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Abstract

Due to the unidirectional nature of prevalent001
autoregressive generation models, recent work002
on controlled generation based on global text at-003
tributes has either required attribute-based fine-004
tuning of the base language model, or restricted005
the parametrization of the attribute prediction006
model to be compatible with the base LM. In this007
work, we propose Mix and Match LM, a global008
score-based alternative for controllable text gen-009
eration that combines arbitrary pretrained black-010
box models for achieving the desired attributes011
in the generated text without involving any012
fine-tuning or structural assumptions about the013
blackbox models. We interpret the task of con-014
trollable generation as drawing samples from015
an energy-based model whose energy values are016
a linear combination of scores from blackbox017
models that are separately responsible for018
fluency, the control attribute, and faithfulness to019
any conditioning context. We use a Metropolis020
Hastings sampling scheme to sample from this021
energy-based model using bidirectional context022
and global attribute features. We validate the023
effectiveness of our approach on various con-024
trolled generation and style-based text revision025
tasks by outperforming recently proposed meth-026
ods that involve extra training, fine-tuning, or027
restrictive assumptions over the form of models.028

1 Introduction029

Transformer-based language models trained on030

massive amounts of natural language data found031

on the internet have demonstrated exceptional032

ability to learn useful representations of sentences033

for downstream natural language processing tasks.034

Autoregressive models like GPT-3 are commonly035

used to generate high quality natural language text036

as well. However, effective methods for generating037

well-formed sequences that satisfy a desired global038

control attribute (e.g., sentiment, formality, etc.)039

represent an active area of research. If successful,040

effective controlled generation techniques might041

help mitigate bias and prevent generation of hate042

speech and toxic language (Yang and Klein, 2021; 043

Xu et al.; Gehman et al., 2020). 044

Much of the prior work on controlled generation 045

has focused on autoregressive models like GPT-2 046

and has involved fine-tuning of these large models 047

on target attributes (Yang and Klein, 2021; Krause 048

et al., 2020), or training entirely separate probabilis- 049

tic generative models for the target attributes (He 050

et al., 2020), or training specialized attribute models 051

with a restricted structure to heuristically generate 052

attribute-sensitive sequences (Dathathri et al., 053

2020). Our approach instead focuses on drawing 054

samples from a test-time combination of pretrained 055

blackbox experts that each score a desired property 056

of output text – for example, fluency, attribute sen- 057

sitivity, or faithfulness to the context. Specifically, 058

we view the product of these blackbox experts as 059

a probabilistic energy model (Hinton, 2002) – i.e., 060

a non-autoregressive, globally normalized language 061

model – and then sample (without further training 062

or fine-tuning) using a specialized Gibbs sampler 063

with a Metropolis-Hastings correction step (Goyal 064

et al., 2021). 065

Our full framework, which we entitle Mix 066

and Match LM (depicted in Figure 1), enables 067

generation of high-quality attribute-controlled 068

samples by mixing and matching blackbox models 069

like off-the-shelf pretrained attribute-sensitive 070

discriminators (e.g., sentiment classifiers), large 071

bidirectional pretrained language models like 072

BERT (Devlin et al., 2019), and other modules 073

specializing in capturing desirable features pertain- 074

ing to faithfulness to any additional context, like 075

hamming distance, Bertscore distance (Zhang et al., 076

2020), or Bleurt (Sellam et al., 2020) based distance 077

between the sample and the conditioning context. 078

We generate samples from the energy language 079

model assembled from these component experts 080

by using the recently proposed Gibbs-Metropolis- 081

Hastings scheme (Goyal et al., 2021) for sampling 082

from energy models using a masked language 083
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Figure 1: Overview of Mix and Match
LM. The Lego pieces show different ex-
perts that can be used to form the energy
LM and help control different features in
the generated text. The right side shows
the ith step in the the Gibbs sampling
chain, where a proposal is made by the
MLM, and then it is accepted/rejected
based on the energy score.

