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Abstract

We find arithmetic ability resides within a lim-001
ited number of attention heads, with each head002
specializing in distinct operations. To delve003
into the cause of this phenomenon, we intro-004
duce the Comparative Neuron Analysis (CNA)005
method, which identifies an internal logic chain006
consisting of four distinct stages from input007
to prediction: feature enhancing with shallow008
FFN neurons, feature transferring by shallow009
attention layers, feature predicting by arith-010
metic heads, and prediction enhancing among011
deep FFN neurons. Moreover, we identify012
the human-interpretable FFN neurons within013
both feature-enhancing and feature-predicting014
stages. These findings lead us to investigate015
the mechanism of LoRA, revealing that it en-016
hances prediction probabilities by amplifying017
the coefficient scores of FFN neurons related018
to predictions. Finally, we apply our method in019
model pruning for arithmetic tasks and model020
editing for reducing gender bias. Our code and021
data will be released on github.022

1 Introduction023

Arithmetic ability is a crucial foundational skill024

of large language models (LLMs) (Brown et al.,025

2020; Ouyang et al., 2022; Chowdhery et al., 2023),026

contributing significantly to reasoning (Wei et al.,027

2022; Kojima et al., 2022) and mathematical tasks028

(Peng et al., 2021; Azerbayev et al., 2023). While029

existing studies (Quirke et al., 2023; Zhang et al.,030

2023; Stolfo et al., 2023) have made significant031

breakthroughs in understanding arithmetic tasks,032

the exact mechanism still remains elusive. Zhang033

et al. (2023) find that only a few attention heads sig-034

nificantly impact arithmetic performance, but they035

do not elaborate on the mechanisms of these heads036

or how they influence FFN layers. Stolfo et al.037

(2023) intervene the hidden states and find the infor-038

mation flow from number and operation positions039

to the last position. However, they do not locate the040

important attention heads (proved to store different041

abilities (Olsson et al., 2022; Gould et al., 2023)) 042

and FFN neurons (proved to store knowledge (Dai 043

et al., 2021; Meng et al., 2022a)). Despite the 044

challenge of pinpointing important FFN neurons 045

among tens of thousands of nodes, many studies 046

(Gurnee et al., 2023; Lieberum et al., 2023; Nanda 047

et al., 2023) emphasize that considering FFN neu- 048

rons as fundamental units is crucial for better un- 049

derstanding FFN layers. Furthermore, as model 050

editing typically occurs at the neuron level (Dai 051

et al., 2021; Geva et al., 2022), it remains unclear 052

how to effectively leverage the explanations due to 053

the uncertainty surrounding the precise locations 054

of important parameters. 055
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Figure 1: Four distinct stages in the internal logic chain
from the inputs "3+5=" to the final prediction "8".

In this study, we take attention heads and FFN 056

neurons as fundamental units, and explore the ex- 057

act parameters store the arithmetic ability for dif- 058

ferent operations. We observe that only a minority 059

of heads play significant roles in arithmetic tasks, 060

which we refer to as "arithmetic heads". Through 061

experiments involving 1-digit to 3-digit operations, 062

as well as ablation studies comparing "change-one" 063
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cases (e.g., 15+37=52) with "memorize" cases (e.g.,064

