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Abstract

Today’s artificial neural architecture search (NAS) strategies are essentially1

prediction-error-optimized. That holds true for AI functions in general. From2

the developmental neuroscience perspective, I present evidence for the central role3

of metabolically, rather than prediction-error-, optimized neural architecture search4

(NAS). Supporting evidence is drawn from the latest insights into the glial-neural5

organization of the human brain and the dynamic coordination theory which pro-6

vides a mathematical foundation for the functional expression of this optimization7

strategy. This is relevant to devising novel NAS strategies in AI, especially in AGI.8

Additional implications arise for causal reasoning from deep neural nets. Together,9

the insights from developmental neuroscience offer a new perspective on NAS and10

the foundational assumptions in AI modeling.11

1 Introduction12

This work is written by a neuroscientist, not a computer scientist. Apologies in advance for any13

naïveté. This article is theoretical in nature and based on evidence from developmental neuroscience.14

The aim is to generate new testable hypotheses about the design of artificial intelligence (AI) from15

the physiological point of view. The manuscript is organized as follows. First, I briefly review the16

general process of the neural architecture search (NAS). Second, I discuss the neuroanatomical and17

neurophysiological evidence for glial-neural network architecture. Third, I add evidence for the18

fundamental role of metabolic constraints in such brain architectures for brain development, i.e.,19

biological NAS, and brain function, i.e., multimodal multitask deep neural networks. Fourth, from the20

perspective of physics, we consider the dynamic coordination theory which provides a mathematical21

bridge between the energy-driven coordination of weakly coupled non-linear oscillators and brain22

networks. Finally, we synthesize these insights into a revised version of the NAS process. The23

manuscript is concluded with a discussion of limitations and future directions.24

2 From artificial to brain-inspired NAS25

2.1 Neural architecture search: status quo26

For the context of the present work, it is important to summarize the steps of NAS. I reproduce these27

steps as defined by Elsken et al. [2019]. The credit for these steps goes entirely to the cited authors.28

Briefly, the search space is defined and then explored using search strategies in an iterative manner as29

part of the performance estimation strategy.30
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1. The search space defines which architectures can be represented in principle. Incorporating31

prior knowledge about typical properties of architectures well-suited for a task can reduce32

the size of the search space and simplify the search. However, this also introduces a human33

bias, which may prevent finding novel architectural building blocks that go beyond the34

current human knowledge.35

2. The search strategy details how to explore the search space. In the conventional view36

of NAS, the search space can be exponentially large or even unbounded, while in the37

proposed energy-constrained view of NAS, this is not the case. It encompasses the clas-38

sical exploration-exploitation trade-off since, on the one hand, it is desirable to find well-39

performing architectures quickly, while on the other hand, premature convergence to a40

region of suboptimal architectures should be avoided.41

3. The conventional objective of NAS is typically to find architectures that achieve high42

predictive performance on unseen data. Performance estimation represents the process43

of estimating the predictive performance of a deep neural net. The simplest option is to44

perform standard training and validation of the architecture on data, but this is unfortunately45

computationally expensive and limits the number of architectures that can be explored.46

Much recent research, therefore, focuses on developing methods that reduce the cost of47

these performance estimations.48

In each of these three steps, I show in the following how the energy-driven glial-neuronal NAS49

approach can provide useful constraints. To do that, we first need to review the evidence from50

neuroscience and dynamic coordination theory that formalizes mathematically the relationship51

between energy optimization and network communication.52

2.2 Energy-constrained glial-neural nets53

The early notion that neurons compute to effectively reduce the prediction error does not hold true54

in biological brains, especially in the human brain on two accounts: first, neurons are dynamically55

and spatiotemporally organized with as numerous glial cells to perform their functions, and, second,56

these functions are energy-constrained first and, most likely, prediction-error-minimizing second. We57

observe the paramount role of metabolic optimization, i.e., neural nets develop and are sustained58

under energy constraints. It is then questionable that error prediction should be the primary objective59

of a deep neural net evolution and function. This has implications throughout the NAS. In the60

following, I review some evidence that biological parallels of deep neural nets are in fact glial-neural61

nets in which energy optimization drives the NAS.62

First, neurons should not continue to be viewed as the sole foundation for biologically inspired AI.63

In fact, when it comes to brain development and function in health and disease, they are at best an64

equal partner of the glial cells, with a complex, spatiotemporally dynamic relationship between these65

two major cell categories. The estimates for the human brain glia-to-neuron ratio range between66

