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ABSTRACT

The advances in neural networks have driven many companies to provide predic-
tion services to users in a wide range of applications. However, current prediction
systems raise privacy concerns regarding the user’s private data. A cryptographic
neural network inference service is an efficient way to allow two parties to execute
neural network inference without revealing either party’s data or model. Nev-
ertheless, existing cryptographic neural network inference services suffer from
enormous running latency; in particular, the latency of communication-expensive
cryptographic activation function is 3 orders of magnitude higher than plaintext-
domain activation function. And activations are the necessary components of the
modern neural networks. Therefore, slow cryptographic activation has become
the primary obstacle of efficient cryptographic inference. In this paper, we pro-
pose a new technique, called SAFENet, to enable a Secure, Accurate and Fast
nEural Network inference service. To speedup secure inference and guarantee in-
ference accuracy, SAFENet includes channel-wise activation approximation with
multiple-degree options. This is implemented by keeping the most useful acti-
vation channels and replacing the remaining, less useful, channels with various-
degree polynomials. SAFENet also supports mixed-precision activation approx-
imation by automatically assigning different replacement ratios to various layer;
further increasing the approximation ratio and reducing inference latency. Our
experimental results show SAFENet obtains the state-of-the-art inference latency
and performance, reducing latency by 38% ∼ 61% or improving accuracy by
1.8% ∼ 4% over prior techniques on various encrypted datasets.

1 INTRODUCTION

Neural network inference as a service (NNaaS) is an effective method for users to acquire various
intelligent services from powerful servers. NNaaS includes many emerging, intelligent, client-server
applications such as smart speakers, voice assistants, and image classifications Mishra et al. (2020).
However, to complete the intelligent service, the clients need to upload their raw data to the model
holders. The network model holders in the server are able to access, process users’ confidential
data from the clients, and acquire the raw inference results, which potentially violates the privacy
of clients. So there is an urgent requirement to ensure the confidentiality of users’ financial records,
healthy-care data and other sensitive information during NNaaS.

Modern cryptography such as Homomorphic Encryption (HE) by Gentry et al. (2009) and Multi-
Party Computation (MPC) by Yao (1982) enables secure inference services that protect the user’s
private data. During secure inference services, the provider’s model is not released to any users
and the user’s private data is encrypted by HE or MPC. CryptoNets proposed by Gilad-Bachrach
et al. (2016) is the first HE-based secure neural network on encrypted data; however, its practicality
is limited by enormous computational overhead. For example, CryptoNets takes ∼ 298 seconds
to perform one secure MNIST image inference on a powerful server; its latency is 6 orders of
magnitude longer than the unencrypted inference. MiniONN by Liu et al. (2017) and Gazelle
by Juvekar et al. (2018) prove that using a hybrid of HE and MPC it is possible to design a low-
latency, secure inference. Although Gazelle significantly reduces the MNIST inference latency of
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CryptoNets into ∼ 0.3 seconds, it is still far from practical on larger dataset such as CIFAR-10
and CIFAR-100, due to heavy HE encryption protocol and expensive operations. For instance,
Gazelle requires ∼ 240 seconds latency and ∼ 8.3 GB communication to perform ResNet-32 on the
CIFAR-100 dataset. NASS by Bian et al. (2020), CONAD by Shafran et al. (2019) and CryptoNAS
by Ghodsi et al. (2020) are proposed to design cryptography-friendly neural network architectures,
but they still suffer from heavy encryption protocol in the online phase. Delphi by Mishra et al.
(2020) significantly reduces the online latency by moving most heavy cryptography computations
into the offline phase. Offline computations can be pre-processed in advance.

The State-of-the-art cryptographic inference service Delphi by Mishra et al. (2020) still suffers from
enormous online latency; this is because a big communication overhead between the user and the
service provider is required to support cryptographic ReLU activations. Our experiments show that
the communication overhead is proportional to ReLU units in the whole neural network. Delphi
attempts to reduce inference latency by replacing expensive ReLU with cheap polynomial approx-
imation. Unfortunately, most ReLU units are found to be difficult to substitute without incurring
a loss of accuracy. The accuracy will be dramatically decreased as more ReLU units are approx-
imated by polynomials. Specifically, Delphi only replaces ∼ 42%ReLU numbers on a CNN-7
network (detailed in Section 6.2 of MiniONN by Liu et al. (2017)) and ∼ 20%ReLU numbers
on ResNet-32 network, with < 1% accuracy decrease. When Delphi approximates more ReLU
units, > 3% inference accuracy will be lost compared to an all-ReLU model. If accuracy loss is
constrained, non-linear layers still occupy almost 62% to 74% total latency in CNN-7 and ResNet-
32 networks. Therefore, slow, non-linear layers are still the obstacle of a fast and accurate secure
inference.