15+32=47), we find critical memorization of 1-digit065

operations is lost when these heads are intervened.066

To explore the underlying mechanisms of this067

phenomenon, we propose the Comparative Neu-068

ron Analysis (CNA) method, which compares the069

change of neurons between the original model070

and the intervened model for the same case. We071

construct the internal logic chain by identifying072

four distinct stages that span from inputs to pre-073

diction, as depicted in Figure 1. During the fea-074

ture enhancing stage, hidden-interpretable features075

are extracted from shallow FFN neurons. Subse-076

quently, in the feature transferring stage, shallow077

attention layers convert these features into directly-078

interpretable features and then transfer them to the079

last position. In the feature predicting stage, the080

arithmetic heads play critical roles, activating deep081

FFN neurons related to the final prediction. Fi-082

nally, a prediction enhancing stage exists among083

deep FFN neurons. Lower FFN neurons activate084

upper FFN neurons, while both of them enhance085

the probability of the final prediction.086

Based on this analysis, we investigate the mech-087

anism of LoRA (Hu et al., 2021). We train a to-088

tal of 32 models on a 2-digit arithmetic dataset,089

with each model integrating LoRA on one atten-090

tion layer (0th to 31th). Starting from the 10th091

model, the accuracy of the model exhibits a notice-092

able downward trend, with varying rates of decline093

observed in the feature enhancing and prediction094

enhancing stages. Employing our CNA method095

to compare the original model with the fine-tuned096

model, we note a significant increase in the coeffi-097

cient scores of crucial deep FFN neurons. Hence,098

we conclude that LoRA enhances the final predic-099

tion by amplifying the coefficient scores of impor-100

tant FFN neurons. Finally, using our findings, we101

develop methods on model pruning for arithmetic102

tasks, and model editing for reducing gender bias.103

To summarize, our contributions are as follows:104

1. We find the reason why only a few heads105

can influence arithmetic ability is that these heads106

store crucial parameters for memorizing 1D op-107

erations. We identify human-interpretable FFN108

neurons across both shallow and deep layers.109

2. We propose the CNA method and construct110

the internal logic chain from inputs to prediction111

with four stages: feature enhancing, feature trans-112

ferring, feature predicting, prediction enhancing.113

3. We use the CNA method to explore the mech-114

anism of LoRA and find LoRA increases the prob- 115

ability of final predictions by amplifying the impor- 116

tant FFN neurons’ coefficient scores. We design a 117

model pruning method for arithmetic tasks, and a 118

model editing method for reducing gender bias. 119

2 Related Work 120

2.1 Mechanistic Interpretability 121

Mechanistic interpretability aims to reverse engi- 122

neer the intricate computations executed by trans- 123

formers. The analysis of transformer circuits stands 124

as a key approach within this domain. Elhage 125

et al. (2021) and Olsson et al. (2022) investigate the 126

mechanism using a two-layer attention-only trans- 127

former and discover that induction heads can make 128

predictions similar to [A][B] ... [A] -> [B]. Wang 129

et al. (2022) present an explanation on an indirect 130

object identification case in GPT2. 131

Causal mediation analysis (Pearl, 2001; Vig 132

et al., 2020) is also widely used for locating im- 133

portant modules. Meng et al. (2022a,b) intervene 134

the hidden states of GPT2 (Radford et al., 2019) 135

and ascertain that the medium FFN layers play a 136

significant role in processing subject names. Wang 137

et al. (2023) intervene the attention layers to ex- 138

plore the mechanism of in-context learning and 139

observe an information flow from demonstrations 140

to corresponding labels. Geva et al. (2023) find two 141

critical points on relation and subjection positions 142

through interventions on attention edges. 143

Since causal mediation analysis methods require 144

expensive forward pass over multiple input, several 145

studies try to design static methods for interpret- 146

ing language models. Geva et al. (2022) utilize 147

the product of norm and coefficient score to lo- 148

cate important FFN neurons and find many FFN 149

neurons have human-interpretable concepts when 150

projecting into vocabulary space. Dar et al. (2022) 151

find most matrices in attention and FFN layers are 152

interpretable in vocabulary space. 153

2.2 Understanding Arithmetic in LLM 154

Hanna et al. (2023) investigate how GPT2-small 155

computes greater-than. Gould et al. (2023) demon- 156

strate that successor heads can aid in predicting the 157

subsequent order, such as predicting "3" after "2". 158

Zhang et al. (2023) investigate the attention heads 159

for addition operation, and find only a few heads 160

play significant roles. Zhong et al. (2024) inves- 161

tigate the clock and pizza algorithms for modular 162

addition. Quirke et al. (2023) studies n-digit inte- 163
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ger addition on an one-layer transformer, and find164

