourages the model to ground concepts more effectively and to generalise beyond editing.275

Since AURORA includes a rich variety of spatial relations (e.g., left/right orientation), we further276

evaluated our trained models on two spatial reasoning benchmarks: SpatialMQA (SMQA) [41] and277

EmbodiedSpatial-Bench (ESB) [42]. Table 5 shows our trained models with the world-modelling278

objective achieves improvements over the baseline. These findings demonstrate that CWM transfers279

beyond image editing to broader spatial reasoning tasks, underscoring world modelling as a valuable280

training signal for strengthening model’s other fundamental capabilities such as spatial understanding.281
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Action: cut the onion

Action: whisk the egg

Action: whisk the egg

CWM-7B

CWM-7B

CWM-7B

CWM-7B

Action: cut the onion

Figure 7: A qualitative case of real-world observation prediction, demonstrating CWM’s ability to
steer predictions using language and perform sequential predictions. More cases from AURORA-
BENCH are in Appendix A.4.

Qualitative Example. Figure 7 presents a real-world example demonstrating that CWM’s predicted282

observations can be guided through language expressing actions. CWM is also capable of iteratively283

generating future observations in multiple steps while maintaining consistency with previous frames.284

5 Related Work285

Despite the surge in interest for world modelling [1, 43, 44], previous works focused mostly on286

building specialised ad-hoc world models. These world models can be explicitly learnt as a visual287

simulator [2, 3, 4], or enable planning with model-based reinforcement learning [45, 46, 47, 48, 11].288

Instead, we focus on leveraging large-scale multimodal foundation models [49, 50, 39] to develop289

world models, which is more attractive due to the inductive bias they provide from their extensive290

training. This is possible thanks to frameworks that integrate observations, actions, and rewards into291

a unified sequence of tokens in autoregressive Transformers [51], building on pioneering works such292

as Decision Transformers [52] and GATo [53]. Related to our work, [54] initialise the parameters293

of RL policies with VLMs, thus taking advantage of the abundant and general world knowledge294

encoded in their representations. 3D-VLA [55] introduces a set of interaction tokens into a Large295

Language Model to engage with the environment as an embodied agent. [56, 57] explore large-scale296

self-supervised learning via next token or frame prediction to build a unified model absorbing internet297

knowledge, learning from interaction via video.298

AURORA-BENCH [18] was the first to approach world modelling through the lens of an action-centric299

image editing task. With advanced native VLMs capable of the interleaved generation [17, 58], we300

systematically investigate how this data may help us bootstrap a world model, implicitly stored in301

the VLMs, with an easier-to-train dynamics model. Most similar to our work, [19] train a dynamics302

model which aims to uncover the underlying action between video frames in unlabelled video frames303

from the Minecraft game. Through this model, they synthesise trajectories to train a policy for304

sequential decision making. In contrast with [19], we focus on next-observation prediction as a task305

to evaluate world modelling. First, this allows us to port the observation space to real-world frames,306

rather than simulated ones, hence assessing whether world models are well aligned with the physical307

environment. Second, this broadens the space of actions from a few choices to the combinatorially308

infinite and expressive space of language, capturing a significantly more diverse range of dynamics.309

6 Conclusion310

In this work, we explored whether we can develop word models from VLMs. By evaluating them311

on action-centric image editing AURORA-BENCH [18], we first show that these models lack a clear312

preference for ground-truth real-world trajectories. To address this, we induce a dynamics model313

from the same VLM to bootstrap a world model using automatic annotation of unlabelled real-world314

videos and inference-time verification. Experiments confirm the effectiveness of both strategies,315

with our general-purpose world model achieving state-of-the-art performance compared to existing316

approaches specialised for image editing.317
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A Appendix505

A.1 Limitations506

While our approach demonstrates the effectiveness of our approaches across AURORA-BENCH, the507

authors would like to highlight few limitations we have discovered:508

• Despite efforts to guide the model via supervised fine-tuning with loss weighting or inference-509

time verification (Table 3), we observe that the model may still resort to copying the source510

observation, especially under low sampling temperatures or ambiguous instructions.511

