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Abstract

Due to the unidirectional nature of prevalent
autoregressive generation models, recent work
on controlled generation based on global text at-
tributes has either required attribute-based fine-
tuning of the base language model, or restricted
the parametrization of the attribute prediction
model to be compatible with the base LM. In this
work, we propose Mix and Match LM, a global
score-based alternative for controllable text gen-
eration that combines arbitrary pretrained black-
box models for achieving the desired attributes
in the generated text without involving any
fine-tuning or structural assumptions about the
blackbox models. We interpret the task of con-
trollable generation as drawing samples from
an energy-based model whose energy values are
a linear combination of scores from blackbox
models that are separately responsible for
fluency, the control attribute, and faithfulness to
any conditioning context. We use a Metropolis
Hastings sampling scheme to sample from this
energy-based model using bidirectional context
and global attribute features. We validate the
effectiveness of our approach on various con-
trolled generation and style-based text revision
tasks by outperforming recently proposed meth-
ods that involve extra training, fine-tuning, or
restrictive assumptions over the form of models.

1 Introduction

Transformer-based language models trained on
massive amounts of natural language data found
on the internet have demonstrated exceptional
ability to learn useful representations of sentences
for downstream natural language processing tasks.
Autoregressive models like GPT-3 are commonly
used to generate high quality natural language text
as well. However, effective methods for generating
well-formed sequences that satisfy a desired global
control attribute (e.g., sentiment, formality, etc.)
represent an active area of research. If successful,
effective controlled generation techniques might
help mitigate bias and prevent generation of hate

speech and toxic language (Yang and Klein, 2021;
Xu et al.; Gehman et al., 2020).

Much of the prior work on controlled generation
has focused on autoregressive models like GPT-2
and has involved fine-tuning of these large models
on target attributes (Yang and Klein, 2021; Krause
etal., 2020), or training entirely separate probabilis-
tic generative models for the target attributes (He
etal., 2020), or training specialized attribute models
with a restricted structure to heuristically generate
attribute-sensitive sequences (Dathathri et al.,
2020). Our approach instead focuses on drawing
samples from a test-time combination of pretrained
blackbox experts that each score a desired property
of output text — for example, fluency, attribute sen-
sitivity, or faithfulness to the context. Specifically,
we view the product of these blackbox experts as
a probabilistic energy model (Hinton, 2002) —i.e.,
anon-autoregressive, globally normalized language
model — and then sample (without further training
or fine-tuning) using a specialized Gibbs sampler
with a Metropolis-Hastings correction step (Goyal
etal.,2021).

Our full framework, which we entitle Mix
and Match LM (depicted in Figure 1), enables
generation of high-quality attribute-controlled
samples by mixing and matching blackbox models
like off-the-shelf pretrained attribute-sensitive
discriminators (e.g., sentiment classifiers), large
bidirectional pretrained language models like
BERT (Devlin et al., 2019), and other modules
specializing in capturing desirable features pertain-
ing to faithfulness to any additional context, like
hamming distance, Bertscore distance (Zhang et al.,
2020), or Bleurt (Sellam et al., 2020) based distance
between the sample and the conditioning context.
We generate samples from the energy language
model assembled from these component experts
by using the recently proposed Gibbs-Metropolis-
Hastings scheme (Goyal et al., 2021) for sampling
from energy models using a masked language
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model as a proposal distribution. In this scheme,
an expressive bidirectional language model like
BERT is used to make a proposal at each transition
step in the Gibbs chain to jump to a sequence X
from the current sequence x. This proposal’s fitness
is judged by the change in the energy language
model’s score, with the sampler accepting proposals
with larger energy reductions at a higher rate. This
approach yields high-quality diverse samples that
respect the distribution induced by the product of
expert blackbox models.
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We demonstrate the flexibility of our approach by
performing a variety of controlled generation tasks,
such as aspect-based text revision, style transfer,
and attribute grounded generation. On all of these
tasks, we compare our performance to existing
approaches that involve additional fine-tuning of
generation or attribute based models, or impose
restrictions on the parametrization of specific
components. We observe that our approach, which
does not require any gradient optimization and is
able to combine arbitrary heterogeneous blackbox
models, outperforms recent controllable generation
and style transfer models on a variety of tasks
according to various automated metrics of fluency,
quality, and control, as well as human evaluations.

