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Abstract

The EU AI Act emphasizes the importance of differentiated safety requirements1

across classes of users. However, machine learning (ML) service providers may2

strategically under-enforce such requirements to reduce development costs or accel-3

erate deployment. We study this phenomenon through the lens of a principal–agent4

model, where regulators act as principals enforcing risk-control obligations, while5

ML service providers act as agents with private incentives. A key challenge is6

that direct enforcement of safety constraints is often infeasible, since verification7

requires costly monitoring and statistical uncertainty may be exploited by strategic8

agents. To address this, we introduce incentive aware statistical protocols—rules9

tailored for the providers given their private costs, that translate observed model per-10

formance into enforceable outcomes, such as licensed market access. We show that11

these protocols can be designed to guarantee obedience to regulations: providers12

who do not comply with user-specific safety requirements are statistically driven13

to self-exclude from the market, while compliant providers remain viable. Our14

framework provides new theoretical insights into the intersection of statistical15

testing, mechanism design, and trustworthy AI regulation, offering a foundation16

for the development of enforceable AI governance mechanisms.17

1 Introduction18

Machine learning models have achieved remarkable empirical success across many domains such19

as language modelling [Vaswani et al., 2017] and image generation [Rombach et al., 2022]. With20

these promising results, we now see widespread real-world applications of machine learning mod-21

els such as credit scoring [Baesens et al., 2003], social justice [Angwin et al., 2022] and other22

high-risk applications. Despite these successes, the risk assessment of blindly relying on the pre-23

dictions of these models is considered catastrophic [Voigt and Von dem Bussche, 2017, Veale and24

Zuiderveen Borgesius, 2021, Laux et al., 2024] as much of these models typically fail to achieve25

OOD generalisation [Sagawa et al., 2020, Eastwood et al., Singh et al., 2024] or are vulnerable to26

adversarial attacks [Szegedy et al., 2013, Goodfellow et al., 2014] and often lack the notions of27

fairness across different subgroups [Chouldechova and Roth, 2018, Mehrabi et al., 2021, Barocas28

et al., 2023]. In light of these limitations of modern AI methods there have been recent attempts by29

the policy makers to regulate the real world applications of these AI models, including the EU AI30

act [Edwards, 2021], which is one of the most comprehensive regulations spanning across the range31

of AI applications, recommending differentiated safety requirements and user-specific risk control.32

However, in practice regulators are confronted with unverifiable black boxes, costly monitoring, and33

pervasive statistical uncertainty that firms can exploit to under-enforce safety [De Almeida et al.,34

2021], creating a fundamental enforcement tension: economic incentives of providers interact with35

noisy verification to produce strategic non-compliance. Technical responses address parts of this space:36

with differential privacy [Dwork et al., 2014], certified-robustness methods for train [Cohen et al.,37

2019] and test time [Seferis et al., 2023, Singh et al., 2023]; complementary work on documentation38
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and auditability (e.g., model cards) aims to improve transparency for private and self oversight39

[Mitchell et al., 2019], while empirical audits expose real-world distributional harms [Buolamwini40

and Gebru, 2018]. However, in practice, the model designers often have strategic incentives to41

game regulations by manipulating the statistical uncertainty in their favour. Verification, auditing42

or benchmarking solutions [Jansen et al., 2024, Li and Goel, 2025, Hardt, 2025, Arias et al., 2025]43

to regulations often ignore this strategic aspect. Economic and policy scholarship has identified44

limitations of single entity regulatory frameworks and thus propose idea of private regulation [Ball,45

2025]. Private regulation encourages private or self regulating mechanisms for AI governance [Stein46

et al., 2024] allowing for regulatory market design [Hadfield and Clark, 2023, Tomei et al., 2025].47