• While we show preliminary results of language-steered observation prediction in Figure 7,512

fine-grained control remains limited, and understanding subtle instructions (e.g., spatial or513

quantitative edits) remains challenging.514

• We observe variance across different runs of experiments, likely due to the sensitivity of515

sampling for generation in multimodal models. To address this, we report results averaged516

over multiple runs and include performance under the best-of-N sampling distribution517

during inference for a robust comparison.518

• We mostly conduct experiments using the native and unified VLM, Chameleon, as it is519

currently the only open-source VLM that supports interleaved image-text generation by520

default. This choice allows for fair and consistent benchmarking across our tasks. Moreover,521

Chameleon has demonstrated competitive performance in our settings. For example, its522

results are comparable to VILA-U in our dynamics prediction task. Future work should523

explore the generalisation to other multimodal foundation models with stronger capabilities.524

A.2 Broader Impact525

This work develops models for action-centric image editing for visual world modelling. While our526

primary aim is to advance fundamental research in world modelling, we acknowledge potential risks,527

particularly in the generation of realistic future observations.528

A core concern is the potential misuse of the models for creating deceptive visual content, including529

fabricated action sequences or manipulated images that imply false causality. Although the model530

is not explicitly designed for these tasks, its ability to generate coherent visual predictions from the531

linguistic action could be adapted for such uses if deployed irresponsibly.532

Even in intended use, risks include over-reliance on generated outputs in downstream tasks such as533

robotic control, or interactive systems. Model failures—e.g., copying artefacts, hallucinations, or534

broken object continuity—can lead to incorrect inferences or reinforce dataset biases.535

To mitigate potential misuse, we limit our model release to research purposes under a non-commercial536

license and clearly communicate its capabilities and limitations. We urge caution when adapting537

them for deployment, particularly in settings with high societal or ethical sensitivity.538

A.3 Model Performance on AURORA-BENCH with 5 Metrics539

In addition to GPT4o-as-a-judge evaluation, we further employ a diverse set of automatic metrics540

covering both low-level and semantic fidelity: 1) we compute the L1 distance between the predicted541

and target observation as a pixel-level metric. 2) We extract visual features and compute the cosine542

similarity in their respective embedding spaces for several image encoders, including (CLIP-I and543

DINO), to assess semantic similarity. Additionally, to measure alignment between image content and544

the action semantics, we compute CLIP-T, the similarity between the edited image and its BLIP-545

generated caption. These metrics are evaluated in addition to GPT4o-as-a-judge metric following546

previous works in image editing [35, 34, 18]. We report the detailed results with 5 metrics in Table 6.547

We notice that copy baseline exhibits the best performance as measured by the distance-based and548

visual encoder-based approach, as indicated in Table 3. This poses a challenge to the reliability of549

the traditional metrics in fairly evaluating the action-centric image editing task. On the other hand,550

GPT4o-as-a-judge metric robustly assigns 0 score to Copy, indicating its robustness in detecting551

copying generation while putting GPT-as-a-judge as the most reliable metric to interpret.552
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Table 6: Model performance at MagicBrush, Action-Genome, Something, WhatsUp and Kubric on
AURORA-BENCH. For C-FT and CWM We report both the model performance and their performance
in the best-of-N distribution. We report the average GPT4o scores for each model at the bottom. We
highlight the better GPT-4o scores for C-FT and CWM. We bold the best performance among all
models, except Copy and best-of-N performances. SE: SmartEdit.

Datasets Metrics Models
Copy PixInstruct GoT SE CM C-FT +Best-of-3 CWM +Best-of-3

MagicBrush

L1 0.027 0.114 0.063 0.068 0.287 0.075 0.075 0.090 0.078
CLIP-I 0.959 0.877 0.930 0.937 0.671 0.913 0.914 0.906 0.909
CLIP-T 0.289 0.275 0.286 0.290 0.227 0.289 0.289 0.291 0.291
DINO 0.931 0.761 0.881 0.894 0.292 0.883 0.883 0.864 0.864

GPT-4o 0.000 3.120 5.960 6.710 0.000 2.520 3.270 3.920 3.920

AG

L1 0.069 0.220 0.174 0.137 0.314 0.170 0.168 0.168 0.167
CLIP-I 0.943 0.757 0.846 0.811 0.609 0.872 0.872 0.881 0.883
CLIP-T 0.279 0.254 0.280 0.268 0.214 0.280 0.284 0.284 0.284
DINO 0.929 0.557 0.785 0.774 0.258 0.801 0.817 0.816 0.816