individual digits are computed in parallel. Through165

interventions on hidden states, Stolfo et al. (2023)166

find that attention layers transform the information167

to the last token, and FFN layers capture result-168

related information.169

3 Arithmetic Heads in LLMs170

We aim to examine the localization of arithmetic171

ability in Llama-7B (Touvron et al., 2023), a large172

language model consisting of 32 layers. Each atten-173

tion layer contains 32 heads, and each FFN layer174

has 11,008 neurons. We observe the same results175

and mechanisms in GPT-J (Wang and Komatsuzaki,176

2021), detailed in Appendix C.177

3.1 Background178

We start by introducing the inference pass in179

decoder-only language models. Following previ-180

ous studies (Geva et al., 2023), we omit the bias181

term and layer normalization (Ba et al., 2016). The182

model aims to generate a probability distribution183

Y based on an input sequence X = [t1, t2, ..., tT ]184

consisting of T tokens. Both X and Y are over a185

vocabulary V containing B tokens. Each token ti186

in X is embedded into a vector x0i ∈ Rd using an187

embedding matrix E ∈ RB×d. Then the vectors188

undergo transformation through L+ 1 transformer189

layers (0th-Lth). Vector xli on the ith position at190

layer l is computed by:191

xli = xl−1
i +Al

i + F l
i (1)192

where Al
i ∈ Rd and F l

i ∈ Rd are the outputs of the193

lth attention and FFN layers, referred to as the at-194

tention output and FFN output, respectively. xl−1
i195

represents the layer output at layer l − 1, which196

also serves as the layer input at layer l. The term197

xl−1
i + Al

i is denoted as the residual output. The198

attention layer ATTN l captures information from199

different positions through multiple heads, and the200

FFN layer transforms the residual output by matri-201

ces Wfc1 and Wfc2 with non-linearity σ:202

Al
i = ATTN l(xl−1

1 , xl−1
2 ..., xl−1

T ) (2)203
204

F l
i = W l

fc2σ(W
l
fc1(x

l−1
i +Al

i)) (3)205

The representation of the last position on the final206

layer xLT is used for predicting the probability dis-207

tribution Y of the next token by a softmax function208

on an unembedding matrix Eu ∈ RB×d:209

Y = softmax(Eu x
L
T ) (4)210

Geva et al. (2020) demonstrate that the FFN layer 211

can be conceptualized as key-value memories, with 212

matrices W l
fc1 ∈ Rd×N and W l

fc2 ∈ RN×d storing 213

keys and values for N neurons. The FFN output is 214

obtained by adding N subvalues, where each sub- 215

value is the result of multiplying a coefficient score 216

ml
k with a fc2 vector fc2lk ∈ Rd (also referred 217

to as the FFN value). These coefficient scores 218

are calculated as the inner product between the 219

residual output and the corresponding fc1 vector 220

fc1lk ∈ Rd (also referred to as the FFN key): 221

F l =
N∑
k=1

ml
kfc2

l
k (5) 222

223

ml
k = σ(fc1lk · (xl−1 +Al)) (6) 224

3.2 Interventions on Attention Heads 225

We make a 2-digit arithmetic dataset, including 226

addition (2D+), subtraction (2D-), multiplication 227

(2D*) and division (2D/). Similar to Stolfo et al. 228

(2023), we design four prompts for each operation 229

including both numbers (e.g. 3) and number words 230

(e.g. three), reported in Appendix A. The evalua- 231

tion dataset has 1,600 sentences. We intervene the 232

attention heads by setting all the head’s parameters 233

into zero, and we take accuracy as metric. Llama- 234

7B consists of 32 layers with 32 heads per layer. 235

Consequently, we execute the model 1,024 times 236

(intervening on one head each time) and compute 237

the average accuracy on the evaluation dataset. 238

3.3 Results of Different Heads 239

The accuracy of the original model is 74.8%. Inter- 240

ventions on the majority of heads (976 in total) lead 241

to only a minor decrease in accuracy (0.01%-2%). 242

Only three heads result in a decrease of 10% or 243

more. The top5 heads are shown in Table 1. 244

ori 1722 159 1419 1523 161

all 74.8 53.4 62.1 62.7 68.1 68.7
2D+ 96.8 42.9 83.2 92.5 89.7 91.6
2D- 94.4 72.3 84.6 93.2 86.5 79.1
2D* 56.6 50.5 50.9 51.3 52.3 56.9
2D/ 51.4 48.2 29.5 13.8 43.8 47.1

Table 1: Accuracy (%) when intervening different heads.
"ori": original model. 1722: 22th head in 17th layer.

Interventions on head 1722, 159 and 1419 cause 245

12.7% or more decrease. Specifically, 1722 reduces 246
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21.4% in accuracy. Moreover, the accuracy de-247

crease on these heads is attributed to different oper-248

ations. For example, 1722 drops a lot on 2D+ and249

2D-, and 1419 performs extremely poor on 2D/.250

3.4 Reasons Causing Accuracy Decrease251

To explore the reasons of the accuracy decrease,252

we analyze the most important head for each oper-253

ation in 1-digit (1D), 2-digit (2D) and 3-digit (3D)254

operations, shown in Table 2. The most impor-255

tant heads in 1D, 2D and 3D operations are the256

same. We report the details of top5 heads in Ap-257

pendix E. In comparison to addition, subtraction,258

and division, the top head for multiplication does259

not significantly impact accuracy. We leave further260

investigation of this phenomenon for future work.261

1722(+) 1722(-) 2018(*) 1419(/)

1D 46.5 62.2 6.8 54.9
2D 58.4 52.6 11.2 71.8
3D 52.5 56.9 8.1 53.2

Table 2: Accuracy decrease (%) in 1D, 2D and 3D.
In Table 2, the decreases of 1D, 2D and 3D op-262

erations are similar. Therefore, we hypothesize263

that the heads store important parameters about 1D264

operations. Since 2D and 3D also rely on the mem-265

orization of 1D operations, the 2D/3D accuracy266

decrease when the 1D memorization is lost.267

add sub multi divide

memorize 59.2 49.8 11.6 63.6
change-one 57.1 65.5 11.3 75.2

Table 3: Accuracy decrease (%) on memorize and
change-one cases.

We also analyze two types of cases for each op-268

eration, which are named "change-one" and "mem-269

orize". "Memorize" cases only require memoriza-270

tion. For example, "15+32=47" requires memoriza-271

tion about "5+2=7" and "1+3=4", thus "15+32= ->272

4" and "15+32=4 -> 7" are two "memorize" cases.273

"Change-one" cases require the change-one ability.274

For example, "15+37= -> 5" is a "change-one" case,275

as the output is based on "5=1+3+1". For multi-276

plication and division cases, we take the last token277

as "memorize" cases, and others as "change-one"278

cases. We compute the accuracy decrease between279

the original model and the intervened model for280

each operation. The results are shown in Table 3.281

If the heads only store change-one abilities, the de-282

crease of "memorize" cases should be much smaller283

than "change-one" cases. However, the accuracy 284

decrease of "memorize" cases and "change-one" 285

cases are similar. Hence, we hypothesize the heads 286

store parameters for memorizing 1D operations. 287

4 Comparative Neuron Analysis for 288

Mechanistic Interpretability 289

In this section, we investigate how head 1722 influ- 290

ence 1D+ and 1D- operations. Analysis of head 291

1419 for 1D/ operations is shown in Appendix B, 292

resulting the same stages with Section 4.2-4.4. 293

4.1 Methodology 294

The core idea of our proposed CNA method is com- 295

paring the same neuron across different models 296

given the same input, or comparing the same neu- 297

ron across different inputs within the same model. 298

Due to the computational intensity of the forward 299

pass, employing causal mediation analysis meth- 300

ods on every neuron is impractical. Therefore, we 301

take the increase of log probability (Yu and Anani- 302

adou, 2024) as importance score for each neuron. 303

The importance score of a FFN neuron ml
kfc2

l
k is 304

log(p(w|xl−1
T +Al

T +ml
kfc2

l
k))− log(p(w|xl−1

T + 305

Al
T )), where w is the final predicted token and the 306

probability is computed by multiplying the vec- 307

tors with the unembedding matrix (Eq.4). Then we 308

compute the change of each neuron’s importance 309

score between the original model and the inter- 310

vened model (intervening head 1722), and sort the 311

change score to locate the most important neurons 312

causing the final prediction probability decrease. 313

In later sections, we introduce the analysis process 314

focusing on a specific case "3+5=", and devise var- 315

ious methods to prove these findings are applicable 316

to all 1D+ and 1D- cases. 317

4.2 Feature Predicting via Arithmetic Head 318

For case "3+5=" with prediction "8", we compute 319

the importance score change for each neuron, and 320

find the most important neurons are in FFN layers. 321

We project these neurons in vocabulary space (Geva 322

et al., 2022) by multiplying the FFN neurons v 323

and unembedding matrix: Pv = softmax(Eu v). 324

The top tokens are shown in Table 4. "ori" and 325

"inv" denote the original and the intervened model 326

("mdl"). "imp" and "coef" represent the importance 327

score and coefficient score of each neuron. 328

All these neurons contain concepts about "eight" 329

and "8" in top tokens. The importance scores and 330

coefficient scores drop a lot in the intervened model. 331
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FFNv mdl imp coef top10 tokens

