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Abstract

The EU AI Act emphasizes the importance of differentiated safety requirements
across classes of users. However, machine learning (ML) service providers may
strategically under-enforce such requirements to reduce development costs or accel-
erate deployment. We study this phenomenon through the lens of a principal-agent
model, where regulators act as principals enforcing risk-control obligations, while
ML service providers act as agents with private incentives. A key challenge is
that direct enforcement of safety constraints is often infeasible, since verification
requires costly monitoring and statistical uncertainty may be exploited by strategic
agents. To address this, we introduce incentive aware statistical protocols—rules
tailored for the providers given their private costs, that translate observed model per-
formance into enforceable outcomes, such as licensed market access. We show that
these protocols can be designed to guarantee obedience to regulations: providers
who do not comply with user-specific safety requirements are statistically driven
to self-exclude from the market, while compliant providers remain viable. Our
framework provides new theoretical insights into the intersection of statistical
testing, mechanism design, and trustworthy Al regulation, offering a foundation
for the development of enforceable Al governance mechanisms.

1 Introduction

Machine learning models have achieved remarkable empirical success across many domains such
as language modelling [Vaswani et al., 2017] and image generation [Rombach et al., 2022]. With
these promising results, we now see widespread real-world applications of machine learning mod-
els such as credit scoring [Baesens et al., 2003], social justice [Angwin et al., 2022] and other
high-risk applications. Despite these successes, the risk assessment of blindly relying on the pre-
dictions of these models is considered catastrophic [Voigt and Von dem Bussche, 2017, Veale and
Zuiderveen Borgesius, 2021, Laux et al., 2024] as much of these models typically fail to achieve
OOD generalisation [Sagawa et al., 2020, Eastwood et al., Singh et al., 2024] or are vulnerable to
adversarial attacks [Szegedy et al., 2013, Goodfellow et al., 2014] and often lack the notions of
fairness across different subgroups [Chouldechova and Roth, 2018, Mehrabi et al., 2021, Barocas
et al., 2023]. In light of these limitations of modern Al methods there have been recent attempts by
the policy makers to regulate the real world applications of these Al models, including the EU Al
act [Edwards, 2021], which is one of the most comprehensive regulations spanning across the range
of Al applications, recommending differentiated safety requirements and user-specific risk control.

However, in practice regulators are confronted with unverifiable black boxes, costly monitoring, and
pervasive statistical uncertainty that firms can exploit to under-enforce safety [De Almeida et al.,
2021], creating a fundamental enforcement tension: economic incentives of providers interact with
noisy verification to produce strategic non-compliance. Technical responses address parts of this space:
with differential privacy [Dwork et al., 2014], certified-robustness methods for train [Cohen et al.,
2019] and test time [Seferis et al., 2023, Singh et al., 2023]; complementary work on documentation
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and auditability (e.g., model cards) aims to improve transparency for private and self oversight
[Mitchell et al., 2019], while empirical audits expose real-world distributional harms [Buolamwini
and Gebru, 2018]. However, in practice, the model designers often have strategic incentives to
game regulations by manipulating the statistical uncertainty in their favour. Verification, auditing
or benchmarking solutions [Jansen et al., 2024, Li and Goel, 2025, Hardt, 2025, Arias et al., 2025]
to regulations often ignore this strategic aspect. Economic and policy scholarship has identified
limitations of single entity regulatory frameworks and thus propose idea of private regulation [Ball,
2025]. Private regulation encourages private or self regulating mechanisms for Al governance [Stein
et al., 2024] allowing for regulatory market design [Hadfield and Clark, 2023, Tomei et al., 2025].

These cross-disciplinary efforts have now laid the foundations and normative ideals of private
regulation but leave open how to design enforcement rules that are resilient to sampling noise and
strategic actors, motivating approaches that treat verification and rulemaking as a unified mechanism
under statistical uncertainty. Inspired from the recent developments in incentive aware hypothesis
testing [Bates et al., 2022, 2023, Min, 2023, Hossain et al., 2025] we propose a principal-agent
framework focusing on the outcome/incentives rather than decisions to regulate AI model providers
via statistical testing. Our framework consists of a principal (public or private regulator) who rather
than trying to solve a decision problem of who satisfies regulations or not via statistical testing
ensures that the statistical test is aware of the welfare objectives of the regulator and the incentives
of the model designers. The awareness of model designer’s incentives while ensuring compliance
to regulations allows the statistical test to keep null agents out of the market without being too
strict, thus encouraging maximum market participation even when prior population of null agents is
much larger than agents who abide by the regulations. Additionally we characterise the regulation
enforcing incentive aware tests via desirable gambles and provide the sufficient conditions under
which incentive aware tests could encourage model designers to improve their models. We also
discuss the scenarios where model designers costs are their private information and they might lack
precise knowledge about the properties of their model for them to effectively strategise using it.