These cross-disciplinary efforts have now laid the foundations and normative ideals of private48

regulation but leave open how to design enforcement rules that are resilient to sampling noise and49

strategic actors, motivating approaches that treat verification and rulemaking as a unified mechanism50

under statistical uncertainty. Inspired from the recent developments in incentive aware hypothesis51

testing [Bates et al., 2022, 2023, Min, 2023, Hossain et al., 2025] we propose a principal-agent52

framework focusing on the outcome/incentives rather than decisions to regulate AI model providers53

via statistical testing. Our framework consists of a principal (public or private regulator) who rather54

than trying to solve a decision problem of who satisfies regulations or not via statistical testing55

ensures that the statistical test is aware of the welfare objectives of the regulator and the incentives56

of the model designers. The awareness of model designer’s incentives while ensuring compliance57

to regulations allows the statistical test to keep null agents out of the market without being too58

strict, thus encouraging maximum market participation even when prior population of null agents is59

much larger than agents who abide by the regulations. Additionally we characterise the regulation60

enforcing incentive aware tests via desirable gambles and provide the sufficient conditions under61

which incentive aware tests could encourage model designers to improve their models. We also62

discuss the scenarios where model designers costs are their private information and they might lack63

precise knowledge about the properties of their model for them to effectively strategise using it.64

2 Preliminaries65

Why regulating an AI model is relatively hard. Regulations are ubiquitous to almost everything66

that humans use in the real world, from physical goods to processes. Since AI has started to become67

more and more useful in the real world, concerns on regulating its ill-effects have also become68

important. However, regulating AI is slightly different from classical regulations. Although classical69

regulations had to deal with statistical uncertainty, AI regulation has brought it to the center of the70

discussion. In a classical scenario, where we want to regulate a physical good, checks for physical71

goods are practically deterministic. An example of a check on a physical good could be as follows.72

We weigh an apple and compare the weight to a threshold. Process-level regulations for apple73

production introduce aleatoric uncertainty because apple instances vary; a regulator could propose a74

test about the apple production process as a statement that the average weight of apples µ is less than75

a threshold µ0, i.e. H0 : µ ≥ µ0, by sampling items and using classical inference on the population76

mean.77

Machine learning adds a second stochastic layer for regulation via statistical inference. A training78

procedure is a learning algorithm A : D×Ξ → H, which takes in a dataset D ∈ D, a hyperparameter79

ξ ∈ Ξ and selects a model from the hypothesis class H. Since the data-generation mechanism80

construes the dataset D as random, the algorithm defines a distribution over models A(D, ξ), where81

ξ is a hyperparameter which can vary. This captures the epistemic uncertainty due to the finite sample82

training, where changing the dataset D during training, changes the final model. Thus each model83

h ∈ H has a risk, which is itself a random variable r(h) evaluated on the entire population. In practice84

it can only be estimated with finite number of samples. Thus a natural instance-level requirement85

H inst
0 : r(h) ≤ τ is stochastic in nature. While a process-level hypothesis Hproc

0 , for example86

Hproc
0 : Pr

D,ξ

(
r(A(D, ξ)) ≤ τ

)
≥ p

has two levels of stochastic uncertainty. Certifying Hproc
0 requires sampling across datasets, seeds,87

and evaluation draws; certifying H inst
0 requires tight estimation bounds on r(h). The two nested88

sources of randomness (model generation and model evaluation), together with non-i.i.d. data,89

distribution shift, and adversarial inputs, make statistical error both larger and structurally different90

from manufacturing variability. That structure creates real gaps for regulation: finite samples and91
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misspecified benchmarks yield ambiguous outcomes and provide actors with plausible statistical92

deniability that a process “did nothing wrong”. Not even going into the the regulation of an algorithm,93

this statistical uncertainty also challenges the regulation design at model level. For example, legal and94

definitional gaps make it hard to say precisely does a “model” incur a legally actionable “harm” [Kroll,95

2015, Edwards, 2021]. We argue that the inability to define a precise requirement is also because96

of this statistical uncertainty. After all, if a requirement deems acceptable for AI models to be no97

harm, if they cause harm with very low probability, who indeed are we okay with being subject to98

these unfortunate events? Since statistical statements assume individual subjects as exchangeable as99

they them come from the same underlying population. However, individuals are interested in their100

unique individual harm which relatively harder to define statistically. Beyond these statistical issues,101

AI model regulation confronts a dense web of non-statistical obstacles that do not arise, or arise far102

less severely, for physical goods (See Appendix A.5).103

Imprecise Probability, Gambles and E-values Standard probability theory assigns a unique104

numerical value to each event, whereas imprecise probabilities (IP) allows a range of plausible values105

to represent uncertainty in the presence of limited or ambiguous information [Walley, 1991, Troffaes,106