283696
283696

ori
inv

0.82
0.13

6.21
0.95

[8, eight, VIII,
huit, acht, otto]

257164
257164

ori
inv

0.31
0.07

8.44
2.08

[six, eight, acht,
Four, twelve,
six, four, vier]

195769
195769

ori
inv

0.20
0.06

3.79
1.28

[eight, VIII, 8,
III, huit, acht]

Table 4: Importance scores and coefficient scores of
located important FFN neurons for input "3+5=".

From the interpretable results, we hypothesize that332

the reason why the accuracy decreases a lot in the333

intervened model is that head 1722 stores impor-334

tant parameters for activating the important FFN335

neurons related to the final prediction. To verify336

this hypothesis, we conduct two experiments on337

all 1D+ and 1D- cases. For each case, we employ338

the CNA method to identify the important FFN339

neurons. Then in the original model we only in-340

tervene the most important FFN neurons ("mask")341

or intervene all the other FFN neurons within the342

17th−31th layers ("keep"). The accuracy decrease343

on all 1D+ and 1D- cases is presented in Table 5.

top99 top50 top30 top20 top10

mask 100.0 96.0 89.5 86.8 68.4
keep 3.9 7.8 13.2 18.4 38.2
coef 49.1 60.4 67.2 72.7 77.1

Table 5: Decrease (%) of accuracy and coefficient score
on all 1D+ and 1D- cases when intervening and keeping
the most important FFN neurons.

344

When intervening the top99 FFN neurons, the345

accuracy decreases 100%. When intervening all346

the other neurons in deep FFN layers, the accuracy347

only decreases 3.9%. This suggests that almost all348

important information for predicting the final token349

is contained within the FFN neurons identified by350

our CNA method. We also report the decrease of351

the top neurons’ coefficient scores ("coef") between352

the intervened model and the original model in353

Table 5. In all situations, the coefficient scores drop354

much. Therefore, our hypothesis is verified: head355

1722 stores important parameters for activating the356

important FFN neurons related to final predictions.357

When head 1722 is intervened, coefficient scores358

of important FFN neurons drop a lot, thus final359

predictions’ probabilities drop much.360

4.3 Prediction Enhancing among Deep FFN 361

Neurons 362

In case "3+5=", we observe that there is a predic- 363

tion enhancing stage among the most important 364

FFN neurons 283696, 257164 and 195769. The inner 365

product scores between the FFN value of 195769 366

and the FFN keys of 257164 and 283696 are large. 367

Additionally, the inner product between the FFN 368

value of 257164 and the FFN key of 283696 is also 369

large. Therefore, a prediction enhancing directed 370

acyclic graph (PE-DAG) exists among the three 371

neurons, where 195769 is the root. Activation of the 372

lower FFN neuron recursively triggers activations 373

of upper semantic-related FFN neurons. 374

To explore whether the prediction enhancing 375

stage also exists in other 1D+ and 1D- cases, we 376

compute the coefficient score change of important 377

FFN neurons when intervening the lowest neuron 378

among the most important neurons. If there are 379

many neurons in the lowest layer, we intervene 380

the neuron with the largest importance score in the 381

lowest layer. Decrease of coefficient score when 382

intervening the lowest important neuron in the orig- 383

inal model are shown in Table 6.

top99 top50 top30 top20 top10

coef 15.8 14.8 12.5 9.5 4.4

Table 6: Decrease (%) of coefficient score when inter-
vening the lowest neuron among important neurons.

384

Intervening only one neuron among top99 neu- 385

rons can reduce the coefficient scores by 15.8%. 386

The results indicate that the prediction enhancing 387

stage exists among the identified deep FFN neurons. 388

Among 1D+ and 1D- cases, comparing with inter- 389

vening the lowest neuron among top10 and top20 390

neurons, the coefficient score decreases more when 391

intervening the lowest neuron among top50 and 392

top99 important neurons. This phenomenon maybe 393

because the lowest neuron among top99 and top50 394

neurons typically resides on lower FFN layers com- 395

pared to those on top10 and top20 neurons. 396

4.4 Feature Enhancing with Hidden- 397

Interpretable Shallow FFN Neurons 398

Stolfo et al. (2023) utilize causal mediation anal- 399

ysis and find the model processes numbers and 400

operators on early FFN layers and transfer into last 401

position via attention layers. In this section, our 402

objective is to locate the specific neurons fulfilling 403

this function and to analyze the roles of shallow 404
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FFN layers and attention layers in this process. To405

identify the important shallow FFN neurons for406

case "3+5="->"8", we sort the neurons by com-407

puting the inner products between the PE-DAG408

root 195769 and the attention transformation of each409

FFN neuron. We find that the neurons (on residual410

streams of "3" and "5") with highest inner prod-411

ucts are hidden-interpretable. When projecting the412

original neurons into vocabulary space, they do413

not contain human-interpretable concepts in top414

tokens. However, after the transformation of at-415

tention layers, these neurons become interpretable.416

Moreover, we find that the word embeddings of417

"3" and "5" are also hidden-interpretable. The top418

vocabulary tokens of original and 15th attention419

layer transformation are shown in Table 7.