2 Preliminaries

Why regulating an AI model is relatively hard. Regulations are ubiquitous to almost everything
that humans use in the real world, from physical goods to processes. Since Al has started to become
more and more useful in the real world, concerns on regulating its ill-effects have also become
important. However, regulating Al is slightly different from classical regulations. Although classical
regulations had to deal with statistical uncertainty, Al regulation has brought it to the center of the
discussion. In a classical scenario, where we want to regulate a physical good, checks for physical
goods are practically deterministic. An example of a check on a physical good could be as follows.
We weigh an apple and compare the weight to a threshold. Process-level regulations for apple
production introduce aleatoric uncertainty because apple instances vary; a regulator could propose a
test about the apple production process as a statement that the average weight of apples p is less than
a threshold g, i.e. Hy : i > o, by sampling items and using classical inference on the population
mean.

Machine learning adds a second stochastic layer for regulation via statistical inference. A training
procedure is a learning algorithm A : © x = — H, which takes in a dataset D € ®, a hyperparameter
& € = and selects a model from the hypothesis class 7. Since the data-generation mechanism
construes the dataset D as random, the algorithm defines a distribution over models A (D, £), where
& is a hyperparameter which can vary. This captures the epistemic uncertainty due to the finite sample
training, where changing the dataset D during training, changes the final model. Thus each model
h € H has arisk, which is itself a random variable r(h) evaluated on the entire population. In practice
it can only be estimated with finite number of samples. Thus a natural instance-level requirement
Hist : r(h) < 7 is stochastic in nature. While a process-level hypothesis H}™°, for example

HEroe [1?12 (r(A(D,&)) <7)=>p

has two levels of stochastic uncertainty. Certifying H}'° requires sampling across datasets, seeds,
and evaluation draws; certifying Hi"' requires tight estimation bounds on r(h). The two nested
sources of randomness (model generation and model evaluation), together with non-i.i.d. data,
distribution shift, and adversarial inputs, make statistical error both larger and structurally different
from manufacturing variability. That structure creates real gaps for regulation: finite samples and



92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

127
128
129
130
131
132
133
134

135
136

137
138
139
140
141
142
143
144
145

misspecified benchmarks yield ambiguous outcomes and provide actors with plausible statistical
deniability that a process “did nothing wrong”. Not even going into the the regulation of an algorithm,
this statistical uncertainty also challenges the regulation design at model level. For example, legal and
definitional gaps make it hard to say precisely does a “model” incur a legally actionable “harm” [Kroll,
2015, Edwards, 2021]. We argue that the inability to define a precise requirement is also because
of this statistical uncertainty. After all, if a requirement deems acceptable for Al models to be no
harm, if they cause harm with very low probability, who indeed are we okay with being subject to
these unfortunate events? Since statistical statements assume individual subjects as exchangeable as
they them come from the same underlying population. However, individuals are interested in their
unique individual harm which relatively harder to define statistically. Beyond these statistical issues,
Al model regulation confronts a dense web of non-statistical obstacles that do not arise, or arise far
less severely, for physical goods (See Appendix A.5).

Imprecise Probability, Gambles and E-values Standard probability theory assigns a unique
numerical value to each event, whereas imprecise probabilities (IP) allows a range of plausible values
to represent uncertainty in the presence of limited or ambiguous information [Walley, 1991, Troffaes,
2007, Augustin et al., 2014, Troffaes and de Cooman, 2014]. This extension of classic probability
theory comes from the subjective interpretation of probability [de Finetti, 1974]. Central to the
subjective interpretation is a notion of a gamble. A gamble is a bounded real-valued payoff function
whose fair price reveals an agent’s subjective probability; this betting interpretation underlies the
operational meaning of probability. Formally we represent a gamble as G : €2 — R where {2 usually
refers to the sample space of a probability measure. Gambles as pay-offs of an uncertain event
enjoy a close relationship to actuarial risk and insurance. Gambles are also closely connected to
the recent developed in game-theoretic statistics and hypothesis testing, called e-values [Derr and
Williamson, 2024]. An e-variable (whose observed value is often called an e-value) is a non-negative
random variable E with Ep[E] < 1 for all P € Pp,;. E-values quantify evidence against a null in
expectation and admit interpretation as the outcome of a fair bet or wealth of a skeptic. They are
naturally composable under optional continuation, and provide a practical alternative to p-values
for sequential any-time valid testing [Vovk and Wang, 2021, Shafer, 2021, Ramdas et al., 2023,
Griinwald et al., 2024]. Together these notions connect betting-style evidence, robust representations
of uncertainty, and evidence-based tests in a way that is directly applicable to the two-layer statistical
problems that arise in Al regulation: they allow regulators to formalize the incentives on the evidence
than formalising the regulation as a statistical decision-making ambiguity task, allowing connection
between statistical testing and mechanism design, also guiding how different kinds of sample-based
evidence can be combined to enforce the desired properties.

3 Incentive Aware Regulation

We consider X C R as our instance space and ) as our target space, where for regression tasks
Y C R, and for a K-class classification problem ) = {1,..., K'}. We consider a supervised learning
scenario where H denotes the hypothesis class of functions f : X — ). In our incentive aware
regulation framework we consider two agents (1) Model Designer and a (2) Regulator along with
nature. We assume that nature typically reveals an € X and then later a corresponding y € ) is also
revealed. We assume that the nature is stochastic, i.e., there exists a fixed but unknown distribution
P(X xY) where X and Y denote the random variables on X and ) respectively. We also assume a
fixed loss function £ : ) x J — R>( which quantifies the risk of a prediction of a model.