GPT-4o 0.000 1.200 1.610 3.080 0.170 2.480 2.740 3.640 3.640

Something

L1 0.135 0.232 0.184 0.163 0.293 0.184 0.184 0.196 0.184
CLIP-I 0.870 0.709 0.807 0.773 0.649 0.820 0.820 0.804 0.804
CLIP-T 0.275 0.238 0.269 0.265 0.232 0.271 0.269 0.268 0.268
DINO 0.797 0.453 0.636 0.662 0.297 0.675 0.653 0.666 0.666

GPT-4o 0.000 0.957 2.620 2.810 0.370 3.110 3.110 2.920 3.310

WhatsUp

L1 0.039 0.138 0.078 0.067 0.251 0.066 0.066 0.070 0.070
CLIP-I 0.954 0.817 0.923 0.888 0.721 0.877 0.880 0.870 0.883
CLIP-T 0.326 0.287 0.316 0.312 0.243 0.309 0.310 0.306 0.307
DINO 0.908 0.615 0.850 0.805 0.424 0.836 0.841 0.831 0.838

GPT-4o 0.000 0.000 1.580 0.755 0.146 0.880 0.980 0.540 0.540

Kubric

L1 0.011 0.104 0.026 0.064 0.276 0.044 0.044 0.044 0.044
CLIP-I 0.963 0.796 0.895 0.868 0.660 0.897 0.899 0.897 0.898
CLIP-T 0.282 0.259 0.281 0.271 0.213 0.287 0.287 0.287 0.288
DINO 0.955 0.676 0.857 0.798 0.161 0.906 0.906 0.902 0.902

GPT-4o 0.000 1.880 3.920 3.700 0.140 7.300 7.300 7.320 7.780

All GPT-4o 0.000 1.430 3.140 3.410 0.165 3.260 3.480 3.670 3.840

A.4 Qualitative Cases553

In this section, we present additional qualitative examples from AURORA-BENCH in Figure 8. We554

observe several common failure modes in image editing models. First, they sometimes fail to preserve555

the scene from the source observation (e.g., PixInstruct on Action-Genome and MagicBrush). Second,556

some models generate near-identical copies of the source as the target (e.g., GoT on Something-557

Something). Third, producing realistic outputs remains difficult, as seen in GoT’s result on Kubric.558

Finally, maintaining object consistency is also a challenge—SmartEdit alters the object in WhatsUp,559

and CWM does so in Something-Something.560

Despite the challenges, we also observe several positive editing behaviours from CWM. On Action-561

Genome, CWM correctly predicts spatial changes, such as opening and closing a drawer, which562

requires a strong understanding of the spatial concepts. In Something-Something, it is the only model563

to accurately capture the spatial concept of “falling down.” On Kubric, it demonstrates basic counting564

ability by correctly adding one keyboard. In WhatsUp, CWM correctly grounds the action to the565

laptop, while other models mistakenly edit the monitor.566
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Figure 9: Comparison of predicted negative log-likelihoods (lower values indicate stronger model
preference) for ground-truth real-world trajectories versus four types of negative trajectories. Top:
Action prediction task for the dynamics model (observation × observation→ action). Bottom: Next
observation prediction task for the world model (observation × action→ observation). The legend
shows the percentage of times the model prefers the ground-truth trajectory (↑) over the negatives (↓).

Action (MagicBrush): Let the laptop screen be blank

Action (Action-Genome): Make him fully close the drawer

Action (Something-Something): Make remote fall down

Action (WhatsUp): Move the book under the table

Action (Kubric): Add 1 white keyboard to the platform

Input Output PixInstruct GoT SmartEdit-7B C-FT CWM

Figure 8: Qualitative examples of the predicted next observation from the state-of-the-art specialised
image editing models, and our models including C-FT and CWM, on AURORA-BENCH.