model as a proposal distribution. In this scheme,084

an expressive bidirectional language model like085

BERT is used to make a proposal at each transition086

step in the Gibbs chain to jump to a sequence x̄087

from the current sequence x. This proposal’s fitness088

is judged by the change in the energy language089

model’s score, with the sampler accepting proposals090

with larger energy reductions at a higher rate. This091

approach yields high-quality diverse samples that092

respect the distribution induced by the product of093

expert blackbox models.094

We demonstrate the flexibility of our approach by095

performing a variety of controlled generation tasks,096

such as aspect-based text revision, style transfer,097

and attribute grounded generation. On all of these098

tasks, we compare our performance to existing099

approaches that involve additional fine-tuning of100

generation or attribute based models, or impose101

restrictions on the parametrization of specific102

components. We observe that our approach, which103

does not require any gradient optimization and is104

able to combine arbitrary heterogeneous blackbox105

models, outperforms recent controllable generation106

and style transfer models on a variety of tasks107

according to various automated metrics of fluency,108

quality, and control, as well as human evaluations.109

2 Mix-and-match Language Models110

In this section, we describe our approach and mo-111

tivation behind our method. Specifically, we frame112

the problem of performing controlled generation113

as a problem of sampling from a specialized energy-114

based (or globally normalized) sequence model that115

defines a probability distribution which satisfies116

the desired constraints we wish to impose in the117

controlled generation setting. As described below,118

this energy based model is composed of pretrained119

components and does not require any further opti-120

mization. An energy-based sequence model defines121

the probability distribution over the space of pos-122

sible sequences X as:1 p(X;θ)= e−E(X;θ)∑
X′∈X e−E(X′;θ) , 123

where E(X; θ) refers to the scalar energy of a 124

sequenceX that is parametrized by θ. Lower energy 125

corresponds to higher likelihood of X . In contrast 126

to the common autoregressive sequence models, 127

exact likelihood computation and efficient sampling 128

from these models is challenging. Despite these 129

challenges, we focus on this paradigm of sequence 130

modeling because energy-based models offer 131

increased flexibility via sequence level features and 132

constraints. As we discuss next, this capability lets 133

us easily define expressive functions for controlled 134

generation of sequences which is not readily offered 135

by the autoregressive modeling paradigm. 136

2.1 Product of Experts Energy-based 137

Models and Controlled Generation 138

Our approach is motivated by the perspective that 139

the task of controlled generation requires concen- 140

trating probability mass over small subspace of se- 141

quences in X that satisfies various constraints per- 142

taining to fluency, target attributes, and other control 143

variables. Consider the task of generating positive 144

sentiment sentences. This requires satisfaction of 145

two major constraints: (1) The sequence X should 146

be well-formed, (2) The sequenceX should express 147

positive sentiment. If we have access to two separate 148

probability distributions over X , one for modelling 149

well-formedness (p1(X)) and another for modelling 150

positivity (p2(X)), then a natural solution for con- 151

trolled generation in this setting would be to draw 152

samples from a probability distribution that is a prod- 153

uct of these two distributions i.e. pdesire(X) ∝ 154

p1(X) ·p2(X). In our approach, we further relax 155

this requirement by assuming access to expert black- 156

boxes that yield scalar non-probabilistic energy 157

scores E1 and E2 indicating fitness of a sequence 158

w.r.t. well-formedness and positivity respectively. 159

Under the product of experts framework above the 160

desired probability distribution would take the form: 161

1For simplicity, we are concerned with a finite set of
sequences limited by some maximum length.
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log pdesire(X) = −(E1(X)+E2(X)) − logZ.162