Definition 3.1 (Requirement). Let R : H x A(X,Y) — {0,1} be a requirement. A model f is
regulation compliant with respect to nature P and requirement 93 in deployment if R(f, P) = 1.

A concrete instantiation of Definition 3.1 is a e-safety regulation, i.e., model f whose expected risk
with respect to nature under a loss function £ : J) X Y — R is controlled by e. Mathematically,
Ex,y)~p[l(f(X),Y)] < ¢, then regulation R, , for an e-safe model f is R ¢(f, P) = 1 and 0
otherwise. The regulation divides the set of machine learning models into two categories, null and
alternate. The models belonging to null do not satisfy the regulation i.e. Ho := {f : R(f) = 0}
and alternate i.e. Hy := {f : R(f) = 1}, also Ho N H; = 0 and Ho U H; = H. We assume
that the knowledge of whether the deployed model satisfies the regulation or not is private to the
model designer. In practice the model designer may not exactly know if the model will satisfy the
regulation, however, they typically have much more information about the model than the regulator.
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This additional knowledge serves as private information of the model designer. Thus we define the
evidence Z := ¢(f(X),Y) and the push forward measure P(Z) as the distribution of risks dependent
on the model f and we define the set of all risk distributions as P with, naturally, P € P.

3.1 Incentive Aware Statistical Protocol

An incentive aware statistical protocol is a menu of statistical contracts II := {7 : Z — R>¢}
which in practice act as licenses that the model providers can obtain from the regulator to earn profit
7(Z) given the statistical evidence of their model Z € Z. Ideally, we would want to ensure the
following property in the statistical contracts offered to the provider. Obedience to the regulation,
i.e., the agents that do not fulfil the regulation are incentivised to self-exclude from the market and
incentive compatibility for the obedient agents. In the example of e-saftey regulation, the more an
agent invests effort in training representative models that incur lower risk, the larger market share
license is available to them.

Definition 3.2 (Obedience to regulation). A menu of license contracts II is said to enforce obedience
to regulation if the following holds true ex-ante for the agents

supEz p[r(Z2)) < C VP ePy
mell

where C'is the overall market entry fee for all the model designers. Obedience definition 3.2 ensures
that the model designers who are violating the market regulation can not recover their entry fee from
any of the market licenses m € Il. In other words we cap the profits for the non-obedient model
designers that their cost of operating in the market makes them self exclude from the market. Using
tools from the theory of desirability [Augustin et al., 2014, Walley, 1991], we can characterise the
licensing menu II. A gamble is G : 2 — R where (2 refers to the sample space of a probability
measure, in our case {2 = Z denoting the space of all the possible values evidence Z can take.

Definition 3.3. (Set of Desirable Gambles) A set of gambles & = {G|G : Q2 — R} is desirable with
respect to Py if infpep, Ep[G] > 0 VG € &. The set B> is called marginally desirable if above
inequality is not strict.

Proposition 3.4. A menu of license functions 11 induces obedience to regulations if and only if
C — 11 C &>q,p,, where &>q p, is the set of all marginally desirable gambles with respect to Py.

The above result characterises the menu of license functions II that can enforce obedience to
regulations. A menu of licenses enforces obedience if and only if the gambles C' — II induced by it
are desirable to the regulator with respect to the set of distributions Py. A useful consequence of this
characterisation is that the regulator, once they know the market entry fee they charge a provider and
offer desirable gambles from their perspective as menu for the model designers. Additionally, we
define a preference relationship > on the space of evidences Z as

Definition 3.5 (Evidence Preference). A regulation requirement R induces an incomplete preference
relation (>g¢) on the space of evidence Z.

The above definition states that in light of a regulation requirement a regulator has a preference for
evidence i.e. assume that 7, Z5 € Z are evidences generated by models f; and f5 respectively, and
R(f1) = 1 while R(f2) = 0 respectively. Then Z; =9 Z>. Assuming the space of evidence Z has a
natural total order >, then the > must agree with this total order. For example, let’s assume the
evidence to be some loss value i.e. Z = ¢(f(z),y) € R>o, then the total order for loss would be
Z1 = Zy if Z1 < Zs, i.e. lower the loss the better the evidence. This allows us to discuss a second
desirable property of a menu II. Ideally, from the perspective of the model designer who is presented
with a menu of contracts, they must not be penalised for improving upon their evidence. We call such
menu incentive compatible from the perspective of the model designer. A benevolent regulator would
also encourage improvement of the evidence from the model designers thus aligning, their incentives.
Formally we define incentive compatibility as

Definition 3.6 (Incentive Compatibility of the Menu). Assuming a designer can make two models f;
and f> such that they produce risks distributions P; and P; such that E . p, [Z] = Ez.p,[Z] then a
menu of licenses is incentive compatible if

maxEz.p, [1(Z)] > maxEz.p,[r(Z)]
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Definition 3.6 states that for a model designer who invests effort in improving their model and thus
provides better evidence on average, the licensing function must ensure a better expected revenue
for that agent and hence present an incentive to strive for making a better model. An incentive
compatible menu II by controlling the incentives based on the outcomes encourages self-governance.
We also discuss that the monotonicity of the menu in evidence total order is sufficient to ensure self
governance.