2007, Augustin et al., 2014, Troffaes and de Cooman, 2014]. This extension of classic probability107

theory comes from the subjective interpretation of probability [de Finetti, 1974]. Central to the108

subjective interpretation is a notion of a gamble. A gamble is a bounded real-valued payoff function109

whose fair price reveals an agent’s subjective probability; this betting interpretation underlies the110

operational meaning of probability. Formally we represent a gamble as G : Ω → R where Ω usually111

refers to the sample space of a probability measure. Gambles as pay-offs of an uncertain event112

enjoy a close relationship to actuarial risk and insurance. Gambles are also closely connected to113

the recent developed in game-theoretic statistics and hypothesis testing, called e-values [Derr and114

Williamson, 2024]. An e-variable (whose observed value is often called an e-value) is a non-negative115

random variable E with EP [E] ≤ 1 for all P ∈ Pnull. E-values quantify evidence against a null in116

expectation and admit interpretation as the outcome of a fair bet or wealth of a skeptic. They are117

naturally composable under optional continuation, and provide a practical alternative to p-values118

for sequential any-time valid testing [Vovk and Wang, 2021, Shafer, 2021, Ramdas et al., 2023,119

Grünwald et al., 2024]. Together these notions connect betting-style evidence, robust representations120

of uncertainty, and evidence-based tests in a way that is directly applicable to the two-layer statistical121

problems that arise in AI regulation: they allow regulators to formalize the incentives on the evidence122

than formalising the regulation as a statistical decision-making ambiguity task, allowing connection123

between statistical testing and mechanism design, also guiding how different kinds of sample-based124

evidence can be combined to enforce the desired properties.125

3 Incentive Aware Regulation126

We consider X ⊆ Rd as our instance space and Y as our target space, where for regression tasks127

Y ⊆ R, and for a K-class classification problem Y = {1, . . . ,K}. We consider a supervised learning128

scenario where H denotes the hypothesis class of functions f : X → Y . In our incentive aware129

regulation framework we consider two agents (1) Model Designer and a (2) Regulator along with130

nature. We assume that nature typically reveals an x ∈ X and then later a corresponding y ∈ Y is also131

revealed. We assume that the nature is stochastic, i.e., there exists a fixed but unknown distribution132

P (X × Y ) where X and Y denote the random variables on X and Y respectively. We also assume a133

fixed loss function ℓ : Y × Y → R≥0 which quantifies the risk of a prediction of a model.134

Definition 3.1 (Requirement). Let R : H × ∆(X,Y ) → {0, 1} be a requirement. A model f is135

regulation compliant with respect to nature P and requirement R in deployment if R(f, P ) = 1.136

A concrete instantiation of Definition 3.1 is a ϵ-safety regulation, i.e., model f whose expected risk137

with respect to nature under a loss function ℓ : Y × Y → R≥0 is controlled by ϵ. Mathematically,138

E(X,Y )∼P [ℓ(f(X), Y )] ≤ ϵ, then regulation Rϵ,ℓ for an ϵ-safe model f is Rϵ,ℓ(f, P ) = 1 and 0139

otherwise. The regulation divides the set of machine learning models into two categories, null and140

alternate. The models belonging to null do not satisfy the regulation i.e. H0 := {f : R(f) = 0}141

and alternate i.e. H1 := {f : R(f) = 1}, also H0 ∩ H1 = ∅ and H0 ∪ H1 = H. We assume142

that the knowledge of whether the deployed model satisfies the regulation or not is private to the143

model designer. In practice the model designer may not exactly know if the model will satisfy the144

regulation, however, they typically have much more information about the model than the regulator.145
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This additional knowledge serves as private information of the model designer. Thus we define the146

evidence Z := ℓ(f(X), Y ) and the push forward measure P (Z) as the distribution of risks dependent147

on the model f and we define the set of all risk distributions as P with, naturally, P ∈ P .148