A.5 Detailed Discussion for Chameleon’s Predicted Likelihoods567

From Figure 9, it emerges that Chameleon-7B displays a very limited preference for the ground-truth568

trajectories in a zero-shot setting. In the action prediction task (top panel), there is a slightly higher569

tendency to favour the ground-truth; however, even in the best case (counterfactual action), the model570

prefers the reference in only 58.1% of the samples. The high correlation in likelihoods indicates that571

16



Table 7: Dataset statistics for the video and triplets from the trajectories annotated by CDM. OPV:
observations (i.e., extracted key-frames) per video, APV: actions per video, WPA: words per action.

Dataset Video Triplet
Avg. Length Total Length #Samples #Avg. OPV #Avg. APV #Avg. WPA

MIT 3.04 seconds 2.57 hours 19,658 2.05 1.05 7.10
UCF-101 7.24 seconds 26 hours 10,965 3.00 2.00 8.96
Kinetics700 9.02 seconds 18 hours 26,959 2.71 1.71 7.39

the VLM struggles also on visual manipulations. In the next-observation prediction task (bottom572

panel), the VLM mostly fails in effectively differentiating the ground truth from the negatives. An573

exception to this is the copy manipulation, where the model can always tell them apart. Although the574

underlying reason remains uncertain, one plausible explanation for this behaviour is that the model’s575

ability to solve next-observation prediction tasks depends on their alignment with training sequences:576

for instance, it is plausible that Chameleon’s data rarely features two identical adjacent images. In577

summary, Chameleon-7B does not exhibit a preference for ground-truth trajectories over negative578

ones, constructed through action- or observation-based manipulations.579

A.6 Details of Processing CDM Annotations for Unlabelled Videos580

Algorithm 1 Stratified Top-K Sampling with Action Class Uniformity

Require: Trajectory triplet set X = {(ois, oit, ai, si, ci)}Ni=1, where si is the predicted likelihood of
ai, ci ∈ C is the class, number of samples K

1: Sort X descending by score si
2: Initialize S ← ∅, and class_counts[c]← 0 for all c ∈ C
3: while |S| < K do
4: for all class c ∈ C in round-robin order do
5: Xc ← top unsampled item from class c in X
6: if Xc ̸= ∅ then
7: S ← S ∪ {Xc}
8: Remove Xc from X
9: class_counts[c]← class_counts[c] + 1

10: end if
11: if |S| = K then
12: break
13: end if
14: end for
15: end while
16: return S

We present the raw dataset statistics before sampling for Movements-in-Time, UCF-101 and Kinet-581

ics700 in Table 7. Figure 10 shows the distribution of CDM’s predicted scores across action classes582

in Movements-in-Time, Kinetics700, and UCF-101. The predicted likelihoods are nearly uniform583

within each class, indicating that our sampling method maintains both class diversity and high overall584

likelihoods. The sampling procedure for CDM-annotated trajectories is detailed in Algorithm 1.585

A.7 Prompt template for using GPT4o-as-a-Judge evaluation.586

We provide the prompts used for evaluating image editing performance with GPT-4o in Figure A.7.587

We use GPT-4o-2024-11-20. The final score is the average of the minimum value of the two scores588

for each sample, as in [34].589
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Figure 10: Distributions of triplet log-likelihoods predicted by CDM on Movements-in-Time, UCF-
101, and Kinetics-700, based on 7K synthetic triplets per dataset. Triplets are uniformly sampled
from each action class while maximising overall predicted likelihoods.
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Prompt Template for GPT4o-as-a-judge Evaluation

You are a professional digital artist. You will have to evaluate the effectiveness of the
AI-generated image(s) based on the given rules.

You will have to give your output in a valid way of a Python dictionary format (Keep your
reasoning concise and short.):

{{"score": [...], "reasoning": "..." }}

and don’t output anything else. Two images will be provided:
• The first being the original AI-generated image
• The second being an edited version of the first.

The objective is to evaluate how successfully the editing instruction has been executed in the
second image. Note that sometimes the two images might look identical due to a failure in image
editing. From a scale of 0 to 10:

• A score from 0 to 10 will be given based on the success of the editing.
– 0 indicates that the scene in the edited image does not follow the editing instruction

at all.
– 10 indicates that the scene in the edited image follows the editing instruction text

perfectly.
– If the object in the instruction is not present in the original image at all, the score

will be 0.
• A second score from 0 to 10 will rate the degree of minimal editing in the second image.