Proposition 3.7. A menu 1l is incentive compatible according to Def 3.6 if for all m € 11, « is
monotone in total order on Z.

Model Designer’s Optimal Response In this section we describe the model’s designer behaviour
model that we consider as part of analysis in the principal agent formulation of our problem. While
prior works in principal agent hypothesis testing assume the agent to be perfectly informed about
their type, such assumptions are too strong in our setting for model designers as agents as they may
have more information than the regulators about their machine learning model, but they are often not
fully certain about their machine learning model’s ability to pass the regulations. This also has an
impact on their strategic behaviour. Therefore, we model the designer as an strategic agent who is
epistemically uncertain about their type i.e. the distribution of their evidence P(Z) with a second
order distribution # € A(P) on the space of all possible evidence distributions P. This second order
distribution 6 represents the prior knowledge of the agent. The model designers want to select a
contract from the menu II such that it maximises their expected utility ex-ante, i.e.

¥ :arggrrlg%Eg[Esz[Tr(Z)]] -C )

Proposition 3.8. For a menu of contracts 11 that enforce obedience to regulation according to
definition 3.2, the agent’s best response with a second order distribution 0 € A(P) is to minimise the
KL divergence in the convex set of null distributions conv(Py) with respect expected distribution Q,
ie.
. dQ . .
nt=C—— where P*= argmin KL(Q|P)
dp Peconv(Po)

where Q = fp PO(P)dP is the marginal density obtained by mariginalising over 6.

What if Model Designer’s Cost are Private? Let’s denote the maximal revenue an agent could
earn if they gain market access from the regulator by R. Naturally R > C, i.e. the max revenue
for an agent must be more than the flat market entry fees C'. However, often in real world agents
incur costs before they submit a model for regulatory approval. These could include development
costs, operational costs and other expenses which are dependent on multiple factors such as size
of the model designer companies and their geographical location. We assume this as the private
cost of the model designers. For a model designer with type P € P, We will index the agents with
the distribution their model f produces on the evidence i.e. P(Z) assuming that the distribution
inherently determines their type. Let C'(P) be model designer’s private cost to train their model f.
Additionally we assume that there exists a threshold of C,,,,, < R which is maximum investment any
agent would be willing to make for revenue R. Therefore model designer’s willingness to pay to fee is
Cinaz — C(P). We run a Vickery auction [Vickrey, 1961] for entry into the market where for NV total
bidders, an auction to access for K < N license purchase is run. We denote the allocation rule with
X : b — {0, 1} denoting which bidder is given access to purchase or not based on their bids. Based
on bids, we sort the agents i.e. for B = {b(P) VP € P} we denote the sorted bids as sort(B).
Selected designers pay price r := sort(B)y1 which is the k& + 1t" highest bid overall. This ensures
that the truthful reporting of each agents willingness to pay b(P) = Cypa. — C(P) is the dominant
strategy for every model designer and that the payment scheme is uniquely implements [Myerson,
1981]. All designers pay a fees of r allowing us to discriminate between them based on their bids i.e.

sup Ep[rp(2)] < Cpaz —b(P)+7r ¥V PeP

well

sup Ep[np(2)] < Crax — (Crpaw — C(P))+7r ¥V PePy
well

supEp[rp(2)] < C(P)+r ¥V PePy

well

Inherently, there is a tradeoff for the model designers, investing more by making C(P) larger makes
them lose the bidding war as their true valuation for willingness to pay decreases, thus decreasing the
chances to license access but investing more in computing improves their later payoff.
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3.2 Connection to Classical Hypothesis Testing

We now formulate our regulation problem as a classical testing procedure in a non-parametrized
fashion to highlight its differences from incentive aware statistical protocol introduced above. Our
regulation can be formulated statistical decision making problem via a composite hypothesis test as
follows:

Ho: PGPQ Hll PGPI

where Py and P; are simply the composite null and alternative risk distributions defined as Py :=
{P| Ez.plZ] > e} and Py := {P| Ez.p[Z] < €} in the case of € risk control. Notice that the
set of parameters Py and P; characterise the parameters of the risk distributions arising from e safe
and un-safe models according to the Definition 3.1. While classical hypothesis tests are a valid
protocol to ensure regulation they do not incorporate the incentives of the model designers into the
problem setup. With the knowledge of the false positive rate «, incentive aware model designers
can then be strategic to include just enough representation into their training data in order to appear
safe if the false positive rate «v is large enough or the gains under « are large enough to justify their
cost-benefit calculus. Thus the classic tests set up binary incentives for the model designers making
them incentive incompatible [Bates et al., 2022, Hossain et al., 2025]. The model designer’s optimal
response introduced in Proposition 3.8, 7* indeed resembles likelihood ratio and for case where
Py = {P}, the best response is indeed likelihood ratio scaled by fees C. In the testing literature,
it is very well known that the optimal test for singleton nulls and alternates are likelihood ratio
tests [Neyman and Pearson, 1933]. However, one must note that although related the best response
7" is not the same as optimal test in all scenarios since 7* is based on gambles optimise for the
growth of revenue (wealth of model provider) and a optimal test optimises for true positives in
decision-making [Ramdas and Wang, 2024].