3.1 Incentive Aware Statistical Protocol149

An incentive aware statistical protocol is a menu of statistical contracts Π := {π : Z → R≥0}150

which in practice act as licenses that the model providers can obtain from the regulator to earn profit151

π(Z) given the statistical evidence of their model Z ∈ Z. Ideally, we would want to ensure the152

following property in the statistical contracts offered to the provider. Obedience to the regulation,153

i.e., the agents that do not fulfil the regulation are incentivised to self-exclude from the market and154

incentive compatibility for the obedient agents. In the example of ε-saftey regulation, the more an155

agent invests effort in training representative models that incur lower risk, the larger market share156

license is available to them.157

Definition 3.2 (Obedience to regulation). A menu of license contracts Π is said to enforce obedience158

to regulation if the following holds true ex-ante for the agents159

sup
π∈Π

EZ∼P [π(Z)] ≤ C ∀P ∈ P0

where C is the overall market entry fee for all the model designers. Obedience definition 3.2 ensures160

that the model designers who are violating the market regulation can not recover their entry fee from161

any of the market licenses π ∈ Π. In other words we cap the profits for the non-obedient model162

designers that their cost of operating in the market makes them self exclude from the market. Using163

tools from the theory of desirability [Augustin et al., 2014, Walley, 1991], we can characterise the164

licensing menu Π. A gamble is G : Ω → R where Ω refers to the sample space of a probability165

measure, in our case Ω = Z denoting the space of all the possible values evidence Z can take.166

Definition 3.3. (Set of Desirable Gambles) A set of gambles G = {G|G : Ω → R} is desirable with167

respect to P0 if infP∈P0
EP [G] > 0 ∀ G ∈ G. The set G≥0 is called marginally desirable if above168

inequality is not strict.169

Proposition 3.4. A menu of license functions Π induces obedience to regulations if and only if170

C −Π ⊆ G≥0,P0
, where G≥0,P0

is the set of all marginally desirable gambles with respect to P0.171

The above result characterises the menu of license functions Π that can enforce obedience to172

regulations. A menu of licenses enforces obedience if and only if the gambles C −Π induced by it173

are desirable to the regulator with respect to the set of distributions P0. A useful consequence of this174

characterisation is that the regulator, once they know the market entry fee they charge a provider and175

offer desirable gambles from their perspective as menu for the model designers. Additionally, we176

define a preference relationship ≻ on the space of evidences Z as177

Definition 3.5 (Evidence Preference). A regulation requirement R induces an incomplete preference178

relation (≻R) on the space of evidence Z.179

The above definition states that in light of a regulation requirement a regulator has a preference for180

evidence i.e. assume that Z1, Z2 ∈ Z are evidences generated by models f1 and f2 respectively, and181

R(f1) = 1 while R(f2) = 0 respectively. Then Z1 ≻R Z2. Assuming the space of evidence Z has a182

natural total order ≻, then the ≻R must agree with this total order. For example, let’s assume the183

evidence to be some loss value i.e. Z = ℓ(f(x), y) ∈ R≥0, then the total order for loss would be184

Z1 ≻ Z2 if Z1 < Z2, i.e. lower the loss the better the evidence. This allows us to discuss a second185

desirable property of a menu Π. Ideally, from the perspective of the model designer who is presented186

with a menu of contracts, they must not be penalised for improving upon their evidence. We call such187

menu incentive compatible from the perspective of the model designer. A benevolent regulator would188

also encourage improvement of the evidence from the model designers thus aligning, their incentives.189

Formally we define incentive compatibility as190

Definition 3.6 (Incentive Compatibility of the Menu). Assuming a designer can make two models f1191

and f2 such that they produce risks distributions P1 and P2 such that EZ∼P1
[Z] ≻ EZ∼P2

[Z] then a192

menu of licenses is incentive compatible if193

max
π∈Π

EZ∼P1 [π(Z)] > max
π∈Π

EZ∼P0 [π(Z)]

194
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Definition 3.6 states that for a model designer who invests effort in improving their model and thus195

provides better evidence on average, the licensing function must ensure a better expected revenue196

for that agent and hence present an incentive to strive for making a better model. An incentive197

compatible menu Π by controlling the incentives based on the outcomes encourages self-governance.198