2 Mix-and-match Language Models

In this section, we describe our approach and mo-
tivation behind our method. Specifically, we frame
the problem of performing controlled generation
as a problem of sampling from a specialized energy-
based (or globally normalized) sequence model that
defines a probability distribution which satisfies
the desired constraints we wish to impose in the
controlled generation setting. As described below,
this energy based model is composed of pretrained
components and does not require any further opti-
mization. An energy-based sequence model defines
the probability distribution over the space of pos-
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Figure 1: Overview of Mix and Match
MLM LM. The Lego pieces show different ex-
perts that can be used to form the energy
LM and help control different features in
the generated text. The right side shows
the ¢th step in the the Gibbs sampling
chain, where a proposal is made by the
MLM, and then it is accepted/rejected
based on the energy score.
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where E(X;0) refers to the scalar energy of a
sequence X thatis parametrized by 6. Lower energy
corresponds to higher likelihood of X. In contrast
to the common autoregressive sequence models,
exact likelihood computation and efficient sampling
from these models is challenging. Despite these
challenges, we focus on this paradigm of sequence
modeling because energy-based models offer
increased flexibility via sequence level features and
constraints. As we discuss next, this capability lets
us easily define expressive functions for controlled
generation of sequences which is not readily offered
by the autoregressive modeling paradigm.

2.1 Product of Experts Energy-based
Models and Controlled Generation

Our approach is motivated by the perspective that
the task of controlled generation requires concen-
trating probability mass over small subspace of se-
quences in X that satisfies various constraints per-
taining to fluency, target attributes, and other control
variables. Consider the task of generating positive
sentiment sentences. This requires satisfaction of
two major constraints: (1) The sequence X should
be well-formed, (2) The sequence X should express
positive sentiment. If we have access to two separate
probability distributions over X', one for modelling
well-formedness (p; (X)) and another for modelling
positivity (p2(X)), then a natural solution for con-
trolled generation in this setting would be to draw
samples from a probability distribution that is a prod-
uct of these two distributions i.e. pgesire(X) x
p1(X) - p2(X). In our approach, we further relax
this requirement by assuming access to expert black-
boxes that yield scalar non-probabilistic energy
scores F; and FE5 indicating fitness of a sequence
w.r.t. well-formedness and positivity respectively.
Under the product of experts framework above the
desired probability distribution would take the form:

'"For simplicity, we are concerned with a finite set of
sequences limited by some maximum length.



log paesire(X) = —(E1(X) + Ea(X)) — logZ.
This expression shows that when working with
scalar scores for the expert blackboxes, the prod-
uct of expert models yields an energy model whose
energy is simply the sum of the scalar energy values
obtained from the expert models. Inspired by this,
we propose a framework for controlled generation
that involves linear combinations of various black-
box experts in order to obtain a distribution whose
samples satisfy the requirements of a desired con-
trolled generation task: Fygy(X)= ZleaiEi (X),
where our proposed mix-and-match energy is com-
posed of k expert energy components, which are
weighted by scalar hyperparameters o.

2.2 Expert Factors in Mix-and-Match LM

As shown in Fig. 1, we use the following blackbox
experts in our experiments as modules that we can
add or remove to produce desired behavior:
E.1n(X) : Recent work has shown that large
masked language models (MLM) like BERT can
discirminate between well-formed and ill-formed
sentences (Zhang et al., 2020) and induce an
implicit energy function over the sequences (Goyal
etal., 2021). Hence, we use BERT-base as a black-
box to model the form and fluency of sentences.
Specifically, we use an energy parametrization
introduced in Goyal et al. (2021) which is negative
of the sum of unnormalized logits at each position
obtained via forward pass of the MLM after
masking the respective positions iteratively. We
refer to this blackbox energy for modeling the
overall form of the sentences by Ey1,(X).
Egisc(X) : This particular expert module refers
to the energy obtained via the discriminator for the
attributes of interest. What this module returns is
the raw logits of the discriminator, for the target
attribute. For instance, if we have a sentiment
classifier, and want to produce positive sentiment,
the Edisc(X) = —lOg p(—HX)

Ep o (X;X) : For a given sequence X, this quan-
tity refers to the hamming distance between the se-
quence X and X’. This penalization token level de-
viation from X’ which is useful if we are interested
in only making minor edits to X" as described later.
E¢y,.y(X;X’) : Similar to the hamming distance,
this quantity refers to the Bertscore (Zhang et al.,
2020) computed between X and X’ which can
be viewed as a fuzzy hamming distance that takes
semantic similarity into account.

Egicurt (X;X'): This energy refers to the negative

Bleurt (Sellam et al., 2020) score between X and
X'. We use this score to get sentence level similarity
scores which do not hinge on token level alignment
across the two sentences.

2.3 Sampling scheme

To sample from the energy parametrizations de-
scribed in the last section, we follow the Metroplolis
Hastings (Hastings, 1970) MCMC scheme for sam-
pling from masked language models introduced by
Goyal et al. (2021). While the proposal distribution
we use is the same as Goyal et al. (2021) i.e. masked
language model’s (BERT’s) conditionals, the
energy parametrizations we use are more suitably
designed for controlled generation.