4 Simulations

Hypotbhesis test for effective model dimension. We consider a toy linear model for our simulations.
We further assume that it aims to approximate an original data generating process of y; = x7 0* + €
where ¢ ~ N(0, o). Additionally, assume that all features affect the model prediction equally. We
now wish to regulate the number of parameters / features used by this model. Either the model
designer could be using all the d = d + 1 features to make the prediction, i.e., designer also uses the
sensitive attribute to maximise their prediction capability or the designer could follow the regulation
and only use non-sensitive attributes to make prediction. We frame the use of sensitive attribute as
the null hypothesis and use of only non sensitive attribute as alternative to build an hypothesis test for
regulation. We test the null hypothesis against the alternative as follows

Hy : Model is using sensitive attribute d = dy + 1,
H : Model is not using sensitive attribute d = dj.

We consider the standardized quadratic error for features X under OLS estimator 6 as the test
statistic. That is Qsa = Q = % (0 —60)T(XXT)(0 — 6*) which is a X3 distributed and
which under suitable regularity conditions follows a chi-square distribution with degrees of freedom
equal to the effective number of parameters used in the model (See Appendix A.4 for derivation).
Since we know the parametric model of both null and

alternative distributions and they are simple singleton hy- ~ 1ypeterrorvsn ._Empirical Power vs n
pothesis we can use a likelihood ratio test as it is the i o

-~ nominal 0.05

optimal test given Neyman Pearson Lemma. Let us de- 5. g
note the test statistic L := % where Q) ~ X?i and &~ &
) o2 02
L(d; Q) is the likelihood of sample @ from chi-squared , il , = Pover (19, H1 1)
distribution with parameter d. Under Hy, assuming that Sample size n Sample size n

the test statistic has a distribution Pg, (L). We implement
the test to reject Hy if L > 7, where 7, is the 1 — «
quantile of Pp, (L), so that we obtain strict « type 1 er-
ror. Figure 1 shows that for reasonable n = 80 the test
has power 1 under type I error control. Under these ideal
testing conditions it becomes easy for us to now illustrate
the strategic aspects of enforcing regulations via hypothesis tests.

Figure 1: Power vs Type 1 in the
Chi-squared test of model parame-
ters/features i.e. d = 50 and another
sensitive attribute
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Strategic Aspects in the test The above testing procedure for enforcing regulation ignores the
incentives to the model designers. However, in real world the model designers operate under
incentives. In this section we consider some incentives that designers may have and try to understand
their behaviour under a statistical test for regulation of use of sensitive attributes for training. Let
us assume that for regulation tests the regulator charges a fee, this can also be understood as the
tax to operate in the market, we denote it using C' and we assume that the size of the market is
denoted by R. Ideally a regulation implemented by a test must deter null agents from entering
the market, i.e. non obedient agents self opt out of the market while the keeping the obedient
agents in the market. With the statistical test proposed above to check the effective dimension of

_Strategic properties of a test Null agents under the test (C/R =0.15) a =C/R is worst case optimal
10{ — cr<a 200 a-002
CRza 4&5 a=0.05
” L a=01s
il ts ente D —a=05
null agents enter & Yos . gm N
5 © P
. \f*“ € 6 Cass a8 /
. = . S 10 RPN
= c [
. g 04 & o075
(=}
bS] € 050
o 02 N
deters honest agents | X S .
ES
00 000
= — — 4 00 02 04 06 08 o ) 02 o4 ) 08 o
CIR % of null agents % of non-null agents
(@) (b) (©

Figure 2: The strategic reaction of null and non-null agents in the market to regulations via testing.
The above figures (b) and (c) assume the incentives in the market by fixing C/R = 0.15

the model and thus for the use of sensitive attribute, let us assume that the final test implemented
by the regulator has false positive rate «, the type II error 3(«) is denoted as a function of the
choice o made by the regulator thus the choice of false positive rate also dictates the power of the
test 1 — S(«). In an Ex-ante analysis we can observe that null agents participation in the market
depends directly on this «, as for a null agent, « R > C means that the gamble to enter into the
market has net positive expected utility. Thus for o > %, the market will see full participation
for approval by the null agents (see Fig 2 a), and because of test properties . proportion of the
nul agents will also get approved (see Fig 2 b). Whereas for the non-null agents, the decision
to participate in the market depends upon the power of the test i.e. (1 — 8(«))R > C which
can be seen in the Fig 2 c that the too strict value of « results in a power below 0.15 and thus
lower than % resulting in no participants in the market. As a gradually increases to o = 0.15 and

thus equal to % the power of the test increases resulting in more and more non-null agents being
approved and eventually for further increase in «, null agents also start to participate in market.