Our contribution. One key observation is that the layer-wise activation approximation strategy in
Delphi is too coarse-grained to replace the bottleneck layers in which theReLU units are mainly lo-
cated, e.g. the first layer in CNN-7 occupies > 58% ReLU units. The channels in bottleneck layers
are difficult to completely replace without a small accuracy loss. To meet accuracy constraints and
speedup secure inference, SAFENet includes a more fine-grained channel-wise activation approx-
imation to keep the most useful activation channels within each layer and replace the remaining,
less important, activation channels by polynomials. In this way, only partial channels in each layer
will be approximated, which is approximate-friendly for bottleneck layers. Another contribution
of SAFENet is that automatic multiple-degree polynomial exploration in each layer is supported,
compared to prior works using only degree-2 polynomials. Additionally, SAFENet enables mixed-
precision activation approximation by assigning different approximation ratios to various layers,
which further replaces more ReLU units with cheap polynomials. Our results show that under the
same accuracy constraints, SAFENet obtains state-of-the-art inference latency, reducing latency by
38% ∼ 61%, or improving accuracy by 1.8% ∼ 4% over the prior techniques.

2 BACKGROUND AND RELATED WORK

Threat Model and Cryptographic Primitives. Our threat model is the same as previous work
Delphi by Mishra et al. (2020). More specifically, we consider the service holder as a semi-honest
cloud which attempts to infer clients input information but follows the protocol. The server holds the
Convolutional Neural Network (CNN) model and the client holds the input to the network. For linear
computations, the client encrypts input and sends it to the server using a HE scheme by Mishra et al.
(2020), and then the server returns encrypted output to the client. The client decrypts and decodes
the received output. The secret sharing (SS) in Delphi is used to protect the privacy of intermediate
results in the hidden layers. Then garbled circuits (GC) guarantees the data privacy in the activation
layers, and SS is used to securely combine HE and GC. Other than GC, Beaver’s multiplicative
Triples (BT) proposed by Beaver (1995) is used to implement approximated activation using secure
polynomials. BT-based polynomial approximation for ReLU is 3-orders of magnitude cheaper than
GC-based ReLU units on average, so it is used to design approximated secure activation function.
At the end of secure inference, the server has learned nothing but the client learns the inference
result. More details of cryptographic primitives can be found in Appendix A.1.

2.1 CRYPTOGRAPHIC INFERENCE.

Modern neural networks usually consist of linear convolution layers and non-linear activation layers.
As Figure 1a shows, current state-of-the-art cryptographic inference, Delphi by Mishra et al. (2020),
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Figure 1: (a) The secure inference scheme of CNN-7 on CIFAR-10. (b) Latency breakdown under
activation approximation at a minimum of 84.5% accuracy. XL(Y%) means X-layer activation or
Y%-channel activation are approximated, e.g. 4L(32%) means 4-layer activation is approximated
which equals 32% activation channels are approximated in the network.

has an offline phase and an online phase. The offline phase is independent of input data and is used
to prepare data for the subsequent online phase. Each phase has linear and non-linear operations.

1. Offline linear layer. During the offline linear process, the client samples a random matrix rt that
has the same shape with private input xt, and then sends its encryption [rt] to server. The server
processes homomorphic convolutions and returns [rt] ∗Wt − [ut] to client, where Wt is the t-layer
network weights and [ut] is a ciphertext of sampled matrix by server. The last step in the offline
linear layer is that client obtains Ct = rt ·Wt − ut which is one part of secret sharing of xt ·Wt.

2. Online linear layer. The online linear phase aims to let the server obtain St = (xt−rt) ·Wt+ut
which is the other secret sharing part of xt ·Wt. It is almost as fast as the unencrypted computation,
since the online input is a plaintext xt − rt.
3. Offline Layer-Wise Activation layer. Delphi supports a layer-wise activation function where
each activation layer either is ReLU based on GC or is the approximated polynomial based on BT.
During the offline phase, GC needs to generate and share the garbled circuits. BT needs to generate
and share the Beaver’s triples.

4. Online Layer-Wise Activation layer. During the online phase of layer-wise activation, ReLU
is either performed by GC or the approximated degree-2 polynomial. The latency of approximated
activation implemented by BT is 192× smaller than ReLU based on GC.

Latency Bottleneck and Motivation. Figure 1b shows our baseline Delphi suffers from long la-
tency and low accuracy under coarse-grained layer-wise activation approximation. Specifically, 0L
in Figure 1b means none of theReLU layers and 0%ReLU units are approximated by polynomials.
The activation latency takes 72.5% of total latency. For only the online phase, activation latency oc-
cupies∼ 99% of the online latency. Therefore, activation layers are the performance bottleneck. 0L
also shows the all-ReLU model achieves 85.1% accuracy. With increased approximation layer num-
bers, Delphi is able to improve the approximation ratios, but the inference accuracy is decreased at
the same time. With the 84.5% accuracy constraints, Delphi at most replaces 6-layer ReLU layers,
with an approximation ratio of ∼ 42% ReLU units. Figure 2 shows the reason why the approxi-
mation ratio is so low (42%); it is difficult to totally replace the ReLU units by polynomials in the
bottleneck layer that has > 58% ReLU units without a large decrease in accuracy. The ReLU
units in modern networks are mainly located in the first few layers, and the ReLU numbers are usu-
ally decreased exponentially as shown in Figure 2. Especially for much deeper neural networks on a
large dataset, replacing the firstReLU layer significantly decreases the accuracy. To solve the above
problems, we propose a more fine-grained channel-wise activation approximation method which is
modelled as a hyper-parameter optimization problem.

