In-the-Flow Agentic System Optimization for Effective
Planning and Tool Use

Zhuofeng Li*"2, Haoxiang Zhang*'->, Seungju Han', Sheng Liu', Jianwen Xie?,
Yu Zhang?, Yejin Choi', James Zou'', Pan Lu'!
IStanford University, 2Texas A&M University, 3UC San Diego, 4L ambda

r~ ' Website: https://agentflow.stanford.edu
)+ C€)Code [Model Demo [L» Visualize

Abstract

Outcome-driven reinforcement learning has advanced reasoning in large language
models (LLMs), but prevailing tool-augmented approaches train a single, mono-
lithic policy that interleaves thoughts and tool calls under full context; this scales
poorly with long horizons and diverse tools and generalizes weakly to new scenar-
ios. Agentic systems offer a promising alternative by decomposing work across
specialized modules, yet most remain training-free or rely on offline training decou-
pled from the live dynamics of multi-turn interaction. We introduce AGENTFLOW,
a trainable, in-the-flow agentic framework that coordinates four modules (planner,
executor, verifier, generator) through an evolving memory and directly optimizes
its planner inside the multi-turn loop. To train on-policy in live environments,
we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which
tackles long-horizon, sparse-reward credit assignment by converting multi-turn
optimization into a sequence of tractable single-turn policy updates. It broadcasts a
single, verifiable trajectory-level outcome to every turn to align local planner deci-
sions with global success and stabilizes learning with group-normalized advantages.
Across ten benchmarks, AGENTFLOW with a 7B-scale backbone outperforms top-
performing baselines with average accuracy gains of 14.9% on search, 14.0%
on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpass-
ing larger proprietary models like GPT-40. Further analyses confirm the benefits
of in-the-flow optimization, showing improved planning, enhanced tool-calling
reliability, and positive scaling with model size and reasoning turns.

—o— AgentFlow (w/o Flow-GRPO) ——e=— AgentFlow 2Wiki (Search) HotpotQA (Search) GAIA (Agentic)
77.2 33.1
54.0 5 30

@
3

Bamboogle

2

3
v
I
o

g
- 435
+ 0 Iy 495 476 7.
7.0% +10.1% S, 3820 440 0 = 20 1731%1173
Science 3
Search 8 23.0 0] 210
< 20 10 6.3
3.2
GPQA HotpotQA
Qwen-2.5-7B GPT-40 (~2008B) Search-R1 (7B) ReSearch (7B)
TIR (7B) ToRL (7B) AutoGen (7B) EEEEN AgentFlow (7B)
AIME24 (Math) GameOf24 (Math) GPQA (Science)
GameO¥24 Musique 40 400 “ 53.0 5o
y S
\530 o 40
+19.8% 2 20.0 " 33.032,033.03 9 2
9 133 13.3 24.0
0
Math AMORS caia +15.9% g, . 00 2 2
Agentic
AIME24

Figure 1: Left: Performance of AGENTFLOW with a 7B-scale backbone before and after Flow-GRPO
tuning across ten diverse reasoning benchmarks. Flow-GRPO substantially improves performance by
enhancing planning and tool-calling capabilities. Right: AGENTFLOW achieves consistent gains over
top baselines, including base LLMs, tool-integrated RL models, and training-free agentic systems.

*Equal contribution. Co-senior authors. Work was partially done while ZL and HZ were visiting Stanford.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

https://agentflow.stanford.edu
https://agentflow.stanford.edu
https://github.com/lupantech/AgentFlow
https://huggingface.co/AgentFlow/models
https://huggingface.co/spaces/AgentFlow/agentflow
https://agentflow.stanford.edu/#visualization

[Query J [ToolkitSet © @ & B & -]

S PO 6 m l®
Planner Planner g @ [Executor gfj Verlﬁer] @ Memory
]

Turn 2 A
,
o
Input: Input: Input:

[Query Analysis] [Current Sub-Goal] [Generated Command]
[Global Goal] [Selected Tool & [Execution Result]

Turn T A
[—{" [Required Skills] Context] .
T N ; > Output: -
S Planner Executor Verifier Generator] Output: [Tool Metadata] i (el Trained

[Current Sub-Goal] Output: [Memory Analysis]
[Selected Tool] [Generated Command] [Verification Status] =
[Context for Tool Use] | | [Execution Result] rozen
Memory Answer

(a) AgentFlow: In-the-Flow Agentic System (b) In-the-Flow Rollout at Turn ¢

Figure 2: (a) Overview of AGENTFLOW, a trainable agentic system for in-the-flow planning and tool
use. Four modules (planner, executor, verifier, generator) coordinate via a shared evolving memory
M and toolset K, given a query g. The planner policy is optimized on-policy inside the system’s
multi-turn loop to enable adaptive, long-horizon reasoning. (b) A single state transition, showing the
action a?, execution result e?, and verifier signal v* that update the memory from M? to M+,

1 Introduction

Recent advances in large language models (LLMs) have unlocked remarkable reasoning capabilities
through reinforcement learning (RL) [1, 2]. A complementary line of work augments LLMs with
external tools (e.g., web search, code execution) for knowledge retrieval and precise computation.
Building on these foundations, Tool-integrated reasoning (TIR) extends reinforcement learning with
verifiable rewards to learn when and how to call tools by interleaving reasoning (e.g., <think>) with
tool invocations (e.g., <tool_call>) under full context [3, 4, 5, 6]. However, these methods still
train a single, monolithic policy under multi-turn full-context reasoning, which introduces scaling
challenges: (i) training becomes increasingly unstable as horizons lengthen, tool diversity grows, and
environments shift with tool feedback [7, 8, 9, 10]; and (ii) inference-time generalization remains
brittle to unseen tasks or tools [11, 12].

Agentic systems [13, 14, 12] offer a promising alternative by ensembling multiple modules or
specialized components with dedicated tools coordinated via shared memory and inter-module
communication. However, achieving robust coordination in such systems ultimately requires training,
since handcrafted logic or static prompting cannot reliably capture when and how modules should
collaborate, adapt to evolving tool outputs, or recover from early mistakes. At the same time, they
introduce new training challenges: modules coordinate sequentially, long-horizon reasoning chains
with sparse reward, and state distributions shift with evolving tool outputs. As a result, most systems
remain training-free, relying on handcrafted logic or prompting heuristics. Thus, agentic systems
struggle with brittle adaptation and inefficient orchestration in dynamic environments.

To address the challenge of learning long-horizon reasoning with sparse rewards in tool-integrated
agentic systems, we introduce AGENTFLOW, a trainable, in-the-flow agentic framework that co-
ordinates four modules (planner, executor, verifier, generator) through an evolving memory and
a toolkit, and directly optimizes its planner inside the live multi-turn loop for effective planning
and tool use (Figure 2). To train the planner on-policy within this agentic system, we need to
overcome the long-horizon credit assignment problem inherent to sparse, trajectory-level rewards.
We propose Flow-based Group Refined Policy Optimization (Flow-GRPO, Figure 3), an on-policy,
outcome-driven algorithm. Flow-GRPO uniquely transforms the multi-turn reinforcement learning
problem into a sequence of tractable single-turn policy updates by broadcasting a single, verifiable
final-outcome reward from the trajectory’s end to every turn. Through comprehensive experiments
on ten benchmarks, we demonstrate that AGENTFLOW with a 7B backbone substantially outper-
forms specialized baselines and even ~200B-parameter GPT-40 [15]. Further analyses confirm our
approach consistently improves planning, enhances tool-calling reliability, and scales with model
size and turn budgets.

2 Methodology
2.1 AGENTFLOW: An In-the-Flow Agentic System

We propose AGENTFLOW, a general-purpose tool-integrated agentic framework for complex reason-
ing through fine-grained planning and effective tool use. The framework decomposes the problem-
solving process into a sequence of interactions among four specialized modules: a trainable Action
Planner, a Tool Executor, an Execution Verifier, and a Solution Generator. These modules coordinate

Flow-GRPO

, ——{o]
Policy
1 2 1 2
Moat | —{a)
KL Multi-turn Group
1 PR t3 . . Computation
—{a) (3] ([P

T Trained Frozen
Multi-turn Agentic System Rollouts
Figure 3: Optimization for our proposed agentic system AGENTFLOW. Given a query ¢, an
evolving memory M, and a toolset I, the policy model generates actions that target sub-goals and

select tools. It is trained via Flow-based Group Refined Policy Optimization (Flow-GRPO), which
enables multi-turn reinforcement learning and stable optimization under collaborative dynamics.

Reference
Model

via a toolkit and a shared, evolving memory that explicitly records the agent’s reasoning history. In
each turn, the Planner selects a tool-based action, which is then executed by the executor and verified
by the verifier. The outcome deterministically updates the memory, continuing the loop until the
Verifier signals task completion or a turn budget is reached. Finally, the Generator produces the
solution based on the accumulated memory trace. This framework formalizes the reasoning chain
into an observable trajectory, where the explicit memory ensures transparency and controllability
over the agent’s multi-turn decisions. Detailed sequential definition can be found in §C.

2.2 In-The-Flow Reinforcement Learning Optimization

To train the planner on-policy in our agentic system under long-horizon, sparse-reward conditions,
we propose Flow-based Group Refined Policy Optimization (Flow-GRPO). We assign a single,
verifiable final-outcome reward to the entire trajectory and broadcast it to every turn. This core
design transforms the complex multi-turn reinforcement learning problem into a series of tractable,
independent single-turn policy updates, where each update is conditioned on the full memory context
and aligned with global success. To stabilize learning and reduce variance across parallel on-policy
rollouts, we further employ group-normalized advantages, implemented within a token-level PPO
objective that uses clipping and KL regularization. The resulting objective is:

Jriow-Greo () = E gy ~D, (r}Gy ~may

G T; | f‘
1 1 1 . .
G2 T a2 min{pf; AL clip(pl;, 1= ¢, 14 €) Af} — BDrau(mo | mef)} :
i=1 "' t=1 "1 j=1
(D

where the terms are defined as: G is the number of parallel on-policy rollouts in a group for each
query q. T; is the total number of turns in trajectory 7;. |a!| is the number of tokens in the action
generated at turn ¢ of trajectory <. pﬁ)j is the token-level importance sampling ratio between the
current policy 7y and the old policy g, used to generate the data. A! is the group-normalized
advantage computed by the final response correctness for trajectory ¢, which is constant across all
turns ¢. € is the clipping hyperparameter for the PPO-style objective. 3 is the coefficient for the
KL divergence penalty. Dky, (g || mer) is the KL divergence against a fixed reference policy mrer
to stabilize training. More detailed motivation and the formulation of these hyperparameters in
Flow-GRPO are in §D.

3 Experiments

In main experiments, all modules—Action Planner, Tool Executor, Executive Verifier, and Solution
Generator—are instantiated with the Qwen2.5-7B-Instruct model [20]. Among these, only the
Action Planner is trainable. The system operates with five interactive tools: Base Generator, Python
Coder, Google Search, Wikipedia Search, and Web Search. We mix data from Search-R1 [3] and
DeepMath [21] as training data. Tools, datasets, baseline, and more experimental details are in §G.

3.1 Main Results

Baselines. As presented in Tables 1 and 2, we include five categories of baselines: (1) Open-
source LLMs: Qwen2.5 [20], Llama-3.1, and Llama-3.3 [27]; (2) Proprietary LLMs: GPT-40-mini
and GPT-40; (3) Reasoning LLMs: supervised fine-tuning [25], SimpleRL-reason, Open-Reasoner-
Zero, General-Reasoner, and LUFFY; (4) Tool-integrated reasoning LLMs: both search-enhanced,

\ Search Intensive Agentic

Model Size | Bamboogle 2Wiki HotpotQA Musique | Avg. A |GAIA A

Qwen-2.5-7B-Instruct 7B-Inst 12.0 23.0 21.0 6.0 155 |48y 32 [1299
Qwen-2.5-14B-Instruct 14B-Inst 21.6 26.7 20.0 8.0 19.1 [1382 5.5 127.6
Qwen-2.5-32B-Instruct 32B-Inst 24.0 26.7 27.0 6.0 209 [1364 9.5 123.6
Llama-3.3-70B-Instruct 70B-Inst 18.4 22.7 52.0 16.0 27.3 | 130.0 32 1299
GPT-40-mini [15] ~8B 40.8 35.6 41.0 15.0 33.1 [1242 7.1 126.0
GPT-4o0 [15] ~200B 68.8 49.5 54.0 24.0 49.1 182 173 1158
Supervised Fine-Tuning (SFT) 7B-Inst | 12.0 25.9 22.0 6.6 | 166 [FHEOMN 32 [1299
Iter-RetGen [16] 7B-Inst 36.8 33.6 37.4 17.8 314 [1259| 39 [1292
Search-R1 [3] 7B-Inst 432 38.2 37.0 14.6 333 (1240 | 19.1 1140
ZeroSearch [17] 7B-Base 27.8 35.2 34.6 18.0 289 (1284 165 116.6
ReSearch [5] 7B-Base 42.4 47.6 43.5 223 390 1183 | 173 1158
StepSearch [18] 7B-Base 40.0 36.6 38.6 22.6 345 1228 - -

VerlTool [19] 7B-Base 46.4 453 44.8 193 | 390 1183 | 112 [F21.9
AutoGen [13] 7B-Inst ‘ 59.6 44.0 50.0 159 ‘ 424 1149 ‘ 6.3 126.8
AGENTFLOW 7B-Inst 58.4 60.0 51.3 19.2 472 1121 172 1159
AGENTFLOW (w/ Flow-GRPO) 7B-Inst 69.6 77.2 57.0 253 57.3 - 33.1 -

Table 1: Accuracy comparison on search-intensive and agentic tasks. 7B-Base refers to Qwen-
2.5-7B-Base and 7B-Inst refers to Qwen-2.5-7B-Instruct. AutoGen and our AGENTFLOW method
are agentic systems, which use Qwen-2.5-7B-Instruct for the LLM-powered agents and tools for fair

comparison. We visualize the gains of AGENTFLOW to the each baseline in the A columns .

\ Math Reasoning Scientific Reasoning

Model Size | AIME24 AMC23 GameOf24| Avg. A |GPQA MedQA| Avg. A

Qwen-2.5-7B-Instruct 7B-Inst 6.7 475 33.0 29.1 F92215Y 34.0 66.0 | 50.0 1135
Qwen-2.5-14B-Instruct 14B-Inst 6.7 60.0 25.0 30.6 [$21.0| 31.0 750 | 53.0 1105
Llama-3.3-70B-Instruct 70B-Inst 6.7 475 31.0 28.4 [123.1| 35.0 67.0 | 51.0 ft125
Llama-3.1-405B-Instruct 405B-Inst| 26.7 475 23.0 324 1£19.1| 30.0 62.0 | 46.0 1175
GPT-40-mini [15] ~8B 133 57.5 16.0 28.9 F226] 27.0 66.0 | 46.5 1717:0
GPT-40 [15] ~200B 133 60.0 32.0 351 t164| 31.0 60.0 | 455 118.0
Supervised Fine-Tuning (SFT) ~ 7B-Inst | 6.7 475 33.0 | 29.1 FN225] 34.0 66.0 | 50.0 [113.5
SimpleRL-reason [2] 7B-Base 16.7 60.0 33.0 36.6 [F1510] 45.0 650 | 50.0 4135
Open-Reasoner-Zero [22] 7B-Base 16.7 54.9 32.0 345 [117.0| 34.0 54.0 | 44.0 (1195
General-Reasoner [23] 7B-Base 13.3 55.0 33.0 33.8 117.7| 355 61.0 483 1152
Luffy [24] 7B-Inst 30.7 448 33.0 362 1153 340 770 | 555 180
TIR [25] 7B-Inst 10.0 50.0 33.0 31.0 F720157 42.0 76.8 | 594 14.1
ToRL [26] 7B-Inst 20.0 60.0 31.0 370 1145 350 765 | 558 177
AutoGen [13] 7B-Inst | 13.3 57.5 240 | 31.6 7199 42.0 720 | 570 165
AGENTFLOW 7B-Inst ‘ 16.7 474 31.0 31.7 198 ‘ 37.0 76.0 | 565 17.0

AGENTFLOW (w/ Flow-GRPO) 7B-Inst 40.0 61.5 53.0 51.5 47.0 80.0 | 63.5 -

Table 2: Accuracy comparison of mathematical and scientific reasoning tasks.

including Iter-RetGen, Search-R1, ZeroSearch, ReSearch, StepSearch, and VerlTool, and code-
enhanced, including TIR and ToRL; (5) Training-free agentic system: AutoGen. More details on
baseline implementations are in §G.4.