PIC(P) | null) P(C(P) | non-nul ) Pibids | nu

Pibids | non-null)

Strategic Behaviour with private costs In Figure 3 we
aim to show that incentive aware regulations when ignoring
the diversity in development costs, fail to achieve their pur-
pose and therefore must account for the private costs of the
agents. We assume total N = 1050 model service providers o e arbide s o iy
and Figure 3(c) shows the prior distribution of null and non-

null agents, and assume that there are 20x more null agents oror pri)a on o ®) .
than non-null agents. This results in 1000 null agents and 50 3 L
non-null agents naturally. We also assume private costs for
each agent shown in million in Figure 3(a). Naturally, on av-
erage the non-null agents have to invest more in satisfying the
requirements while null agents on average would have a lower
cost. This reflects also in the bids of the agents (Figure 3(b))
where null agents are willing to bid more to gain access to © ()

the market because their costs are less, we assume Criaz = 1 Figure 3: The strategic reaction of
million when plotting the bid distributions of null and non null ;11 and non-null agents to regula-
agents. We run a Vickery auction for selecting K = 1000 top  tjons under private costs.

bidders who pay the 1001*" bid as their price for market entry.

This allows us to identify the private costs of the providers and

now gambles are sold to them contextually. In Figure 3(d) we

N D00 =3 365 3311

OOt

Agent Selection Counts

1x

Null Non-null Null Non-null
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compare this to setup where regulator assumes a flat fees and evaluates incentive aligned C'/R = 0.05,
for a market where R = 10 million and the regulator sets C' = 500k as the flat fee. Since the flat
fee ignores the private costs, it benefits the null agents and hurts the non-null agents, forfeiting the
purpose of deterring null agents from entering the contract. Due the cost distribution of null agents,
for total of 740 out of 1000 null agents, the flat fee makes it desirable for them to enter the gamble.
Therefore they apply to enter the market and C'/ R-percent of them get through the test. Whereas in
case of regulation which is private cost aware, null agents are strategically deterred from entering the
market. Since no agent is willing to pay more than C),,, = 1 million to enter the market setting a
flat fee of C' = 500k means only the non-null agents whose private cost is less 500k would enter the
market. As compared to scenario of eliciting private costs where fees is 320k allowing more non-null
agents to participate in the market while allowing no null agents to participate in the market. The
choice of auction parameter K dictates the number of non-null agents but for all choices of K, with
truthful elicitation via auction, null agents do not enter the market. In general larger values of K as a
hyper-parameter allow for larger market, however, in K is too large then the bidders may not fear
competition allowing them to strategically lie about their bids, anticipating access almost always.

5 Related Works

Strategic aspects in Hypothesis Testing Recently there has been a large interest in intersection
of economics and hypothesis testing [Bates et al., 2022, 2023, Min, 2023, Hossain et al., 2025].
Applications to clinical trails have motivated study of stragetic aspects within classical hypothesis
tests, where Bates et al. [2022, 2023], Min [2023] follow a principal agent framework for their
strategic hypothesis test assuming that the principal knows nothing about the distribution of the types
of agents, while Hossain et al. [2025] follow a Bayesian game theoretic framework by assuming the
distribution of types of agents. Our work is similar to that of the Bates et al. [2022, 2023], Min
[2023] in the spirit that we model the problem of regulating model providers also as an principal
agent problem in clinical trials where the FDA acts as a regulator and the drug designers as the
agents. However, our setup argues for an analysis where the cost of developement of the model is
also additonal private information that the model providers possess and the license menus offered to
the agents depends on it. Additionally, in our setup of model regulation it is unrealistic to assume that
the provider exactly knows their type, i.e. the model they train obeys the regulation or not, which is
relaxed by assuming a second order distribution which acts as prior knowledge of the agent that
reflects their private information.

Game Theoretic Probability and Auditing While our results characterises the menu of
regulation enforcing licenses as desirable gambles leveraging tools from Imprecise Probabil-
ity [Walley, 1991, Augustin et al., 2014, Crane, 2018] and theory of desirabililty [De Cooman and
Quaeghebeur, 2012, De Bock, 2023] an alternative characterisation of regulation enforcing licenses
is also possible via e-variables [Shafer, 2021, Vovk and Shafer, Ramdas et al., 2023, Griinwald et al.,
2024] as provided in Bates et al. [2022]. E-values or variables have become the standard back bone
of methods that perform auditing of machine learning models via sequential tests with applications in
risk monitoring and control [Bates et al., 2021, Waudby-Smith and Ramdas, 2024, Timans et al.,
2025], fairness [Chugg et al., 2023], differential privacy [Gonzdlez et al., 2025] and many other
applications [Shekhar and Ramdas, 2023, Xu and Ramdas, 2024]. However, unlike our method the
sequential testing methods that leverage e-variables rather focus on anytime valid statistical inference
and do not account from incentives of strategic agents, keeping their betting interpretation only as a
didactic tool to demonstrate the validity of their tests.