1:1 – 6:1 (von Bartheld et al. [2016], Herculano-Houzel [2014]). Of the 170.68 billion cells, 84.667

billion are glial cells and 86.1 billion are neurons (Collman [2022]). Moreover, from the perspective68

of artificial general intelligence (AGI), it is noteworthy that the ratio of glia to neurons is brain region69

specific. This ratio is evolutionarily conserved by brain regions across species that diverged as far as70

90 million years ago.71

This evidence indicates that task-specific glia-neuron ratios in deep neural networks are meaningful72

and fundamental while imposing constraints on brain function. With regard to synaptic complexity73

between glia cells and neurons, human astrocytes, the most populous glia cell, differ dramatically74

from astrocytes in other primates as well as in rodents: 2 million synapses versus 120,000 are found75

in the human astrocytes and the degree of this synaptic plasticity is driven by astrocytes-neuronal76

interactions in the developing brain (Cheng et al. [2023]).77

Second, energy constraints, mediated via glia, enforce sparse neural coding, a property conserved78

evolutionarily (von Bartheld et al. [2016], Herculano-Houzel [2014]). Perhaps the most widely known79

example of this on a network level is the synaptic consolidation during sleep with some synapses80

being eliminated and some reinforced. On a cellular level, larger neurons show reduced rates of81

excitatory synaptic transmission.82

Third, in developmental neuroscience, there is evidence that energy constraints also drive brain83

development and pathophysiologies underlying Autism Spectrum Disorder and neurodegenerative84
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conditions like Alzheimer’s (Desplats et al. [2019], Frasch et al. [2019]). This is the subject of the85

next subsection.86

2.3 Metabolic constraints on brain development: biological glial-neuronal NAS87

Glial cells, such as astrocytes and microglia, participate in energy management, synaptic pruning,88

and plasticity of developing, adult, and aging brain. Glial functional alterations are hallmarks of the89

brains of people with Autism Spectrum Disorder or neurodegenerative conditions such as Alzheimer’s90

(Desplats et al. [2019], Frasch et al. [2019]). Notably, in both conditions, the glial function itself91

is energy-dependent. The glial cells adapt to energy availability in early life which in turn reflects92

intrauterine adversity the fetal brain may experience (Desplats et al. [2019], Frasch et al. [2019]).93

Put differently, biological NAS can be seen as a process of spatiotemporal integration of early-94

life adversities and developmental programming, such as prenatal stress and the accompanying or95

independently occurring systemic- and neuro-inflammation, on glial energy reserves that modulate96

the risk for neurodegeneration via modulation of the pace or extent of immunosenescence, i.e., neural97

function and plasticity (Desplats et al. [2019]).98

Such energy-driven network architecture selection suggests a template for NAS in AI. Conversely, ar-99

tificial NAS that incorporates these relationships has the potential to yield insights into developmental100

neuroscience and the neuroscience of aging, especially the aforementioned neurological conditions.101

This raises the question of how exactly one would go about redefining the relationship between the102

artificial neurons to include the metabolic cost of computation. To tackle this question, let us consider103

first another bit of evidence from integrative neuroscience.104

2.4 Dynamic coordination during behavioral states points to metabolic optimization105

Brain’s behavioral states, such as the NREM and REM states, also known as quiet and active states in106

neonates, are known examples of state-specific system-wide energy management (Figure 1) (Schmidt107

[2014]). The relevant insight in Figure 1 is that the systemic metabolic states are also reflected in or108

driven by dynamic relationships between the participating oscillatory networks, the one generating109

heart beats fluctuations and the one responsible for fluctuations in breathing movements. These110

phenomena can be described mathematically in simple constructs of Farey trees or Arnold tongues:111

low energy state of quiet sleep is accompanied by a 3:1 ratio of dynamic coordination between112

heartbeats and breathing movements, while the higher energy state of active sleep is accompanied by113

a break-down of such ratios into those more off center (or higher hierarchy) of the ratio distribution114

(Hoyer et al. [2001], Gebber et al. [1997]). In the following section, we review the more general case115

of the theory of dynamic coordination which provides a generic mathematical formulation of the116

observed connection between energy consumption and network dynamics.117

2.5 Dynamic coordination and metabolic optimization: linking meta-/multi-stability to the118

energy landscape119

One could conceptualize energy-driven systems’ optimization as the optimal solution to the “too120

many degrees of freedom” state of biological systems. In their 1988 Science paper, Schoener and121