Key insights. AGENTFLOW consistently outperforms all baseline models by large margins. Com-
pared to the best-performing 7B models without tool integration, AGENTFLOW achieves absolute
gains of 40.7% on search (SFT), 29.9% on agentic reasoning (SFT), 15.0% on math (SimpleRL-
reason), and 8.0% on scientific tasks (Luffy). Against specialized tool-integrated systems, AGENT-
FLOW surpasses the top models by 14.9% in search (AutoGen), 14.0% in agentic reasoning (Search-
R1), 14.5% in math (ToRL), and 4.1% in science (TIR). Notably, our 7B-backbone AGENTFLOW
even outperforms the ~200B-parameter GPT-40 across all domains, with gains ranging from 8.2% to
18.0%. A detailed analysis is provided in §H.1.

3.2 In-depth Analysis

Flow-GRPO incentivizes autonomous discovery of new solutions. We show one case study
example in Figure 4. We further investigate qualitative examples in §J. These cases show that
AGENTFLOW, trained with Flow-GRPO, develops enhanced capabilities for task planning and tool
use. The planner exhibits adaptive efficiency, more robust self-correction, and spontaneous new
combinations of tools during the step-by-step problem-solving process, autonomously discovering
effective solution pathways.

T o f 1
Quest-mn G th.e ‘_:hECk el e eesiisns D i 0:der1 C‘Pc Selected tool: Wikipedia Search (Truncated...) ® Result: No results found. @ x }
Helotiales would have if it were an ISBN-10 number. ¢ (1L} — o
Ground truth answer: 3 -
3 2 o Sel d tool: Google Search (Truncated...) ® Result: Tropicos ID: 100370510. e\ Q
1
C- Selected tool: Wikipedia Search @ @\ ¥
o Sub-goal: Retrieve Tropicos ID of Order Helotiales from Wikipedia. © Selected tool: Python Coder
« Tool call: query="Tropicos ID for the Order Helotiales" x N Sul?-goa!;YVritlifxnd execute a Python sgipt to calculate the check digit for e
e Result: No results found for query: Tropicos ID for Order Helotiales. tropicos_id" as if it were an ISBN-10 number.
1 Tool call: query="Calculate the check digit for the ISBN-10 number" + tropicos_id
@ © Result: Error in execute_command: name 'tropicos_id' is not defined. x
* Selected tool: Google Search @ 3
* Sub-goal: Retrieve the Tropicos ID of the Order. @ Selected tool: Python Cod
 Tool call: query="Tropicos ID for the Order Helotiales" CEEEAEIEDR on Coder
© Result: Thqe Tropicos ID for the Order Helotiales is 100370510. Q O Sub-goaI;Writi and execute a Python siript to calculate the check digit for e
“tropicos_id" as if it were an ISBN-10 number.
@ | T ¥ @ Tool call: query="Compute the check digit for 100370510 as an ISBN-10 number”
* Selected tool: Python Coder - . e‘ ® Result: 3 (printed output).
O §ub-goal: Calculate the check digit for the Tropicos ID 100370510 def calculate_check_digit(isbn):
if it were an ISBN-10 number. isbn_digits = [int(digit) for digit in isbn[:9]]
* Tool call: query="Calculate check digit for ISBN-10 number 100370510" total_sum = sum(position * digit for position, digit in enumerate(isbn_digits, start=1))
© Result: name 'isbn' is not defined. cfhack_digif = total_sum % 11
if check_digit == 10:
79 ‘ return ‘X
"~/ Action steps 3 to 9 have similar sub-goals, commands, and results; t)'(i else: o
the agent is stuck in error loops and unable fix the naming issue. KA) - refulrn IS';(Chi‘:kId'gf “?*(”)
result = calculate_check_digi
print(f*The check digit is {result}”) O
Solution: The Python tool failed repeatedly with the same 'isbn’ v
variable error). The agent failed to calculate the check digit. x [Solution: The check digit is 3, resulting in the full number 1003705103. Q]
(1 2N . . A O . .
(. ‘,l AgentFlow (before Flow-GRPO Fine-tuning) \ﬂ’ G‘ "D AgentFlow (after Flow-GRPO Fine-tuning)
[[

Figure 4: One case study example. Initially failed with repetitive errors (left), AGENTFLOW, trained
with Flow-GRPO, explores a new solution pathway at turn 4 after two failed attempts (right).

Flow-GRPO optimizes tool usage and scales with param size. Our analysis shows that Flow-
GRPO significantly optimizes the planner’s strategy. Regarding tool usage (Fig. 5), the planner learns
to select tools appropriate for the task: for instance, on 2Wiki task, it increases Google Search usage
by 42.0%, while on the domain-specific MedQA benchmark, it shifts away from Google search
(66.2% — 10.9%) in favor of the specialized Wikipedia Search (usage increases to 59.8%) with Web
Search. Furthermore, this optimization proves to be scalable. When we train the system with both 3B
and 7B backbones (Fig. 6), Flow-GRPO delivered consistent performance gains across both model
sizes, demonstrating the general effectiveness of our in-the-flow optimization approach.

AgentFlow (Qwen-2.5-3B-Instruct) AgentFlow (Qwen-2.5-7B-Instruct)

Before tuning
= After tuning

Before tuning
mm After tuning

Acc:60.0% Acc: 77.2% (+17.2%) Acc: 76.0% Acc: 80.0% (+4.0%)

o
S

After Fine-tuning - After Fine-tuning +59.8

Accuracy (%)
8

N
o

Tool Call Ratio (%)
Nwsgag

[0
Bamboogle 2Wiki GAIA AIME24 Bamboogle 2Wiki GAIA AIME24

0

Step 0 Step 32
(a) 2Wiki Training Steps

siep 32 Figure 6: Flow-GRPO fine-tuning offers consistent
gains on AGENTFLOW as the backbone model size

Figure 5: Tool call ratio change by Flow-GRPO. scales from 3B to 7B.

More experiment results empirically show our in-the-flow RL is crucial, tool call efficiency, training

efficiency, and scaling performance along with turns, can be found in §H. Instructions for each of our

module can be found in §I.1.

Step 0
(b) MedQA Training Steps

4 Conclusion

We presented AGENTFLOW, a trainable, in-the-flow agentic system that coordinates four specialized
modules via an evolving memory and optimizes its planner directly inside the multi-turn loop. To en-
able stable on-policy learning under long-horizon, sparse-reward settings, we introduced Flow-GRPO,
which converts multi-turn RL into a sequence of tractable single-turn policy updates by broadcasting
a single, verifiable trajectory-level outcome to every turn and stabilizing credit assignment with
group-normalized advantages. Comprehensive experiments show that AGENTFLOW achieves strong
cross-domain performance, surpassing specialized baselines and even larger proprietary models.
In-depth analyses confirm improved planning and tool-calling reliability, along with positive scaling
trends in model size and allowed turn budgets.

Acknowledgment

We would like to thank Yihe Deng, Xuehang Guo, and Kunlun Zhu for their valuable input during
the early stages of this work. We are grateful to Lambda for providing GPU resources. This work
was partially supported by the Hoffman-Yee Research Grants program at Stanford HAI, the Al for
Math Fund by Renaissance Philanthropy, ONR MURI N00014-24-1-2748, and the Al Research Hub
Project through KAIST.

References

(1]

[2

—

(3]

[4

—

(5

—

[6

—_

[7

—

(8

—_—

[9

—

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025. 2

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo:
Investigating and taming zero reinforcement learning for open base models in the wild. arXiv preprint
arXiv:2503.18892,2025. 2,4, 17

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. Search-R1: Training llms to reason and leverage search engines with reinforcement learning. arXiv
preprint arXiv:2503.09516, 2025. 2, 3, 4, 10, 17

Huatong Song, Jinhao Jiang, Yingqgian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning. arXiv
preprint arXiv:2503.05592, 2025. 2, 10

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan, Wen
Zhang, Huajun Chen, Fan Yang, et al. ReSearch: Learning to reason with search for llms via reinforcement
learning. arXiv preprint arXiv:2503.19470, 2025. 2, 4, 10, 17

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms. arXiv preprint
arXiv:2504.11536, 2025. 2, 10

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin, Kefan
Yu, Minh Nhat Nguyen, Licheng Liu, et al. RAGEN: Understanding self-evolution in 1lm agents via
multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025. 2, 11

Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wenqiang Zhang. Agent RL Scaling
Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving. arXiv preprint
arXiv:2505.07773,2025. 2, 10

Moonshot Al. Kimi-Researcher: End-to-End RL Training for Emerging Agentic Capabilities. https:
//moonshotai.github.io/Kimi-Researcher/, June 2025. 2

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Simpletir: End-
to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint arXiv:2509.02479,
2025. 2,10

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui Zhou,
Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner via reinforcement
learning. arXiv preprint arXiv:2505.16410, 2025. 2, 11

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan Jin,
Yingru Li, Qiguang Chen, et al. Owl: Optimized workforce learning for general multi-agent assistance in
real-world task automation. arXiv preprint arXiv:2505.23885, 2025. 2

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent conversations.
In First Conference on Language Modeling (COLM), 2024. 2, 4,10, 11, 17

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. MetaGPT: Meta programming for a multi-agent
collaborative framework. In International Conference on Learning Representations (ICLR), 2024. 2, 10,
11

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-40 system card. arXiv preprint arXiv:2410.21276,
2024. 2,4, 16

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 9248-9274,2023. 4, 17

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang, Fei
Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without searching. arXiv
preprint arXiv:2505.04588, 2025. 4, 10, 17

https://moonshotai.github.io/Kimi-Researcher/
https://moonshotai.github.io/Kimi-Researcher/

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu. Stepsearch:
Igniting 1lms search ability via step-wise proximal policy optimization. arXiv preprint arXiv:2505.15107,
2025. 4,11, 17

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou,
Chao Du, et al. VerlTool: Towards holistic agentic reinforcement learning with tool use. arXiv preprint
arXiv:2509.01055,2025. 4, 11, 17

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024. 3, 16

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen
Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable
mathematical dataset for advancing reasoning. arXiv preprint arXiv:2504.11456, 2025. 3

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-
reasoner-zero: An open source approach to scaling up reinforcement learning on the base model. arXiv
preprint arXiv:2503.24290, 2025. 4, 17

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025. 4, 17

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang. Learning
to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025. 4, 17

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122,2024. 3,4, 17

Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383,2025. 4, 10, 17

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783,2024. 3, 16

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024. 10

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025. 10

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tiir, Gokhan Tur, and
Heng Ji. ToolRL: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958, 2025. 10, 11

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. OctoTools: An agentic
framework with extensible tools for complex reasoning. arXiv preprint arXiv:2502.11271,2025. 10, 11

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. Search-ol: Agentic search-enhanced large reasoning models. arXiv preprint arXiv:2501.05366,
2025. 10

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhiding
Yu, and Guilin Liu. Nemotron-research-tool-nl: Tool-using language models with reinforced reasoning.
arXiv preprint arXiv:2505.00024, 2025. 11

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong. Reinforcing
multi-turn reasoning in llm agents via turn-level credit assignment. arXiv preprint arXiv:2505.11821, 2025.
11

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi
Wang, Kam-Fai Wong, and Heng Ji. Acting less is reasoning more! teaching model to act efficiently. arXiv
preprint arXiv:2504.14870, 2025. 11

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]
(52]

[53]

[54]

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tiir, Gokhan Tur,
and Heng Ji. SMART: Self-aware agent for tool overuse mitigation. In Findings of the Association for
Computational Linguistics: ACL 2025, pages 4604—4621, 2025. 11

Zihao Cheng, Hongru Wang, Zeming Liu, Yuhang Guo, Yuanfang Guo, Yunhong Wang, and Haifeng
Wang. ToolSpectrum: Towards personalized tool utilization for large language models. In Findings of the
Association for Computational Linguistics: ACL 2025, pages 20679-20699, 2025. 11

Chengrui Huang, Shen Gao, Zhengliang Shi, Dongsheng Wang, and Shuo Shang. TTPA: Token-
level tool-use preference alignment training framework with fine-grained evaluation. arXiv preprint
arXiv:2505.20016, 2025. 11

Yingfan Deng, Anhao Zhou, Yuan Yuan, Xian Zhang, Yifei Zou, and Dongxiao Yu. Pe-ma: Parameter-
efficient co-evolution of multi-agent systems. arXiv preprint arXiv:2506.11803,2025. 11

Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-tuning.
arXiv preprint arXiv:2504.16129, 2025. 11

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev, Philip HS
Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improving reasoning with
multi-agent llm training. arXiv preprint arXiv:2412.01928, 2024. 11, 12

Chanwoo Park, Seungju Han, Xingzhi Guo, A. Ozdaglar, Kaiging Zhang, and Joo-Kyung Kim. MAPoRL:
Multi-agent post-co-training for collaborative large language models with reinforcement learning. In
Annual Meeting of the Association for Computational Linguistics (ACL, 2025. 11, 12

Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. SPA-RL: Reinforcing 1lm agents
via stepwise progress attribution. arXiv preprint arXiv:2505.20732, 2025. 11

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning (ICML), pages 1889-1897. PMLR, 2015.
15

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring and
narrowing the compositionality gap in language models. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687-5711, 2023. 18

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
ga dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th International
Conference on Computational Linguistics (COLING), pages 6609-6625, 2020. 18

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 2369-2380, 2018. 18

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics (TACL), 10:539-554, 2022. 18

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a
benchmark for general ai assistants. In The Twelfth International Conference on Learning Representations
(ICLR),2023. 18

Art of Problem Solving. Aime problems and solutions, 2025. 18
MAA. American mathematics competitions. In American Mathematics Competitions, 2023. 18

Nathan Lile. Math twenty four (24s game) dataset. https://huggingface.co/datasets/nlile/
24-game, 2024. 18

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024. 18

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease
does this patient have? a large-scale open domain question answering dataset from medical exams. Applied
Sciences, 11(14):6421, 2021. 18

https://huggingface.co/datasets/nlile/24-game
https://huggingface.co/datasets/nlile/24-game

Table of Contents

A Preliminary 10
B Related Work 10
C AGENTFLOW: An In-the-Flow Agentic System 11
D Flow-based Group Refined Policy Optimization 11
E Training Algorithm of AGENTFLOW 13
F Theoretical Analysis of Flow-GRPO 14
F.1 Preliminaries and Notation 14
F.2 Equivalence Proof for Optimization Objectives 14
FE3 Convergence Analysis e 15
G Experimental Details 16
G.1 ToolDetails e 16
G.2 TrainingDetails 16
G.3 EvaluationDetails 16
G.4 Compared Baselines 16
G.5 Evaluation Datasets 18
H More Discussion about Experiment Results 19
H.1 Main Result Analysis 19
H.2 Training Strategies on the Planner 19
H.3 In-depth Analysis of Optimized Planning 20
H.4 Training Efficiency Analysis 21
H.5 Scaling Trends in AGENTFLOW 21
I Instruction Templates in AGENTFLOW 23
.1 Modulesand Memory L e 23
1.2 Toolset Metadata e e e 27
I3 LLM-basedJudging e 33
J Case Studies 34
J.1 Example 1: Efficient Search for Simple Tasks 34
J.2 Example 2: Spontaneous Brute-force oL 35
J.3 Example 3: A Good Initial Plan is Essential 37
J.4 Example 4: Robust Self-Correction and Adaptation 39
J.5 Example 5: New Combo: Retrieve with Specific URL 41
J.6 Example 6: Rapid and Correct Physics Calculation 43
J.7 Example 7: Multi-Source Cross-Verification 45

A Preliminary

Reinforcement learning for reasoning LLLMs. Recent progress in reasoning LLLMs has been
significantly driven by reinforcement learning from outcome feedback, using a verifiable reward
signal [28, 29]. This paradigm fine-tunes a language model to maximize an outcome-based reward
while remaining close to a reference policy. Formally, the objective is to optimize a policy LLM 7y
to generate a response o for a given query ¢ from dataset D:

H}%X EIN’D,ON‘/re(-\q) [R(Q> 0)] - BDKL(WH(O ‘ q) || 7Tref(o | Q)) 3 (2)

where R(q, o) is the outcome-based reward, 7 is a reference model to prevent policy collapse, and
[controls KL regularization. Algorithms like Group Relative Policy Optimization (GRPO) [28]
implement this by sampling groups of responses, normalizing advantages by their rewards, and
updating the policy with a clipped objective to encourage high-reward outputs.