– 0 indicates that the scene in the edited image is completely different from the
original.

– 10 indicates that the edited image can be recognised as a minimally edited yet
effective version of the original.

Put the score in a list such that: output score = [score1, score2], where score1 evaluates
the editing success and score2 evaluates the degree of the minimal editing.
Editing instruction: {instruction}

590
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A.8 Detailed GPT4o Scores for Editing Success and Minimal Editing591
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(a) Detailed GPT4o scores for CWM trained with the standard loss.
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(b) Detailed GPT4o scores for CWM trained with the L2-weighted loss.

Figure 11: GPT4o scores’ distributions of editing success (ES) and minimal editing (OE) for CWM
trained with standard loss or our loss-weighting method.

Figure 11 shows the distribution of editing success (ES) and minimal editing (ME) scores for standard592

training and loss-weighted training. Loss weighting tends to improve editing success, with a modest593

trade-off in minimal editing quality in most of the datasets.594

A.9 Implementation Details595

A.9.1 Chameleon Dynamics Model596

We fine-tune the Chameleon-7B checkpoint from the Anole-7B version [58] to predict the action given597

a pair of observations, framed as an action-prediction task. The model is trained on a merged dataset598

from Action-Genome, Kubric, MagicBrush, Something-Something from AURORA’s annotated599

trajectories, and 15K EPIC-Kitchens processed by us. We downsample Kubric’s trajectories to 10K.600

Training is performed for 10 epochs with a batch size of 64, using a learning rate of 2e-4 and cosine601

scheduling (500 warm-up steps). We use bfloat16 mixed-precision training and apply LoRA [59] for602

parameter-efficient fine-tuning (rank 16, α = 32, dropout 0.05). Only the completion loss is used to603

optimise the generation of action. Training is conducted on 4 NVIDIA-H100-80GB-HBM3 GPUs604

using DeepSpeed for distributed optimisation.605

A.9.2 C-FT Baseline606

We fine-tune the Chameleon-7B checkpoint from the Anole-7B version [58]. The model is trained on607

a combined dataset from Action-Genome, Kubric, MagicBrush, and Something-Something, formatted608

as the image editing task. We downsample Kubric’s trajectories to 10K. Training is conducted for609

40 epochs with a batch size of 96 using the AdamW optimiser and a cosine learning rate scheduler610

(learning rate of 5e-4, 400 warm-up steps). We use mixed-precision training with bfloat16 and611

apply LoRA [59] for efficient fine-tuning (rank 16, α = 32, dropout 0.05). We only train the model612

with the truncated loss from the completion part. We use 4 NVIDIA-H100-80GB-HBM3 GPUs613

with DeepSpeed for distributed training. During inference, we apply a logits processor to mask out614

non-image tokens, set the temperature to 1, and use top-1 sampling. We observe that temperature615

is critical in controlling model behaviour: lower values often cause the model to copy the source616

observation instead of generating meaningful edits.617
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A.9.3 Chameleon World Model618

We fine-tune the Chameleon-7B checkpoint from the Anole-7B version [58]. The model is trained619

on a combined dataset from Action-Genome, Kubric, MagicBrush, Something-Something from620

AURORA’s annotated trajectories, together with 7K trajectories from Movements-in-Time, 7K621

trajectories from UCF-101 and 7K trajectories from Kinetics700, formatted as the image editing task.622

Again, we downsample Kubric’s trajectories to 10K. Training is conducted for 40 epochs with a batch623

size of 96 using the AdamW optimiser and a cosine learning rate scheduler (learning rate of 5e-4, 400624

warm-up steps). We use mixed-precision training with bfloat16 and apply LoRA [59] for efficient625

fine-tuning (rank 16, α = 32, dropout 0.05). We only train the model with the truncated loss from the626

completion part, but we weight the image tokens using L2 strategy as introduced in Section 3. We627

use 4 NVIDIA-H100-80GB-HBM3 GPUs with DeepSpeed for distributed training. We use the same628

hyperparameters as C-FT during the inference time.629

A.9.4 Computing Resources630

All training experiments were conducted on a compute node equipped with 4× NVIDIA H100 80GB631