This expression shows that when working with163

scalar scores for the expert blackboxes, the prod-164

uct of expert models yields an energy model whose165

energy is simply the sum of the scalar energy values166

obtained from the expert models. Inspired by this,167

we propose a framework for controlled generation168

that involves linear combinations of various black-169

box experts in order to obtain a distribution whose170

samples satisfy the requirements of a desired con-171

trolled generation task: EM&M(X)=
∑k

i=1αiEi(X),172

where our proposed mix-and-match energy is com-173

posed of k expert energy components, which are174

weighted by scalar hyperparameters α.175

2.2 Expert Factors in Mix-and-Match LM176

As shown in Fig. 1, we use the following blackbox177

experts in our experiments as modules that we can178

add or remove to produce desired behavior:179

Emlm(X) : Recent work has shown that large180

masked language models (MLM) like BERT can181

discirminate between well-formed and ill-formed182

sentences (Zhang et al., 2020) and induce an183

implicit energy function over the sequences (Goyal184

et al., 2021). Hence, we use BERT-base as a black-185

box to model the form and fluency of sentences.186

Specifically, we use an energy parametrization187

introduced in Goyal et al. (2021) which is negative188

of the sum of unnormalized logits at each position189

obtained via forward pass of the MLM after190

masking the respective positions iteratively. We191

refer to this blackbox energy for modeling the192

overall form of the sentences by Emlm(X).193

Edisc(X) : This particular expert module refers194

to the energy obtained via the discriminator for the195

attributes of interest. What this module returns is196

the raw logits of the discriminator, for the target197

attribute. For instance, if we have a sentiment198

classifier, and want to produce positive sentiment,199

the Edisc(X)=−log p(+|X).200

Ehamm(X;X′) : For a given sequence X ′, this quan-201

tity refers to the hamming distance between the se-202

quence X and X ′. This penalization token level de-203

viation from X ′ which is useful if we are interested204

in only making minor edits to X ′ as described later.205

Efuzzy(X;X′) : Similar to the hamming distance,206

this quantity refers to the Bertscore (Zhang et al.,207

2020) computed between X and X ′ which can208

be viewed as a fuzzy hamming distance that takes209

semantic similarity into account.210

EBleurt(X;X′) : This energy refers to the negative211

Bleurt (Sellam et al., 2020) score between X and 212

X ′. We use this score to get sentence level similarity 213

scores which do not hinge on token level alignment 214

across the two sentences. 215

2.3 Sampling scheme 216

To sample from the energy parametrizations de- 217

scribed in the last section, we follow the Metroplolis 218

Hastings (Hastings, 1970) MCMC scheme for sam- 219

pling from masked language models introduced by 220

Goyal et al. (2021). While the proposal distribution 221

we use is the same as Goyal et al. (2021) i.e. masked 222

language model’s (BERT’s) conditionals, the 223

energy parametrizations we use are more suitably 224

designed for controlled generation. 225

We briefly explain the sampling procedure, which 226

involves forming long Markov chains of sequences 227

starting with a random sequence, and following the 228

MH scheme which uses a proposal distribution to 229

propose a new sequence at each step in a chain which 230

is either accepted or rejected based on its fitness to 231

the energy function. The sequences at the end of 232

these chains correspond to samples from the desired 233

energy-base model. Operationally, at each MCMC 234

step, we mask out a token at a random position in the 235

current sequence X in the chain, and propose a new 236

sequence X̄ to transition to by sampling a token 237

from the MLM conditional softmax at the masked 238

position. This proposed sequence is evaluated by 239

its ability to reduce the energy from the current 240

sequence in the chain and is accepted with the prob- 241

ability p(X̄;X) =min

(
1,

e−EM&M(X̄) pmlm(Xi|X\i)

e−EM&M(X) pmlm(X̄i|X\i)

)
. 242

EM&M (X) refers to the product of experts energy 243

either Egen or Erev depending on the task, i refers 244

to the position chosen for masking, pmlm refers to 245

the MLM’s conditional distribution at the [MASK] 246

position. Intuitively, this acceptance probability 247

indicates that the proposed sequence X̄ is more 248

acceptable if it has lower energy than the current 249

sequence X in the chain and is rare or less likely 250

to be proposed by the proposal distribution again. 251

2.4 Controlled generation Tasks 252

We use the expert blackbox factors and the sampling 253

scheme describe above in our framework to perform 254

two kinds of controlled generation tasks. 255

Prompted generation: This task focuses on 256

generating well-formed sentences that start with a 257

specified prompt and also satisfy a target attribute 258

for which we have access to a discriminator. 259

An example task would be to generate positive 260
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sentiment sequences starting with This movie.261