We briefly explain the sampling procedure, which
involves forming long Markov chains of sequences
starting with a random sequence, and following the
MH scheme which uses a proposal distribution to
propose a new sequence at each step in a chain which
is either accepted or rejected based on its fitness to
the energy function. The sequences at the end of
these chains correspond to samples from the desired
energy-base model. Operationally, at each MCMC
step, we mask out a token at a random position in the
current sequence X in the chain, and propose a new
sequence X to transition to by sampling a token
from the MLM conditional softmax at the masked
position. This proposed sequence is evaluated by
its ability to reduce the energy from the current
sequence in the chain and is accepted with the prob-
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ability p(X;X) = min <1, i:if(:fa;) .
Epe i (X) refers to the product of experts energy
either Fye,, or e depending on the task, 7 refers
to the position chosen for masking, pmim refers to
the MLM’s conditional distribution at the [MASK]
position. Intuitively, this acceptance probability
indicates that the proposed sequence X is more
acceptable if it has lower energy than the current
sequence X in the chain and is rare or less likely
to be proposed by the proposal distribution again.

2.4 Controlled generation Tasks

We use the expert blackbox factors and the sampling
scheme describe above in our framework to perform
two kinds of controlled generation tasks.

Prompted generation: This task focuses on
generating well-formed sentences that start with a
specified prompt and also satisfy a target attribute
for which we have access to a discriminator.
An example task would be to generate positive



sentiment sequences starting with This movie.
The energy function takes the form:

Egen(X):Emlm(X) +aEdisc(X) (1)

a is a hyperparameter that controls the tradeoff
between the MLM score and the discriminator’s in-
fluence. For MH-based sampling for this task, we
initialize the sequence with the starting prompt and
rest of the tokens masked out, which creates a seed
text of shape the movie [MASK] [MASK] ...

[MASK], for the prompt example of the movie.
The number of mask tokens depends on the target
generation length, and we constrain the sampler
to only produce proposals and revise non-prompt
tokens, and mark the prompt tokens as “frozen”.
Controlled text revision: This task involves
editing a source sequence X' in order to satisfy the
desired target attributes exhibited by the generated
sequence X . The energy function for this task is:

Erev(X> :Egen(X) +6 Ehamm(XaX,)+

2)
v Efuzzy(XaX/) +77 EBleurt (XvX/)

This energy function in addition to valuing well-
formedness and satisfying target attribute require-
ments, also focuses on maintaining faithfulness to
the source sequence X'. For sampling with this
energy, we initialize the sequence with the sequence
X' to be edited. This sets the length of the target se-
quence to be the same as the source. In this setup, the
sampler can revise all tokens and is not constrained.

For both these tasks, we run a separate MCMC
chain for each generated sentence for 8 to 15
epochs, depending on the task. An epoch refers to
one masking cycle over all the non-frozen positions
(selected randomly) of the sequence.

3 Experimental Setup

3.1 Tasks and Datasets

Controllable debiasing: ROC story cor-
pus. We use the subset of the ROC story
corpus (Mostafazadeh et al., 2016) test-set that is
used by PowerTransformer (Ma et al., 2020) for
their evaluations. We use this data for controllable
debiasing, a text revision task which aims to correct
the implicit and potentially undesirable agency
biases in character portrayals. This test-set consists
of 549 sentences, where 224 sentences have low
agency verbs (such as wish, dream, etc.) and the rest
have high agency (like pursue, achieve, etc.). The
task is to revise the sentences such that the meaning

is preserved, but the agency of the sentence is
changed in the target direction.

Sentiment transfer: Yelp. We use Yelp (Shenet al.,
2017) dataset’s test-set for the task of sentiment
transfer. The test set comprises of 1000 sentences,
half with positive and half with negative sentiment.
We also have a reference set of hand written senti-
ment transferred sentences, provided by (He et al.,
2020) that we use for reporting evaluation metrics.

Formality transfer: GYAFC We use 1051
sentences from the test-set of the GYAFC (Rao
and Tetreault, 2018) dataset, which contains formal
and informal sentences for the task of formality
transfer (both directions of formal to informal and
informal to formal). Here we use the entertainment
and music domain subset of this data, following the
evaluation setup of (He et al., 2020). This dataset
also contains parallel data between formal and
informal sentences, which we use as reference for
reporting evaluation metrics.

Prompted generation: To compare with PPLM, an-
other controlled generation method, we set Mix and
Match LM to generate text with positive or negative
sentiment given prompts (listed in Appendix A.4)
by using a Yelp sentiment classifier as discriminator.