2.2 POPULATION BASED TRAINING (PBT).

Inspired from evolutionary algorithms, Population Based Training (PBT) proposed by Jaderberg
et al. (2017) is a more efficient method to jointly optimize model weights and user-specified
hyper-parameters automatically during training. Many Reinforcement Learning (RL) based hyper-
parameter optimization algorithms by Wang et al. (2019) and Lou et al. (2020) are not able to
efficiently optimize hyper-parameters, since they simply stop training prematurely and consider
partially trained accuracy as the final accuracy or reward. The details of PBT can be seen in ap-
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pendix A.2 and PBT by Jaderberg et al. (2017). In this paper, we model the channel-wise activation
approximation task as a hyper-parameter optimization problem.
Features TAPAS Gazelle NASS CONAD Delphi CryptoNAS InstaHide SAFENet
Strong Encryption 3 3 3 3 3 3 7 3
Batched HE 7 3 3 3 3 3 - 3
Optimized Activation 3 7 7 3 3 3 - 3
Channel-Wise 7 7 7 7 7 7 - 3
Mixed-Precision 7 7 7 7 7 7 - 3
Multiple-Degrees 7 7 7 7 7 7 - 3

Table 1: Cryptographic inference works.
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Figure 2: Neurons ratio.
2.3 COMPARISON WITH PRIOR WORKS.

Table 1 shows a comparison between prior works and SAFENet. TAPAS by Sanyal et al. (2018),
XONN by Riazi et al. (2019) and soteria by Aggarwal et al. (2020) focus on binary neural net-
works which uses sign() function instead of the ReLU activation, thereby suffering from inference
accuracy loss. And TAPAS by Sanyal et al. (2018) and SHE by Lou & Jiang (2019) suffer from
long-latency linear operations since they adapt a HE scheme called TFHE by Chillotti et al. (2018)
that does not support ciphertext batching operations yet. For example, TAPAS and SHE take ∼2
hour and ∼10 seconds respectively to perform one single MNIST inference with 99% accuracy.
In contrast, our work SAFENet and Gazelle using the hybrid of batched HE and MPC are able to
achieve < 1-second latency with > 99% accuracy. Gazelle by Juvekar et al. (2018) and MiniONN
prove the feasibility of the hybrid use of GC and HE, but they both suffer from enormous latency.
NASS by Bian et al. (2020), CONAD by Shafran et al. (2019), and CryptoNAS by Ghodsi et al.
(2020) try to improve Gazelle and MiniONN’s performance by the co-design of neural network ar-
chitectures and cryptographic protocol, but they all require a heavy, online, cryptographic phase.
Delphi by Mishra et al. (2020) reduces online latency by moving some online operations into the
offline phase and replacing layer-wise activation by degree-2 polynomials. Only our SAFENet sup-
ports more fine-grained, channel-wise, activation approximation with multiple-degree polynomial
exploration, shown in Table 1. SAFENet also enables the mixed-precision approximation ratios for
different layers. Other than MPC and HE based neural networks, InstaHide by Huang et al. (2020b)
and TextHide by Huang et al. (2020a) use a class of subset-sum type encryption by Bhattacharyya
et al. (2011) to protect the user’s sensitive data in machine learning service with only < 5% com-
putational overhead and little accuracy loss. However, an attack by Carlini et al. (2020) shows that
there is a potential security risk on the InstaHide. Compared to the light-weight methods InstaHide
and TextHide, MPC and HE provide much stronger security guarantees.

3 SAFENET

Overview. In order to replace expensive non-linear activations by cheap linear polynomial approx-
imations as much as possible, we mainly use three methods. Firstly, we use fine-grained activation
approximation in a channel-wise manner, instead of coarse-grained approximation in a layer-wise
manner. Secondly, since different layers in neural networks have different contributions on the
inference accuracy, we propose an automatic mixed-precision method to assign a proper approxi-
mation ratio for each layer. According to the assigned approximation ratio, SAFENet replaces the
corresponding channels in the ascending order of their channel important factors. Mixed-precision
further improves the total approximation ratio, given an accuracy threshold. Moreover, SAFENet’s
mixed-precision planner explores different polynomial approximations of various degrees.

SAFENet Methods Definition. Given an T -Layer CNN model, we define that {Wt}T−1
t=0 and

{At}T−1
t=0 are the model weights and activations, and let Wt ∈ Rcout×cin×ww×hw and At ∈

Rcin×wa×ha be the t-th layer model weights and activations, where cout is output channel number,
cin is input channel number, ww and hw are kernels’ width and height, wa and ha are activations’
width and height. The t-th layer output feature maps Ot ∈ Rcout×wo×ho can be derived by Equa-
tion 1, where Ot,i,:,: is the output feature map of t-th layer i-th channel, At,j,:,: is the t-th layer and
j-th channel activation, Wt,i,j,:,: is the model parameters of t-th layer, i-th output channel and j-th
input channel, wo and ho are output feature’s width and weight, and ∗ is the convolution operation.