FFNv origin attn transform

124072 [rd, quarters,
PO, Constraint,
ran, avas]

[III, three,
Three, 3,
triple]

112258 [enz, Trace, lis,
vid, suite, HT,
ung, icano]

[XV, fifth, Fif,
avas, Five, five,
abase, fif]

word "3" [rd, rum, quar-
ters, Af, EX-
ISTS, raum]

[three, Three,
RGB, triple, 3,
triangle]

word "5" [th, esa, gi, AXI,
gal, ides, Inject,
san, IDE]

[Fif, XV, engo,
abase, ipage,
vos, fif, fifth]

Table 7: Hidden-interpretable FFN neurons’ top10 to-
kens transformed by 15th attention layer.

420
We hypothesize that these hidden-interpretable421

FFN neurons are crucial for enhancing input fea-422

tures. We develop a zero-shot method to identify423

these hidden-interpretable shallow FFN neurons.424

For each FFN neuron on 0th−15th layer, we com-425

pute the transformation by 0th − 16th attention426

layers’ value-output matrices, and project these427

vectors into vocabulary space. If the top50 tokens428

contain M or more concepts related to numbers429

or operations, we add this neuron into a hidden-430

interpretable neuron set. Then we intervene all the431

neurons in this neuron set in the original model,432

and compute the accuracy decrease on all 1D+ and433

1D- cases. The number of neurons and accuracy434

under different M are shown in Table 8.435

There are 176,128 neurons in 0th− 15th FFN436

layers. Intervening with only 1,953 neurons (M=2)437

results in a decrease of 53.9%. This strongly sug-438

M=0 M=1 M=2 M=3

number 51,980 10,426 1,953 510
accuracy 98.7 68.4 53.9 43.4

Table 8: Decrease (%) of accuracy on 1D+ and 1D-
cases when intervening hidden-interpretable neurons.

gests that these hidden-interpretable neurons play a 439

significant role in enhancing features and are valu- 440

able for final predictions. Further supporting this 441

notion is the observation that randomly intervening 442

1,953 neurons on the 0th− 15th FFN layers only 443

results in an accuracy decrease of 2.6%. Compared 444

to directly interpretable neurons in deep FFN lay- 445

ers, hidden-interpretable neurons in shallow FFN 446

layers are more widely distributed. When interven- 447

ing 10,426 neurons (about 6% of all neurons in 448

0th− 15th layers), the accuracy decreases 68.4%. 449

4.5 Constructing the Internal Logic Chain 450

from Inputs to Prediction 451

In Section 4.2-4.4, we apply our CNA method to 452

identify the important neurons for the case "3+5", 453

and also design experiments to verify the generality 454

across other 1D+ and 1D- cases. In this section, 455

we conclude the internal logic chain from inputs to 456

prediction for case "3+5=" -> "8": 457

First, in feature enhancing stage, shallow FFN 458

neurons containing hidden-interpretable features 459

(e.g. 112258, 124072) are extracted. In feature 460

transferring stage, the hidden-interpretable features 461

(word embeddings and shallow FFN neurons) are 462

transformed into directly-interpretable features by 463

attention layers and then transferred to the last po- 464

sition. In feature predicting stage, head 1722 acti- 465

vates deep FFN neurons associated with the con- 466

cept of "8" (e.g. 283696, 257164, 195769) based on 467

the enhanced features. Finally, in the prediction en- 468

hancing stage, lower FFN neurons activate higher 469

FFN neurons, which collectively contribute to the 470

probability of "8" in the final prediction. 471

Through our CNA method, we precisely iden- 472

tify crucial parameters (attention heads and FFN 473

neurons) for predicting final tokens. Compared 474

to prior studies, our approach enables the discov- 475

ery of more detailed locations and offers a clearer 476

explanation of the information flow. Given our 477

method’s ability to pinpoint precise parameters, it 478

can be effectively leveraged for downstream tasks 479

such as model pruning and model editing, which 480

we discuss in Section 6. 481
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5 Understanding the Mechanism of LoRA482

LoRA (Hu et al., 2021) is a commonly used483

parameter-efficient fine-tuning method (Houlsby484

et al., 2019; Li and Liang, 2021; Lester et al., 2021).485

By adding trainable low-rank matrices into atten-486

tion layers, models are fine-tuned with only 0.5%487

additional parameters, yielding favorable outcomes.488

Intuitively, LoRA is similar to a head. Inspired by489

the analysis on arithmetic heads, we apply the CNA490

method to understand the mechanism of LoRA.491

We first investigate whether LoRA plays distinct492

roles when added into various layers. We fine-tune493

32 models on the 2-digit arithmetic dataset, with494

each model incorporating a low-rank matrix into495

a distinct attention layer. Notably, we introduce496

negative numbers in 2D cases such as "3-5=-2",497

as the original Llama model does not learn this498

concept well. The training and testing set consist499

of 18,000 and 2,000 sentences, respectively. We500

determine the optimal learning rate from choices of501

0.001, 0.0005, and 0.0001. The maximum epoch is502

set to 4. The results are depicted in Figure 2.503

9

16

30

Figure 2: Accuracy: adding LoRA in different layers.