Tool-integrated reasoning models (LLM agents). LLMs can be augmented with external tools
to access knowledge and perform precise computation under reinforcement learning with outcome-
based reward. As shown in Figure 7(a), the LLM interleaves reasoning and tool calls, pro-
ducing a chain of thought within <think></think> tokens followed by tool invocations (e.g.,
<tool_call></tool_call>). The resulting trajectory 7 is a sequence of model generations and
tool observations: 7 = {sl, at,el, ... s7, aT}, where st denotes the context, a’ the generated
action (thought + tool call), and e the tool’s execution result. The policy model g is then trained to
maximize a final outcome reward. Prior work has explored single- and multi-tool settings for search
and code execution [3, 5, 6, 30].

Agentic systems with tool usage. An alternative approach is the use of agentic systems [13, 14, 31].
As shown in Figure 7(b), these frameworks deploy multiple specialized modules—often distinct
LLMs with carefully designed prompts and roles—within a collaborative workflow. By decomposing
tasks and assigning subproblems to modules with dedicated tools and capabilities (e.g., planner,
coder, critic), they can address complex problems such as web browsing, document processing, and
multi-stage programming that exceed the scope of a single model. A central limitation, however, is
that these systems are typically training-free: modules remain frozen pre-trained models orchestrated
by handcrafted logic or prompting heuristics.

Query

Module 1 [Module 1 Module 2]

Module 2 Module 3

u

<tools>
</tools>

—
—

Trained

<think> </think>

<tool_call> </tool_call>

Answer Answer

(a) Tool-Integrated Reasoning Models (LLM Agents) (b) Training-Free Agentic Systems

<think> </think>

<tool_call> </tool_call>

<answer> </answer >

Frozen

token Module N

ol

-l

Figure 7: Comparison of two paradigms of LLMs with tool use. (a) Monolithic tool-integrated
reasoning models train a single policy to interleave reasoning (e.g., <think>) and tool calls (e.g.,
<tool_call>) within a single, full-context trajectory. (b) Agentic systems decompose tasks across
multiple specialized modules (e.g., planner, coder) that collaborate. These systems are typically
training-free, orchestrated by handcrafted logic or prompting.

B Related Work

Reinforcement learning (RL) from outcome-based rewards has become a dominant paradigm for
training LLMs to use external tools. Much of this work trains a single, monolithic policy to interleave
reasoning with tool calls. This strategy has proven effective in specialized, single-tool settings, such
as code execution for mathematical problems [8, 10, 6, 26] and web search for knowledge-intensive
questions [3, 3, 4, 32, 17]. Recent efforts have extended this monolithic framework to multi-tool

10

environments by focusing on data synthesis [11], unified training infrastructure [19], and principled
reward design [30, 33]. However, this monolithic approach scales poorly as task complexity and
planning horizons grow. The central challenge is long-horizon credit assignment; attributing a
final outcome to specific intermediate tool calls remains difficult, even with fine-grained, turn-level
rewards [34, 18]. This difficulty leads to training instability and brittle inference-time generalization,
manifesting as strategic deficiencies like tool overuse or “cognitive offloading” [35, 36], suboptimal
personalization [37], and poor alignment with user preferences for tool invocation [38].

Agentic systems with tool use. Agentic systems offer an alternative to monolithic models by
decomposing tasks across specialized modules. Many such systems are training-free, orchestrating
pre-trained LLMs with handcrafted logic and prompting, as seen in frameworks like AutoGen [13],
MetaGPT [14], and OctoTools [31]. This static approach, however, limits their ability to learn and
adapt collaborative strategies from experience. Recognizing this, recent work explores training these
systems to improve coordination [39, 40]. However, most training paradigms are offfine, relying
on supervised fine-tuning or preference optimization on static datasets [41, 42]. These methods are
decoupled from the live, multi-turn dynamics of the system, preventing modules from learning to
adapt to evolving tool outputs or recover from early mistakes. Training directly in the flow with
on-policy RL is difficult due to sparse rewards and long-horizon credit assignment, where feedback is
delayed across long reasoning chains and shifting state distributions [7]. Consequently, these systems
often suffer from brittle adaptation and require complex reward shaping to learn effectively [43].

C AGENTFLOW: An In-the-Flow Agentic System

We propose AGENTFLOW, a general-purpose tool-integrated agentic framework for solving complex
reasoning tasks through fine-grained planning and effective tool use within a multi-turn architecture.
As shown in Figure 2, the framework comprises four specialized modules—Action Planner P,
Tool Executor £, Execution Verifier)V, and Solution Generator G—coordinated by a shared
evolving memory M and a toolset /. These modules interact sequentially and iteratively to perform
action planning, tool execution, context verification, and solution generation, thereby enabling
tool-integrated reasoning across multiple turns.

We formalize AGENTFLOW'’s problem-solving process as a multi-turn Markov Decision Process
(MDP). Given a query ¢ and a toolset K, the system proceeds for a variable number of turns. Let
M denote the memory state before turn ¢ (with M initialized from ¢). At turn ¢, the planner P (a
trainable policy 7g) formulates a sub-goal, selects an appropriate tool k£ € K, and retrieves relevant
context from memory, producing an action: at ~ my(a® | q, K, M?).

The executor & invokes the chosen tool with context, yielding an execution observation ¢! ~ & (e |
a', K). The verifier then evaluates whether e’ is valid and whether the accumulated memory is
sufficient to solve the query, producing a binary verification signal v! ~ V(v? | ¢, et, M?). If v* = 0,
the memory is updated deterministically to incorporate new evidence: M™1 = f..(M? at, et v?),
where fimem(+) denotes the memory-update function, which records agent-process information in a
concise, structured form along with contextual details such as time, turn index, and error signals.

The process repeats until v! = 1 (termination) or a predefined maximum turn budget is reached.
Upon termination at turn 7', the solution generator G produces the final solution o, conditioned on the
query and the accumulated memory: o ~ G(o | ¢, MT).

This formulation decomposes multi-turn, tool-integrated reasoning into structured, observable transi-
tions. After T turns, the trajectory 7 = {(a’, ', v*)}Z_; records the history of planning, execution,
and verification. The joint generative process can be written as

T
pe({at7et,vt}le, o q) = {Hﬂe(at | ¢, K, M") E(e" | o', K) V(v' | g,¢', M*)| G(o] g, MT), (3)
t=1

where {a’, e?,v!}]_, are explicit realizations of the latent reasoning chain. Importantly, unlike latent
thoughts behind trajectories, our memory M is an explicit and deterministic record of the reasoning
process, ensuring transparency and controllability of multi-turn decisions.

D Flow-based Group Refined Policy Optimization

We target tool-integrated agentic systems operating under long-horizon tasks with sparse rewards.
In this setting, the Action Planner (the trainable policy of AGENTFLOW) selects a sequence of

11

interdependent actions while the state (¢, K, M) evolves with tool results and verifier feedback.
Conventional offline training—e.g., supervised fine-tuning or preference fine-tuning on curated
traces—optimizes the planner outside the active loop [41, 42]. This decoupling prevents real-time
coordination with the executor, verifier, and solution generator, induces distribution shift between
training and deployment, and provides limited guidance about which intermediate decisions truly
matter. As a result, planners often adapt poorly to multi-turn dynamics; early errors cascade, and
post-hoc fixes are brittle.

In-the-flow learning. To address these issues, we optimize the planner in the flow of execution.
We roll out the full AGENTFLOW system under the current policy, collect the actual trajectory 7 of
states, actions, and tool events it induces, and update the policy within the agentic system using a
verifiable final-outcome signal. This exposes the multi-turn credit-assignment problem directly and
trains the planner on the exact states it will face at inference. Our objective, Flow-GRPO, is designed
to stabilize learning under sparse, trajectory-level rewards over multiple turns.

As established in §2.1, rollouts in AGENTFLOW define a finite-horizon MDP with a variable horizon
T'. At turn ¢, the planner observes the state (¢, K, M t), selects an action at, the executor and verifier
return (e?, v?), and the memory updates deterministically to M1,

Policy optimization objective. The planner policy 7y is trained to maximize the expected return
over on-policy rollouts. Let R(7) be the reward for a complete trajectory 7. The objective is:

J(0) = Err,[R(T)], 0* = arg max J(0), 4

where a rollout 7 is the sequence of decisions {a’}~_; generated on-policy by 7.

Final-outcome reward. Assigning credit to intermediate actions is challenging because each a®
influences the final solution only indirectly, and their value may only emerge after several turns (e.g.,
error or improvement accumulation). To avoid brittle local feedback, we adopt a final-outcome-based
reward: every action within a rollout receives the same global reward signal, based on the correctness
of the final solution o with respect to query ¢ and ground truth y*:

r = R(a') = R(o,q,y*), Vt=1,...,T, 5)

where R(o,q,y*) € {0,1} is assigned by an LLM-as-judge rubric for semantic, numeric, and
option-level equivalence (see §1.3). This propagates a trajectory-level success signal back through the
reasoning chain, aligning every decision a’ with global correctness.

Objective function. We formalize Flow-based Group Refined Policy Optimization for the planner.
The goal is to optimize the policy 7y by maximizing the expected return over a group of parallel
rollouts. For each query-label pair from training corpus (g, y*) ~ D, we sample a group of G
on-policy trajectories {7;}$, by running the current behavior policy 74, inside AGENTFLOW,

where 7; = {a},....a]’,0;}. Let st = (g, K, M}) be the state at turn ¢ of rollout 7, a! the planner’s
action (a token sequence of length |al|), and o; the final response. This structure is key to addressing
the long-horizon credit assignment challenge: by broadcasting a single trajectory-level reward to all
turns, we effectively decompose the multi-turn RL problem into a set of independent, single-turn
policy updates; we provide a formal proof of this equivalence and analyze its convergence properties
in §F. Each update for an action a! is conditioned on the full historical context encapsulated in the

state s! and receives the same global success signal, simplifying optimization. The objective is

Triow-reo(0) = Egy)~p, {ri} ~moy,
1 &1 &
a Z ? Z m Zmln{pf’]z‘lf, Chp(p:yj, 1-— €, 1 + E) Af} — BDKL(’TFG || Wre[):| s
i=1 """ t=1 11 j=1
(6)
where T; is the (variable) number of turns in rollout ¢, and
t t ot
o molaf;|staly,) 7
m‘*ﬂ (at |St at)
O\ Yi,5 | 935 B4 1:5-1

is the token-level importance ratio for the j-th token of a, € > 0 is the PPO clipping parameter, and
B > 0 controls the KL penalty to a fixed reference policy 7et.

12

Group-normalized advantages. Because the reward in Eq. 5 is a single trajectory-level signal, the
per-turn advantage A’ is constant over ¢ within a rollout i. We reduce variance and sharpen credit
assignment across the group by using a group-normalized advantage:

¢ Bloia.y”) — mean ({R(or a,y") }i)
! std ({R(ok, q,4*)}¢,) '

Technical contribution summary. To tackle long-horizon, sparse-reward training in multi-
module agentic systems, we propose Flow-GRPO. This novel algorithm (i) formalizes the multi-
turn RL problem in agentic systems into a series of tractable, single-turn policy updates, and (ii)
broadcasts a single trajectory-level outcome to every turn to align local planner decisions with
global success. Training uses an LLM-based rubric to assign verifiable final-outcome rewards,
with group-normalized advantages, KL regularization, and clipping to stabilize learning.

®)

E Training Algorithm of AGENTFLOW

We provide a flowchart of the overall training algorithm of AGENTFLOW (§2) in Algorithm 1.

Algorithm 1 In-the-Flow Optimization for AGENTFLOW

Require: Dataset D, Action Planner policy 7y, Tool Executor £, Executive Verifier V, Solution
Generator G, Toolset K, and Shared Evolving Memory M
Ensure: Optimized Action Planner parameters 6*
1: for each training iteration do

2: for each query-label pair (¢, y*) ~ D do

3: 1. IN-THE-FLOW ROLLOUT GENERATION

4: Initialize: t < 1, M < g

5: repeat

6: at ~ me(a® | q, K, M*") {Plan Action}

7: et ~ E(et | at, K) {Execute Action}

8: vt ~ V(v | q,et, M?) {Verify Result)

9: MY = fren(M? al, et vt) {Update Memory}
10: t—t+1
11: until termination condition met
12: o~ G(o|q,MT) {Generate Final Solution)
13: 2. REWARD COMPUTATION
14: R(a') = R(o,q,y*), Vt=1,...,T

15: 3. PoLiCcY UPDATE
16: Update the Action Planner policy 7y by maximizing the Flow-GRPO objective (Eq. 1)
17: end for
18: end for

19: return optimized parameters 6*

13

F Theoretical Analysis of Flow-GRPO

F.1 Preliminaries and Notation

We adopt the notation from the paper to formalize our analysis.
Definition F.1 (Core Components). Here we list core definition of variables.

Symbol and Description

o The trainable planner policy, parameterized by 6.
Ty The behavior policy used to sample trajectories.
st The state at turn ¢, defined as s* = (g, K, M).
a' The action (a sequence of tokens) generated at state s*, where a* ~ mp(- | s*).
T A trajectory of states and actions over T time steps, defined as 7 = {(s*,a’)}1_;.
R(7) The outcome-based reward for trajectory 7, where R(7) € {0, 1}.
A The group-normalized advantage for trajectory 7. A crucial property is that the advantage is
constant for all timesteps within a trajectory defined in Eq. 8: a* = A,, V(s*,a’) € 7.
p; j The token-level importance sampling ratio, defined as:
¢ o\ fg}saafqu)
Pij = .
7T90|d !517 ;15— 1)

Laip(p, A) The PPO clipped objective term, defined as Leiip(p, A) = min(pA,clip(p,1 —¢,1 + €) A).

Definition F.2 (Objective Functions). The global policy objective is the expected trajectory-level
reward:

T(0) = Errmy [R(T)]. 9

The single-turn optimization objective for a given state s? is defined as:
Tocal(035) 1= Bty (1) | 1y Ips Z Laip (P55 A7) | - (10)

The full Flow-GRPO objective function in the multi-turn setting is given by:

t
K |

T,
1 1 1
Trow-6rro(0) :==E (4 y*)~D az T Z T ZLchp (Pij» AD) | — BDxL (ol mer). (11)

{ri} i ~moy, i=1 "% t=1 "

F.2 Equivalence Proof for Optimization Objectives

Theorem F.1. In Flow-GRPO, maximizing the global multi-turn objective is mathematically equiv-
alent to maximizing the expected token-level local objective at each time step under the on-policy
induced state distribution, given standard sampling assumptions (trajectories sampled i.i.d. from the
policy with fixed finite turn T).