Ot,i,:,: =

cin∑
j=1

At,j,:,: ∗Wt,i,j,:,:. (1)
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Then the channel-wise activation approximation can be defined as Equation 2, where (t+1)-th layer
activationAt+1 of i-th channel is derived by expensiveReLU when the corresponding mask matrix,
mt+1,i = 0, otherwise the approximated activation.

At+1,i,:,: =

{
ReLU(Ot,i,:,:), if mt+1,i = 0.

Approx(Ot,i,:,:), if mt+1,i = 1.
(2)

mt+1,i =

{
0, if imp order(At+1,i) ≥ nt+1 × (1− αt+1).

1, Otherwise.
(3)

Equation 3 defines the mask matrix mt+1,i. Here, imp order(At+1,i) ∈ [1, cout] is the importance
ascending order of i-th channel At+1,i in the layer (t+1), and imp order(At+1,i) can be derived
by sort(

∑Cin

j=1 |Wt,i,j,:,:|), where
∑Cin

j=1 |Wt,i,j,:,:| is the L-1 norm of i-th channel weight, and this
L-1 norm is proven effective as the channel importance of At+1,i by prior works by Li et al. (2017)
and by Liu et al. (2019). nt+1 in Equation 3 is the neuron number in (t+1)-th layer and αt+1 is
the activation approximation ratio in the (t+1)-th layer. Equation 3 shows that channel-wise activa-
tion approximation in the (t+1)-th layer only approximate αt+1-ratio less important activations with
polynomials by setting their corresponding mask matrix entry mt+1,i = 1. Approx() activation
function is enabled by multiple options including degree-3 polynomial a1x3 + a2x

2 + a3x + a4,
degree-2 polynomial b1x2 + b2x+ b3, and degree-0 pruning, where a1 to a4 and b1 to b3 values are
derived from the model training. The reason why we choose these three options is that our experi-
ments show larger degree (> 3) polynomial approximation is hardly convergent in training because
of the uncontrollable gradient exploding, and smaller degree (< 2) polynomial approximation shows
worse performance. However, the proper insertions of degree-0 pruning may help on gradient ex-
ploding in some layers. We use hyper-parameter βt ∈ {0, 2, 3} as the polynomial degree in the
Approx() function. Channel-Wise Activation Approximation means T activation approximation
ratios {αt}T−1

t=0 are designed in a hand-crafted manner with βt = 2. Mixed-Precision Activation
Approximation automatically search the optimal combination of {αt}T−1

t=0 using our improved PBT
algorithm called BTPBT. BTPBT is described in Algorithm 1. Multiple-degree approximation
means that approximation options {βt}T−1

t=0 are searched with αt by BTPBT algorithm.
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Figure 3: The overview of SAFENet working scheme. SAFENet is used to search optimal αt

and βt to get best score in the training. αt decides the approximation channels in the t-th layer,
βt ∈ {0, 2, 3} is the polynomial degree in the Approx() function.

Working Flow. Figure 3 depicts the working flow of SAFENet. 1 At first, the mixed-precision
activation planner randomly initiates approximation parameters, {αt}T−1

t=1 and {βt}T−1
t=1 , to control

channel-wise activation approximation and approximation options for each layer. 2 Approximation
parameters including {αt}T−1

t=1 and {βt}T−1
t=1 are received by the neural network model to decide

which activation channels are approximated first, and then to decide which approximation method is
picked up. 3 In each t-th layer, nt · αt unimportant channels are approximated by polynomials and
nt · (1−αt) more important channels are kept as original activation function, e.g. ReLU , according
to Equation 2 and Equation 3. 4 The approximation methods for nt · αt unimportant ReLU units
are decided. The approximation option consists of multiple-degree polynomials, including degree-
βt polynomials, where βt ∈ {0, 2, 3}. 5 The neural network model with channel-wise activation
approximation is performed for several times and outputs its inference accuracy. 6 The mixed-
precision activation planner uses the BTPBT method to compute the optimizing score defined in
Equation 4, aware of accuracy and reduced latency at the same time. 7 The generated score is used
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to guide the approximation parameters in the next iteration. These steps repeat until cryptographic
inference accuracy and latency threshold are satisfied.

Score. The goal of our SAFENet is to reduce cryptography latency by replacing expensive original
activation with cheap approximated activation as much as possible, given the user-defined accu-
racy threshold. Equation 4 is used to assign a score for the channel-wise activation approxima-
tion parameters αt and βt.