All the fine-tuned models exhibit superior ac-504

curacy compared to the original model (62.96%).505

The 0th and the 31th layer may have special use,506

since the accuracy of the 0th and 31th models dif-507

fers much from their neighboring models. The508

accuracy of the 1st − 9th models is around 90%.509

Starting from the 10th model, the accuracy keeps510

decreasing. The average slope during the 10th to511

16th models differs from that of the 17th to 30th512

models. Motivated by LoRA’s accuracy curve and513

the analysis of arithmetic heads, we hypothesize514

that LoRA enhances the correct predictions’ proba-515

bilities by amplifying the deep FFN neurons related516

to final predictions. We apply our CNA method on517

the original model and five LoRA models analyzing518

the case "3+5=", detailed in Table 9.519

ori 9th 15th 16th 19th 20th

283696 6.2 3.6 6.3 3.9 5.7 4.1

257164 8.4 16.1 11.8 11.0 13.9 9.7

195769 3.8 9.2 7.7 6.1 5.1 3.8

Table 9: Important neurons’ coefficient scores on the
original model and five fine-tuned models for "3+5=".

Across all five fine-tuned models, the coefficient 520

scores of 257164 and 195769 surpass those of the 521

original model. The scores are higher in shallow- 522

layer models compared to deep-layer models. The 523

significant decrease in the coefficient score ob- 524

served in 257164 in the 20th model can be attributed 525

to its failure to leverage the features of 195769. 526

LoRA layer top50 top30 top20 top10

1st− 9th 42% 49% 57% 59%

10th− 16th 29% 36% 44% 53%

17th− 30th 2% 11% 14% 28%

Table 10: Coefficient score increase (%) of different
fine-tuned models compared with the original model.

For all cases, we compute the average coeffi- 527

cient score increase of 1st−9th, 10th−16th, and 528

17th−30th models on the most important neurons, 529

detailed in Table 10. Across all scenarios, the co- 530

efficient scores of significant FFN neurons surpass 531

those of the original model. Notably, fine-tuning 532

LoRA in shallow layers yields a greater amplifica- 533

tion of FFN neurons’ coefficient scores compared 534

to deep layers. This observation validates our hy- 535

pothesis: LoRA enhances the probabilities of final 536

predictions by amplifying the coefficient scores of 537

deep FFN neurons relevant to final predictions. 538

6 Applications 539

In this section, we utilize our method for model 540

pruning on arithmetic tasks and for model editing 541

aimed at mitigating gender bias. 542

6.1 Model Pruning for Arithmetic Tasks 543

As recent powerful models boast tens of billions 544

of parameters, the extraction of sub-networks from 545

these large models for various downstream tasks 546

has become crucial. This approach is based on 547

the assumption that only a small subset of parame- 548

ters in an over-parameterized model are pertinent 549

to a specific task and similar tasks share similar 550

sub-networks (Pfeiffer et al., 2023). Recent works 551
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(Stańczak et al., 2022; Foroutan et al., 2022) in552

multilingual models can support these hypotheses.553

In this section, we apply our findings on model554

pruning for arithmetic tasks. As discussed in Sec-555

tion 4, important information for final predictions556

is concentrated in only a few deep FFN neurons.557

Therefore, we design a simple method to prune558

useless neurons in deep FFN layers. We apply our559

CNA method between the original model and the560

9th LoRA model on all the 1D+, 1D-, 1D* and561

1D/ cases, to find the important top500 neurons for562

each case. Then we prune all the other FFN neu-563

rons among 17th−31th layers, thus only 5% deep564

FFN neurons are saved in the pruned model. Fi-565

nally, we add LoRA on the 9th layer of the pruned566

model, and fine-tune on the training set. The pa-567

rameters on deep FFN layers are reduced to 5%,568

and only 0.015% LoRA parameters are added.569

origin LoRA9 LoRA9-p LoRA9-r

acc 62.9 89.3 82.3 17.1

Table 11: Accuracy on 2-digit datasets.

The results are shown in Table 11. The ac-570

curacy of the fine-tuned pruned model (LoRA9-571

p) is 82.3%, better than original Llama (62.9%).572

While our method do not reach the performance573

of the fine-tuned model without pruning (LoRA9),574

it still offers a promising avenue for model prun-575

ing. Furthermore, although 2-digit arithmetic is an576

easy task, fine-tuning LoRA on a randomly-pruned577

model (LoRA9-r) with the same number of neurons578

fails to yield satisfactory results (only 17.1%). This579

further underscores the significance of our method.580

6.2 Model Editing for Reducing Gender Bias581

Even though LLMs have achieved great success,582

they can learn, perpetuate, and amplify harmful583

social biases (Gallegos et al., 2023). In this section,584

we focus on gender bias, which is observed in dif-585

ferent models (de Vassimon Manela et al., 2021;586

Kotek et al., 2023). We apply our CNA method an-587

alyzing similar cases with different genders in the588

same model. For example, we identify the impor-589

tant neurons for predicting "nurse" by calculating590

the change of importance scores between sentences591

"A woman works as a" and "A man works as a".592

Since the other words are the same except "woman"593

and "man", these neurons contain much gender594

bias causing p(nurse|woman) > p(nurse|man).595

The neurons’ top tokens of are shown in Table 12.596

FFNv gend imp coef top tokens

222651
222651

F
M

0.24
0.06

6.48
1.53

[maid, domestic,
servant, servitor]

198436
198436

F
M

0.16
0.01

3.39
0.14

[nurse, secretary,
typing, reception]

Table 12: FFN neurons contain gender bias. "F":woman.

We then apply our CNA method on 32 com- 597

mon professions contain gender bias (detailed in 598

Appendix D). Designing four prompts, we iden- 599

tify top18 important FFN neurons and edit them 600

by setting their parameters to zero. The aver- 601

age perplexity difference log(p(prof |gend1)) − 602

log(p(prof |gend2)) is shown in Table 13, reduced 603

by 35.7% when only 18 neurons are edited. 604

total bias woman bias man bias

origin 1.26 1.45 1.08
edited 0.81 1.04 0.59

Table 13: Gender bias of original and edited model.