Proof. Let’s denote the clipping part of the Flow-GRPO objective as Jeiip(6).

First, by the linearity of expectation, we can simplify the expectation over a group of G trajectories.
Since the trajectories {7; } are sampled independently and identically (i.i.d.) from the behavior policy

0.4 the expectation of their average is equal to the expectation over a single trajectory.

[T |af|
1= 1
Teip(0) = Bain (Birye immng, | G275 22 | Ta t‘ ZLchp P 3 A9 (12)
i=1 T t=1
[L Ll
=By ~np | Eramg,, (o) TZ Tar] 2 Ll pj A : (3)
j=1

Here, 7 = {(s?,a’)}7_, represents a single, arbitrarily sampled trajectory with advantage A, .

14

Next, we can re-interpret the expectation over trajectories as an expectation over the state-visitation
distribution induced by the policy g, . Let d"%u be the on-policy distribution of states visited, where

each state s! in a trajectory of length 7T is weighted by 1/7'. The expectation can be rewritten as:
la’|

1
jcnp(ﬁ) = E(q,y*)~'D]Estwd"rgo]d Eatwﬂsold(“t,) m ZLclip(p;,At) . (14)
j=1

Note that A? is the advantage corresponding to the trajectory from which s* was sampled.

We now recognize that the inner expectation is precisely the definition of the local, per-state objective,

«7100211(9; st)'

«7clip(9) = E(q,y*)ND, strud™fold [«7]00911(9; St)] . (15)
Adding the KL-divergence term back, we arrive at the final equivalence:
Triow-Greo(0) = By oy op stmamons [Tiocal (05 5")] — BDk 1 (]| rer)- (16)

This proves that maximizing the global multi-turn Flow-GRPO objective is equivalent to maximizing
the expected token-level local objective at each time step under the on-policy induced state distribution.
O

F.3 Convergence Analysis
Having established the structural validity of the objective, we now analyze its convergence properties.
The analysis builds on the monotonic improvement guarantee provided by trust-region methods [44].

Lemma F.2 (Policy Performance Difference). For two policies wg and g
return can be expressed as:

o> the difference in expected

\.7(0) - j(gold) = ETNTrg

T
Z Aeold (staat)]) (17)
t=1

where Ay, is the advantage function under the old policy.

This lemma enables the construction of a lower bound on policy improvement.
Theorem F.3 (Monotonic Improvement Guarantee). Define the surrogate objective

Lo (0)=F - MA toat 18
000 (0) = TATO 1 Z fora(85,07) | - (18)

—1 Tboia (at|5t)
Then the performance improvement satisfies the lower bound
T(0) = T(Oo1a) > Lo, (0) — C - Dy (w4,), (19)

where C > 0 is a constant depending on the horizon and reward scale, and Dy, denotes the average
KL-divergence between the two policies.

By optimizing the right-hand side of the above inequality, we can expect to improve the performance
of my when the policy update remains within a trust region. While the clipping mechanism provides
an approximate enforcement of this constraint, it does not offer strict guarantees. Empirically, for
policies 7y_,, and 7y obtained from updates, we typically observe:

J(0) 2 T (0o1a), (20)

where 2 denotes near-monotonic improvement in practice.

old

Conclusion. This analysis establishes that Flow-GRPO optimizes a theoretically grounded surrogate
objective that approximates trust region methods. The combination of clipping and KL regularization
promotes stable policy improvement and reliable convergence to locally optimal policies, as validated
by our experiments.

15

G Experimental Details

G.1 Tool Details

Base Generator is an instance of Qwen2.5-7B-Instruct that acts as the default reasoning engine if the
planner decides not to use an external tool; Python Coder generates and executes Python code given a
query and returns the execution result; Google Search searches the web and returns a summarization
of Top-K search results; Wikipedia Search searches articles matching a given query and returns a
summarization; and Web Search returns summarized information from a given web page.

G.2 Training Details

We provide further details on the training setup for AGENTFLOW. Our Flow-GRPO implementation
uses a learning rate of 1 x 1075, The Action Planner generates actions with a sampling temperature
of 0.5 to balance exploration and exploitation. We use a batch size of 32 with 8 rollouts per sample.
To prevent policy collapse and stabilize training, we incorporate a KL-divergence penalty against a
reference policy with a coefficient 5 = 0.001. The maximum output length for the planner is set to
2048 tokens to ensure complete exploration during rollouts.

To accelerate the training speed, we limit the maximum number of turns per rollout to 3. The
final-outcome reward signal (Eq. 5) is provided by an LLM-as-judge, for which we use GPT-40. All
tool calls are executed synchronously with a 500-second timeout to handle external service latency
robustly. The LLM engines within the tools are set to a temperature of 0.0 to ensure deterministic and
stable outputs. The full training process was conducted on 8 NVIDIA A100 GPUs. Further details on
agent prompts and the memory update mechanism are provided in §1.1.

G.3 Evaluation Details

Here, we outline the specifics of our evaluation protocol. For evaluation, we increase the maximum
number of turns per rollout to 7' = 10 to allow for more extensive and deeper reasoning. The
planner’s sampling temperature is set to 0.7 to encourage diverse solution paths. Unless otherwise
specified, all tool LLM engines are initialized with Qwen2.5-7B-Instruct.

For fair and consistent evaluation, we adopt the previous work’s methodology while standardizing
tools: we replace search tools in search-enhanced models with our Google Search tool and code tools
in code-enhanced models with our Python Coder tool. We use GPT-40 as an LLM-based judge to
determine the correctness of final answers. This approach provides a robust measure of semantic
and numerical equivalence, which is critical for complex reasoning tasks. The specific judging
prompt is detailed in §I.3, and additional information on evaluation datasets can be found in §G.5. To
mitigate randomness, we report the average accuracy with standard deviation across three trials for
all experiments.

G.4 Compared Baselines

Proprietary LLMs:

* Qwen2.5 Series [20], created by Alibaba, comes in multiple configurations. These models
undergo training on multilingual corpora covering 29 different languages, demonstrating superior
performance in cross-lingual applications. Furthermore, Qwen2.5 showcases robust proficiency in
programming and mathematical domains.

¢ Llama-3 Series [27], created by Meta Al, encompasses various iterations. Each model config-
uration within the Llama family provides dual versions: foundational and instruction-following
variants. Training incorporates diverse dataset combinations spanning multiple domains and
linguistic varieties. The Llama model family demonstrates excellent results in logical reasoning,
software development, and cross-lingual comprehension evaluations. Through progressive en-
hancements in fine-tuning methodologies and expanded sequence lengths, these models become
more applicable to practical deployment scenarios.

e GPT-40 Series [15], produced by OpenAl, includes several model variants such as GPT-40 and
GPT-40-mini, with training leveraging extensive multimodal datasets encompassing text, vision,
and audio modalities. The series achieves outstanding performance in complex reasoning tasks,
creative generation, and multimodal understanding benchmarks with continuous refinements in
alignment techniques and enhanced processing capabilities.

16

Reasoning LLMs:

SFT [2] serves as our basic baseline following Search-R1 [3]. We fine-tune models using supervised
fine-tuning on GPT-40-generated reasoning chains.

SimpleRL-Zoo [2] investigates zero reinforcement learning training across 10 diverse base models
spanning different families and sizes using GRPO algorithm with simple rule-based rewards,
achieving substantial improvements in reasoning accuracy.

Open-Reasoner-Zero [22] presents the first open-source implementation of large-scale reasoning-
oriented RL training using PPO with GAE and straightforward rule-based rewards, without KL
regularization. The framework demonstrates that minimalist design can successfully scale both
response length and benchmark performance.

General-Reasoner [23] extends LLLM reasoning capabilities beyond mathematics to diverse
domains using RLVR through a 230K verifiable reasoning questions dataset spanning physics,
chemistry, and finance.

LUFFY [24] addresses limitations in on-policy RLVR by introducing an off-policy framework
that augments training with external reasoning demonstrations using Mixed Policy GRPO and
regularized importance sampling.

Search-Integrated Reasoning LL.Ms:

Iter-RetGen [16] addresses limitations in retrieval-augmented language models by introducing
iterative retrieval-generation synergy, where a model’s previous response serves as context for
retrieving more relevant knowledge in subsequent iterations.

Search-R1 [3] represents a reinforcement learning approach that develops a model from the ground
up to invoke search functionality throughout the reasoning process.

ZeroSearch [17] addresses high API costs in RL-based search training by using an LLM to
simulate search engines, employing lightweight supervised fine-tuning to transform an LLM into a
retrieval module that generates both useful and noisy documents. The framework combines this
with a curriculum-based rollout strategy that progressively degrades document quality, achieving
better performance than real search engine-based methods while incurring zero API costs.

ReSearch [5] proposes a reinforcement learning framework that trains LLMs to integrate search
operations as components of the reasoning chain without supervised data on reasoning steps,
treating search decisions as guided by text-based thinking.

StepSearch [18] addresses the sparse reward problem in multi-hop reasoning by training search
LLMs using step-wise proximal policy optimization with intermediate rewards and token-level
process supervision based on information gain and redundancy penalties.

VerlTool [19] addresses fragmentation and synchronization bottlenecks in Agentic Reinforcement
Learning with Tool use by introducing a unified modular framework that extends beyond single-
turn RLVR paradigms, providing upstream VeRL alignment and unified tool management with
asynchronous rollout execution achieving near 2x speedup.

Code-Integrated Reasoning LL.Ms:

TIR [25] is a basic baseline that demonstrates the model’s ability to generate code for tool
utilization. In our implementation, we directly prompt the model to write code that calls the
programming interpreter and processes the returned results to generate the final answer.

ToRL [26] is a code-enhanced architecture developed via reinforcement learning that empowers
models to independently activate code execution environments for mathematical reasoning tasks.

Training-free Agentic System

AutoGen [13] introduces an agentic conversation framework that enables developers to build LLM
applications through conversable agents that can operate using combinations of LLMs, human
inputs, and tools.

17

G.5 Evaluation Datasets

We provide a detailed introduction to the search-intensive and agentic benchmarks in our experiments
as follows:

* Bamboogle [45] presents a demanding multi-step reasoning dataset containing manually con-
structed questions requiring up to four inferential steps. The dataset evaluates models’ capacity for
intricate compositional reasoning across interconnected facts.

* 2Wiki (2WikiMultihopQA) [46] constitutes a comprehensive multi-step QA corpus combining
structured Wikidata knowledge with unstructured Wikipedia text. The dataset encompasses varied
question formats and annotated reasoning chains to facilitate interpretable sequential inference.
We randomly sample 100 examples as a test set for efficiency.

* HotpotQA [47] represents a widely-adopted question answering corpus featuring multi-step
queries constructed from Wikipedia entries. We randomly sample 100 examples as a test set for
efficiency.

* Musique [48] comprises a multi-step reasoning corpus requiring sequential inference where each
reasoning stage depends on information derived from preceding steps. We conduct evaluations
using the development partition of this particularly challenging dataset. We randomly sample 100
examples as a test set for efficiency.

* GAIA [49] constitutes a benchmark engineered to assess general Al systems and agents, demanding
capabilities including sequential reasoning, web navigation, and comprehensive tool utilization
skills. We utilize the text-exclusive portion of this dataset, designed to challenge base language
models in our experimental setup.

Furthermore, we also conduct a series of experiments on math and scientific reasoning benchmarks:

* AIME24 [50] A collection of 30 demanding mathematical problems sourced from the 2024 Amer-
ican Invitational Mathematics Examination (AIME), encompassing algebra, geometry, number
theory, and combinatorics. Each JSONL-formatted record contains the problem identifier, question
text, comprehensive solution methodology, and the final numerical result. Created to assess large
language models’ sophisticated mathematical reasoning abilities, the dataset presents substantial
difficulty, systematic multi-phase solutions, and distinctive answers—establishing it as a robust
benchmark for evaluating advanced analytical capabilities.

* AMC23 [51] contains mathematical problems derived from the 2023 American Mathematics
Competition, emphasizing areas such as functional equations and complex analysis.

* GameOf24 [52] derives from the traditional numerical puzzle known as 24 (alternatively called
the 24 numbers game). The challenge requires utilizing four given numbers with fundamental
arithmetic operations (addition, subtraction, multiplication, division) to create an expression
yielding 24. For instance, with numbers 4, 9, 10, and 13, a correct solution would be “(10 - 4) x (13
- 9) =24”. Successfully solving requires computational proficiency along with iterative attempts to
validate potential solutions. Each challenge is formatted as open-ended inquiries.

* GPQA or Graduate Level Google-Proof Q&A Benchmark [53] comprises a collection of de-
manding text-based multiple choice problems authored by subject specialists in biology, physics,
and chemistry, intentionally crafted to be “exceptionally challenging”. We randomly sample 100
examples as a test set for efficiency.

* MedQA [54] features text-based multiple choice problems assembled from professional medical
licensing examinations. Problems encompass comprehensive medical knowledge and clinical
reasoning skills.

18

H More Discussion about Experiment Results
H.1 Main Result Analysis

Our main results are presented in Tables 1 and 2. Overall, AGENTFLOW consistently outperforms
all baseline models across diverse domains, including search-intensive tasks, agentic tasks, and
mathematical and scientific reasoning tasks. These comprehensive results yield several key insights:

Monolithic LLLMs are insufficient for complex reasoning. While scaling up model size (from 7B
model to GPT-40) improves average performance, their monolithic nature presents limitations when
facing complex tasks that require multi-turn reasoning and sub-goal decomposition. In contrast, our
proposed AGENTFLOW consistently outperforms these larger models. Specifically, it achieves an
average improvement of 8.2% over GPT-40 on search-intensive tasks (57.3% vs. 49.1% in Table 1),
and a remarkable 15.8% gain over GPT-40 on agentic tasks (33.1% vs. 17.3% in Table 1). For
mathematical reasoning benchmarks, AGENTFLOW obtains a substantial improvement of 16.4%
over GPT-40 (51.5% vs. 35.1% in Table 2). Furthermore, it surpasses the strong Llama-3.3-70B by
12.5% on scientific reasoning tasks (63.5% vs. 51.0% in Table 2). These results demonstrate that the
carefully designed agentic system of AGENTFLOW, despite being built on a 7B-parameter backbone,
can deliver superior and more efficient performance compared to substantially larger monolithic
LLMs.

Specialized reasoning models exhibit strong in-domain focus but limited generalizability. While
domain-specific fine-tuning and tailored tool integration provide clear benefits over base LLMs,
they fail to deliver robust cross-domain performance due to fundamental scaling limitations. Our
evaluation across three reasoning domains substantiates these limitations. On search-intensive tasks,
specialized models such as Search-R1 (33.3%) and VerlTool (39.0%) perform well within their
narrow scope yet fall substantially short of AGENTFLOW (57.3%) as shown in Table 1. Similarly, in
mathematical reasoning, methods like SimpleRL-reason (36.6%) and ToRL (37.0%) trail significantly
behind AGENTFLOW (51.5%) in Table 2. Even in scientific reasoning, where models such as Luffy
(55.5%) offer competitive results, they are consistently surpassed by AGENTFLOW (63.5%) in Table 2.
These findings demonstrate that while specialized reasoning models excel within narrow domains,
their reliance on a single monolithic policy introduces poor generalization, making them brittle when
confronted with diverse, cross-domain challenges.

AGENTFLOW demonstrates superior, versatile reasoning through its adaptive agentic system.
AGENTFLOW establishes a new state-of-the-art agentic system by achieving an average accuracy of
57.3% on search-intensive tasks, 33.1% on agentic tasks, 51.5% on mathematical reasoning, and
63.5% on scientific reasoning. Our method’s advantage stems from combining an agentic system with
targeted planning policy refinement via on-policy reinforcement learning in an online fashion. When
compared to AutoGen—a general agent framework with the same backbone model—AGENTFLOW
demonstrates a massive improvement of 14.9% on search tasks and 19.9% on math tasks. This
underscores that the core advantage comes from our dedicated trainable agentic system that integrates
our novel Flow-GRPO for in-system on-policy optimization, enabling effective agent planning and
tool utilization to solve complex, long-horizon problems across diverse domains.