∑T
t=1 αt × nt is the number of ReLU units that are replaced. R(βt)

means the reduced time ratio using a degree-βt polynomial to replace ReLU units. For example,
R(βt = 3) = 1 − 0.2

20.1 = 99.9%, since amortized degree-3 polynomial and ReLU cost 0.2 us and
20.1 us, respectively. Therefore,

∑T
t=1 αt×nt×R(βt) represents the reduced ratio of total latency.

Our score keeps the balance of accuracy and efficiency, enabling users to replace more activation
neurons with multiple approximated polynomial degrees, while meeting the accuracy constraints.

score = accuracy × (1 +

T∑
t=1

αt × nt ×R(βt)) (4)

Algorithm 1 Binary Tree Population Based Training BTPBT(MT , D,At,W )
Input: A T -layer neural network MT with weight W , training data D, accuracy threshold At.
Output: Activation approximation rate α[0 : T − 1], polynomial degree β[0 : T − 1], score S, accuracy

A and weight W .
1: Construct a binary tree, the root node root nd contains layers[0 : T − 1] and all layers in the root nd

share the same α and β.
2: Search one single α and β for root nd using PBT(α, β,D,W ). Add root nd into an empty queue
root queue.

3: while root queue is not Null do
4: parent nd = root queue.pop();
5: left child, right child = BinaryDivide(parent nd);
6: (α[0 : T − 1], β[0 : T − 1], S,A,W ) = PBT(left child.{α, β}, right child.{α, β}, D,W );
7: root queue.push(left child) if left child has > 1 layer; Same operation on right child;
8: Pick up the intermediate result (α[0 : T − 1], β[0 : T − 1], S,A,W ) as the best candidate BC that has the

the largest score S and accuracy A > At .
9: Perform (α[0 : T − 1], β[0 : T − 1], S,A,W ) =PBT(BC.{α[0 : T − 1], β[0 : T − 1]}, D,W );

10: Return α[0 : T − 1], β[0 : T − 1], S,A,W

Layer#:   

α[0]α[0] α[1]α[1] α[2]α[2] α[3]α[3]

0     1 2 3

PBT:

BTPBT:

α:α:

α:α: α0

α1 α2α:α: PBT(α1=α0,α2=α0,D,W)

α3 α4α:α: α5 α6
PBT(α3=α1,α4=α1,D,W,α2)

PBT(α5=α2,α6=α2,D,W,α1)
fixed

α[0]α[0] α[1]α[1] α[2]α[2] α[3]α[3]α:α:

Pickup the best candidate, 
e.g. BC = [α3,α4,α5,α6]

PBT(α[0:3]=BC,D,W)

PBT(α[0:3]=random_init,D,W)

PBT(α0,D,W)

(a) BTPBT example for a 4-layer network.
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Figure 4: (a) Comparison of PBT and BTPBT. (b) The learning curve of CNN-7 on CIFAR-10.

Mixed-Precision Activation Planner. Finding appropriate parameters αt and βt to achieve a higher
score in Equation 4 is a typical hyper-parameter optimization problem. Hand-crafted optimization
for parameters is only practical to handle the search space of a single pair of α and β for all layers,
which confines the improvement effect on activation approximation. Therefore, mixed-precision
activation approximation is proposed to enable each layer to have unique αi and βi. However,
applying hyper-parameter optimization methods to automatically search mixed-precision activation
approximation is non-trivial. This is because of the enormous search space of αt and βt for each
layer. Assume αt ∈ [0, 1] and it is discretized into the times of 0.05, therefore 21 options; βt ∈
{0, 2, 3}, has 3 options. If a neural network model has T layers, the search space is (3 × 21)T .
For this large search space, even PBT by Jaderberg et al. (2017) and Deep Reinforcement Learning
(DRL) based methods by Wang et al. (2020) suffer from slow learning speed and low approximation
ratio. Figure 4b shows PBT and DRL methods cannot effectively reduce latency by mixed-precision
activation approximation.

We propose a Binary-Tree PBT algorithm (BTPBT) in Algorithm 1 to enable the hyper-parameters
search of αt and βt. BTPBT in Algorithm 1 takes the T -layer neural network MT , training data D
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and accuracy threshold At as inputs, and returns all the searched αt and βt with updated weights
W , accuracy A and score S. Instead of using PBT to search all α[0 : T − 1] and β[0 : T − 1]
directly, BTPBT starts from an easier task that limits all α[0 : T − 1] sharing the same value, e.g.
α, and all β[0 : T − 1] sharing the same value, e.g. β. This searching process about root nd
is shown in the line 1 of Algorithm 1. Then the root nd with all T layers is equally divide into
two child nodes using BinaryDivide() function, so that the left child has the first-half layers of
root nd and the right child has the remaining layers. We then perform PBT on both left and right
child nodes, and limit all layers in each child share the same α and β. Here, the total approximated
activation channels of two child nodes should be larger than the approximated channels of the parent
node. The child nodes will become new root nodes and PBT will be performed repeatedly on sibling
nodes until the root queue is null in Algorithm 1. The PBT operations in the binary tree can also
be used for the warm-starting initialization for the joint search of all α[0 : T − 1] and β[0 : T − 1]
shown in line 8∼9 of Algorithm 1.