We also discuss that the monotonicity of the menu in evidence total order is sufficient to ensure self199

governance.200

Proposition 3.7. A menu Π is incentive compatible according to Def 3.6 if for all π ∈ Π, π is201

monotone in total order on Z.202

Model Designer’s Optimal Response In this section we describe the model’s designer behaviour203

model that we consider as part of analysis in the principal agent formulation of our problem. While204

prior works in principal agent hypothesis testing assume the agent to be perfectly informed about205

their type, such assumptions are too strong in our setting for model designers as agents as they may206

have more information than the regulators about their machine learning model, but they are often not207

fully certain about their machine learning model’s ability to pass the regulations. This also has an208

impact on their strategic behaviour. Therefore, we model the designer as an strategic agent who is209

epistemically uncertain about their type i.e. the distribution of their evidence P (Z) with a second210

order distribution θ ∈ ∆(P) on the space of all possible evidence distributions P . This second order211

distribution θ represents the prior knowledge of the agent. The model designers want to select a212

contract from the menu Π such that it maximises their expected utility ex-ante, i.e.213

π∗ = argmax
π∈Π

Eθ[EZ∼P [π(Z)]]− C (1)

Proposition 3.8. For a menu of contracts Π that enforce obedience to regulation according to214

definition 3.2, the agent’s best response with a second order distribution θ ∈ ∆(P) is to minimise the215

KL divergence in the convex set of null distributions conv(P0) with respect expected distribution Q,216

i.e.217

π∗ = C
dQ
dP∗ where P∗ = argmin

P∈conv(P0)

KL(Q|P )

where Q =
∫
P Pθ(P )dP is the marginal density obtained by mariginalising over θ.218

What if Model Designer’s Cost are Private? Let’s denote the maximal revenue an agent could219

earn if they gain market access from the regulator by R. Naturally R > C, i.e. the max revenue220

for an agent must be more than the flat market entry fees C. However, often in real world agents221

incur costs before they submit a model for regulatory approval. These could include development222

costs, operational costs and other expenses which are dependent on multiple factors such as size223

of the model designer companies and their geographical location. We assume this as the private224

cost of the model designers. For a model designer with type P ∈ P , We will index the agents with225

the distribution their model f produces on the evidence i.e. P (Z) assuming that the distribution226

inherently determines their type. Let C(P ) be model designer’s private cost to train their model f .227

Additionally we assume that there exists a threshold of Cmax < R which is maximum investment any228

agent would be willing to make for revenue R. Therefore model designer’s willingness to pay to fee is229

Cmax −C(P ). We run a Vickery auction [Vickrey, 1961] for entry into the market where for N total230

bidders, an auction to access for K < N license purchase is run. We denote the allocation rule with231

X : b → {0, 1} denoting which bidder is given access to purchase or not based on their bids. Based232

on bids, we sort the agents i.e. for B = {b(P ) ∀P ∈ P} we denote the sorted bids as sort(B).233

Selected designers pay price r := sort(B)k+1 which is the k + 1th highest bid overall. This ensures234

that the truthful reporting of each agents willingness to pay b(P ) = Cmax − C(P ) is the dominant235

strategy for every model designer and that the payment scheme is uniquely implements [Myerson,236

1981]. All designers pay a fees of r allowing us to discriminate between them based on their bids i.e.237

sup
π∈Π

EP [πP (z)] ≤ Cmax − b(P ) + r ∀ P ∈ P0

sup
π∈Π

EP [πP (z)] ≤ Cmax − (Cmax − C(P )) + r ∀ P ∈ P0

sup
π∈Π

EP [πP (z)] ≤ C(P ) + r ∀ P ∈ P0

Inherently, there is a tradeoff for the model designers, investing more by making C(P ) larger makes238

them lose the bidding war as their true valuation for willingness to pay decreases, thus decreasing the239

chances to license access but investing more in computing improves their later payoff.240
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3.2 Connection to Classical Hypothesis Testing241

We now formulate our regulation problem as a classical testing procedure in a non-parametrized242

fashion to highlight its differences from incentive aware statistical protocol introduced above. Our243

regulation can be formulated statistical decision making problem via a composite hypothesis test as244

follows:245

H0 : P ∈ P0 H1 : P ∈ P1

where P0 and P1 are simply the composite null and alternative risk distributions defined as P0 :=246