The energy function takes the form:262

Egen(X)=Emlm(X) + αEdisc(X) (1)263

α is a hyperparameter that controls the tradeoff264

between the MLM score and the discriminator’s in-265

fluence. For MH-based sampling for this task, we266

initialize the sequence with the starting prompt and267

rest of the tokens masked out, which creates a seed268

text of shape the movie[MASK][MASK]...269

[MASK], for the prompt example of the movie.270

The number of mask tokens depends on the target271

generation length, and we constrain the sampler272

to only produce proposals and revise non-prompt273

tokens, and mark the prompt tokens as “frozen”.274

Controlled text revision: This task involves275

editing a source sequence X ′ in order to satisfy the276

desired target attributes exhibited by the generated277

sequence X . The energy function for this task is:278

Erev(X)=Egen(X)+β Ehamm(X,X ′)+

γ Efuzzy(X,X ′)+η EBleurt(X,X ′)
(2)279

This energy function in addition to valuing well-280

formedness and satisfying target attribute require-281

ments, also focuses on maintaining faithfulness to282

the source sequence X ′. For sampling with this283

energy, we initialize the sequence with the sequence284

X ′ to be edited. This sets the length of the target se-285

quence to be the same as the source. In this setup, the286

sampler can revise all tokens and is not constrained.287

For both these tasks, we run a separate MCMC288

chain for each generated sentence for 8 to 15289

epochs, depending on the task. An epoch refers to290

one masking cycle over all the non-frozen positions291

(selected randomly) of the sequence.292

3 Experimental Setup293

3.1 Tasks and Datasets294

Controllable debiasing: ROC story cor-295

pus. We use the subset of the ROC story296

corpus (Mostafazadeh et al., 2016) test-set that is297

used by PowerTransformer (Ma et al., 2020) for298

their evaluations. We use this data for controllable299

debiasing, a text revision task which aims to correct300

the implicit and potentially undesirable agency301

biases in character portrayals. This test-set consists302

of 549 sentences, where 224 sentences have low303

agency verbs (such as wish, dream, etc.) and the rest304

have high agency (like pursue, achieve, etc.). The305

task is to revise the sentences such that the meaning306

is preserved, but the agency of the sentence is 307

changed in the target direction. 308

Sentiment transfer: Yelp. We use Yelp (Shen et al., 309

2017) dataset’s test-set for the task of sentiment 310

transfer. The test set comprises of 1000 sentences, 311

half with positive and half with negative sentiment. 312

We also have a reference set of hand written senti- 313

ment transferred sentences, provided by (He et al., 314

2020) that we use for reporting evaluation metrics. 315

Formality transfer: GYAFC We use 1051 316

sentences from the test-set of the GYAFC (Rao 317

and Tetreault, 2018) dataset, which contains formal 318

and informal sentences for the task of formality 319

transfer (both directions of formal to informal and 320

informal to formal). Here we use the entertainment 321

and music domain subset of this data, following the 322

evaluation setup of (He et al., 2020). This dataset 323

also contains parallel data between formal and 324

informal sentences, which we use as reference for 325

reporting evaluation metrics. 326

Prompted generation: To compare with PPLM, an- 327

other controlled generation method, we set Mix and 328

Match LM to generate text with positive or negative 329

sentiment given prompts (listed in Appendix A.4) 330

by using a Yelp sentiment classifier as discriminator. 331

3.2 Expert Component Configurations 332

We use a Huggingface pre-trained bert-base- 333

uncased model2 as our MLM for yielding Emlm 334

and also providing the proposal distribution in our 335

MH MCMC sampler. For obtaining Edisc, we 336

train BERT-based classifiers on the training-set of 337

our datasets to use as our attribute discriminators. 338

Although we could have used any pre-trained 339

attribute classifier from a model repository like 340

Huggingface for Edisc, we train our own classifier 341

for controlled empirical comparison. As described 342

later, we do use pretrained Huggingface attribute 343

classifiers as external attribute classifiers for fair 344

evaluation against baselines. For experiments 345

in which we add BLEURT (Sellam et al., 2020) 346

and BertScore (Zhang et al., 2020) components 347

to the energy, we download the pre-trained 348

Elron/bleurt-base-512 and roberta- 349

large_L17 models from Huggingface, respec- 350

tively. We have provided implementation details 351

and hyperparameter ablations of all the experiments 352

in Appendix A.1, A.2, A.3 and A.4. 353

2https://huggingface.co/transformers/
pretrained_models.html
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3.3 Baselines354

PowerTransformer. For the task of controllable355

debiasing (agency revision), we compare our356

work with PowerTransformer (Ma et al., 2020),357

an approach that uses paraphrasing and self-358

supervision based on a reconstruction loss, building359

on pre-trained language models, to re-write text and360

control agency level of sentences.361

He et al. For style transfer on sentiment an formal-362

ity domains, we compare our work with He et al.363

(2020), a generative style transfer framework which364

uses a variational autoencoder (VAE) built using a365

sequence-to-sequence LSTM-based model to do un-366

supervised style transfer. This framework needs to367

be trained from scratch for each style transfer task.368

UNMT. As a second baseline for style transfer,369

we compare our work with UNMT (Lample370

et al., 2018), an unsupervised machine translation371

framework that demonstrates high performance for372

sentiment transfer.373

PPLM. For the task of controlled generation,374

we compare our work to Plug-and-Play LM375

(PPLM) Dathathri et al. (2020), which does376

attribute controlled generation using the flow of377

gradients from discriminators trained on the last378

hidden layer representations of the generator, to379

guide generation.380

3.4 Evaluation Metrics381

We use a variety of evaluation metrics to compare382

our approach’s performance on two major facets:383

(1) Quality of generated text, and (2) success on384

matching the target attribute used for control.385

3.4.1 Text Quality and Semantic Similarity386

GPT-2 PPL. We feed our generated test sentences387

to a Huggingface (Radford et al., 2019) pre-trained388

GPT-2 xl model, and report its perplexity (PPL), as389

an automatic measure of fluency. Although this mea-390

sure is not a perfect indicator of fluency, we find it to391

be a useful metric alongside human judgements. 3392

BLEU. For sentiment (Yelp) and formality393

(GYAFC) transfer experiments, since we have refer-394

ence text, we report the BLEU score. For controlled395

debiasing, we report BLEU between generated text396

and source, and show it as BLEU (src).397

BertScore. As a measure of meaning preservation,398

we use the F1 BertScore metric (Zhang et al., 2020)399

3Due to the high variance in the PPL scores generated
across sentences by GPT-2, we report the median score for
each system under comparison.

