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Abstract

Automated analysis of bioacoustic recordings is essential for monitoring biodiver-1

sity and ecosystem health, yet current methods struggle with the complexity of2

natural soundscapes and the scarcity of labeled data. We introduce a Bioacoustic3

Masked Autoencoder, a self-supervised framework designed to learn robust audio4

representations from large-scale, unlabeled recordings. Pretrained on over 15,0005

hours of diverse terrestrial and marine audio, our model, a 1B-parameter Vision6

Transformer encoder paired with a 500M-parameter decoder, learns representations7

that generalize across species and habitats. When evaluated zero-shot on multiple8

bioacoustic benchmarks, our model outperforms state-of-the-art models in vocal-9

ization detection and species classification. We further demonstrate the benefits of10

combining supervised and unsupervised contrastive objectives for species-aware11

embeddings. Our contributions include (1) a large-scale unified dataset of bioacous-12

tic recordings, (2) a pretrained foundation model for bioacoustic analysis, and (3)13

evidence that self-supervised learning enables scalable, label-efficient monitoring14

of global biodiversity. More results and visuals can be found at [LINK.15

1 Introduction16

Bioacoustic monitoring has emerged as a critical tool for ecological research, wildlife conservation,17

and biodiversity assessment Stowell et al. [2016], Marques et al. [2012]. By recording and analyzing18

animal vocalizations, researchers can track population dynamics, detect species presence, and monitor19

ecosystem health without physical intervention. However, the automated analysis of bioacoustic data20

presents significant challenges, particularly in natural environments where recordings contain diverse21

species, background noise, and complex acoustic events Stowell and Plumbley [2014], Mesaros et al.22

[2020].23

In this paper, we introduce a specialized Masked Autoencoder for bioacoustic data that learns24

robust audio representations without reliance on labeled examples. Our approach builds upon recent25

advances in self-supervised audio representation learning, particularly Audio-MAE Huang et al.26

[2022], while incorporating several innovations tailored specifically to the challenges of bioacoustic27

analysis: We also leverage a diverse dataset of bioacoustic recordings spanning terrestrial and marine28

environments to ensure our model learns representations applicable across varied ecological contexts.29

Our primary contributions are the following: Model. We release a 1 billion parameter Vision30

Transformer (ViT) encoder model trained heavily on bioacoustic data capable of handling long-31

sequences of audio. Unified Dataset. We release a collection of dozens of bioacoustic datasets32

with unified annotations. New Benchmark Results. We show that our model is able to achieve33

state-of-the-art results on bioacoustic benchmarks.34
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Figure 1: Overview of the Chorus of Life dataset. This dataset consists of over 1 million calls from
500+ species, showcasing a wide range of acoustic contexts. (i) Individual Calls: Examples of isolated
vocalizations from different species, represented as spectrograms. (ii) Group Calls: Recordings of
multiple individuals of the same species vocalizing together, highlighting overlapping patterns. (iii)
Interspecies Soundscapes: Complex acoustic environments where calls from multiple species co-
occur, mimicking real-world habitats. (iv) Human Exchanges: Speech interactions included in the
dataset to support human-animal communication studies. (v) Dataset Diversity: Visual representation
of species diversity, including birds, mammals, marine animals, and humans.

2 Related Work35

The advent of foundation models has begun to transform the field. NatureLMaudio is the first36

foundational audio language model specifically designed for bioacoustics Robinson et al. [2024].37

Unlike earlier approaches that were typically tailored to a single taxon or task, NatureLM-audio is38

trained on diverse text–audio pairs spanning bioacoustics, speech, and music. This broad training39

regime enables the model to generalize in a zero-shot manner to unseen species and novel tasks such40

as call-type prediction and individual counting—capabilities that are critical for conservation and41

ecological research.42

Collectively, these studies illustrate an evolution from specialized, species-specific classifiers to43

general-purpose, large-scale models capable of cross-domain transfer. Our work builds on these44

advances by integrating the strengths of foundation model architectures. In doing so, we aim to45

provide a unified framework that can robustly detect, classify, and interpret animal vocalizations46

across a wide range of taxa and real-world conditions.47

3 Dataset Creation48

We curated a comprehensive pretraining dataset and also a large collection of labeled bioacoustic49

datasets by combining recordings from multiple bioacoustic sources covering diverse taxonomic50

groups and ecological environments. The primary datasets incorporated are included in Table 1. We51

curated more than 7000 hours of audio and over 1 million annotated calls across 30 genera and 50052

species.53

Data Augmentation In order to teach our model a more diverse set of bioacoustic data during both54

pre-training and fine-tuning, we leveraged a multitude of data augmentation strategies in order to55

increase both the size and diversity of our dataset: (i) Mixing: Audio is additive by nature and so we56

are able to easily add multiple calls together to simulate overlapping calls., (ii) Stitching: In order57
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Dataset Num Calls Duration Dataset Num Calls Duration