GPUs, 256 CPU cores, and 256GB of memory. The total GPU hours required for training C-FT,632

CWM, and CDM were approximately 200, 400, and 100 hours, respectively.633

For inference, we used a single NVIDIA A100 80GB GPU with 8 CPU cores and 128GB memory.634

Inference for C-FT and CWM takes approximately 1 GPU hour per model. When applying verification635

with K = 8, inference time increases to around 8 GPU hours. CDM only takes around 0.3 GPU636

hours for inference.637

A.9.5 Assets and Licenses638

In this section, we list the public assets we used in this paper and the corresponding links.639

Datasets. We include the detailed license and URL for the datasets we used in this paper.640

• AURORA and AURORA-BENCH [18]: MIT license, the reader can find the corresponding641

version we use in this paper in https://github.com/McGill-NLP/AURORA.642

• Movements-in-Time [20]: BSD-2-Clause license and its own License for Non-Commercial643

Use, the reader can find the corresponding version we use in this paper in http://moments.644

csail.mit.edu/.645

• UCF-101 [23]: unknown license, the reader can find the corresponding version we use in646

this paper in https://huggingface.co/datasets/flwrlabs/ucf101.647

• Kinetics700 [21, 22]: Creative Commons Attribution 4.0 International License, the reader648

can find the corresponding version we use in this paper in https://research.google/649

pubs/the-kinetics-human-action-video-dataset/.650

• EPIC-Kitchens [29]: Creative Commons Attribution-NonCommercial 4.0 International651

License, the reader can find the corresponding version we use in this paper in https:652

//epic-kitchens.github.io/.653

Implementation. We use the other following code for the implementations:654

• Transformers [60]: Apache-2.0 license. We use the 4.47.0 version, following the link at655

https://github.com/huggingface/transformers.656

• DeepSpeed: We use the 0.14.4 version, following the link at https://github.com/657

deepspeedai/DeepSpeed.658

Model. We use the following models or checkpoints for the implementations:659

• Chameleon [17]: Chameleon Research License, the reader can find the corresponding660

version we use in this paper in https://github.com/facebookresearch/chameleon.661

• Anole-7B [58]: Chameleon Research License and MIT License, the reader can find the662

corresponding version we use in this paper in https://github.com/GAIR-NLP/anole.663
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Figure 12: The screenshot for the instructions given to participants and the interface developed for
conducting the evaluation.

• VILA-U [58]: MIT License, the reader can find the corresponding version we use in this664

paper in https://github.com/mit-han-lab/vila-u.665

• SmartEdit [35]: Apache-2.0, the reader can find the corresponding version we use in this666

paper in https://huggingface.co/TencentARC/SmartEdit-7B.667

• GoT [34]: MIT License, the reader can find the corresponding version we use in this paper668

in https://github.com/rongyaofang/GoT.669

• PixInstruct [33]: PixInstruct customised license, the reader can find the corre-670

sponding version we use in this paper in https://github.com/timothybrooks/671

instruct-pix2pix.672
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A.10 Details of Human Evaluation673

We conducted a human evaluation using a custom-built interface, with the full interface and instruc-674

tions shown in Figure 12. A total of 14 participants were recruited, all of whom are PhD-level675

graduate students or higher. Participation was voluntary. Each participant was asked to evaluate 25676

samples, which typically required 15–20 minutes to complete.677

The evaluation process, including recruitment, instructions, and data processing and storage, followed678

our institution’s ethical guidelines for human subject research. All participants were informed of the679

purpose of the study and provided consent. No personally identifiable information was collected, and680

all data were stored and analysed in accordance with privacy standards.681

A.11 Safeguards682

CWM performs observation prediction through image generation and, while its outputs are task-683

specific, we acknowledge that any generative model may carry potential for misuse. To mitigate these684

risks, we commit to the following safeguards upon release:685

The model will be released solely for research purposes under a license that prohibits commercial use686

or any other harmful applications. The GitHub repository will include clear usage guidelines and687

terms of use, aligned with responsible AI principles.688

We will include a disclaimer that the model is intended only for academic research in controlled689

environments. The datasets used for training are publicly available, action-centric image editing690

benchmarks that do not include sensitive or personally identifiable content.691

Given the targeted nature of our model and the safeguards in place, we believe the risk of misuse692

is limited. Nonetheless, we encourage responsible use and welcome feedback from the community693

regarding potential improvements to safety.694
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NeurIPS Paper Checklist695