to compare the semantic similarity of the provided 400

reference sentence with the generated output. 401

Hamming Distance. We also report the hamming 402

distance between the source text and generated text, 403

to measure the extent of the change induced by our 404

framework. 405

3.4.2 Attribute Quality 406

Internal Classifier Accuracy. To evaluate the 407

quality of applying target attributes, we report 408

accuracy of the internal classifier (the discriminator 409

used for generation) on the generated text, assuming 410

the target attribute is the correct label. The higher 411

this accuracy is, the better. 412

External Classifier Accuracy. Since the internal 413

classifier is the one we are sampling from, it is 414

natural that we would get high accuracy on it, 415

compared to our baselines. To create a more 416

fair comparison, we also report classification 417

accuracy using external classifiers, downloaded 418

from Huggingface. For sentiment classification 419

we use textattack/bert-base-uncased- 420

yelp-polarity (Morris et al., 2020), and for 421

formality we use cointegrated/roberta- 422

base-formality. 423

Agency Lexicon Accuracy. For the controlled 424

debiasing experiment, we measure the accuracy 425

of the change in agency by comparing the target 426

agency level with that of the generated text, 427

extracted using the connotation frames lexicon, and 428

following the setup from Ma et al. (2020). 429

4 Results 430

4.1 Controllable Debiasing 431

Table 1 shows our results for the task of text revision 432

for controlling agency bias which is introduced 433

by Ma et al.. Our baseline for this task is Power- 434

Transformer which has a vanilla (no boost) variant 435

and a variant with vocab boosting. The boosting 436

mechanism up-weights the logits of verbs that be- 437

long to the target agency lexicon – during decoding 438

– so as to increase their probability and incentivize 439

generation in that direction. We also measure our 440

metrics on the original test-set, without revision, to 441

provide a better sense of the changes made. 442

We offer different variants of our framework, to 443

provide a fair comparison and to better ablate our 444

proposed method. “Disc” denotes our framework 445

where we add the discriminator expert (Edisc) 446

which is trained to predict the agency level of a 447

sentence, to the energy along with Emlm, and Ehamm 448
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Table 1: Controllable debiasing/ sentence agency revision on ROC-story corpus. The (src) next to the metrics denotes
measurement with respect to the source text. Int. Clsf. is the accuracy of the discriminator used in the energy. Hamm.
shows the Hamming distance. Agency Acc. is the accuracy of agency revision based on the agency lexicon (Sec 3.4.1).

Method BLEU(src) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. Agency Acc.

Source Text 100.00 153.9 1.00 0.00 7.47 9.81

B
as

el
. PowerTransformer (No Boost) 60.30 210.8 0.94 1.11 64.84 69.17

PowerTransformer (+Boost) 57.46 247.2 0.95 1.28 77.23 85.03

O
ur

s

M&M LM Verb Replace (Disc) 60.53 238.7 0.95 1.04 81.05 70.80
M&M LM Verb Replace (Agency Score ) 51.95 193.3 0.96 0.89 32.42 64.75
M&M LM Verb Replace (Disc+Agency Score) 54.52 248.8 0.95 1.05 77.23 77.27
M&M LM (Hamming +Disc) 56.26 211.2 0.95 1.37 96.52 69.00
M&M LM (Hamming+Agency Score ) 51.95 231.6 0.95 1.56 23.13 86.01
M&M LM ( Hamming+Disc+Agency score) 39.82 261.6 0.93 2.45 90.16 89.42