3.2 Expert Component Configurations

We use a Huggingface pre-trained bert-base-
uncased model? as our MLLM for yielding Fryin
and also providing the proposal distribution in our
MH MCMC sampler. For obtaining Fg;sc, we
train BERT-based classifiers on the training-set of
our datasets to use as our attribute discriminators.
Although we could have used any pre-trained
attribute classifier from a model repository like
Huggingface for Eg; 5., we train our own classifier
for controlled empirical comparison. As described
later, we do use pretrained Huggingface attribute
classifiers as external attribute classifiers for fair
evaluation against baselines. For experiments
in which we add BLEURT (Sellam et al., 2020)
and BertScore (Zhang et al., 2020) components
to the energy, we download the pre-trained
Elron/bleurt-base-512 and roberta-
large_L17 models from Huggingface, respec-
tively. We have provided implementation details
and hyperparameter ablations of all the experiments
in Appendix A.1, A.2, A3 and A 4.

https://huggingface.co/transformers/
pretrained_models.html
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3.3 Baselines

PowerTransformer. For the task of controllable
debiasing (agency revision), we compare our
work with PowerTransformer (Ma et al., 2020),
an approach that uses paraphrasing and self-
supervision based on a reconstruction loss, building
on pre-trained language models, to re-write text and
control agency level of sentences.
He et al. For style transfer on sentiment an formal-
ity domains, we compare our work with He et al.
(2020), a generative style transfer framework which
uses a variational autoencoder (VAE) built using a
sequence-to-sequence LSTM-based model to do un-
supervised style transfer. This framework needs to
be trained from scratch for each style transfer task.
UNMT. As a second baseline for style transfer,
we compare our work with UNMT (Lample
et al., 2018), an unsupervised machine translation
framework that demonstrates high performance for
sentiment transfer.
PPLM. For the task of controlled generation,
we compare our work to Plug-and-Play LM
(PPLM) Dathathri et al. (2020), which does
attribute controlled generation using the flow of
gradients from discriminators trained on the last
hidden layer representations of the generator, to
guide generation.

3.4 Evaluation Metrics

We use a variety of evaluation metrics to compare
our approach’s performance on two major facets:
(1) Quality of generated text, and (2) success on
matching the target attribute used for control.

3.4.1 Text Quality and Semantic Similarity

GPT-2 PPL. We feed our generated test sentences
to a Huggingface (Radford et al., 2019) pre-trained
GPT-2 xI model, and report its perplexity (PPL), as
an automatic measure of fluency. Although this mea-
sure is not a perfect indicator of fluency, we find it to
be a useful metric alongside human judgements.
BLEU. For sentiment (Yelp) and formality
(GYAFC) transfer experiments, since we have refer-
ence text, we report the BLEU score. For controlled
debiasing, we report BLEU between generated text
and source, and show it as BLEU (src).

BertScore. As a measure of meaning preservation,
we use the F1 BertScore metric (Zhang et al., 2020)

*Due to the high variance in the PPL scores generated
across sentences by GPT-2, we report the median score for
each system under comparison.

to compare the semantic similarity of the provided
reference sentence with the generated output.
Hamming Distance. We also report the hamming
distance between the source text and generated text,
to measure the extent of the change induced by our
framework.

3.4.2 Attribute Quality

Internal Classifier Accuracy. To evaluate the
quality of applying target attributes, we report
accuracy of the internal classifier (the discriminator
used for generation) on the generated text, assuming
the target attribute is the correct label. The higher
this accuracy is, the better.

External Classifier Accuracy. Since the internal
classifier is the one we are sampling from, it is
natural that we would get high accuracy on it,
compared to our baselines. To create a more
fair comparison, we also report classification
accuracy using external classifiers, downloaded
from Huggingface. For sentiment classification
weuse textattack/bert-base-uncased-
yelp-polarity (Morris et al., 2020), and for
formality we use cointegrated/roberta-
base-formality.

Agency Lexicon Accuracy. For the controlled
debiasing experiment, we measure the accuracy
of the change in agency by comparing the target
agency level with that of the generated text,
extracted using the connotation frames lexicon, and
following the setup from Ma et al. (2020).

4 Results
4.1 Controllable Debiasing

Table 1 shows our results for the task of text revision
for controlling agency bias which is introduced
by Ma et al.. Our baseline for this task is Power-
Transformer which has a vanilla (no boost) variant
and a variant with vocab boosting. The boosting
mechanism up-weights the logits of verbs that be-
long to the target agency lexicon — during decoding
—so0 as to increase their probability and incentivize
generation in that direction. We also measure our
metrics on the original test-set, without revision, to
provide a better sense of the changes made.