7 Discussion and Conclusion 605

We aim to discuss the mechanisms behind causal 606

mediation analysis and static interpretation meth- 607

ods. Causal mediation analysis methods can find 608

the "root cause" (head 1722) of the probability 609

change, which are usually not interpretable. Static 610

methods can locate the interpretable "direct cause" 611

(FFN neurons), but many elements can activate 612

these neurons. Our CNA method can locate both 613

"root cause" and "direct cause", and reconstruct the 614

whole logic chain from inputs to prediction. 615

Overall, we identify the important attention 616

heads and FFN neurons for arithmetic operations. 617

We propose the comparative neuron analysis (CNA) 618

method and construct the internal logic chain from 619

inputs to prediction, including the feature enhanc- 620

ing stage, feature transferring stage, feature predict- 621

ing stage, and prediction enhancing stage. Based 622

on these findings, we find LoRA increases the final 623

predictions’ probabilities by enlarging the impor- 624

tant FFN neurons’ coefficient scores. Finally, we 625

apply our method and findings on model pruning 626

for arithmetic tasks, and model editing for reduc- 627

ing gender bias. Our method and analysis offer a 628

comprehensive insight for understanding LLM. 629
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Limitations630

The case studies rely on projecting vectors in vo-631

cabulary space, which is widely used in previous632

studies (Elhage et al., 2021; Ram et al., 2022; Geva633

et al., 2022; Dar et al., 2022). While the results634

are empirically interpretable, the theories of this635

method are incomplete. Therefore, we utilize this636

method in our case studies and supplement our637

findings with additional methods to strengthen our638

conclusions, thus enhancing their persuasiveness.639

Another limitation lies in the lack of standard-640

ization across various studies regarding attribution641

methods. Apart from causal mediation analysis642

methods and static interpretation methods, gradient-643

based methods (Sundararajan et al., 2017) and644

SHAP values (Lundberg and Lee, 2017) are also645

widely utilized for attributing important modules.646

However, these methods often demand substantial647

computational resources, rendering them unsuit-648

able for our work.649

A potential risk of our work is that attackers can650

identify the important neurons and edit these neu-651

rons to change the output probability distribution.652

For instance, instead of reducing the gender bias653

by setting the neurons’ parameters to zero, they654

can amplify the gender bias professions’ probabili-655

ties by enlarging the identified neurons in Section656

6.2. Hence, it is important to distinguish whether657

a model is edited, and we leave this exploration in658

future work.659
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A Four Prompts in Arithmetic Dataset868

type prompt

addition-1 The sum of n1 and n2 is
addition-2 Q: What is n1 plus n2? A:
addition-3 n1 plus n2 is
addition-4 n1 + n2 =

subtract-1 The difference between n1 and n2 is
subtract-2 Q: What is n1 minus n2? A:
subtract-3 n1 minus n2 is
subtract-4 n1 - n2 =

multiply-1 The product of n1 and n2 is
multiply-2 Q: What is n1 times n2? A:
multiply-3 n1 times n2 is
multiply-4 n1 * n2 =

division-1 The ratio of n1 and n2 is
division-2 Q: What is n1 divides n2? A:
division-3 n1 divides n2 is
division-4 n1 / n2 =

Table 14: Four prompts for 2-digit arithmetic operations.

B Results of Interventions on Head 1419869

We conduct the same experiments as discussed in870

Section 4.2-4.4. The results of head 1419 is shown871

in Table 15 (corresponding to Table 5), Table 16872

(corresponding to Table 6), and Table 17 (corre-873

sponding to Table 8).

top99 top50 top30 top20 top10

mask 84.6 82.1 74.4 66.7 51.3
keep 48.7 51.3 53.9 53.9 64.2
coef 50% 61% 67% 70% 73%

Table 15: Decrease (%) of accuracy and coefficient
score on all 1D/ cases when masking and keeping the
top FFN neurons.

874
In Table 15, when head 1419 is intervened, co-875

efficient scores of important neurons in deep FFN876

layers are reduced, causing the accuracy decrease.877

Also, the top identified neurons contain much in-878

formation. Interventions on top99 neurons result in879

an accuracy decrease of 84.6%.880

top99 top50 top30 top20 top10

coef 1.3 0.9 3.2 4.9 7.0

Table 16: Decrease (%) of coefficient score when inter-
vening the lowest neuron among important FFN neu-
rons.

The results of Table 16 also demonstrate that 881

among the identified important neurons, the lower 882

neurons can enhance higher neurons’ coefficient 883

scores among deep FFN neurons. Therefore, the 884

prediction enhancing stage also exists. 885

M=0 M=1 M=2 M=3

number 51,980 10,426 1,953 510
acc 97.5 82.1 30.8 25.7

Table 17: Decrease (%) of accuracy on 1D/ cases when
intervening hidden-interpretable neurons.

In Table 17, The hidden-interpretable neurons 886

in shallow FFN layers are important for 1D/ cases 887

(e.g. "72/8="). When intervening 10,426 hidden- 888

interpretable shallow FFN neurons, the accuracy 889

reduces 82.1%. For comparison, we randomly in- 890

tervene 10,426 FFN neurons in shallow FFN lay- 891

ers, and the interventions only cause a decrease of 892

5.1%. 893

Overall, head 1419 shares the same mechanism 894

with head 1722. Head 1419 stores important param- 895

eters for division operations, while head 1722 is 896

responsible for addition and subtraction. 897

C Results of Interventions in GPT-J 898

We conduct the same experiments in Section 3.3 in 899

GPT-J. The accuracy when intervening each head 900

is presented in Table 18. 901

ori 70 139 011 156 1414

all 74.5 63.6 64.4 65.0 68.8 70.8
2D+ 97.0 95.0 94.0 98.0 95.0 97.0
2D- 78.6 63.6 41.8 63.6 74.5 80.0
2D* 71.0 54.0 72.0 53.0 59.0 72.0
2D/ 51.5 42.0 50.0 45.6 46.7 34.4

Table 18: Accuracy (%) when intervening different
heads in GPT-J.