(Eq. 2). As describedd above, in the text revision449

task like this hamming distance is computed450

between the generated proposals and the source451

sentence. The “Agency Score” variant adds an452

alternative term to EM&M instead of Edisc, which453

is the number of target agency verbs according to454

the connotation frames lexicon (Sap et al., 2017)455

in the sentence. The “Disc+Agency” variant has456

both the energy components. We also apply our457

method in two ways: “Verb Replace” which allows458

the sampler to propose revisions for only one459

pre-determined verb (which is provided in the460

dataset annotations). In this setup all tokens remain461

frozen, except for the given verb. The conventional462

mode (M&M LM), however, proposes revisions for463

all tokens in the sentence and is not constrained.464

Table 1 shows that in the conventional setup, Mix465

and Match LM (Disc only) has performance similar466

to that of PowerTransformer, without boosting.467

With the Agency Score component, our method out-468

performs PowerTransformer in terms of accuracy of469

revision as per the agency lexicon accuracy metric,470

with negligible loss in meaning (BertScore). The471

reason behind this better performance in terms of472

applying target agency accuracy is that our method’s473

sampling is guided by the energy that is directly474

built on the metrics we care about, as opposed475

to trying to apply them through paraphrasing476

and proxies such as vocab boosting, which are477

employed in the PowerTransformer method.478

Another important observation here is the dif-479

ference between “Verb Replace” and conventional480

modes. This ablation shows that although our481

method makes few changes (the average hamming482

distance between source and output sentences483

are between 1.37 and 2.45), it still outperforms484

a “static” method that has extra knowledge of the485

offending verb and focuses on changing only that486

verb, by a significant margin.487

4.2 Style Transfer 488

In this section we conduct experiments on the task 489

of unsupervised style transfer for sentiment and 490

formality. The main difference between these two 491

tasks is the number of words that need to be revised 492

to have successful transfer without changing the 493

meaning of the sentence. Sentiment transfer needs 494

fewer changes whereas formality transfer needs 495

more structural change. 496

4.2.1 Sentiment Transfer 497

For this task we include two components in our 498

energy model, the attribute discriminator (Edisc), 499

to induce the target style, and the hamming distance 500

(Edisc), to maintain the meaning of the sentence. 501

We don’t include more complex semantic similarity- 502

related components Efuzzy and EBleurt, since 503

sentiment transfer can normally be done by making 504

only a few changes to the sentence. We report 505

results with two different variants, one where the 506

discriminator component has a higher coefficient 507

in the energy (Discriminator↑) and one where 508

the hamming distance has a higher coefficient 509

(Hamming↑). In effect, these two show the trade-off 510

between transfer quality and language quality. 511

We see in Table 2 that our method, with the ham- 512

ming component up-weighted, outperforms both the 513

generative baselines in terms of transfer accuracy 514

(Ext. Clsf.) and semantic similarity (BertScore). 515

We can also see Mix and Match LM has higher 516

BLEU score, with respect to the provided hand- 517

written reference sentences. We hypothesize that 518

this superiority is due to the tendency of our model 519

to make minimal revisions that satisfy the prodduct 520

of experts energy model. Therefore, our model can 521

successfully change the style without changing the 522

meaning of the sentence. The generative baselines 523

however, regenerate the sentence which imposes 524

more change, as can be observed from the hamming 525
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Table 2: Sentiment transfer on Yelp dataset. The (ref)/(src) next to the metrics denotes that they are measured with
respect to the reference/source text. Int./Ext. Clsf. show the accuracy of the discriminator used in the energy/external
discriminator from Huggingface. Hamm. shows the Hamming distance.

Method BLEU(ref) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. Ext. Clsf.

Reference Text 100.00 169.5 1.00 5.80 83.70 85.60

B
as

el
.

He et al. 18.67 200.6 0.93 4.23 84.87 79.82
UNMT 17.00 171.8 0.94 3.67 84.87 80.22

O
ur

s M&M LM (Discriminator ↑) 15.75 163.5 0.93 2.84 97.53 90.00
M&M LM (Hamming↑) 19.71 191.5 0.95 1.83 94.72 82.85

Table 3: Formality transfer on GYAFC dataset. The (ref)/(src) next to the metrics denotes that they are measured
with respect to the reference/source text. Int. Clsf. shows the accuracy of the discriminator used in the energy, and
→Informal/Form. shows the breakdown of the external classifier accuracy. Hamm. shows the Hamming distance.

Method BLEU(ref) GPT-2 BertScore(sc) Hamm.(src) Int. Clsf. →Informal →Form.

Reference Text 100.00 118.1 0.92 7.72 82.97 100.00 9.41

B
as

el
. He et al. 15.83 122.8 0.90 10.03 64.79 100.00 3.33

UNMT 14.17 143.8 0.90 11.92 56.04 99.81 7.64

O
ur

s M&M LM (Discriminator ↑) 17.78 206.3 0.89 5.22 91.15 96.67 23.13
M&M LM (BertScore↑) 27.71 194.4 0.93 2.50 72.12 94.26 19.01

distance column (Hamm.(src)) in Table 2.526

4.2.2 Formality Transfer527

For this task, we include the formality classifier528

(Edisc), Hamming distance (Ehamm), and Bertscore529

(Efuzzy) components in the energy formulation,530

to permit the transfer of style and also maintain531

the meaning of the sentence. Efuzzy helps with532

imposing semantic similarity between source and533

generated sentences, since Hamming alone isn’t suf-534

ficient for judging comparable formal and informal535

sentences. We show results for two setups of our536

framework, one where the discriminator coefficient537

is higher (Discriminator↑) and another where the538

Bertscore coefficient is higher (BertScore↑).539

Table 3 shows our formality transfer results. For540

this task, we have broken down the external classi-541

fier accuracy for the different transfer directions of542

formal to informal (→ Inf.) and informal to formal543

(→ Form.). We do this because for both our method544

and the baselines, the → Form. task is harder and545

therefore has lower accuracy. We observe that546

our method outperforms the baselines in terms of547

external classifier accuracy, BertScore and BLEU.548

However, for this task, we can see that the GPT-2549

PPL of our generated sentences is higher than those550

of the baselines. The reason behind this is the551

format and noise in the data. The samples for this552

dataset are taken from the music and entertainment553

industry domain, and contain some symbols and554

characters similar to emojies (e.g. “:)” and “***”).555

This is where the tendency of our approach toward556

minimal revisions is hurtful–our revisions of text, 557

often do not get rid of all of these symbols, while the 558

baselines’ generative methods successfully remove 559

all the superfluous chatacters because they rewrite 560

sentences from scratch. This difference reflects in 561

the GPT-2 perplexity scores. 562

4.3 Prompted Controlled Generation 563

For the prompted controlled text generation task, we 564

only use Emlm and Edisc, and perform generation 565

with sentiment as the control attirbute. We generate 566

sequences of different lengths (12, 20 and 50 to- 567

kens), given 14 prompts taken from Dathathri et al. 568

(2020) (the prompts are listed in Appendix A.4) 569

with our framework and the baseline (PPLM). We 570

generate 20 sequences, per sentiment, for each 571

prompt, making it an overall of 560 sequences, 572

which use for both automatic and human evalua- 573

tions. Table 5 shows samples of generated outputs 574

from our method, compared with PPLM. 575

Table 4 shows our results for this experiment. 576

Here, we have an additional metric, the MLM 577

energy (lower is better), which, like GPT-2, 578

indicates the quality of generated sentences (Salazar 579

et al., 2020) according to BERT. We report this 580

extra metric here since PPLM uses a GPT model for 581

generation, and it is natural that it would measure 582

better on this metric, compared to our method. 583

The table shows that for all lengths of generated 584

sentences, our method is much better at inducing the 585

target sentiment. However, in terms of GPT-2 PPL, 586

PPLM naturally performs better, as it incorporates 587
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Table 4: Prompted sentiment controlled generation results and human evaluations.BERT denotes the BERT MLM
energy score (equivalent of GPT-2 perplexity), and lower score is better. Int./Ext. Clsf. show the accuracy of the
discriminator used in the energy/external discriminator from Huggingface.