AudioSet Gemmeke et al. [2017] 0 5,800 h Giant Otters Mumm and Knörnschild [2014] 441 1 h
Animal Sounds Jayaya [2025] 809 1 h Hainan Gibbons Dufourq et al. [2020] 1233 104 h
Anuraset Cañas et al. [2023] 16089 27 h Hawaii Birds Navine et al. [2022] 59583 51 h
Bengal Finch Nicholson et al. [2017] 1215 5 h HICEAS Yano et al. [2018] 796 13 h
BIRDeep Márquez-Rodríguez et al. [2024] 3749 9 h Macaques Fukushima et al. [2015] 7285 1 h
BirdVox Lostanlen et al. [2018] 35402 18 h Infant MarmosetsVox Sarkar and Magimai.-Doss [2023] 169318 59 h
Domestic Canaries Belzner et al. [2009] 14407 4 h Multimodal Birds Kumar et al. [2023] 6524 4 h
Columbia/CR Álvaro Vega-Hidalgo et al. [2023] 7338 35 h Northeast US Kahl et al. [2022a] 50760 285 h
DARPA dar 1718 5 h Orca Sounds Internet Archive 398 1 h
Avian Dawn Weldy et al. [2024] 41183 132 h Pig Sounds Briefer et al. [2022] 6887 1 h
DCASE 7206 18 h Rainforest Yassin et al. [2020] 1216 21 h
Fruit Bats Prat et al. [2017] 90000 38 h Rodent Sounds Tachibana [2019] 4576 1 h
ENA Birds Chronister et al. [2021] 16052 7 h Sierra Nevada Clapp et al. [2023] 10976 17 h
ESC Piczak 400 1 h Southwest Amazon Hopping et al. [2022] 16482 22 h
Rook Birds Martin et al. [2022] 21662 29 h SSW Van Horn et al. [2022] 3861 11 h

Watkins Marine Sounds Sayigh et al. [2016] 15152 30 h
Western US Kahl et al. [2022b] 20147 33 h
Sperm Whales 14764 250 h

Table 1: Curated datasets with the number of annotated calls (a single annotation of any length is an
annotated call) and duration.

Figure 2: Two-phase training pipeline of our model. Our approach consists of (i) a self-supervised
pre-training phase and (ii) a supervised fine-tuning phase. (i) Self-Supervised Pre-training: An Audio
Masked Autoencoder (Audio MAE) is trained on spectrograms with randomly masked patches (left)
to reconstruct the original audio (right). This step learns general acoustic representations without
requiring labels. (ii) Supervised Fine-tuning: The pre-trained encoder is fine-tuned on labeled data to
detect structural boundaries within calls (right), such as the start and end times of vocalizations.

to simulate long-term calls with short audio segments, we utilize audio stitching., (iii) Amplitude58

Modulation: We leverage changes in amplitude to simulate vocalizations being further or closer to59

a given audio source., (iv) Noise addition and reduction: This adds variety to training data60

and (v) Varying FFT window: Larger nFFT values provide a finer frequency resolution because61

more frequency bins are created. Since animals communicate with diverse frequency and temporal62

characteristics, it makes sense to vary the nFFT across training.63

4 Pretraining64

To learn robust audio representations without reliance on labeled data, we implement a Masked65

Autoencoder (MAE) pre training framework for bioacoustic data. Our approach is based on work on66

image pretraining and recent work on self-supervised learning for audio Huang et al. [2022], He et al.67

[2021].68

Model Architecture The encoder processes only the visible (unmasked) portions of the input69

spectrogram, reducing computational requirements significantly during pretraining. We implement a70

transformer architecture with self-attention mechanisms that capture long-range dependencies in the71
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Model dcase enabirds hiceas rainforest gibbons esc watkins

LLM w/o audio 0.000 0.001 0.210 0.000 0.013 0.020 0.041
SALMONN 0.005 0.004 0.097 0.002 0.005 0.320 0.041
BioLingual 0.036 0.109 0.429 0.004 0.018 0.307 0.041
NatureLM-audio 0.058 0.314 0.336 0.025 0.005 0.600 0.257
Our Model 0.282 0.902 0.304 0.111 0.041 0.719 0.431

Table 2: Zero-shot performance on multiple bioacoustic benchmarks. Columns dcase, enabirds,
hiceas, rainforest, and gibbons report F1 scores for vocalization detection Robinson et al. [2024],
while esc and watkins report accuracy on classification tasks. Best score per column is bolded.

Figure 3: Model detection results on sample animal vocalization. Green bars indicate the start of a
call and red bars indicate the end. Calls are also numbered.

audio signal. The decoder then reconstructs the full spectrogram, including the masked regions, from72

the encoded representations combined with positional embeddings.73

Pre Training Dataset We pre-train our model on a diverse collection of audio recordings primarily74

from AudioSet Gemmeke et al. [2017], but also from synthetically generated datasets using augmen-75

tation techniques outlined in Section 3 comprising approximately 15,000 hours of unlabeled audio.76

The data set includes a wide range of acoustic environments, animal vocalizations, natural sounds,77

sounds of things, and more. This provides rich contextual variety to learn robust representations.78

5 Model Evaluation79

We trained our model on all the datasets mentioned in Table 1, excluding those included in the80

evaluation. The DCASE, Enabirds, HICEAS, Rainforest, and Hainan Gibbons datasets were withheld81

so that we can evaluate our model’s zero-shot performance on those datasets.82

Vocalization Detection We first load the pre-trained weights from the ViT and then attach a binary83

event detection head to the output embeddings from the ViT and then perform full fine-tuning. The84

results are shown in Table 2. We also provide an example of qualitative results in Figure 3.85

6 Conclusion86

This work introduces a scalable self-supervised framework for bioacoustic monitoring, enabling87

robust representation learning from complex and noisy soundscapes without reliance on manual88

annotation. By leveraging large-scale audio data and contrastive objectives, our approach significantly89

improves event classification and species identification performance across diverse ecosystems.90

Future directions include integrating multi-modal environmental signals and deploying lightweight91

models for real-time field applications, advancing automated biodiversity monitoring at global scale.92
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