H.2 Training Strategies on the Planner

We conduct an ablation study to analyze the impact of different training strategies for the Action
Planner module in AGENTFLOW, with results reported in Table 3. The executor, verifier, and
generator modules remain fixed as Qwen2.5-7B-Instruct, consistent with our main setup (§G).

Planner Model Training Bamboogle 2Wiki GAIA AIME24 AMC23 GameOf24 Avg.

Qwen-2.5-7B Frozen 58.4 60.0 17.2 16.7 474 31.0 38.5
GPT-40 Frozen 65.0 1 6.6 70.0 1 10.0 23.6 16.4 16.7 1 0.0 48.7 11.3 42.0 111.0 443 15.8
Qwen-2‘5-7B SFT 30.4 128.0 32.7 1273 6.3 110.9 3.3 1 13.4 37.5 199 7.0 124.0 19.5 119.0

Qwen—2.5—7B Flow-GRPO 69.6 1T11.2 77.2 1+17.2 33.1 115.9 40.0 123.3 61.5 1+ 14.1 53.0 1 22.0 55.7 1+17.2

Table 3: Performance comparison of AGENTFLOW across different training methods.

A more capable planner is beneficial, but has limits. Replacing the frozen Qwen2.5-7B-Instruct
baseline with a stronger proprietary model, GPT-4o, yields only a modest 5.8% average gain. This
indicates a key bottleneck that, while a more powerful model improves planning, its static nature
prevents co-adaptation with the live dynamics of AGENTFLOW.

19

Offline SFT leads to performance collapse, while in-the-flow RL is crucial. The limitations
of a static planner are further exposed when distilling GPT-40’s behavior via offline supervised
fine-tuning (SFT) on its trajectories as Action Planner in AGENTFLOW. This results in a catastrophic
performance collapse, with an average accuracy drop of 19.0% compared to the frozen baseline. This
failure arises from the token-level imitation objective of SFT, which misaligns with trajectory-level
task success and prevents the planner from adapting to dynamic tool feedback or recovering from
compounding errors. In contrast, training the planner with our on-policy Flow-GRPO method proves
highly effective: by optimizing for the final outcome, the planner learns to handle long-horizon
workflows, achieving a 17.2% average gain over the frozen baseline.

H.3 In-depth Analysis of Optimized Planning

Flow-GRPO optimizes tool usage. We compare tool usage distributions before and after in-the-
flow RL training. Figure 8 shows results on two knowledge-intensive tasks, 2Wiki and MedQA,
which exhibit distinct optimization patterns alongside improved task accuracy. For 2Wiki, which
requires broad factual knowledge, Flow-GRPO optimizes the planner to increase Google Search usage
by 42.0%. In contrast, for the specialized MedQA benchmark, which requires deep, domain-specific
information retrieval, fine-tuning shifts the planner away from general tools, reducing Google Search
calls (66.2—10.9%) in favor of in-document Web Search (0—19.5%) and specialized Wikipedia
Search (0—59.8%). This demonstrates that the planner learns to select task-appropriate tools.

Base Generator W Google Search W Web Search W Wikipedia Search
80

Acc:60.0% Acc: 77.2% (+17.2%), Acc: 76.0% Acc: 80.0% (+4.0%) 501 == GAIA
70 +42.0 70 $ -\ 2Wiki
= 60 After Fine-tuning . 60 After Fine-tuning +59.8 ~ 404 —@— Bamboogle
S £ -0- AME24
250 50 & 39
© —
< 40 40 e -28.4%
: ol
L—é * * 2. .\0\0\‘\'
20 20 =
10 10 © -8.4%
0 4
0 0 T T T T u
Step 0 Step 32 Step 0 Step 32 0 8 18 28 32
(a) 2Wiki Training Steps (b) MedQA Training Steps Training Steps
Figure 8: Tool call ratio change by Flow-GRPO fine-tuning. Figure 9: Calling error rate.

Flow-GRPO enhances tool-calling efficacy. A key aspect of the model’s improvement is its
increased reliability in tool usage. As shown in Figure 9, the tool-calling error rate consistently
decreases across tasks during training, with a reduction of up to 28.4% on GAIA. This trend indicates
that the training process not only teaches the model which tool to use but also how to invoke it
correctly with proper arguments and format, leading to more robust and effective tool integration.

Flow-GRPO incentivizes autonomous discovery of new solutions. We further investigate qual-
itative examples in §J. These cases show that AGENTFLOW, trained with Flow-GRPO, develops
enhanced capabilities for task planning and tool use. The planner exhibits adaptive efficiency,
more robust self-correction, and spontaneous new combinations of tools during the step-by-step
problem-solving process, autonomously discovering effective solution pathways.

Tool Engine Qwen-2.5-7B-Instruct W GPT-40 [Base Generator _.G.oog.le Search
W Web Search W Wikipedia Search

80
70

70
[Acc: 19.2%) (Acc: 25.2% (+6.1%))

60 After Fine-tuning

.2 50
70.0 ey :
: 615 57.0 .
> H : .. :

20)

Step 0 Step 32
GAIA AMC23 HotpotQA Training Steps

@
3

@
S

Accuracy (%)
»
3

Tool Call Ratio (%)

w
S

(a)
Figure 10: (a) Tool scaling: performance improves when base tools are upgr(gl)ded from Qwen-2.5-7B-
Instruct to GPT-40 on GAIA, AMC23, and HotpotQA. (b) Tool call ratio change by Flow-GRPO
fine-tuning on Musique.

AGENTFLOW adapts to inference-time tool scaling. We scale the tools—the Base Generator
and Python Coder—to GPT-4o0-powered versions. Empirical results on search and math datasets
(Figure 10 (a)) show that AGENTFLOW, when using these GPT-4o0-powered tools, substantially

20

outperforms its performance with Qwen2.5-7B-Instruct-powered tools, achieving improvements of
1.0% on GAIA, 6.0% on AMC23, and a notable 13.0% on HotpotQA. This finding further supports a
consistent trend: after in-the-flow RL training, the planner can adaptively leverage improvements in
the underlying tools to enhance the agentic system’s overall performance.

Flow-GRPO maneuver tool usage preference. We further compare tool usage distributions before
and after in-the-flow RL training on Musique. Figure 10 (b) shows that due to Musique’s need for a
diverse source of information, Flow-GRPO optimizes the planner to increase Web Search to delve
deeper into the URL provided by other search tools. This maneuver presents a steady performance
improvement of 6.1%.

H.4 Training Efficiency Analysis

= Training Reward Trend
- Response Length Trend

—o— Flow-GRPO (ours)
—#— ToRL

o
-3

Optimized planning with increased
rewards and condensed responses.
We analyze the training dynamics of
the AGENTFLOW planner by tracking
its average reward and response length
on the train set (Figure 11a). Train-
ing rewards steadily increase, indicat-
ing effective policy improvement via ~ (a) 6 10 20 30 40 50 60 (b) o 0 20 30
Flow-GRPO. M?E.mWhﬂe’ response Figure ll:TLf‘?all?%isrtgsdynamics and efﬁciencTr)‘;ng)ll9 Sltcz)as&?—GRPO.
length, after an initial exploratory rise,

progressively shortens and stabilizes. This shows the planner learns to balance conciseness and
informativeness, avoiding unnecessarily long outputs.

e

N

NN

NoW

ISEIRS)
o N
w >

o
o

=N
© o
S o
o
N

Training Reward (Acc.)
a
©
=

— N)
o fary
o o
Response Length (tokens)

Validation Reward (Acc.)

Flow-GRPO efficiency over tool-integrated reasoning RL. We compare AGENTFLOW (trained
with Flow-GRPO) against a monolithic tool-integrated reasoning baseline (ToRL) on AIME24.
As shown in Figure 11b, AGENTFLOW achieves sustained performance gains, with validation
accuracy growing steadily. In contrast, TORL’s performance quickly stagnates and trends downwards,
highlighting the superior efficiency of our agentic training approach, which uses decomposition and
stable credit assignment to avoid the instability.

H.5 Scaling Trends in AGENTFLOW

Training scaling in backbone size. AgentFlow (Qwen-2.5-3B-Instruct) AgentFlow (Qwen-2.5-7B-Instruct)
We study how backbone LLM scale
affects AGENTFLOW’s performance
and the efficacy of Flow-GRPO. We
build two versions of the system: one
using Qwen2.5-3B-Instruct and an-
other using Qwen2.5-7B-Instruct for 0

0
. Bamboogle 2Wiki GAIA AIME24 . Bamboogle 2wiki =~ GAIA AIME24
all -four modules (planner, executor, Figure 13" Flow-GRPO fine-tuning offers consistent gains on
verifier, and generator) and tools. In

‘ AGENTFLOW as the backbone model size scales from 3B to 7B.
both, only the planner is fine-tuned

with Flow-GRPO. As shown in Figure 12, Flow-GRPO fine-tuning consistently improves perfor-
mance across tasks for both backbones. This demonstrates that our in-the-flow optimization is
effective across model capacities, enhancing AGENTFLOW regardless of LLM size.

©
o

Before tuning Before tuning
mmm After tuning mmm After tuning

o
o

Accuracy (%)
=y
o

N
o

AgentFlow (before tuning) AgentFlow (before tuning)
I AgentFlow (after tuning) B AgentFlow (after tuning)
80 80
80.0 76.0
X 60 X 60
g g
3 a0 47.5 @ 40 47.4
E E
3 S 31.0
< 5 <20
15.0
0 04
GameOf24 AMC23 MedQA GameOf24 AMC23 MedQA
AgentFlow (Qwen-2.5-3B-Instruct) AgentFlow (Qwen-2.5-7B-Instruct)

Figure 13: Flow-GRPO fine-tuning offers consistent gains on AGENTFLOW as the backbone model
size scales from 3B to 7B.

21

More evidence of training scaling in backbone size. We further investigate how the backbone
LLM scale affects AGENTFLOW’s performance and the efficacy of Flow-GRPO on GameOf24,
AMC23, and MedQA. We construct two versions of the system: one using Qwen2.5-3B-Instruct and
another using Qwen2.5-7B-Instruct for all four modules (planner, executor, verifier, and generator) as
well as the associated tools. In both versions, only the planner is fine-tuned with Flow-GRPO. As
shown in Figure 13, Flow-GRPO fine-tuning consistently improves performance across tasks for both
backbones. These results demonstrate that our in-the-flow optimization is effective across model
capacities, enhancing AGENTFLOW regardless of LLM size.

Inference scaling in turn budgets. We investigate how the max-

imum allowed turns (T}n.x) affect reasoning depth and final per- sy 3 5 7 10

formance of AGENTFLOW during test-time inference with the Wiki 220 318 381 444

Qwen2.5-7B-Instruct backbone. As shown in Figure 14, increasing GameOf24 163 212 236 2.67
. . AIME24 163 1.63 186 1.90

Tinax from 3 to 10 consistently improves outcomes across all tasks, GAIA 243 346 428 542

accompanied by a rise in average turns consumed. On knowledge- 75>

. . oy e +15.8%

intensive benchmarks such as 2Wiki and GAIA, a larger turn | ...

budget enables AGENTFLOW for deeper information retrieval. On g _ |

mathematical benchmarks like GameOf24 and AIME24, it sup- 5507 - Gomeorz4

ports decomposed sub-goals, alternative strategies, and refinement 3 GAIA -

of errors. Final performance peaks at Ty, = 10 for all tasks, < 1 (r16.7%)

confirming that a longer reasoning horizon benefits the system 301

without causing degenerate loops. This validates that AGENT- 2°" 3 5 5 0

FLOW adapts its turn allocation to problem complexity to achieve Figure 14: K%’}'g’évgdtﬁ’rmnss and ac-

better solutions through iterative refinement. curacy with increased Tina.

22

I Instruction Templates in AGENTFLOW

I.1 Modules and Memory
L1.1 Action Planner

Tool Metadata can be found in §1.2.

Instruction for Action Planner

Task: Determine the optimal next step to address the query using available tools and previous context.

Context:

Query: {Question}

Available Tools: [Base Generator, Python Coder, Google Search, Wikipedia Search, Web Search]
Toolbox Metadata: [Tool Metadatal, Tool Metadata?2, ...]

Previous Steps: {Actions from Memory}

Instructions:

1. Analyze the current objective, the history of executed steps, and the capabilities of the available tools.
2. Select the single most appropriate tool for the next action. Consider:

3. The specificity of the task (e.g., calculation vs. information retrieval).
4

. The source of required information (e.g., general knowledge, mathematical computation, a specific
URL).

The limitations of each tool as defined in the metadata.

2

6. Formulate a clear, concise, and achievable sub-goal that precisely defines what the selected tool should
accomplish.

7. Provide all necessary context (e.g., relevant data, variable names, file paths, or URLSs) so the tool can
execute its task without ambiguity.

Response Format:

1. Justification: Explain why the chosen tool is optimal for the sub-goal, referencing its capabilities and
the task requirements.

2. Context: Provide all prerequisite information for the tool.
3. Sub-Goal: State the exact objective for the tool.
4. Tool Name: State the exact name of the selected tool (e.g., Wikipedia Search).

Rules:

Select only one tool per step.

The Sub-Goal must be directly and solely achievable by the selected tool.

The Context section must contain all information the tool needs; do not assume implicit knowledge.

The final response must end with the Context, Sub-Goal, and Tool Name sections in that order. No additional
text should follow.

1.1.2 Tool Executor

Instruction for Tool Executor

Task: Generate a precise command to execute the selected tool.

Context:

Query: {Question}

Sub-Goal: {Sub Goal from Next Step Plan}

Tool Name: {Selected Tool from Next Step Plan}

Toolbox Metadata: {Selected Tool Metadata from Next Step Plan}
Relevant Data: { Context from Next Step Plan}

Instructions:
1. Analyze the tool’s required parameters from its metadata.

2. Construct valid Python code that addresses the sub-goal using the provided context and data.

23

3. The command must include at least one call to tool.execute().
4. Each tool.execute() call must be assigned to a variable named execution.

5. Use exact numbers, strings, and parameters in the tool.execute () call based on the context.

Output Format: Present your response in the following structured format. Do not include any extra text or
explanations.

Generated Command:

execution = tool.execute(query="Summarize the following porblom:"Isaac has 100 toys,
masa gets, how much are their together?")

Example 1:
Generated Command:
execution = tool.execute(query="Summarize the following porblom:"Isaac has 100 toys,

masa gets, how much are their together?")

Example 2:

Generated Command:

execution = tool.execute(query=["Methanol", "function of hyperbola", "Fermat’s Last
Theorem"])

1.1.3 Execution Verifier

Instruction for Execution Verifier

Task: Evaluate if the current memory is complete and accurate enough to answer the query, or if more tools
are needed.

Context:

Query: {Question}

Available Tools: [Base Generator, Python Coder, Google Search, Wikipedia Search, Web Search]
Toolbox Metadata: [Tool Metadatal, Tool Metadata?2, ...]

Memory (Tools Used & Results): { Actions from Memory}

Instructions:

1. Review the original query, the initial analysis, and the complete history of actions and results in the
memory.

Assess the completeness of the memory:

Does the accumulated information fully address all aspects of the query?
Are there any unanswered sub-questions or missing pieces of information?
Check for potential issues:

Are there any inconsistencies or contradictions between different steps?

Is any information ambiguous, potentially hallucinated, or in need of verification?

O N

Determine if any unused tools could provide critical missing information based on their metadata.

Final Determination:

If the memory is sufficient to form a complete and accurate answer, explain why and conclude with
“Conclusion: STOP”.

If more information is needed, clearly state what is missing, suggest which tool(s) could help, and conclude
with “Conclusion: CONTINUE”.