Length
GPT-2 BERT Int. Clsf. Ext. Clsf. Human Preference (%)

Ours PPLM Ours PPLM Ours PPLM Ours PPLM Ours PPLM

12 264.1 113.1 −160.4 −137.1 94.3 71.7 65.1 58.0 71.1 29.9
20 61.1 167.2 −271.0 −237.1 96.3 74.5 65.9 57.6 62.9 37.1
50 122.3 29.0 −692.3 −606.1 93.8 73.6 68.6 60.7 46.7 53.3

Table 5: Samples of prompted sentiment controlled generations, using our Mix and Match LM and PPLM.
Ours (Mix and Match LM) PPLM

Po
sS

en
t. the country is noted for attracting a quarter-million tourists. the country’s top cycling event is right behind the olympics, and the

the lake we come across can be said to be beautiful. the lake is a great spot for swimming, diving and snorke
the chicken and all the other ingredients produced a delicious meal. the chicken wing is one of the best foods you can eat and it
the movie was family-friendly and a success in japan. the movie, which is currently only the third the the the the the

N
eg

Se
nt

. the country was unstable and was not ready to modernize. the country’s top animal welfare agency, the ministry of agriculture and food
the lake was not supposed to be navigable under any circumstances. the lake, a large, and the most massive and most terrible of
the chicken was growling and beginning to feel a little sick. the chicken noodles are the most horrible food i have ever had.
the movie received only two nominations and earned no grand prix. the movie is not in the , a, a, a

a GPT model but in terms of the MLM score, Mix588

and Match LM performs better since it uses BERT589

to propose changes. To enable a more conclusive590

comparison of the text quality, we report results with591

human evaluations. For these evaluations, we ran-592

domly select 10 generated outputs for each prompt,593

for each sentiment (making it 2× 14× 10 = 280594

sentences per method), and asked three Amazon595

Turkers per sample pair, which samples they find596

more fluent. We report the majority vote of the597

Turkers in the table. The results show that for598

sequences with lengths 12 and 20, humans found599

our generations more fluent, with preference rates of600

71.1% and 62.9% respectively. However, for length601

50, the preference rate for M&M drops to 46.7%,602

which shows that our method is superior to PPLM603

for short/medium length generation, however604

PPLM does better at generating longer sequences.605

5 Related Work606

Common approaches for flexible attribute-based607

generation range from retraining or fine-tuning608

a large underlying base model for generation on609

domain-specific data (Ziegler et al., 2019), to610

modifying the architecture of the large pre-trained611

model (Keskar et al., 2019). Several style transfer612

approaches hinge on training large generative613

models with non-parallel (He et al., 2020; Lample614

et al., 2018; Shen et al., 2017; Krishna et al., 2020;615

Reif et al., 2021) data across the domains of interest.616

Instead of retraining large base models or training617

new architectures from scratch, recent work has618

used attribute discriminators to steer the generation619

(Gu et al., 2017) from a large autoregressive620

language model. Plug-and-Play LM (Dathathri 621

et al., 2020) uses discriminators learned from the 622

LM’s top-level hidden layer to modify the LM’s 623

states toward increasing probability of the desired 624

attribute via gradient ascent at each step. This re- 625

stricts the parametrization of the discriminator and 626

also requires access to multiple gradients from the 627

discriminator multiple times per generated sentence, 628

making this approach fairly expensive and restric- 629

tive. GeDi (Krause et al., 2020) and Fudge (Yang 630

and Klein, 2021) take similar, approaches and guide 631

generation from LM using specially trained gener- 632

ative and future discriminators, respectively. These 633

approaches in addition to requiring some kind of op- 634

timization, also rely on heuristics to manipulate the 635

local softmax distributions of autoregressive models 636

and do not enjoy the benefits of incorporating global 637

features into the generation mechanism in a simple 638

probabilistic manner. In constrast, our energy-based 639

formulation is not only optimization-free, but also 640

fully modular, allowing for heterogenous blackbox 641

experts to be combined with each other. 642

6 Conclusion 643

We present Mix and Match Language Models 644

(M&M LMs), a training-free framework for con- 645

trolled text generation that can easily mix heteroge- 646

neous expert modules. We show that our framework 647

outperforms prior methods on a suite of text revision 648

and attribute controlled generation tasks. Further, 649

our results indicate that probabilistic energy 650

language models, typically considered intractable, 651

can be used for practical text generation tasks when 652

combined with an appriorate sampling scheme. 653
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Ethical Considerations654