Figure 4a shows a comparison of PBT and BTPBT for a T -layer network (T = 4). PBT directly
performs a joint search on α[0 : T − 1] and β[0 : T − 1] (We skip the β in Figure 4a due to space
limitation). The enormous search space and random initialization of α[0 : T − 1] and β[0 : T − 1]
make PBT difficult to learn useful information in training. Therefore directly using PBT suffers
from slow learning speed and inadequate searching results. To solve this issue, we use BTPBT to
firstly search one single α0 for all layers and then search more α iteratively in a binary tree order.
In this way, the intermediate results about α, β and weights W can be used for the final results
or the candidates of the further search. For instance, the intermediate result with the largest score
S can be considered as the best candidate for the warm-starting initialization for the joint search
of α[0 : T − 1]. More details about BTPBT can be seen at Appendix A.3. Figure 4b depicts the
learning curves of PTB, DRL by Wang et al. (2020), and our SAFENet. All these methods are used
to search hyper-parameters αt and βt for the same score shown in Equation 4. After 200 training
epochs, BTPBT is able to replace ∼ 80% neurons, but PBT and DRL only replace < 30% neurons.
In the beginning of training, our baselines and BTPBT are given the same pre-trained model. The
DRL setting is specified in Wang et al. (2020). For PBT and our work, the evolution cycle between
two exploitation is 20 iterations, and 50 workers are used to simultaneously search parameters. For
BTPBT, each two sibling nodes and the root node require a PBT separately, therefore 2levels PBT is
required. We set 20 epochs for each node’s PBT. We use 40 epochs to jointly search the activation
approximation. The total 200 epochs with 50 workers take ∼ 7 GPU hours.

Threat model of BTPBT planner. Our BTPBT takes the all-ReLU neural network model MT and
training data D as inputs in the server side, and outputs a well-trained polynomial-approximated
neural network PT . The PT is used to provide a privacy-preserving machine learning inference
service that takes the client’s encrypted sensitive data Dinf as input, and outputs the encrypted
prediction result to the client. So our BTPBT does NOT impact the privacy of user’s data Dinf .
BTPBT shares the same threat model with our baseline Delphi by Mishra et al. (2020).

4 EXPERIMENTAL METHODOLOGY

Benchmarks and Dataset. Our secure inference experiments rely on CIFAR-10 and CIFAR-100
datasets. Both CIFAR-10 and CIFAR-100 contain 50000 training images and 10000 testing images,
where each image size is 32×32×3. Images in CIFAR-10 are classified into 10 classes, but CIFAR-
100 has 100 classes. Our baseline Delphi shows that CIFAR-100 is the most difficult dataset in the
existing secure inference. We adopt CNN-7 specified in MiniONN by Liu et al. (2017) to evaluate
CIFAR-10. This CNN-7 architecture is also used in Delphi by Mishra et al. (2020). Moreover, a
deeper network VGG-16 by Geifman (2017) is evaluated to further improve inference accuracy on
CIFAR-10. For CIFAR-100, ResNet-32 by He et al. (2016) is evaluated.

Systems Setup. We ran the secure inference models on two instances. They are equipped with
an Intel Xeon E7-4850 CPU and 16 GB DRAM. The communication links between these two in-
stances are in the LAN setting, and each instance uses 4 threads, same as the previous works. The
hyper-parameters optimization for activation replacement requires an NVIDIA Tesla V100 GPU.
The SEAL library by SEAL and Multi-Protocol fancy-garbling library by Carmer et al. (2019) are
used to implement HE and garbled circuits functions. To avoid overflow, our experiments adopt 15-
bit fixed point representation and the Least Significant Bits of intermediate results are also truncated
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to 15 bits. The hyper-parameters selection is implemented in Python, and the BTPBT is constructed
based on regular PBT by Jaderberg et al. (2017) in Tune platform by Liaw et al. (2018).

5 RESULTS
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Figure 5: Approximated ratio ablation study on CIFAR-10 at a minimum of 84.5% accuracy.

Ablation Effects. Figure 5 describes the ablation effects of proposed techniques on CIFAR-10
with CNN-7 and VGG-16. CW, MP, and MD mean Channel-Wise, Mixed-Precisicion and Multiple
Degrees, respectively. Square, triangle and cross marks in Figure 5 represent degree-3, degree-2
polynomial approximation and pruning, respectively. For the CNN-7 in Figure 5a, our baseline
Delphi approximates ∼ 41% activation by replacing the ReLU in the last 6 layers with degree-2
polynomials. Channel-wise (CW) activation approximation using α = 0.5 and β = 2 on all layers
is able to achieve the same inference accuracy, while replacing more expensive activation neurons.
Channel-wise under mixed precision (CW-MP) further improves the approximation ratio of the reg-
ular channel-wise method. Other than channel-wise approximation and mixed precision, Figure 5a
shows that the approximation ratio also benefits from exploring multiple degrees in various layers
(CW-MP-MD). Figure 5b depicts the ablation study of a deeper network VGG-16. Our SAFENet
with CW-MP-MD improves the approximation ReLU numbers of Delphi by 28% under the same
accuracy.