Rules:

The response must end with either exactly “Conclusion: STOP” or “Conclusion: CONTINUE”.
Do not include any text after the conclusion statement.

Your justification must be concise and directly tied to the query and memory.

24

I.1.4 Solution Generator

Instruction for Solution Generatorr

Task: Generate a concise final answer to the query based on all provided context.

Context:

Query: {Question} Initial Analysis: { Query Analysis}
Actions Taken: {Actions from Memory}

Instructions:

1. Carefully review the original user query, the initial analysis, and the complete sequence of actions and
their results.

2. Synthesize the key findings from the action history into a coherent narrative.
3. Construct a clear, step-by-step summary that explains how each action contributed to solving the query.

4. Provide a direct, precise, and standalone final answer to the original query.

Output Structure:

1. Process Summary: A clear, step-by-step breakdown of how the query was addressed. For each action,
state its purpose (e.g., “To verify X’) and summarize its key result or finding in one sentence.

2. Answer: A direct and concise final answer to the query. This should be a self-contained statement that
fully resolves the user’s question.

Rules:

The response must follow the exact two-part structure above.

The Process Summary should be informative but concise, focusing on the logical flow of the solution.
The Answer must be placed at the very end and be clearly identifiable.

Do not include any additional sections, explanations, or disclaimers beyond the specified structure.

25

I.1.5 Evolving Memory

Our shared evolving memory system creates a deterministic, structured record that captures the
reasoning process across three integrated agents: the Action Planner, Tool Executor, and Execution
Verifier. By sequentially stacking crucial information from each action step, the system enables
transparent state tracking, controllable behavior, and bounded context growth.

Example Memory Entry

"Query": {Where is the largest shopping mall besides Tokyo’s biggest metropolitan
station?

"Action Turn 1": {

"Tool Name": "Wikipedia Search",

"Sub-Goal": "Retrieve detailed information about Tokyo"s metropolitan area from
Wikipedia.",

"Command": "execution = tool.execute(query="Tokyo metropolitan area details")",

"Result": "The Greater Tokyo Area is the largest metropolitan area in the
world...",

"Verification Status": "
Brief Review of the Query, Initial Analysis, and Previous Memory.
Assessment of Completeness and Accuracy.
Conclusion: The memory is not complete and accurate enough to answer the
query. Additional tools are needed to verify or generate more solutions.
Final Determination: Conclusion: CONTINUE"

To
"Action Turn 2": {

1,

"Action Turn t": {
"Verification Status": "

Brief Review of the Query, Initial Analysis, and Previous Memory.

Assessment of Completeness and Accuracy. (Including Time Dilation
Calculation, Geographic Precise, Inconsistencies or Contradictions, Unit Conversion,
etc.)

Conclusion: The memory is complete and accurate enough to answer the query.
No additional tools are needed to verify or generate more solutions.

Final Determination: Conclusion: STOP" }

The memory reading and matching process employs regular expressions to parse outputs generated by
different system components, adhering to standardized formats defined in their respective component
instructions. For the Action Planner, we use a relatively permissive regular expression to extract key
information. Specifically, it matches the content immediately following: Sub-Goal as the sub-goal
and the content following; Tool Name as the selected tool. This extracted information is then used to
populate the next memory entry. For the Tool Executor, the regular expression is designed to capture
the entire Command line starting with execution = tool.execute(...). Additionally, the value
passed to the Query parameter within this command is parsed and saved into the memory for future
reference. All results returned by the tools are directly stored in the Result field of the memory. The
Verification Status is extracted from Execution Verifier, including a brief analysis of the current tool
result and previous memory, and then it gives a conclusion whether the loop needs to be CONTINUE
or STOP.

26

1.2 Toolset Metadata

This section details the implementation and metadata of the tools used in our main results. We employ
a suite of specialized tools, each designed for distinct tasks. Below, we present the core metadata for
each tool, including its functionality, input/output schema, limitations, and best practices.

1.2.1 Base Generator

Tool Metadata of Base Generator

Description: A generalized tool that takes query from the user, and answers the question step by step to the
best of its ability. It can also accept an image.

Input: query: str - The query that includes query from the user to guide the agent to generate response.

Output: str - The generated response to the original query

Demo Commands:

Command:
execution = tool.execute(query="Summarize the following text in a few lines")

Description: Generate a short summary given the query from the user.

The Base Generator may provide hallucinated or incorrect responses.

Best Practice

1. Use it for general queries or tasks that don’t require specialized knowledge or specific tools in the
toolbox.

2. Provide clear, specific query.

3. Use it to answer the original query through step by step reasoning for tasks without complex or
multi-step reasoning.

4. For complex queries, break them down into subtasks and use the tool multiple times.
5. Use it as a starting point for complex tasks, then refine with specialized tools.

6. Verify important information from its responses.

LLM Engine Required: True

1.2.2 Python Coder

The Python coder leverages a large language model (LLM) engine to generate Python code snippets,
which are formatted using the Markdown code block syntax: <“‘python <code snippet> ‘¢ Each
generated code snippet is executed in a secure local sandbox environment. To prevent excessive
output—especially from infinite loops or verbose computations—the execution output is truncated if
it exceeds 10,000 characters. This ensures system stability and responsiveness while maintaining
visibility into the program’s behavior.

Tool Metadata of Python Coder

Description: A tool that generates and executes simple Python code snippets for basic arithmetical
calculations and math-related problems. The generated code runs in a highly restricted environment with
only basic mathematical operations available.

Input: query: str - A clear, specific description of the arithmetic calculation or math problem to be solved,
including any necessary numerical inputs.
Output: dict - A dictionary containing the generated code, calculation result, and any error messages.

Output prompt: Given a query, generate a Python code snippet that performs the specified operation on
the provided data. Please think step by step. Ensure to break down the process into clear, logical steps.
Make sure to print the final result in the generated code snippet with a descriptive message explaining what
the output represents. The final output should be presented in the following format:

¢¢¢ python

<code snippet>

€cc¢
Demo Commands:

Command:
execution = tool.execute(query="Find the sum of prime numbers up to 50")

Description: Generate a Python code snippet to find the sum of prime numbers up to 50.
Command:

execution = tool.execute(query="Given the list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
calculate the sum of squares of odd numbers’’)

Description: Generate a Python function for a specific mathematical operation on a given list of numbers.

. Restricted to basic Python arithmetic operations and built-in mathematical functions.

. Cannot use any external libraries or modules, including those in the Python standard library.
. Limited to simple mathematical calculations and problems.

. Cannot perform any string processing, data structure manipulation, or complex algorithms.

. No access to any system resources, file operations, or network requests.

. Cannot use ‘import’ statements.

. All calculations must be self-contained within a single function or script.

. Input must be provided directly in the query string.

O 0 N N Lt AW N~

. Output is limited to numerical results or simple lists/tuples of numbers.

—_
=]

. Output should be kept to a single numerical result or a simple list/tuple of numbers.

—
—

. DO NOT generate loop output.

28

Tool Metadata of Python Coder (Continue)

Best Practice

. Provide clear and specific queries that describe the desired mathematical calculation.
. Include all necessary numerical inputs directly in the query string.
. Keep tasks focused on basic arithmetic, algebraic calculations, or simple mathematical algorithms.

. Ensure all required numerical data is included in the query.

| S S

. Verify that the query only involves mathematical operations and does not require any data process-
ing or complex algorithms.

6. Review generated code to ensure it only uses basic Python arithmetic operations and built-in math
functions.

LLM Engine Required: True

29

L1.2.3 Google Search

Tool Metadata of Google Search

Description: A web search tool powered by Google Search that provides real-time information from the
internet with citation support.

Input: query: str - The search query to find information on the web.

Input: add_citations: bool - Whether to add citations to the results. If True, the results will be formatted
with citations. By default, it is True.

Qutput: str - The search results of the query.

Demo Commands:

Command:
execution = tool.execute(query="What is the capital of France?")

Description: Search for general information about the capital of France with default citations enabled.
Command:

execution = tool.execute(query="Who won the euro 20247", add_citations=False)
Description: Search for information about the Euro 2024 winner without citations.
Command:

execution = tool.execute(query="Physics and Society article arXiv August 11, 2016’
add_citations=True)

Description: Search for specific academic articles with citations enabled.

1. This tool is only suitable for general information search.

2. This tool contains less domain-specific information.

3. This tool is not suitable for searching and analyzing videos on YouTube or other video platforms.

Best Practice

1. Choose this tool when you want to search for general information about a topic.

2. Choose this tool for question types of query, such as “What is the capital of France?”” or “Who
invented the telephone?”.

3. The tool will return summarized information.

4. This tool is more suitable for definition, world knowledge, and general information search.

LLM Engine Required: False

I.2.4 Wikipedia Search
Wikipedia search will first call Wikipedia API to retrieve relevant URLs with snippets.

Tool Metadata of Wikipedia Search

Description: A tool that searches Wikipedia and returns relevant pages with their page titles, URLSs, abstract,
and retrieved information based on a given query.

Input: query: str - The search query for Wikipedia.

Output: dict - A dictionary containing search results, all matching pages with their content, URLs, and
metadata.

Demo Commands:

Command:
execution = tool.execute(query="What is the exact mass in kg of the moon")

Description: Search Wikipedia and get the information about the mass of the moon.

Command:
execution = tool.execute(query="Funtion of human kidney")

Description: Search Wikipedia and get the information about the function of the human kidney.

Command:
execution = tool.execute(query="When was the first moon landing?")

Description: Search Wikipedia and get the information about the first moon landing.

1. It is designed specifically for retrieving grounded information from Wikipedia pages only.

2. The returned information accuracy depends on Wikipedia’s content quality.

Best Practice

1. Use specific, targeted queries rather than broad or ambiguous questions.

2. If initial results are insufficient, examine the “other_pages” section for additional potentially
relevant content.

3. Use this tool as part of a multi-step research process rather than a single source of truth.

4. You can use the Web Search to get more information from the URLs.

LLM Engine Required: True

1.2.5 Web Search

Web search will directly access the URL in the query. Then the RAG (Retrieval-Augmented Genera-

tion) process begins by splitting content from the page into overlapping chunks of approximately 200
words each, with a 20-word overlap to preserve context across segments from the first IM words in
each URL. Next, both the user’s query and the document chunks are embedded into the vector space
using the OpenAl text-embedding-3-small' model. The system computes the cosine similarity
between the query embedding and each chunk embedding to rank the chunks by relevance. We set
that the top 10 most similar chunks are selected and passed forward as context. And a base LLM
engine will summarize the extracted context.

Tool Metadata of Web Search

Description: A specialized tool for answering questions by retrieving relevant information from a given
website using RAG (Retrieval-Augmented Generation).

Input: query: str - The search query for the website.
Input: url: str - The URL of the website to retrieve information from.

Output: str - The answer to the user’s query based on the information gathered from the website.

Demo Commands:

Command:

execution = tool.execute(query="What is the exact mass in kg of the moon?",
url="https://en.wikipedia.org/wiki/Moon")

Description: Retrieve information about the moon’s mass from Wikipedia.

Command:
execution = tool.execute(query="What are the main features of Python programming
language?", url="https://www.python.org/about/apps/")

Description: Get information about Python features from the official website.

Requires valid URLSs that are accessible and contain text content.

May not work with JavaScript-heavy websites or those requiring authentication.
Performance depends on the quality and relevance of the website content.

May return incomplete or inaccurate information if the website content is not comprehensive.

Limited by the chunking and embedding process which may miss context.

O B

Requires OpenAl API access for embeddings and LLM generation.

Best Practice

. Use specific, targeted queries rather than broad questions.

. Ensure the URL is accessible and contains relevant information.

. Prefer websites with well-structured, text-rich content.

. For complex queries, break them down into smaller, specific questions.
. Verity important information from multiple sources when possible.

. Use it as part of a multi-step research process rather than a single source of truth.

~N N L AW =

. Itis highly recommended to use this tool after calling other web-based tools (e.g., Google Search,
Wikipedia Search, etc.) to get the real, accessible URLs.

LLM Engine Required: True

"nttps://platform.openai.com/docs/models/text-embedding-3-small

32

https://platform.openai.com/docs/models/text-embedding-3-small

.3 LLM-based Judging

We employ GPT-40 as our judge model using a two-step “analyze-then-judge” instruction paradigm
to ensure both accuracy and efficiency.

Reward Function Instruction in Training

Task: Determine if the Model Response is equivalent to the Ground Truth.

Instructions:

1. Extract: Isolate the final answer from the Model Response, ignoring all reasoning steps. Look
specifically for content within =] or the concluding statement.

2. Normalize & Compare: Assess equivalence after normalization:
3. Mathematical Answers: Must be mathematically identical (e.g., % is equivalent to 0.5).

4. Numerical/Textual Answers: Ignore formatting (commas, spaces), case sensitivity, and extraneous
units/currency (e.g., “1,000” == “1000”, “Paris” == “PARIS”).

5. Multiple Choice Questions (MCQ): The answer must match either the correct option’s content (e.g.,
“Paris”) or its identifier (e.g., “A” or “Ist”).

6. Verdict: Return “True” only if the normalized answers are semantically or mathematically equivalent.

Inputs:

Question: {Question}

Model Response: {Final Response from Solution Generator}
Ground Truth: {GT}

Output Format: Present your response in the following structured format. Do not include any extra text or
explanations.

<analysis>: Brief analysis of the comparison.
<true_false>: “True” or “False”.

33

J Case Studies

In this section, we conduct a case study to demonstrate how our AGENTFLOW, coherent with Flow-
GRPO, enhances problem-solving performance with greater elegance, efficiency, and robustness. We
present solution comparisons showing brief outputs from memory of the Action Planner (Qwen2.5-7B-
Instruct) before (w/0) tuning by Flow-GRPO and after (w/) Flow-GRPO tuning, with the methodology
detailed in §2.2.

J.1 Example 1: Efficient Search for Simple Tasks

This case demonstrates that, with Flow-GRPO tuning, the Action Planner can effectively leverage the
search engine to retrieve correct answers for simple tasks in a highly efficient manner—unlike the
untuned baseline, which requires multiple trials.

Example from # GameOf24

Question: Using the numbers [1, 1, 1, 13], create an expression that equals 24. You must use basic
arithmetic operations (+, -, *, /) and parentheses.

Answer: (13-1)*(1+1)

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:

e Tool: Google Search

* Sub-goal: Find a valid arithmetic expression that equals 24 using the numbers [1, 1, 1, 13].

e Command:
tool.execute(query="[1, 1, 1, 13] arithmetic expression to get 24")

* Result: Here’s an arithmetic expression using the numbers 1, 1, 1, and 13 to get 24: (13-1) * (1 + 1)
=24

Execution Verifier: PASS, STOP

Solution Generator: The arithmetic expressionis ((13 — 1) x (1 + 1)) = 24.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
e Tool: Python Coder
* Sub-goal: Generate and test all possible combinations of the numbers [1, 1, 1, 13] using basic
arithmetic operations and parentheses to find an expression that equals 24.
e Command:
tool.execute(query="[1, 1, 1, 13] execution = (1 * (13 - 1 - 1))")
* Result:
Define the values
value_list = [1, 1, 1, 13]
operation_result = 1 * (13 - 1 - 1)
Print the result with a descriptive message
print (f"The result of the operation is: operation_result")

The result of the operation is: 11

Action Step 2:

* Tool: Python Coder

* Sub-goal: Generate and test all possible combinations of the numbers [1, 1, 1, 13] using basic
arithmetic operations and parentheses to find an expression that equals 24.

e Command:
tool.execute(query="[1, 1, 1, 13] -> ((1 + 1 + 1) * 13)")

* Result: Error: unexpected indent (<string>, line 2).

Action Steps 3-8:
* Tool: No matched tool given (Tool Not Found)

Sub-goal: Generate and test all possible combinations of the numbers [1, 1, 1, 13] using basic
arithmetic operations and parentheses to find an expression that equals 24.

Command: Not command is generated due to the tool not found.