We offer different variants of our framework, to
provide a fair comparison and to better ablate our
proposed method. “Disc” denotes our framework
where we add the discriminator expert (Fgisc)
which is trained to predict the agency level of a
sentence, to the energy along with Ey 1, and Ey 4



Table 1: Controllable debiasing/ sentence agency revision on ROC-story corpus. The (src) next to the metrics denotes
measurement with respect to the source text. Int. Clsf. is the accuracy of the discriminator used in the energy. Hamm.
shows the Hamming distance. Agency Acc. is the accuracy of agency revision based on the agency lexicon (Sec 3.4.1).

Method BLEU(src) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. Agency Acc.
Source Text 100.00 153.9 1.00 0.00 7.47 9.81

§' PowerTransformer (No Boost) 60.30 210.8 0.94 1.11 64.84 69.17

& PowerTransformer (+Boost) 57.46 247.2 0.95 1.28 77.23 85.03
M&M LM Verb Replace (Disc) 60.53 238.7 0.95 1.04 81.05 70.80
M&M LM Verb Replace (Agency Score ) 51.95 193.3 0.96 0.89 3242 64.75

g M&M LM Verb Replace (Disc+Agency Score) 54.52 248.8 0.95 1.05 77.23 71.27

© M&M LM (Hamming +Disc) 56.26 211.2 0.95 1.37 96.52 69.00
M&M LM (Hamming+Agency Score ) 51.95 231.6 0.95 1.56 23.13 86.01
M&M LM ( Hamming+Disc+Agency score) 39.82 261.6 0.93 245 90.16 89.42

(Eq. 2). As describedd above, in the text revision
task like this hamming distance is computed
between the generated proposals and the source
sentence. The “Agency Score” variant adds an
alternative term to Fygyv instead of Fy; 5., which
is the number of target agency verbs according to
the connotation frames lexicon (Sap et al., 2017)
in the sentence. The “Disc+Agency” variant has
both the energy components. We also apply our
method in two ways: “Verb Replace” which allows
the sampler to propose revisions for only one
pre-determined verb (which is provided in the
dataset annotations). In this setup all tokens remain
frozen, except for the given verb. The conventional
mode (M&M LM), however, proposes revisions for
all tokens in the sentence and is not constrained.

Table 1 shows that in the conventional setup, Mix
and Match LM (Disc only) has performance similar
to that of PowerTransformer, without boosting.
With the Agency Score component, our method out-
performs PowerTransformer in terms of accuracy of
revision as per the agency lexicon accuracy metric,
with negligible loss in meaning (BertScore). The
reason behind this better performance in terms of
applying target agency accuracy is that our method’s
sampling is guided by the energy that is directly
built on the metrics we care about, as opposed
to trying to apply them through paraphrasing
and proxies such as vocab boosting, which are
employed in the PowerTransformer method.

Another important observation here is the dif-
ference between “Verb Replace” and conventional
modes. This ablation shows that although our
method makes few changes (the average hamming
distance between source and output sentences
are between 1.37 and 2.45), it still outperforms
a “static” method that has extra knowledge of the
offending verb and focuses on changing only that
verb, by a significant margin.

4.2 Style Transfer

In this section we conduct experiments on the task
of unsupervised style transfer for sentiment and
formality. The main difference between these two
tasks is the number of words that need to be revised
to have successful transfer without changing the
meaning of the sentence. Sentiment transfer needs
fewer changes whereas formality transfer needs
more structural change.

4.2.1 Sentiment Transfer

For this task we include two components in our
energy model, the attribute discriminator (Eg; sc),
to induce the target style, and the hamming distance
(E4isc), to maintain the meaning of the sentence.
We don’t include more complex semantic similarity-
related components F¢,,,, and Egicyure, Since
sentiment transfer can normally be done by making
only a few changes to the sentence. We report
results with two different variants, one where the
discriminator component has a higher coefficient
in the energy (Discriminator?) and one where
the hamming distance has a higher coefficient
(Hamming?). In effect, these two show the trade-off
between transfer quality and language quality.

We see in Table 2 that our method, with the ham-
ming component up-weighted, outperforms both the
generative baselines in terms of transfer accuracy
(Ext. Clsf.) and semantic similarity (BertScore).
We can also see Mix and Match LM has higher
BLEU score, with respect to the provided hand-
written reference sentences. We hypothesize that
this superiority is due to the tendency of our model
to make minimal revisions that satisfy the prodduct
of experts energy model. Therefore, our model can
successfully change the style without changing the
meaning of the sentence. The generative baselines
however, regenerate the sentence which imposes
more change, as can be observed from the hamming



Table 2: Sentiment transfer on Yelp dataset. The (ref)/(src) next to the metrics denotes that they are measured with
respect to the reference/source text. Int./Ext. Clsf. show the accuracy of the discriminator used in the energy/external
discriminator from Huggingface. Hamm. shows the Hamming distance.