Al governance and Regulation The rapid development in AI with recent breakthroughs
has allowed deployment of Al in the real world. Which consequentially have its societal impacts,
causing significant interest in the economists, political scientists, law and policy makers on topics
related to Al governance and regulation of Al This has resulted in a spark of research on topics
related to Al governance and regulation that approaches theses questions from ethical [Jobin
et al., 2019, Hagendorff, 2020, Huang et al., 2022], policy [Diakopoulos, 2016, O’neil, 2017],
socio-cultural [Awad et al., 2018, Vesnic-Alujevic et al., 2020] and political [Pavel et al., 2023,
Schmid et al., 2025] perspectives. With our research we aim to surface some technical challenges in
achieving the normative requirements that the policy makers aim for and also provide new insights
into the operationalising these normative requirements.
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6 Conclusion

Statistical contracts embed mechanism design into rulemaking, turning noisy, sample-based verifica-
tion into an incentive-compatible enforcement mechanism that maps observed model performance
to licensed market outcomes and thereby induces non-compliant providers to self-select out while
keeping compliant providers viable. This treatment of enforcement as an economic design problem
offers a new perspective that can circumvent several prior challenges in Al regulation by shifting the
regulator’s burden from perfect verification to carefully designed incentives. Allowing regulators
to refrain from costly, exhaustive monitoring toward economically sustainable rules that exploit
private incentives and sampling noise rather than being defeated by it. The approach reduces the need
for perfect verification, limits opportunities for benchmark gaming, and clarifies tradeoffs between
monitoring cost, statistical power, and market participation. It is not a panacea, the contracts must
be carefully calibrated and paired with provenance and cross-jurisdictional governance. However,
it offers a practical, theory-grounded path for regulators to enforce trustworthy Al in environments
where traditional verification is infeasible.
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A Appendix

A.1 Proof of Proposition

=)

Let us assume that the set of contracts II satisfy Obedience to regulation (Def 3.2) i.e.

supEz p[n(Z2)]<C VP eP

well
= sup sup Ez.p[r(2)] < C
w€ll PEPy
=  sup Ez.p[n(Z)—C]<0 Vrell
PePo
inf EZNP[C— W(Z)] >0 Vrell
PePo

Which shows that C' — II C &> p,.

(«<=) Let us assume that C' — II C &> p, i.e. the gambles C' — II, induced by the license menu are
desirable to the Regulator.

inf EZNP[ (Z)} >0 Vrell
PEP,
=  sup Ez.p[n(Z)]<C Vrmell
PePy
= sup sup Ez p[n(Z)] <
w€ell PEPy
sup sup Bz p[r(2)] <
PePy mell
SupEZNp[ (Z)] <C VPePy
mell

which shows that II satisfies Definition 3.2.
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A.2  Proof of Proposition

Without any loss of generality let us assume that the preference relation > on Z is such that smaller
the evidence the better, as in case of loss values. Therefore, in order to show that menu II must
be monotone in the preference order of Z, we need to show that every m &€ II is monotonically
decreasing in Z. (=) Let us assume that the license function menu II is monotonically decreasing in
z for every m € 1I. That is,

V21,20 €7 21 <z = 7(21) >7(22) Vrell

From which we can say that, for any two distributions P; and P, in A(Z), which are induced by
models f; and f2, the following holds,

EZ~P1 [Z] < EZNPQ[Z] — E’pr1 [W(Z)] > EZNPQ[TF(Z)} vrell 2)

Intutively, for reducting the expected value of random variable Z, the distribution P} must put larger
mass on smaller values of Z as compared to P, and since 7 is monotonically decreasing, for smaller
values of Z it will be larger, thus making the expectation E . p, [7(Z)] larger in comparison to
Ez~p,[m(Z)].

EZNPl [Z] < EZ~P2 [Z] mé‘ii}[(EZNpl [’/T(Z)] > méiﬁ(EZsz [’/T(Z)] (from Eq. 2) 3)

Since Equation 2 is elementwise valid for all 7 € II we can say that maxen Ez~p, [7(Z)] >
maxerr Ez~p,[7(Z)] and thus II is incentive compatible.

A.3 Proof of Proposition

= argmeaﬁiEg[EZNp[ﬂ'(Z)]] -C

Then the above optimisation task can be re-written as

max Eg[Ez.p[r(Z)]] subjectto sup Ep[n(Z)] <C
m:Z—R>q PePy

max / /ﬂ'(Z)P(Z)dZ
mZ—R>0 PeP z

max / w(Z)
7T:Z—>RZO A

max Ez.pzagp)[T(Z)]  subjectto sup Ep[n(Z)] <C
mZ—=R>q PePy

max Egz.g[r(Z)] subjectto sup Ep[n(Z)] <C
mZ—R>0 PePy

df(P) subjectto sup Ep[n(Z)] < C
PePy

P(Z)df(P)
PeP

dZ  subjectto sup Ep[r(Z)] < C
PePy

where Q is the mariginalised distribution over 6. Since # was a second order distribution () is a
valid distribution over Z. Also notice that then the above problem translates to a known problem of
testing a simple point alternative against a composite null Py once we scale ¢ := %71‘ then the above
problem is equivalent to,

max Ez.glp(Z)] subjectto sup Eplp(Z)] <1
©:Z—[0,1] PePy

This problem has an optimal solution via Reverse Information Projection (RiPr) which is defined as
the numeraire e-variable and also shown to be unique (See Chapter 6 [Ramdas and Wang, 2024]).
Formally,

d
= Qi where P* = argmin KL(P||Q)
dp Peconv(Po)