Result: Not result is generated due to the tool not found.

Note: These steps are identical repetitions where the agent failed to find a matching tool.

Execution Verifier: STOP, Tool Not Found

Solution Generator: The agent incorrectly concludes that (1 + 1 + 1) x 13 = 24.

J.2

This case demonstrates that, when tuned with Flow-GRPO, the Action Planner first attempts several
solutions, recognizes their ineffectiveness, resorts to a brute-force approach, and finally verifies the

Example 2: Spontaneous Brute-force

result using a search engine.

Example from # GameOf24

Question: Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic
operations (+, -, *, /) and parentheses.

Answer: (1+1)*9+6

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1: Initial Attempt

Tool: Python Coder

Sub-goal: Generate and test all possible arithmetic expressions using the numbers [1, 1, 6, 9] exactly
once to check if any combination equals 24.

Command:

tool.execute(query="Using the numbers [1, 1, 6, 9], create an expression that equals
24 using basic arithmetic operations and parentheses.")

Result:

Given numbers

numbers = [1, 1, 6, 9]

Calculate the expression

result = (numbers[0] + numbers[1]) * (numbers[3] - numbers[2])

Print the result

print (f"The result of the expression (numbers[0] + numbers[1]) * (numbers[3] -
numbers[2]) is: result")

The result of the expression (1 +1) * (9-6)is: 6

Action Step 2: Tool Error

Tool: Python Coder

Sub-goal: Generate and test all possible permutations of the numbers with different operator place-
ments to find an expression that equals 24.

Command:

tool.execute(query="Using the numbers [1, 1, 6, 9], create an expression with
+,-,%,/ that equals 24")

Result: Error: eval() arg 1 must be a string, bytes or code object

Action Step 3: Second Attempt

Tool: Python Coder

Sub-goal: Generate all possible combinations of the four numbers with every permutation of operators
(+,-,%,/) to find a valid equation resulting in exactly 24.

Command:

tool.execute(query="Using the numbers [1, 1, 6, 9] create an expression with +,-,*,/
that equals to ’24°")

Result:

Given numbers

numbers = [1, 1, 6, 9]

Calculate the expression

result = (numbers[2] - numbers[0]) * (numbers[3] / numbers[1]) / numbers[1]
Print the result

print (£"The result of the expression is: result")

The result of the expression is: 45.0

Action Step 4: Systematic Search (Breakthrough)

e Tool: Python Coder

* Sub-goal: Generate and evaluate all possible permutations of the four numbers with every permutation
of operators (+,-,*,/) to find a valid equation resulting in exactly 24.

* Command:
tool.execute(query="Using the numbers [1, 1, 6, 9] create an expression that equals
24 using +,-,/,*")

* Result: Successfully found valid expressions: The expression (1+1)*9+6 equals 24. The expression
6+(1+1)*9 equals 24. The expression 6+(9*(1+1)) equals 24. The expression 9*(1+1)+6 equals 24.

Action Step 5: Confused Verification

e Tool: Python Coder

* Sub-goal: Simplify and verify if any minor adjustments to the existing promising expression can
achieve an exact match of 24.

* Command:
tool.execute(query="Using the numbers [1, 1, 6, 9] and basic arithmetic operations
create an expression that equals 24: (9 * (6 * (1 + 1)))")

* Result:

Action Step 6: Final Verification

* Tool: Google Search

* Sub-goal: Search online for examples or discussions related to creating expressions using given
numbers that equal a target value.

e Command:
tool.execute(query="using the numbers [1, 1, 6, 9] create an expression that equals
24", add_citations=True)

* Result: Here’s an expression using the numbers that equals 24: (1 +1) *9 + 6 =24

Execution Verifier: PASS, STOP (via exhaustive search and verification)

Solution Generator: After a multi-step process of trial, error, and verification, the final correct
expressionis (1 +1) *9 + 6 = 24.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
e Tool: Python Coder
* Sub-goal: Generate and test Python code snippets to find an arithmetic expression using the numbers
[1, 1, 6, 9] exactly once that equals 24.
* Command:
tool.execute(query="Using the numbers [1, 1, 6, 9], create an expression that equals
24 using basic arithmetic operations and parentheses.")
* Result:
Define the numbers
numbers = [1, 1, 6, 9]
Calculate the expression
result = (6 * 9) - ((1 + 1) * 15)
Print the result with a descriptive message
print("The result of the expression is:", result)

The result of the expression is: 24
Execution Verifier: STOP

Solution Generator: The agent incorrectly concludes the answer is (6 x 9) — ((1 + 1) x 15), failing
to notice it used the number 15, which was not in the allowed input set.

36

J.3 Example 3: A Good Initial Plan is Essential

This case demonstrates that a well-crafted initial search with a highly relevant query is far more
effective than issuing numerous wrong paths. When tuned with Flow-GRPO, the Action Planner in
AGENTFLOW can identify the optimal search engine and formulate the most effective query, leading
to a correct and targeted answer in a single trial.

Example from # GAIA

Question: Assuming scientists in the famous youtube video The Thinking Machine (Artificial Intelligence
in the 1960s) were interviewed the same year, what is the name of the scientist predicting the sooner
thinking machines or robots? Answer using the format First name Last name.

Answer: Claude Shannon

Success Case : AGENTFLOW w/ Flow-GRPO

Action Turn 1:

e Tool: Google Search

* Sub-goal: Search for details on "The Thinking Machine" YouTube video and identify key figures
making predictions about Al

* Command:
tool.execute(query="Assuming scientists in the famous youtube video The Thinking
Machine (Artificial Intelligence in the 1960s) were interviewed the same year, what
is the name of the scientist predicting sooner thinking machines or robots?")

* Result: The scientist who predicted the sooner emergence of thinking machines or robots in “The
Thinking Machine” video from the 1960s was Claude Shannon. He stated, “I confidently expect
that within 10 or 15 years we will find emerging from the laboratories something not too far from
the robots of science-fiction fame.” This prediction was made in the 1961 documentary, which was
produced by CBS to honor MIT’s 100th birthday.

Execution Verifier: PASS, STOP

Solution Generator: The scientist who made the prediction is Claude Shannon.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Turn 1:

e Tool: Web Search

* Sub-goal: Retrieve information from the YouTube video “The Thinking Machine” (Artificial Intel-
ligence in the 1960s) to identify the name of the scientist who made the prediction about thinking
machines or robots.

e Command:
tool.execute(query="Who predicted the sooner thinking machines or robots in the
YouTube video ’The Thinking Machine’ (Artificial Intelligence in the 1960s)7",
url="https://www.youtube.com/watch?v=your_video_id")

e Result: The reference information provided does not contain any details regarding predictions
made about thinking machines or robots in the YouTube video *The Thinking Machine’ (Artificial
Intelligence in the 1960s). Therefore, I cannot provide an answer to the query.

Action Turn 2:

* Tool: Google Search

* Sub-goal: Find the name of the scientist who predicted the sooner development of thinking machines
or robots in the YouTube video “The Thinking Machine” (Artificial Intelligence in the 1960s).

e Command:
tool.execute(query="In the YouTube video The Thinking Machine (Artificial
Intelligence in the 1960s), which scientist predicted the sooner development of
thinking machines or robots?", add_citations=True)

* Result: In the YouTube video “The Thinking Machine (Artificial Intelligence in the 1960s),” Jerome
Wiesner, then Director of the Research Laboratory of Electronics at MIT, predicted the sooner
development of thinking machines. He stated, “if you come back in four or 5 years I'll say ‘Sure they
really do think.”

Action Turn 3:

Tool: Google Search

Sub-goal: Find the name of the scientist who predicted the sooner development of thinking machines
or robots in the YouTube video “The Thinking Machine” (Artificial Intelligence in the 1960s).
Command:

tool.execute(query="In the YouTube video The Thinking Machine (Artificial
Intelligence in the 1960s), which scientist predicted the sooner development of
thinking machines or robots?", add_citations=True)

Result: In the YouTube video “The Thinking Machine (Artificial Intelligence in the 1960s),” Professor
Jerome B. Wiesner, director of the research laboratory of electronics at MIT, predicted the sooner
development of thinking machines. He stated, “I suspect if you come back in four or 5 years I’ll say
‘Sure they really do think.”” Another scientist in the video confidently expected “within a matter of 10
or 15 years something will emerge from the laboratories which is not too far from robot a science
fiction fan.”

Action Turn 4:

Tool: Google Search

Sub-goal: Find the exact year of the interview in the YouTube video “The Thinking Machine”
(Artificial Intelligence in the 1960s) where Jerome B. Wiesner made the prediction about thinking
machines or robots.

Command:

tool.execute(query="In the YouTube video The Thinking Machine (Artificial
Intelligence in the 1960s), which scientist predicted the sooner development of
thinking machines or robots?", add_citations=True)

Result: In the YouTube video “The Thinking Machine (Atrtificial Intelligence in the 1960s),” a
scientist confidently predicted that “within a matter of 10 or 15 years something will emerge from the
laboratories which is not too far from the robot of science fiction fame.” While the video features
interviews with several pioneering scientists in artificial intelligence, including Jerome Wiesner,
Oliver Selfridge, and Claude Shannon, the specific speaker for this particular prediction about the
emergence of robots within 10 to 15 years is not explicitly named in the provided transcripts. Jerome
Wiesner, one of the co-hosts, also made a prediction, stating he suspected that in “four or 5 years”
machines would “really do think.”

Action Turn 5:

Tool: Google Search

Sub-goal: Find the exact year of the interview in the YouTube video “The Thinking Machine”
(Artificial Intelligence in the 1960s).

Command:

tool.execute(query="When was the YouTube video ’The Thinking Machine’ released?",
add_citations=True)

Result: The original television program titled ‘The Thinking Machine’ aired on the CBS TV network
on October 26, 1960. It was a special program produced by CBS News in conjunction with the
Massachusetts Institute of Technology (MIT). This documentary explored early concepts of artificial
intelligence and computers. While the original broadcast was in 1960, various versions of ‘The
Thinking Machine’ have been uploaded to YouTube at different times.

Action Turn 6:

Tool: Google Search

Sub-goal: Find the exact year of the interview in the YouTube video “The Thinking Machine”
(Artificial Intelligence in the 1960s) where Jerome Wiesner made his prediction about thinking
machines or robots.

Command:

tool.execute(query="In which year did Jerome Wiesner make his prediction about
thinking machines or robots in the YouTube video ’The Thinking Machine’ (Artificial
Intelligence in the 1960s)?", add_citations=True)

Result: Jerome Wiesner made his prediction about thinking machines or robots in the YouTube
video ‘The Thinking Machine’ (Artificial Intelligence in the 1960s) in 1960. The documentary, which
features Wiesner, originally aired on October 26, 1960, as part of a CBS series titled “Tomorrow”. In
the video, Wiesner stated his confident expectation that “within a matter of 10 or 15 years something
will emerge from the laboratories which is not too far from robot a science fiction fan”.

Execution Verifier: STOP, Initial Tool Failure & Inefficient Search Path

38

Solution Generator: The answer is Jerome B. Wiesner. However, the initial direct video search failed,
leading to multiple, somewhat redundant Google searches to extract the information.

J.4 Example 4: Robust Self-Correction and Adaptation

This side-by-side comparison illustrates the critical impact of Flow-GRPO tuning on strategic tool
usage. The trained AGENTFLOW agent demonstrates adaptive planning—recovering from failed
searches, refining input formulations, and ultimately achieving a correct solution in a single effective
trial. In contrast, the untrained agent, despite accessing the correct information early, fails to properly
utilize the Python Coder tool and becomes trapped in a repetitive error loop, unable to learn or adjust.
This highlights Flow-GRPO’s role in enabling not just tool selection, but strategic resilience and
goal-directed reasoning.

Example from # GAIA

Question: Compute the check digit the Tropicos ID for the Order Helotiales would have if it were an
ISBN-10 number.

Answer: 3

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:
* Tool: Wwikipedia Search
* Sub-goal: Retrieve the Tropicos ID from the Wikipedia page on Helotiales.
* Command:
tool.execute(query="Tropicos ID of Order Helotiales")
* Result: No results found for query: Tropicos ID of Order Helotiales

Action Step 2:
e Tool: Google Search
* Sub-goal: Retrieve the Tropicos ID of Order Helotiales from a reliable online source.
e Command:
tool.execute(query="Tropicos ID of Order Helotiales")
* Result: The Tropicos ID for the Order Helotiales is 100370510.

Action Step 3:

* Tool: Python Coder

* Sub-goal: Write and execute a Python script to calculate the check digit for tropicos_id as if it were
an ISBN-10 number.

e Command:
tool.execute(query="Calculate the check digit for the ISBN-10 number " +
tropicos_id)

e Result: Error in execute_tool_command: name ’tropicos_id’ is not defined

Action Step 4:
e Tool: Python Coder
* Sub-goal: Write and execute a Python script to calculate the check digit for tropicos_id as if it were
an ISBN-10 number.
* Command:
tool.execute(query="Compute the check digit for 100370510 as an ISBN-10 number")
* Result:
def calculate_check_digit(isbn):
Extract the first 9 digits of the ISBN-10
isbn_digits = [int(digit) for digit in isbn[:9]]

Calculate the sum of products

39

total_sum = sum(position * digit for position, digit in enumerate(isbn_digits,
start=1))

Determine the check digit
check_digit = total_sum % 11
if check_digit == 10:

return ’X°
else:

return str(check_digit)

Given ISBN-10 number
isbn_10 = "100370510"

Compute the check digit
check_digit_result = calculate_check_digit(isbn_10)

Print the final result
print (£"The check digit for the ISBN-10 number isbn_10 is check_digit_result")

Printed output: The check digit for the ISBN-10 number 100370510 is 3

Action Step 5:
e Tool: Python Coder
» Sub-goal: Execute the existing Python script to calculate and print the check digit for tropicos_id
as an ISBN-10 number.
* Command:
tool.execute(query="Compute the check digit for tropicos_id 100370510 as an ISBN-10
number")
* Result:
def calculate_isbnl0_check_digit(tropicos_id):
Step 1: Extract the first 9 digits of the Tropicos ID
isbn_digits = tropicos_id[:9]
Step 2: Initialize the sum for the check digit calculation
total_sum = 0
Step 3: Calculate the sum of the products of each digit and its position
for i, digit in enumerate(isbn_digits, start=1):
total_sum += i * int(digit)
check_digit = total_sum
If the check digit is 10, it is represented as ’X’
if check_digit == 10:
check_digit = ’X’
Step 5: Format the ISBN-10
isbn_10 = f"isbn_digitscheck_digit"
return isbn_10
Given Tropicos ID tropicos_id = "100370510"
Step 6: Generate the ISBN-10 and print the result
isbn_10 = calculate_isbn10_check_digit(tropicos_id)
print (£"The ISBN-10 number for the Tropicos ID tropicos_id is: isbn_10")

Printed output: The ISBN-10 number for the Tropicos ID 100370510 is: 1003705103
Execution Verifier: PASS, STOP

Solution Generator: The check digit is 3, resulting in the full number 1003705103.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
* Tool: Wikipedia Search
* Sub-goal: Retrieve the Tropicos ID of the Order Helotiales from Wikipedia.
* Command:
tool.execute(query="Tropicos ID for the Order Helotiales")
e Result: No results found for query: Tropicos ID for the Order Helotiales

Action Step 2:

40

* Tool: Google Search
» Sub-goal: Retrieve the Tropicos ID of the Order Helotiales from a reliable web source.
e Command:
tool.execute(query="Tropicos ID for the Order Helotiales", add_citations=True)
* Result: The Tropicos ID for the Order Helotiales is 100370510.[1][2]

Action Steps 3-9:

e Tool: Python Coder

» Sub-goal: Calculate the check digit for the Tropicos ID 100370510 if it were an ISBN-10 number.