Method BLEU(ref) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. Ext. Clsf.

Reference Text 100.00 169.5 1.00 5.80 83.70 85.60
ij He et al. 18.67 200.6 0.93 423 84.87 79.82
s UNMT 17.00 171.8 0.94 3.67 84.87 80.22
g M&M LM (Discriminator 1) 15.75 163.5 0.93 2.84 97.53 90.00
© M&M LM (Hamming?) 19.71 191.5 0.95 1.83 94.72 82.85

Table 3: Formality transfer on GYAFC dataset. The (ref)/(src) next to the metrics denotes that they are measured
with respect to the reference/source text. Int. Clsf. shows the accuracy of the discriminator used in the energy, and
—Informal/Form. shows the breakdown of the external classifier accuracy. Hamm. shows the Hamming distance.

Method BLEU(ref) GPT-2 BertScore(sc) Hamm.(src) Int. Clsf. —Informal —Form.

Reference Text 100.00 118.1 0.92 7.72 82.97 100.00 9.41
57,,; He et al. 15.83 122.8 0.90 10.03 64.79 100.00 3.33
o UNMT 14.17 143.8 0.90 11.92 56.04 99.81 7.64
g M&M LM (Discriminator 1) 17.78 206.3 0.89 5.22 91.15 96.67 23.13
O M&M LM (BertScoret) 27.71 194.4 0.93 2.50 72.12 94.26 19.01

distance column (Hamm.(src)) in Table 2.

4.2.2 Formality Transfer

For this task, we include the formality classifier
(F4isc), Hamming distance ()}, o), and Bertscore
(Etuz2y) components in the energy formulation,
to permit the transfer of style and also maintain
the meaning of the sentence. Er,,,, helps with
imposing semantic similarity between source and
generated sentences, since Hamming alone isn’t suf-
ficient for judging comparable formal and informal
sentences. We show results for two setups of our
framework, one where the discriminator coefficient
is higher (Discriminatorf) and another where the
Bertscore coefficient is higher (BertScore?).

Table 3 shows our formality transfer results. For
this task, we have broken down the external classi-
fier accuracy for the different transfer directions of
formal to informal (— Inf.) and informal to formal
(— Form.). We do this because for both our method
and the baselines, the — Form. task is harder and
therefore has lower accuracy. We observe that
our method outperforms the baselines in terms of
external classifier accuracy, BertScore and BLEU.
However, for this task, we can see that the GPT-2
PPL of our generated sentences is higher than those
of the baselines. The reason behind this is the
format and noise in the data. The samples for this
dataset are taken from the music and entertainment
industry domain, and contain some symbols and
characters similar to emojies (e.g. “:)” and “***”),
This is where the tendency of our approach toward

minimal revisions is hurtful-our revisions of text,
often do not get rid of all of these symbols, while the
baselines’ generative methods successfully remove
all the superfluous chatacters because they rewrite
sentences from scratch. This difference reflects in
the GPT-2 perplexity scores.

4.3 Prompted Controlled Generation

For the prompted controlled text generation task, we
only use Fy1, and Fy; s, and perform generation
with sentiment as the control attirbute. We generate
sequences of different lengths (12, 20 and 50 to-
kens), given 14 prompts taken from Dathathri et al.
(2020) (the prompts are listed in Appendix A.4)
with our framework and the baseline (PPLM). We
generate 20 sequences, per sentiment, for each
prompt, making it an overall of 560 sequences,
which use for both automatic and human evalua-
tions. Table 5 shows samples of generated outputs
from our method, compared with PPLM.

Table 4 shows our results for this experiment.
Here, we have an additional metric, the MLM
energy (lower is better), which, like GPT-2,
indicates the quality of generated sentences (Salazar
et al., 2020) according to BERT. We report this
extra metric here since PPLM uses a GPT model for
generation, and it is natural that it would measure
better on this metric, compared to our method.
The table shows that for all lengths of generated
sentences, our method is much better at inducing the
target sentiment. However, in terms of GPT-2 PPL,
PPLM naturally performs better, as it incorporates



Table 4: Prompted sentiment controlled generation results and human evaluations.BERT denotes the BERT MLM
energy score (equivalent of GPT-2 perplexity), and lower score is better. Int./Ext. Clsf. show the accuracy of the
discriminator used in the energy/external discriminator from Huggingface.