9" (%)

And therefore 7* = C' jﬁ% .
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A.4 Distribution of Excess Risk

We consider a fixed-design linear model with Gaussian noise. The data-generating process is

yi=x; 0" +¢, e~N(0,0%) 4)
where y; € R is the observed output, &; € R? is the input and 8* € R? is the true (unknown)
parameter vector, X € R%*" is the fixed design matrix. € ~ N(0, 021, is a zero-mean Gaussian
noise vector with independent entries and variance o2. Thus in the matrix notation we will write
y = X 0* + €. The agent observes (X, y) and estimates 8* via Ordinary Least Squares (OLS):

6= (X"X)"'XTy=0"+(X"X)"'X"e. 5)
Under these assumptions, the covariance of the estimator is Cov(f) = o2(X T X)~! = %22*1.

XX,

The agent’s risk for some parameter 6, evaluated using a positive semi-definite matrix 3= %

1S
1 1 x
R(6) = By (lly - X0 = ~Ec[IX6" + e~ X6l

1 * *

~E[[| X (06 I+ €"(X0 — X0%) +[[e[3]
=(0-0")"3(0 -0+ 0>

=116 - 6"[|5 +0°

The expected risk is then
E[R(0)] = E[|6 — 0"[|5] + o

= %JE[JX(XTX)*(XTX)(XTX)*X%] + 02

1
= E]E[eTX(XTX)*XTe] +0?

1
E]E[tr(eTX(XTX)*XTe)] + +0?

ltr(]E[eeTX(XT)()A‘XT]) + o?

n
1
= —tr(Elee | X(XTX)'XT) 4 02
n
2 2 2d
— X TXXTX) 4ot = Tty 402 = T8 4 o2
n n n

Let us define the excess risk in the quadratic form as
Q:=R()—0c®>=(0—-6""5(6—0"), (©6)
Since § — 0" = (XTX) !XTy -0 = (XTX)'XTX0" + (X X)'XTe -0 =
(X T X)X Teis alinear function of a multivariate Gaussian ¢, we have
2

6—0° ~N(0,%;), Tp=c*(X'X)" =I5 7
n
The excess risk is a quadratic form of a Gaussian:
Q= (0—0")"%(0 — 0*) ~ Chi-squared. (8)
Let Eél/ 2 denote a square root of 5. Then
Q=(2)?2)T8(2)%2), 2~ N(0,1,) 9)
2
=2 T(m2sn12y), (10)
n
2
=: U—ZTIdz (11)
n
2
2.7, (12)
n
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Therefore @ ~ %ZXd where x4 is a Chi-square distribution with degree of freedom d which denote
the parameters in our model.

A.5 Challenges beyond statistical issues

Statistical or technical challenges set aside, Al regulation has several non technical challenges in
regulation as there is seldom any goods or process that are as general as “intelligence” and have
such close human interaction. One key issue is that the liability of Al model’s risk is fragmented
across model designers, data suppliers, integrators, and deployers, complicating enforcement [Tabassi,
2023, Bertolini and Episcopo, 2021]. Another aspect Jurisdictional fragmentation and cross-border
deployment, which undermine coherent remedies and legal actions on designers or other stake
holders[Edwards, 2021, UK AI Safety Summit, 2023]. There are no widely adopted technical
standards or certification regimes; proprietary intellectual-property and trade secrets conflict with
transparency and auditability [Raji et al., 2020]. Supply-chain opacity in data provenance, labeling,
and collection prevents reliable forensics also offer some additional challenges[Bender et al., 2021].
Market concentration of some large scale service providers also known as “big-tech” in compute and
data creates political-economy pressures and regulatory capture [Lohn and Musser, 2022, Korinek
and Vipra, 2025]. Dual-use capabilities, adversarial gaming, and benchmark overfitting lets actors
satisfy narrow tests while retaining harmful capacity [Blum and Hardt, 2015, Mazeika et al., 2024,
Hardt, 2025]. Often evidence standards in courts and agencies are immature for probabilistic, high-
dimensional technical proofs [Kroll, 2015]. Certification and continuous audit impose high fixed costs
that raise market-entry barriers [Raji et al., 2020]. Human-in-the-loop requirements are hard to specify
and brittle in practice [Amodei et al., 2016]. Finally, cultural and ethical pluralism, privacy tradeoffs
in monitoring, and systemic risks from correlated deployments mean regulation must reconcile
competing values under uncertainty [Unesco, 2022]. These legal, economic, organizational, and
security frictions interact with the two-layer statistical uncertainty to make Al regulation both harder
to formulate and easier for stakeholders to plausibly evade than conventional product regulation
[Brundage et al., 2018].
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