The checklist is designed to encourage best practices for responsible machine learning research,696

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove697

the checklist: The papers not including the checklist will be desk rejected. The checklist should698

follow the references and follow the (optional) supplemental material. The checklist does NOT count699

towards the page limit.700

Please read the checklist guidelines carefully for information on how to answer these questions. For701

each question in the checklist:702

• You should answer [Yes] , [No] , or [NA] .703

• [NA] means either that the question is Not Applicable for that particular paper or the704

relevant information is Not Available.705

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).706

The checklist answers are an integral part of your paper submission. They are visible to the707

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it708

(after eventual revisions) with the final version of your paper, and its final version will be published709

with the paper.710

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.711

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a712

proper justification is given (e.g., "error bars are not reported because it would be too computationally713

expensive" or "we were unable to find the license for the dataset we used"). In general, answering714

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we715

acknowledge that the true answer is often more nuanced, so please just use your best judgment and716

write a justification to elaborate. All supporting evidence can appear either in the main paper or the717

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification718

please point to the section(s) where related material for the question can be found.719

IMPORTANT, please:720

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",721

• Keep the checklist subsection headings, questions/answers and guidelines below.722

• Do not modify the questions and only use the provided macros for your answers.723

1. Claims724

Question: Do the main claims made in the abstract and introduction accurately reflect the725

paper’s contributions and scope?726

Answer: [Yes]727

Justification: The abstract and introduction include claims made in this paper.728

Guidelines:729

• The answer NA means that the abstract and introduction do not include the claims730

made in the paper.731

• The abstract and/or introduction should clearly state the claims made, including the732

contributions made in the paper and important assumptions and limitations. A No or733

NA answer to this question will not be perceived well by the reviewers.734

• The claims made should match theoretical and experimental results, and reflect how735

much the results can be expected to generalize to other settings.736

• It is fine to include aspirational goals as motivation as long as it is clear that these goals737

are not attained by the paper.738

2. Limitations739

Question: Does the paper discuss the limitations of the work performed by the authors?740

Answer: [Yes]741

Justification: Yes, we provide the description of limitations of our paper in Appendix A.1.742
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Guidelines:743

• The answer NA means that the paper has no limitation while the answer No means that744

the paper has limitations, but those are not discussed in the paper.745

• The authors are encouraged to create a separate "Limitations" section in their paper.746

• The paper should point out any strong assumptions and how robust the results are to747

violations of these assumptions (e.g., independence assumptions, noiseless settings,748

model well-specification, asymptotic approximations only holding locally). The authors749

should reflect on how these assumptions might be violated in practice and what the750

implications would be.751

• The authors should reflect on the scope of the claims made, e.g., if the approach was752

only tested on a few datasets or with a few runs. In general, empirical results often753

depend on implicit assumptions, which should be articulated.754

• The authors should reflect on the factors that influence the performance of the approach.755

For example, a facial recognition algorithm may perform poorly when image resolution756

is low or images are taken in low lighting. Or a speech-to-text system might not be757

used reliably to provide closed captions for online lectures because it fails to handle758

technical jargon.759

• The authors should discuss the computational efficiency of the proposed algorithms760

and how they scale with dataset size.761

• If applicable, the authors should discuss possible limitations of their approach to762

address problems of privacy and fairness.763

• While the authors might fear that complete honesty about limitations might be used by764

reviewers as grounds for rejection, a worse outcome might be that reviewers discover765

limitations that aren’t acknowledged in the paper. The authors should use their best766

judgment and recognize that individual actions in favor of transparency play an impor-767

tant role in developing norms that preserve the integrity of the community. Reviewers768

will be specifically instructed to not penalize honesty concerning limitations.769

3. Theory Assumptions and Proofs770

Question: For each theoretical result, does the paper provide the full set of assumptions and771

a complete (and correct) proof?772

Answer: [NA]773

Justification: This paper does not include theoretical results.774

Guidelines:775

• The answer NA means that the paper does not include theoretical results.776

• All the theorems, formulas, and proofs in the paper should be numbered and cross-777

referenced.778

• All assumptions should be clearly stated or referenced in the statement of any theorems.779