Length GPT-2 BERT Int. Clsf. Ext. Clsf. Human Preference (%)
Ours PPLM Ours PPLM Ours PPLM Ours PPLM Ours PPLM

12 264.1 113.1 —160.4 —137.1 94.3 1.7 65.1 58.0 71.1 29.9

20 61.1 167.2 —271.0 —237.1 96.3 74.5 65.9 57.6 62.9 37.1

50 122.3 29.0 —692.3 —606.1 93.8 73.6 68.6 60.7 46.7 53.3

Table 5: Samples of prompted sentiment controlled generations, using our Mix and Match LM and PPLM.

Ours (Mix and Match LM) PPLM
= the country is noted for attracting a quarter-million tourists. the country’s top cycling event is right behind the olympics, and the
3 the lake we come across can be said to be beautiful. the lake is a great spot for swimming, diving and snorke
% the chicken and all the other ingredients produced a delicious meal.  the chicken wing is one of the best foods you can eat and it
- the movie was family-friendly and a success in japan. the movie, which is currently only the third the the the the the
= the country was unstable and was not ready to modernize. the country’s top animal welfare agency, the ministry of agriculture and food
& the lake was not supposed to be navigable under any circumstances. the lake, a large, and the most massive and most terrible of
2 the chicken was growling and beginning to feel a little sick. the chicken noodles are the most horrible food i have ever had.
Z

the movie received only two nominations and earned no grand prix.

the movieisnotinthe,a, a,a

a GPT model but in terms of the MLM score, Mix
and Match LM performs better since it uses BERT
to propose changes. To enable a more conclusive
comparison of the text quality, we report results with
human evaluations. For these evaluations, we ran-
domly select 10 generated outputs for each prompt,
for each sentiment (making it 2 x 14 x 10 = 280
sentences per method), and asked three Amazon
Turkers per sample pair, which samples they find
more fluent. We report the majority vote of the
Turkers in the table. The results show that for
sequences with lengths 12 and 20, humans found
our generations more fluent, with preference rates of
71.1% and 62.9% respectively. However, for length
50, the preference rate for M&M drops to 46.7%,
which shows that our method is superior to PPLM
for short/medium length generation, however
PPLM does better at generating longer sequences.

5 Related Work

Common approaches for flexible attribute-based
generation range from retraining or fine-tuning
a large underlying base model for generation on
domain-specific data (Ziegler et al., 2019), to
modifying the architecture of the large pre-trained
model (Keskar et al., 2019). Several style transfer
approaches hinge on training large generative
models with non-parallel (He et al., 2020; Lample
etal.,2018; Shen et al., 2017; Krishna et al., 2020;
Reif et al., 2021) data across the domains of interest.
Instead of retraining large base models or training
new architectures from scratch, recent work has
used attribute discriminators to steer the generation
(Gu et al., 2017) from a large autoregressive

language model. Plug-and-Play LM (Dathathri
et al., 2020) uses discriminators learned from the
LM’s top-level hidden layer to modify the LM’s
states toward increasing probability of the desired
attribute via gradient ascent at each step. This re-
stricts the parametrization of the discriminator and
also requires access to multiple gradients from the
discriminator multiple times per generated sentence,
making this approach fairly expensive and restric-
tive. GeDi (Krause et al., 2020) and Fudge (Yang
and Klein, 2021) take similar, approaches and guide
generation from LM using specially trained gener-
ative and future discriminators, respectively. These
approaches in addition to requiring some kind of op-
timization, also rely on heuristics to manipulate the
local softmax distributions of autoregressive models
and do not enjoy the benefits of incorporating global
features into the generation mechanism in a simple
probabilistic manner. In constrast, our energy-based
formulation is not only optimization-free, but also
fully modular, allowing for heterogenous blackbox
experts to be combined with each other.

6 Conclusion

We present Mix and Match Language Models
(M&M LMs), a training-free framework for con-
trolled text generation that can easily mix heteroge-
neous expert modules. We show that our framework
outperforms prior methods on a suite of text revision
and attribute controlled generation tasks. Further,
our results indicate that probabilistic energy
language models, typically considered intractable,
can be used for practical text generation tasks when
combined with an appriorate sampling scheme.