CNN-7 Offline Online Total Accuracy
HE-Linear MPC-Act Total HE-Linear MPC-Act Total

Gazelle 0s 91s 91 s 37s 9s 46s 137s 85.1%
Delphi 37s 53.4s 90.4s 0s 5.3s 5.3s 95.4s 84.6%
Delphi-Fast 37s 15.1s 52.1s 0s 1.69s 1.69s 53.7s 83.1%
SAFENet 33.3s 18.2s 51.6s 0s 1.8s 1.8s 53.4s 85.1%

Table 2: The CNN-7 result on CIFAR-10. Delphi-Fast approximates more activation than Delphi,
but losses more accuracy.

VGG-16 Offline Online Total Accuracy
HE-Linear MPC-Act Total HE-Linear MPC-Act Total

Gazelle 0s 142s 142s 45s 16s 61s 203s 89.6%
Delphi 45s 114s 159s 0s 13s 13s 172s 88.1%
Delphi-Fast 45s 109s 154s 0s 12.4s 12.4s 166s 84.9%
SAFENet 40.2s 56.8s 97s 0s 6.5s 6.5s 104s 88.9%

Table 3: The VGG-16 result on CIFAR-10. Delphi-Fast approximates more activation than Delphi,
but losses more accuracy.

CIFAR-10. Table 2 shows the comparisons of CNN-7 implemented by prior techniques and
SAFENet on CIFAR-10. Compared to Gazelle, Delphi not only moves the HE-based linear op-
erations to the offline, but also reduces ∼ 41% online and offline activation latency without sig-
nificant accuracy loss. Our work SAFENet has similar latency with Delphi in the linear layer, but
SAFENet remarkably reduces latency at non-linear activation layers. More specifically, SAFENet
eliminates ∼ 66% online and offline latency in activation layers, and reduces ∼ 61% total latency
with higher accuracy than Delphi. Delphi-Fast further reduces the latency of Delphi by trying to
approximate more activation than Delphi, but it suffers from a significantly accuracy decrease. For
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instance, Delphi-Fast decreases 2% accuracy when it has similar latency with SAFENet. We also
evaluated a deeper neural network VGG-16 on CIFAR-10 shown in Table 3. When Gazelle and Del-
phi have similar accuracy, Delphi only reduces < 20% latency of Gazelle on non-linear activation
layer. This shows that Delphi benefits less from deeper neural networks. Compared to Gazelle, our
work SAFENet is able to reduce ∼ 59.4% online latency, 48.7% total latency. SAFENet has 50%
less online latency and 39.5% less total latency with higher accuracy than Delphi, since SAFENet
uses more find-grained channel-wise activation approximation. Compared to Delphi-Fast, SAFENet
achieves 4% accuracy improvement with a less inference latency.

ResNet-32 Offline Online Total Accuracy
HE-Linear MPC-Act Total HE-Linear MPC-Act Total

Gazelle 0s 158s 158s 64s 18s 82s 240s 67.9%
Delphi 64s 126.4s 190.4s 0s 14.4s 14.4s 204.8s 67.3%
Delphi-Fast 64s 121.1s 175.1s 0s 13.8s 13.8s 198.9s 65.7%
SAFENet 57.6s 63.2s 120.8s 0s 7.2s 7.2s 128s 67.5%

Table 4: CIFAR-100 results using ResNet-32. Delphi-Fast approximates more activation than Del-
phi, but losses more accuracy.

CIFAR-100. Table 4 shows the results of ResNet-32 evaluated on CIFAR-100. Gazelle achieves
67.9% inference accuracy, and each image inference consists of a 158-second offline phase and a
82-second online phase. Delphi is faster than Gazelle’s online latency by 67.6 seconds with only
a 0.4% accuracy decrease, but increases the offline latency by ∼ 30 seconds. The offline phase is
enlarged because Delphi moves most online HE operations to offline phase and only reduces few GC
operations offline. Compared to Gazelle, our work SAFENet is able to reduce both online and offline
latency since we significantly reduce the number of GC-based activations; SAFENet reduces online
latency by 91.2% and offline latency by 23.5%. Compared to Delphi, SAFENet has 50% less online
latency and 36.6% less offline latency. SAFENet reduces total latency by 46.7% and 37.5% over
Gazelle and Delphi, respectively. In addition, Delphi suffers from a significant accuracy decrease
when trying to approximate more activations. For example, Delphi-Fast approximates one more
layer, losing 1.6% accuracy. Our work SAFENet improves 1.8% inference accuracy and reduces
35.8% latency over Delphi-Fast.