In GPT-J, we also observe that different heads 902

store important parameters for various operations. 903

For instance, the accuracy of 2D- decreases signifi- 904

cantly when intervening in head 139, whereas head 905

1414 holds significant parameters for 2D/. 906

Then we apply the CNA method between the 907

original model and the intervened model on head 908

139 on 2D- cases. The results are shown in Table 19 909

(corresponding to Table 5), Table 20 (correspond- 910

ing to Table 6), and Table 21 (corresponding to 911

Table 8). 912
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top99 top50 top30 top20 top10

mask 58.4 45.9 33.4 25 25
keep 37.5 50 54.1 83.4 95.9
coef 17% 20% 21% 23% 29%

Table 19: Decrease (%) of accuracy and coefficient
score when masking and keeping the top FFN neurons.

top99 top50 top30 top20 top10

coef 1.9 1.7 1.6 1.2 1.9

Table 20: Decrease (%) of coefficient score when inter-
vening the lowest neuron among important neurons.

In Table 19, the top FFN neurons also play a913

large role in GPT-J. When intervening the top99914

neurons, the accuracy decreases 58.4%. Compared915

with Llama, the degrees of coefficient decrease916

and accuracy change are both smaller. In Table917

20, when intervening the lowest neuron among the918

important neurons identified by our CNA method,919

the deep neurons’ coefficient scores decrease.920

M=0 M=1 M=2 M=3

number - 4,272 1,228 564
acc - 100.0 83.4 20.8

Table 21: Decrease (%) of accuracy when intervening
hidden-interpretable neurons.

Results in Table 21 indicate that the hidden-921

interpretable shallow FFN neurons also exist in922

GPT-J. When intervening 4,272 neurons, the accu-923

racy decreases 100%.924

Overall, we observe similar results in GPT-J.925

Similar to Llama, GPT-J also exhibits the presence926

of four stages: feature enhancing, feature transfer-927

ring, feature predicting, and prediction enhancing.928

D Details for Evaluating Gender Bias929

We design eight prompts to find the most common930

professions causing the gender bias. The prompts931

are shown in Table 22, where <gend> is "man" or932

"woman".933

We compute the top100 predictions of each934

prompt for different genders, and compare the dif-935

ferent professions, which are shown in Table 23.936

These professions contain much gender bias. We937

then apply our CNA method between cases with938

different genders under the first prompt, and iden-939

tify the top18 important neurons causing the differ-940

ence. Finally, we edit the top18 neurons by setting941

their parameters to zero, and then compute the per-942

prompt

A <gend> works as a
A <gend> is employed as a
A <gend> holds a job as a
A <gend>’s occupation is
The job of a <gend> is
The work of a <gend> is
The profession of a <gend> is
The work of a <gend> involves

Table 22: Eight prompts for gender bias professions.

plexity difference between different genders for 943

all prompts in both the original and edited model 944

(results are shown in Table 13).

gend profession

woman cleaner, nurse, secretary, domestic
helper, maid, reception, seller, server,
librarian, pharmacist, translator, beauti-
cian, dental assistant, hairdresser, vol-
unteer, bookkeeper

man police, guard, delivery, labour, driver,
machinist, roofer, machine operator,
lumberjack, technician, miner, night-
watch, painter, photographer, builder,
porter

Table 23: Professions with gender bias.
945

E Important Heads for 1-Digit, 2-Digit 946

and 3-Digit Operations 947

We report the top5 important heads for 1D, 2D and 948

3D operations in this section. For each operation, 949

the experiments are conducted on the last prompt 950

in Table 14. The results are shown in Table 24-27. 951

ori 1722 1523 620 1315 1419

1D+ 88.9 47.6 82.8 84.1 84.1 84.1

ori 1722 159 132 620 1216

2D+ 94.5 39.3 86.0 87.9 88.6 89.2

ori 1722 810 1523 1216 159

3D+ 96.1 46.4 82.7 83.5 85.2 87.2

Table 24: Results of most important heads for 1D+,
2D+, and 3D+.
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ori 1722 161 1523 226 132

1D- 82.0 31.0 51.0 53.0 57.0 65.0

ori 161 1722 132 1523 1216

2D- 80.0 33.9 37.9 61.8 63.3 70.6

ori 161 1722 1523 132 1216

3D- 57.1 19.6 22.9 29.3 34.3 40.7

Table 25: Results of most important heads for 1D-, 2D-,
and 3D-.

ori 35 2018 624 1722 030

1D* 93.0 85.4 86.7 87.3 89.2 89.2

ori 159 1419 1722 2018 35

2D* 56.9 49.3 50.1 50.5 50.5 51.6

ori 35 159 1419 1319 214

3D* 32.8 25.9 29.7 30.3 31.1 31.1

Table 26: Results of most important heads for 1D*, 2D*,
and 3D*.

ori 1419 159 2124 624 1621

1D/ 78.9 35.6 61.1 65.6 67.8 68.9

ori 1419 121 33 1621 129

2D/ 48.6 13.7 30.2 31.4 36.9 38.8

ori 1419 33 121 622 159

3D/ 19.0 9.67 12.7 13.0 13.3 13.7

Table 27: Results of most important heads for 1D/, 2D/,
and 3D/.
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