We have designed our framework with re-usablity655

and modularity in mind, so as to alleviate the656

need of multiple training and fine-tuning rounds,657

and to reduce the negative environmental effects658

that training large models have. We do however659

acknowledge that strong controlled generation660

methods that rely on discriminators can have the661

potential to regurgitate the training data and produce662

harmful outputs and toxic language (Xu et al.;663

Gehman et al., 2020; Wallace et al., 2020). However,664

if used properly and for good, we anticipate positive665

impact on debiasing and safe generation.666
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A Appendix800

A.1 Controllable Debiasing:801

Hyper parameters802

For the results presented in Table 1, we ran the803

Gibbs chain for 8 epochs (8 iterations over all the804

tokens) for the conventional mode of our method,805

and 30 iterations for verb replacement. We used the806

parameters α=100,β=50,θ=100, where θ is the807

coefficient assigned to the agency scorer, and α and808

β are defined in Equations 1 and 2.809

A.2 Sentiment Transfer: Hyperparameters810

In this section we discuss the hyperparameters used811

for sampling and see the effects of each one. For812

the results presented in Table 2, we ran the Gibbs813

chain for 8 epochs (8 iterations over all the tokens),814

and used the parameters α=100,β =25 (for Dis-815

criminator ↑) and α=100,β=50, for Hamming ↑.816

α and β are defined in Equations 1 and 2.817

Table 6 shows six different scenarios, with818

six different coefficeints for the Disciriminator819

(α), BERT MLM (δ) and Hamming distance (β)820

components in the energy function, which helps821

understand the effect each expert has.822

A.3 Formality Transfer: Hyperparameters823

For the results presented in Table 3, we ran the Gibbs824

chain for 5 epochs (5 iterations over all the tokens),825

and used the parameters α= 140,β = 15,γ = 100826

(for Discriminator ↑) and α=140,β=50,γ=300,827

for BertScore ↑. α, β and γ are defined in828

Equations 1 and 2.829

Table 7 shows four different scenarios, with830

four different coefficeints for the BLEURT and831

BertScore components in the energy function,832

which helps understand the effect each expert has.833

A.4 Prompts and Hyperparameters834

Used for Controlled Generation835

We have listed the prompts that we used for836

controlled text generation (these prompts are837

taken from Dathathri et al. (2020)): the country,838

the lake, the chicken, the movie, the pizza,839

the painting, the year, the city, the book, the840

potato, the horse, the road, the president, once841

upon a time. We collect these prompts from842

PPLMs github repo, available at this url: https:843

//github.com/uber-research/PPLM/844

tree/master/human_annotation/845

pplm_labeled_csvs.846

PPLM has multiple knobs to tune for sampling, 847

and after running a greed search we found that 848

gamma=1,num_iterations=10,step_- 849

size=0.1,kl_scale=0.01 and gm_- 850

scale=0.95 yeild the best results (reported in 851

Table 5). We generated samples by running the com- 852

mand python run_pplm.py -D sen- 853

timent, with the mentioned hyperparameters. 854

For our method, we ran the Gibbs chain for 15 855

epochs, and used hyperparameter α = 40, from 856

Eq. 1. We don’t use any experts other than the yelp 857

sentiment classifier, so we don’t have any other 858

hyperparamters. 859
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Table 6: Sentiment transfer on Yelp dataset ablation study. The tuples in the first column show the (α,δ,β) set of
parameters. We ablate the effect that different components have on the transfer.The (ref)/(src) next to the metrics
denotes that they are measured with respect to the reference/source text. Int./Ext. Clsf. show the accuracy of the
discriminator used in the energy/external discriminator from Huggingface. Hamm. shows the Hamming distance.

(Disc, MLM, Hamm.) BLEU GPT-2 BertScore Hamm. Int. Clsf. Ext. Clsf.

(1,0,1) 4.77 1611.8 0.88 5.308 81.7 67.4
(1,0,0) 1.12 3825.3 0.85 8.378 99.0 84.5
(0,1,0) 3.77 101.3 0.90 5.92 24.7 29.3
(100,1,0) 2.89 143.0 0.88 7.067 99.2 96.5
(0,1,50) 23.60 110.0 0.99 0.002 4.3 5.0
(100,1,50) 19.71 191.5 0.95 1.838 94.7 82.8

Table 7: Formality transfer on GYAFC dataset ablation study. The tuples in the first column show the (γ,η) set of
parameters. We ablate the effect the BLEURT and BertScore experts have on the transfer. The (ref)/(src) next to
the metrics denotes that they are measured with respect to the reference/source text. Int. Clsf. shows the accuracy
of the discriminator used in the energy, and →Informal/Form. shows the breakdown of the external classifier accuracy.
Hamm. shows the Hamming distance.

(BLEURT,BertScore) BLEU GPT-2 BertScore Hamm. Int. Clsf. →Inf. →Form.

(100,0) 14.07 243.9 0.87 5.93 89.34 97.41 19.80
(300,0) 13.75 233.9 0.88 5.88 89.34 97.01 22.94
(0,100) 17.78 206.3 0.89 5.22 91.15 96.67 23.13
(0,300) 18.85 210.9 0.90 4.91 88.23 97.04 23.13
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