6 CONCLUSION

In this paper, we propose SAFENet to enable a Fast, Accurate and Secure neural Network inference
service. SAFENet consists of three techniques including channel-wise activation, multiple-degree
polynomial approximation, and mixed-precision approximation ratios. The channel-wise activa-
tion approximation keeps the most useful activation channels and replaces the remaining less useful
channels with the various-degree polynomials. The mixed-precision activation approximation is
implemented by assigning various layers with different approximation ratios further increasing the
approximation ratio and reducing inference latency. Our experimental results show SAFENet ob-
tains the state-of-the-art inference latency and performance, decreasing latency by 38% ∼ 61% or
improving accuracy by 1.8% ∼ 4% over prior techniques.
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Figure 6: An comparison of PBT and our BTPBT on the α search of a 4-layer network.

A APPENDIX

A.1 CRYPTOGRAPHIC PRIMITIVES.

Homomorphic Encryption (HE). Homomorphic Encryption (HE) is a cryptosystem that supports
computation on ciphertexts x without decryption or private key. Given public key pk, private key
sk, encryption function ε(), and decryption function σ(), we can define an homomorphic operation
× if there is an operation ⊗ such that σ(ε(x1, pk)⊗ ε(x2, pk), sk) = σ(ε(x1 × x2, pk), sk), where
x1 and x2 are sensitive plaintext from data holders, and only data holders have the private key sk.

Secret Sharing (SS) and Garbled Circuit (GC). Secret Sharing (SS) is usually based on additive
sharing private values between the parties. For example, one variable x can be shared into two
parts: 〈x〉A1 in P1 and 〈x〉A2 in P2, and variable x can be reconstructed by x = 〈x〉A1 + 〈x〉A2 . In
previous secure inference schemes by Juvekar et al. (2018), SS is used to protect the privacy of
intermediate results in the hidden layers. Garbled Circuit (GC) is a cryptographic protocol that
enables two parties (Garbler and Evaluator) to jointly compute a function over their private data
without learning the other party’s data. To use GC, the computed function should be represented
into a Boolean circuit. The Garbler firstly garbles the Boolean circuit and generates the garbled
table. The Evaluator receives the garbled table by the Oblivious Transfer by Juvekar et al. (2018)
and evaluates the table to the result. Previous secure inference schemes by Juvekar et al. (2018)
show that GC is used to process non-linear activation like ReLU function.

Beaver’s multiplicative Triples (BT). Beaver’s multiplicative Triples proposed by Beaver (1995)
can be considered as a secure two-party computation protocol. Assume two parties P1 and P2 have
variables x and y, respectively. BT protocol enables two parties to obtain the secret sharing of
product xy without revealing x and y. More details can be seen in Delphi by Mishra et al. (2020).
BT-based polynomial approximation forReLU is 3-order magnitude cheaper than GC-basedReLU
units on average, so it is used to design approximated secure activation function.

A.2 POPULATION BASED TRAINING(PBT).

PBT is computationally efficient because it adapts parallel scheme and weight sharing during the
evolutionary process. Specifically, given a pre-trained model, many workers are created and each
worker shares the same pre-trained weights and has unique hyper-parameters. Multiple workers are
then independently trained for several iterations and evaluated by the user-specified score function.
In the exploitation, workers with better scores will keep their parameters, and copy their weights
and hyper-parameters to the other workers. Workers with worse scores will perform exploration to
randomly scale their hyper-parameters. The training, scoring, exploitation and exploration repeat
until the score function is convergent.

A.3 AN COMPARISON OF PBT AND BINARY-TREE PBT(BTPBT).

Figure 6 shows a comparison of PBT and BTPBT for a T -layer network (T = 4). PBT directly
performs a joint search on α[0 : 3] and β[0 : 3]. The enormous search space and random initializa-
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tion of α[0 : 3] and β[0 : 3] make PBT difficult to learn useful information in training. Therefore
directly using PBT suffers from slow learning speed and inadequate searching results. To solve this
issue, we use BTPBT to firstly search one single α0 for all layers and then search more α iteratively
in a binary tree order. The root node root nd of the binary tree is constructed by assigning a single
α0 to all the 4 layers in the neural network. One PBT is performed to search the α0, given the
dataset D and initialized weights W . The returning result including α0, score S, accuracy A and
trained weights S is called candidate[0]. After that, all layers in the root nd are equally divide into
two parts: left child and right child. The left child contains the first two layers which shares
the same α1, and the right child includes the last two layers which shares the same α2. Then
one single PBT is used to search α1 and α2 with the score S, accuracy A and trained weights W .
The returning, intermediate results are called candidate[1]. The search of left child node is much
more important since the former layers in the neural network contains more neuron activations than
the latter layers. This BTPBT searching process is repeated until each node has only one single
layer. The layer number of binary tree is equal to log2T + 1, where T is the layer number of neural
network. In this way, the intermediate results about α, β and weights W can be used for the final
results or the candidates of the further search. For instance, the intermediate result with the largest
score S can be considered as the best candidate BC for the warm-starting initialization for the joint
search of α[0 : 3]. Our BTPBT is able to reduce the training time and improve the secure inference
performance over the prior PBT.
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