Kelso express the solution via the following simple equation for a basic case of two weakly coupled122

nonlinear oscillators (Schöner and Kelso [1988]). A candidate collective variable that succinctly123

captures the dynamics of such coordinative patterns is the relative phase between the two rhythmically124

moving components. In the case of an artificial neural network, this could be a coordinative dynamics125

of two neurons or a glia-neuron pair. The collective variable ϕ (relative phase) describes the system’s126

dynamic behavior on the energy landscape V as follows:127

ϕ = −dV (ϕ)
dϕ + noise128

The attractors are thus the minima of V, whereas the maxima of V are unstable fixed points that129

separate different basins of attraction. An intrinsic feature of this dynamic pattern approach is the130

invariance of function under a change of material substrate - a reconfiguration of the connections or131

couplings among “neural” elements (Schöner and Kelso [1988], Kelso [1995], Tognoli and Kelso132

[2014], Kelso [2012]). That is, the function is not rigidly coded into the neural network. This can133

encode multimodal and multitask capabilities while also optimizing for energy. Further reading can134

be found here: Tognoli and Kelso [2014], Kelso [2012], Chauhan et al. [2022], Kelso [2021]. In the135
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Figure 1: Relationship of the brain systems’ energy states (low in quiet/NREM sleep; high in
active/REM sleep), behavioral states (memory consolidation/synaptic pruning in quiet sleep; memory
formation in active sleep)(Tononi and Cirelli [2020]) and mathematical properties of dynamic
coordination expressed as Farey trees. Reproduced with permission from IEEE (Hoyer et al. [2001]).
This is one example of many whereby biological complex open systems follow fundamental rules of
dynamic coordination (Schöner and Kelso [1988]).

proposed context, the application of the dynamic pattern approach to modeling deep glial-neural136

networks can be seen as an extension of the well-established free energy principle, now constrained137

on the available energy for predictive coding (Kirchhoff et al. [2018], Friston and Kiebel [2009],138

Isomura et al. [2022]).139

2.6 Revisiting neural architecture search: brain-inspired at every step140

Figure 2: Augmentation of NAS strategy by introducing glial-neural network design with energy-
constrained architecture search. Based on Elsken et al. [2019]

Based on the presented evidence from neuroscience, we can now update the NAS strategy accordingly141

(Figure 2). The search space can be re-defined as including glial-neuronal ensembles tuned to process142

information under metabolic constraints, rather than neuronal ensembles only tuned to reduce the143

prediction error. The search strategy now includes task-specific metastable regimes defined by a144

collective variable such as the relative phase ϕ with intrinsically encoded metabolic constraints.145

Lastly, the performance estimation strategy is driven by a combination of the free energy principle146

and dynamic coordination theory iteratively optimizing the performance estimates (minimum energy147

Emin, maximum information Imax) of the chosen architectures.148
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The novel perspective the developmental neuroscience contributes to this NAS strategy is the evolu-149

tionary, task- and modality-specific function of glial/neuronal distribution that is solved for during150

the Search Strategy step.151

Such NAS strategy will yield deep glial-neural networks (DGNNs) which are multi-stable, hence ca-152

pable of representing multiple behaviors with multistability arising from Emin constraints to represent153

multitask/multimodality with Imax predictive performance.154

3 Limitations and future directions155

Current AI is based on optimization strategies for information (Imax) without metabolic constraints156

(Emin). Developmental neuroscience is a natural yet seemingly neglected starting point for learning157

how to evolve energy- and computationally efficient and resilient pattern recognition in AI, including158

AGI.159

In neuroscience, the free energy principle and the dynamic coordination theories provide mathemat-160

ical formalisms to bridge this gap. Explicit metabolic constraints minimize surprisal maximizing161

predictive performance and optimizing energy utilization for information processing.162

Neurons are but part of the family of brain cells involved in this process in163

a) space: different brain regions specialize in different tasks, albeit this is dynamically regulated; and164

b) time: as a function of developmental cues and allostatic load - metastability.165

Future research should leverage deeper glial-neural networks. Some precedents exist (Mesejo et al.166

[2015]).167

We need NAS algorithms incorporating Emin x Imax. Is Emin for AI just the cost of electricity or also168

an intrinsic system’s property as exemplified by the theory of dynamic coordination? Evolutionary169

considerations and observations from developmental neuroscience suggest the latter should be170

considered if we are to further learn from biological brains. Future research will address the question171

if the collective variable ϕ (relative phase) can augment (multi-step or quantum?) or replace the172

traditional weights.173

Related to the above question of phase versus weight optimization is the question if Emin is more174

“important” than Imax. Modeling will be able to address this question.175

What are the implications of biomimetic NAS design for generative DGNNs behavior? Can such176

architecture help design safer AGIs?177

We started out with biological brains, let’s return to them. The order parameters identified in multi-178

stable DGNNs can inform a new generation of neuroscience models and experiments. Moreover,179

causal explainable DNNs for modeling brain behavior would be possible thanks to such intrinsically180

energy-driven NAS design.181

182
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