• The proofs can either appear in the main paper or the supplemental material, but if780

they appear in the supplemental material, the authors are encouraged to provide a short781

proof sketch to provide intuition.782

• Inversely, any informal proof provided in the core of the paper should be complemented783

by formal proofs provided in appendix or supplemental material.784

• Theorems and Lemmas that the proof relies upon should be properly referenced.785

4. Experimental Result Reproducibility786

Question: Does the paper fully disclose all the information needed to reproduce the main ex-787

perimental results of the paper to the extent that it affects the main claims and/or conclusions788

of the paper (regardless of whether the code and data are provided or not)?789

Answer: [Yes]790

Justification: See Appendix A.9 for the implementation details to reproduce the results791

in this paper. We also provide the detailed creation of training data used in this paper792

in Section 3.2, and experiment settings in Section 4 for ensuring the reproducibility. To793

maximise the reproducibility, we will also release the code for reproducing CWM, together794

with all used data resources we have curated in this paper to the supplementary material and795

the public.796
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Guidelines:797

• The answer NA means that the paper does not include experiments.798

• If the paper includes experiments, a No answer to this question will not be perceived799

well by the reviewers: Making the paper reproducible is important, regardless of800

whether the code and data are provided or not.801

• If the contribution is a dataset and/or model, the authors should describe the steps taken802

to make their results reproducible or verifiable.803

• Depending on the contribution, reproducibility can be accomplished in various ways.804

For example, if the contribution is a novel architecture, describing the architecture fully805

might suffice, or if the contribution is a specific model and empirical evaluation, it may806

be necessary to either make it possible for others to replicate the model with the same807

dataset, or provide access to the model. In general. releasing code and data is often808

one good way to accomplish this, but reproducibility can also be provided via detailed809

instructions for how to replicate the results, access to a hosted model (e.g., in the case810

of a large language model), releasing of a model checkpoint, or other means that are811

appropriate to the research performed.812

• While NeurIPS does not require releasing code, the conference does require all submis-813

sions to provide some reasonable avenue for reproducibility, which may depend on the814

nature of the contribution. For example815

(a) If the contribution is primarily a new algorithm, the paper should make it clear how816

to reproduce that algorithm.817

(b) If the contribution is primarily a new model architecture, the paper should describe818

the architecture clearly and fully.819

(c) If the contribution is a new model (e.g., a large language model), then there should820

either be a way to access this model for reproducing the results or a way to reproduce821

the model (e.g., with an open-source dataset or instructions for how to construct822

the dataset).823

(d) We recognize that reproducibility may be tricky in some cases, in which case824

authors are welcome to describe the particular way they provide for reproducibility.825

In the case of closed-source models, it may be that access to the model is limited in826

some way (e.g., to registered users), but it should be possible for other researchers827

to have some path to reproducing or verifying the results.828

5. Open access to data and code829

Question: Does the paper provide open access to the data and code, with sufficient instruc-830

tions to faithfully reproduce the main experimental results, as described in supplemental831

material?832

Answer: [Yes]833

Justification: We will release the code for reproducing CWM, together with all used data834

resources we have curated in this paper to the supplementary material and the public.835

Guidelines:836

• The answer NA means that paper does not include experiments requiring code.837

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/838

public/guides/CodeSubmissionPolicy) for more details.839

• While we encourage the release of code and data, we understand that this might not be840

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not841

including code, unless this is central to the contribution (e.g., for a new open-source842

benchmark).843

• The instructions should contain the exact command and environment needed to run to844

reproduce the results. See the NeurIPS code and data submission guidelines (https:845

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.846

• The authors should provide instructions on data access and preparation, including how847

to access the raw data, preprocessed data, intermediate data, and generated data, etc.848

• The authors should provide scripts to reproduce all experimental results for the new849

proposed method and baselines. If only a subset of experiments are reproducible, they850

should state which ones are omitted from the script and why.851
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• At submission time, to preserve anonymity, the authors should release anonymized852

versions (if applicable).853

• Providing as much information as possible in supplemental material (appended to the854
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