Ethical Considerations

We have designed our framework with re-usablity
and modularity in mind, so as to alleviate the
need of multiple training and fine-tuning rounds,
and to reduce the negative environmental effects
that training large models have. We do however
acknowledge that strong controlled generation
methods that rely on discriminators can have the
potential to regurgitate the training data and produce
harmful outputs and toxic language (Xu et al.;
Gehman et al., 2020; Wallace et al., 2020). However,
if used properly and for good, we anticipate positive
impact on debiasing and safe generation.
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A Appendix

A.1 Controllable Debiasing:
Hyper parameters

For the results presented in Table 1, we ran the
Gibbs chain for 8 epochs (8 iterations over all the
tokens) for the conventional mode of our method,
and 30 iterations for verb replacement. We used the
parameters o= 100,58 =50,0 = 100, where 6 is the
coefficient assigned to the agency scorer, and o and
B are defined in Equations 1 and 2.

A.2 Sentiment Transfer: Hyperparameters

In this section we discuss the hyperparameters used
for sampling and see the effects of each one. For
the results presented in Table 2, we ran the Gibbs
chain for 8 epochs (8 iterations over all the tokens),
and used the parameters o = 100, 8 = 25 (for Dis-
criminator 1) and a=100,5 = 50, for Hamming 7.
« and [ are defined in Equations 1 and 2.

Table 6 shows six different scenarios, with
six different coefficeints for the Disciriminator
(), BERT MLM (0) and Hamming distance (3)
components in the energy function, which helps
understand the effect each expert has.

A.3 Formality Transfer: Hyperparameters

For the results presented in Table 3, we ran the Gibbs
chain for 5 epochs (5 iterations over all the tokens),
and used the parameters o = 140,5 = 15,7 = 100
(for Discriminator 1) and oo = 140,38 =50, = 300,
for BertScore 1. «, ( and + are defined in
Equations 1 and 2.

Table 7 shows four different scenarios, with
four different coefficeints for the BLEURT and
BertScore components in the energy function,
which helps understand the effect each expert has.

A.4 Prompts and Hyperparameters
Used for Controlled Generation

We have listed the prompts that we used for
controlled text generation (these prompts are
taken from Dathathri et al. (2020)): the country,
the lake, the chicken, the movie, the pizza,
the painting, the year, the city, the book, the
potato, the horse, the road, the president, once
upon a time. We collect these prompts from
PPLMs github repo, available at this url: https:
//github.com/uber-research/PPLM/
tree/master/human_annotation/
pplm_labeled_csvs.
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PPLM has multiple knobs to tune for sampling,
and after running a greed search we found that
gamma=1,num_iterations=10, step_-
size=0.1,kl_scale=0.01 and gm_-
scale=0.95 yeild the best results (reported in
Table 5). We generated samples by running the com-
mand python run_pplm.py -D
t iment, with the mentioned hyperparameters.

For our method, we ran the Gibbs chain for 15
epochs, and used hyperparameter o« = 40, from
Eq. 1. We don’t use any experts other than the yelp
sentiment classifier, so we don’t have any other
hyperparamters.

sen—
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Table 6: Sentiment transfer on Yelp dataset ablation study. The tuples in the first column show the («,d,3) set of
parameters. We ablate the effect that different components have on the transfer.The (ref)/(src) next to the metrics
denotes that they are measured with respect to the reference/source text. Int./Ext. Clsf. show the accuracy of the
discriminator used in the energy/external discriminator from Huggingface. Hamm. shows the Hamming distance.

(Disc, MLLM, Hamm.) BLEU GPT-2 BertScore Hamm. Int. Clsf. Ext. Clsf.
(1,0,1) 4.77 1611.8 0.88 5.308 81.7 67.4
(1,0,0) 1.12  3825.3 0.85 8.378 99.0 84.5
(0,1,0) 3.77 101.3 0.90 5.92 24.7 29.3
(100,1,0) 2.89 143.0 0.88 7.067  99.2 96.5
(0,1,50) 23.60 110.0 0.99 0.002 4.3 5.0
(100,1,50) 19.71 191.5 0.95 1.838 94.7 82.8

Table 7: Formality transfer on GYAFC dataset ablation study. The tuples in the first column show the (y,n) set of
parameters. We ablate the effect the BLEURT and BertScore experts have on the transfer. The (ref)/(src) next to
the metrics denotes that they are measured with respect to the reference/source text. Int. Clsf. shows the accuracy
of the discriminator used in the energy, and —Informal/Form. shows the breakdown of the external classifier accuracy.

Hamm. shows the Hamming distance.

(BLEURT,BertScore) BLEU GPT-2 BertScore Hamm. Int. Clsf. —Inf. —Form.
(100,0) 14.07 243.9 0.87 5.93 89.34 97.41 19.80
(300,0) 13.75 233.9 0.88 5.88 89.34 97.01 22.94
(0,100) 17.78  206.3 0.89 5.22 91.15 96.67 23.13
(0,300) 18.85 210.9 0.90 4.91 88.23 97.04 23.13
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