* Command:
tool.execute(query="Calculate the check digit for the ISBN-10 number 100370510")

* Result: Error: name ’isbn’ is not defined

* Note: Action Steps 3 through 9 all have identical subgoals, commands, and error results—the agent
is stuck in a repetitive error loop, unable to fix the variable naming issue.

Execution Verifier: STOP, Stuck in Repetitive Tool Error
Solution Generator: The Python tool failed repeatedly with the same ‘isbn’ variable error across 7

consecutive attempts (Steps 3-9). The agent was unable to recover from this error and failed to calculate
the check digit.

J.5 Example 5: New Combo: Retrieve with Specific URL

This case highlights how both agents eventually succeed, but with markedly different efficiency and
strategy. The Flow-GRPO-tuned AGENTFLOW agent learns to refine its queries effectively and—upon
recognizing the limitations of Wikipedia search—switches tools strategically to a targeted and the
most task-solving relevant web search, achieving success with minimal redundancy. In contrast, the
untrained agent persists in issuing dense, ineffective queries within the same tool despite diminishing
returns, only escaping the loop by eventually switching to Google Search. While both reach the
correct answer, the latter exhibits inefficient exploration and delayed adaptation; furthermore, with
no path consistency, underscoring Flow-GRPO’s role in fostering not just correctness, but strategic
focus and timely tool transition.

Example from # HotpotQA

Question: Which part of Handel’s Messiah covers the birth of a child who, according to the gospels of
Luke and Matthew, was born in Bethlehem?

Answer: Part I

Success Case: AGENTFLOW w/ Flow-GRPO

Action Steps 1-2: Initial Failures

* Tool: Wikipedia Search

* Sub-goal: Retrieve information about the part of Handel’s Messiah that refers to the birth of Jesus in
Bethlehem.

* Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of Jesus in
Bethlehem?")

e Result: Initial long-form queries failed to find relevant pages (returned irrelevant pages like "Historical
Jesus", "Advent", "Passion of Jesus").

Action Step 3: Query Refinement
* Tool: Wikipedia Search
* Sub-goal: Identify the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethlehem.
* Command:
tool.execute(query="Handel’s Messiah birth of Jesus Bethlehem")
* Result: This successfully identified relevant pages like “Structure of Handel’s Messiah” and “Messiah
Part I”.

Action Steps 4-6: Further Search

* Tool: Wikipedia Search
* Sub-goal: Retrieve the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethlehem.
* Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of Jesus in
Bethlehem?")

and
tool.execute(query="birth of Jesus in Handel’s Messiah")
e Result: Agent gets briefly confused, re-runs a failed query, but then another refined query again

locates the main “Messiah (Handel)” Wikipedia pages.

Action Step 7: Tool Switching (Breakthrough)

* Tool: Web Search (on a specific URL)

* Sub-goal: Retrieve the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethlehem.

e Command:
tool.execute(query="Which part of Handel’s Messiah covers the birth of Jesus in
Bethlehem?",
url="https://en.wikipedia.org/wiki/Handel’27s_Messiah")

* Result: Success! The tool extracted the answer from the page: The part of Handel’s Messiah that
covers the birth of Jesus in Bethlehem is found in Part I, specifically in the scene that includes the
prophecy of Christ’s birth. This section features the well-known chorus “For unto us a child is born,”
which celebrates the nativity of Jesus.

Execution Verifier: PASS, STOP

Solution Generator: The relevant section is Part I, which includes the famous chorus “For unto us a
child is born”.

Success Case but stuck in dense information: AGENTFLOW w/o Flow-GRPO

Action Step 1: Initial Wikipedia Search

e Tool: Wikipedia Search

* Sub-goal: Retrieve information about the part of Handel’s Messiah that refers to the birth of Jesus in
Bethlehem.

e Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of Jesus in
Bethlehem?")

* Result: Returned irrelevant pages (e.g., “Historical Jesus”, “Advent”). (No direct answer)

Action Step 2: Refined Wikipedia Search

* Tool: Wikipedia Search

* Sub-goal: Retrieve information about the specific part of Handel’s Messiah that mentions the birth of
Jesus in Bethlehem.

* Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of Jesus in
Bethlehem?")

* Result: Still returned mostly irrelevant pages, but "Messiah Part " appeared in other suggestions.
(Hint found, but no direct answer)

Action Step 3: Keyword Wikipedia Search

* Tool: Wikipedia Search

* Sub-goal: Retrieve information about the specific part of Handel’s Messiah that mentions the birth of
Jesus in Bethlehem.

e Command:
tool.execute(query="Handel’s Messiah birth of Jesus Bethlehem")

* Result: Still no direct relevant pages, but “Structure of Handel’s Messiah” and “Messiah Part I”” again
appeared. (Still no direct answer)

Action Steps 4-5: Persistent Wikipedia Queries
* Tool: Wikipedia Search
* Sub-goal: Retrieve the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethlehem.
e Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of Jesus in
Bethlehem?")

42

tool.execute(query="Handel’s Messiah birth of Jesus Bethlehem")
* Result: Consistently returned irrelevant pages like “Historical Jesus” and “Christmas Oratorio”.
(Wikipedia tool stuck/ineffective for direct answer)

Action Step 6: External Search (Breakthrough)

* Tool: Google Search

* Sub-goal: Find the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethlehem.

* Command:
tool.execute(query="Which part of Handel’s Messiah covers the birth of a child
who, according to the gospels of Luke and Matthew, was born in Bethlehem?",
add_citations=True)

* Result: Successfully found the answer: Handel’s Messiah addresses the birth of a child born in
Bethlehem primarily in Part I of the work. Key elements within Part I include the chorus “For unto us
a child is born” and the scene depicting the annunciation to the shepherds.

Execution Verifier: PASS, STOP (via query refinement and external search after Wikipedia limitations)
Solution Generator: The part of Handel’s Messiah referring to the birth of Jesus in Bethlehem is

found in Part I, particularly the chorus “For unto us a child is born” and the scene depicting the
annunciation to the shepherds.

J.6 Example 6: Rapid and Correct Physics Calculation

This GPQA example reveals a fundamental difference in reasoning quality between the tuned
and untuned agents. The Flow-GRPO-enhanced AGENTFLOW correctly identifies the core chal-
lenge—relativistic time dilation over interstellar distances—and applies the appropriate physics-based
computation in minimal steps, arriving at the correct answer (81 years) efficiently. In contrast, the
untrained agent misinterprets the astronaut’s age as the travel duration, leading to a cascade of erro-
neous calculations across multiple tool calls. Despite eventually retrieving the distance via search, it
fails to integrate this information coherently or recognize its conceptual mistake. This highlights that
Flow-GRPO not only improves tool usage efficiency but also promotes correct problem formulation,
enabling the agent to distinguish between proper time, coordinate time, and mission constraints—a
critical capability for complex scientific reasoning.

Example from # GPQA

Question: An intelligent civilization in the Large Magellanic Cloud has engineered an extraordinary
spacecraft capable of traveling at a substantial fraction of the speed of light. The average lifetime of these
aliens is roughly 150 solar years. Now, having Earth as their destination in mind, they are determined to
travel with this spacecraft at a constant speed of 0.99999987*c, where c is the speed of light. Approximately,
how long will it take for their 22 years old astronaut (from the point of view of the astronaut) to reach the
Earth using this incredibly fast spacecraft?

Choices:

A. 81 years

B. 77 years

C. 72 years

D. The astronaut will die before reaching to the Earth.

Answer: A. 81 years

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:

* Tool: Python Coder

* Sub-goal: Calculate the time it takes for the astronaut to reach Earth from the perspective of the
astronaut.

* Command:
tool.execute(query="A spacecraft travels at a speed of 0.99999987*c, where c is
the speed of light. The distance to Earth is 165000 light-years. If the astronaut
is 22 years old, how long will it take for the astronaut to reach Earth from the
perspective of the astronaut? Using the formula time = distance / speed, calculate

the time dilation effect with the velocity given and determine the perceived time
for the astronaut.")

* Result:
import math

Constants

speed_of _light = 1 # Speed of light in arbitrary units

distance_to_earth = 165000 # Distance to Earth in light-years

astronaut_age = 22 # Astronaut’s age in years

velocity_factor = 0.99999987 # Velocity as a fraction of the speed of light

Step 1: Calculate the time it takes for the spacecraft to travel to Earth
travel_time = distance_to_earth / velocity_factor

Step 2: Calculate the Lorentz factor
lorentz_factor = 1 / math.sqrt(l - velocity_factor*x2)

Step 3: Calculate the perceived time for the astronaut
perceived_time = travel_time * lorentz_factor

Print the results
print (f"The spacecraft will take travel_time:.2f years to reach Earth.")
print(£"Due to time dilation, the astronaut will perceive perceived_time:.2f years
passing.")
The spacecraft will take 165000.02 years to reach Earth. Due to time dilation, the astronaut will
perceive 323591675.56 years passing.
* Note:

Execution Verifier: PASS, STOP

Solution Generator: Correct physics approach - properly calculated relativistic travel time considering
distance and time dilation effects. Therefore, the correct choice is: A. 81 years.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:

e Tool: Python Coder

» Sub-goal: Generate and execute Python code to calculate the time experienced by the astronaut
using time dilation formula: ¢’ = %, where ¢ is the travel time from a stationary observer’s
1-=
perspective, and v is 0.99999987 * c.

* Command:
tool.execute(query="Calculate the time experienced by an astronaut using the time
dilation formula: t’> =t / sqrt(l - v°2/c”2), where t is approximately 22 years
(the lifespan of the astronaut) and v is 0.99999987 * c.")

* Result:
Step 1: Define the constants
c = 299792458 # Speed of light in meters per second
v = 0.99999987 * c # Velocity of the astronaut as a fraction of the speed of light

Step 2: Calculate the value inside the square root
value_inside_sqrt = 1 - (v *x 2 / c ** 2)

Step 3: Compute the time experienced by the astronaut
t_prime = 22 / value_inside_sqrt # Lifespan of the astronaut in years

Step 4: Print the result
print (f"The time experienced by the astronaut is t_prime:.6f years.")

» The time experienced by the astronaut is 84615390.151914 years. The time experienced by the
astronaut is 84615390.151914 years.

44

Action Step 2:

* Tool: Google Search

» Sub-goal: Find scientific references discussing similar scenarios regarding travel times under rela-
tivistic conditions.

e Command:
tool.execute(query="relativistic travel time calculations for speeds close to the
speed of light", add_citations=True)

¢ Result: Retrieved detailed information about time dilation formulas and Lorentz factors, but this
theoretical knowledge was not properly integrated with the problem’s specific requirements.

Execution Verifier: STOP, Conceptual Error & Inefficient Multi-Step Process
Solution Generator: The answer is 84615390.151914 years. However, the approach incorrectly treated

the astronaut’s age as travel time, leading to multiple redundant calculations and a fundamentally flawed
methodology.

J.7 Example 7: Multi-Source Cross-Verification

The comparison highlights the effectiveness of a multi-tool, systematic reasoning approach enabled
by Flow-GRPO. In the success case, the model leveraged sequential tool usage—starting with Google
Search, followed by targeted Wikipedia and Web Search—to accurately identify Giilcicek Hatun
as Olivera Despina’s mother-in-law through verified historical sources. Each step built upon prior
findings, ensuring robustness and precision. In contrast, the failure case without Flow-GRPO relied
on a single, improperly executed Wikipedia query without task decomposition that resulted in a
timeout and no meaningful output, leading to premature termination. This demonstrates that Flow-
GRPO enhances reasoning trace reliability, tool coordination, and overall task completion in complex
knowledge retrieval scenarios.

Example from # 2Wiki

Question: Who is the mother-in-law of Olivera Despina?

Answer: Giilgicek Hatun

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:

e Tool: Google Search

* Sub-goal: Perform a Google search for “Olivera Despina biography” to find relevant information
about her and possibly identify her husband’s family members.

* Command:
tool.execute(query="0livera Despina biography", add_citations=True)

* Result: Olivera Despina, also known as Mileva Olivera Lazarevi¢ or Despina Hatun, was a Serbian
princess born around 1372. She was the youngest daughter of Prince Lazar of Serbia and Princess
Milica. In 1389, shortly after the Battle of Kosovo, Olivera was given in marriage to the Ottoman
Sultan Bayezid I as a peace offering between the Lazarevi¢ and Ottoman dynasties.

Action Step 2:

* Tool: Wikipedia Search

* Sub-goal: Identify any mention of Olivera’s parents or in-laws in Wikipedia articles.

* Command:
tool.execute(query="Who is the mother-in-law of Olivera Despina")

* Result: Returned pages about Bayezid I and other related historical figures, but no direct answer in
relevant pages.

Action Step 3:

* Tool: Google Search

* Sub-goal: Perform a Google search to find more detailed biographical information about Olivera
Despina and her family members.

e Command:
tool.execute(query="Who is the mother-in-law of Olivera Despina")

45

e Result: Olivera Despina’s mother-in-law was Giilgicek Hatun. Olivera Despina was a Serbian
princess who married Ottoman Sultan Bayezid I after the Battle of Kosovo in 1389. Giilcicek Hatun
was the first wife of Sultan Murad I and the mother of Bayezid I.

Execution Verifier: PASS, STOP

Solution Generator: Multi-tool verification approach successfully identified Giilgicek Hatun as
Olivera Despina’s mother-in-law through systematic research.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:

* Tool: Google Search

* Sub-goal: Search for information about the film “Pugachev” (1978) and identify the director and any
awards they received.

* Command:

tool.execute(query="What is the award that the director of film Pugachev (1978 Film)

received?", add_citations=True)

Result: Alexey Saltykov, the director of the 1978 film “Pugachev,” received the title of People’s Artist

of the RSFSR in 1980 and the Order of the Badge of Honour for his contributions to cinema. While

the film “Pugachev” itself was honored with a special prize at the All-Union Film Festival in 1979,

this award was given to the film rather than specifically to Saltykov for his direction of it.

* Note: This step shows the agent working on a completely different question than asked.

Action Step 2:

* Tool: Wikipedia Search

* Sub-goal: Retrieve information about the personal awards received by Alexey Saltykov for directing
the film “Pugachev” (1978).

* Command:
tool.execute(query="Alexey Saltykov awards for Pugachev 1978")

* Result: Returned pages about "Alexey Saltykov (director)”, "Catherine the Great", and "Imperial
Russian Army" but no relevant information about the original question.

Execution Verifier: STOP - Agent worked on wrong question, no useful information gathered for
original query

Solution Generator: Tool attempts failed to address the actual question about Olivera Despina’s
mother-in-law. The agent became confused and worked on an unrelated question about the Pugachev
film director.

46

	Introduction
	Methodology
	AgentFlow: An In-the-Flow Agentic System
	In-The-Flow Reinforcement Learning Optimization

	Experiments
	Main Results
	In-depth Analysis

	Conclusion
	Preliminary
	Related Work
	AgentFlow: An In-the-Flow Agentic System
	Flow-based Group Refined Policy Optimization
	Training Algorithm of AgentFlow
	Theoretical Analysis of Flow-GRPO
	Preliminaries and Notation
	Equivalence Proof for Optimization Objectives
	Convergence Analysis

	Experimental Details
	Tool Details
	Training Details
	Evaluation Details
	Compared Baselines
	Evaluation Datasets

	More Discussion about Experiment Results
	Main Result Analysis
	Training Strategies on the Planner
	In-depth Analysis of Optimized Planning
	Training Efficiency Analysis
	Scaling Trends in AgentFlow

	Instruction Templates in AgentFlow
	Modules and Memory
	Toolset Metadata
	LLM-based Judging

	Case Studies
	Example 1: Efficient Search for Simple Tasks
	Example 2: Spontaneous Brute-force
	Example 3: A Good Initial Plan is Essential
	Example 4: Robust Self-Correction and Adaptation
	Example 5: New Combo: Retrieve with Specific URL
	Example 6: Rapid and Correct Physics Calculation
	Example 7: Multi-Source Cross-Verification