{P | EZ∼P [Z] > ϵ} and P1 := {P | EZ∼P [Z] ≤ ϵ} in the case of ϵ risk control. Notice that the247

set of parameters P0 and P1 characterise the parameters of the risk distributions arising from ϵ safe248

and un-safe models according to the Definition 3.1. While classical hypothesis tests are a valid249

protocol to ensure regulation they do not incorporate the incentives of the model designers into the250

problem setup. With the knowledge of the false positive rate α, incentive aware model designers251

can then be strategic to include just enough representation into their training data in order to appear252

safe if the false positive rate α is large enough or the gains under α are large enough to justify their253

cost-benefit calculus. Thus the classic tests set up binary incentives for the model designers making254

them incentive incompatible [Bates et al., 2022, Hossain et al., 2025]. The model designer’s optimal255

response introduced in Proposition 3.8, π∗ indeed resembles likelihood ratio and for case where256

P0 = {P}, the best response is indeed likelihood ratio scaled by fees C. In the testing literature,257

it is very well known that the optimal test for singleton nulls and alternates are likelihood ratio258

tests [Neyman and Pearson, 1933]. However, one must note that although related the best response259

π∗ is not the same as optimal test in all scenarios since π∗ is based on gambles optimise for the260

growth of revenue (wealth of model provider) and a optimal test optimises for true positives in261

decision-making [Ramdas and Wang, 2024].262

4 Simulations263

Hypothesis test for effective model dimension. We consider a toy linear model for our simulations.264

We further assume that it aims to approximate an original data generating process of yi = xT
i θ

∗ + ϵ265

where ϵ ∼ N (0, σ). Additionally, assume that all features affect the model prediction equally. We266

now wish to regulate the number of parameters / features used by this model. Either the model267

designer could be using all the d = d0 + 1 features to make the prediction, i.e., designer also uses the268

sensitive attribute to maximise their prediction capability or the designer could follow the regulation269

and only use non-sensitive attributes to make prediction. We frame the use of sensitive attribute as270

the null hypothesis and use of only non sensitive attribute as alternative to build an hypothesis test for271

regulation. We test the null hypothesis against the alternative as follows272

H0 : Model is using sensitive attribute d = d0 + 1,

H1 : Model is not using sensitive attribute d = d0.

We consider the standardized quadratic error for features X under OLS estimator θ̂ as the test273

statistic. That is Qstd = n
σ2Q = n

σ2 (θ̂ − θ∗)⊤(XX⊤)(θ̂ − θ∗) which is a χ2
d distributed and274

which under suitable regularity conditions follows a chi-square distribution with degrees of freedom275

equal to the effective number of parameters used in the model (See Appendix A.4 for derivation).276
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Since we know the parametric model of both null and277

alternative distributions and they are simple singleton hy-278

pothesis we can use a likelihood ratio test as it is the279

optimal test given Neyman Pearson Lemma. Let us de-280

note the test statistic L := L(d0+1;Q)
L(d0;Q) where Q ∼ χ2

d and281

L(d;Q) is the likelihood of sample Q from chi-squared282

distribution with parameter d. Under H0, assuming that283

the test statistic has a distribution PH0
(L). We implement284

the test to reject H0 if L > τα where τα is the 1 − α285

quantile of PH0(L), so that we obtain strict α type 1 er-286

ror. Figure 1 shows that for reasonable n = 80 the test287

has power 1 under type I error control. Under these ideal288

testing conditions it becomes easy for us to now illustrate289

the strategic aspects of enforcing regulations via hypothesis tests.290
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Strategic Aspects in the test The above testing procedure for enforcing regulation ignores the291

incentives to the model designers. However, in real world the model designers operate under292

incentives. In this section we consider some incentives that designers may have and try to understand293

their behaviour under a statistical test for regulation of use of sensitive attributes for training. Let294

us assume that for regulation tests the regulator charges a fee, this can also be understood as the295

tax to operate in the market, we denote it using C and we assume that the size of the market is296

denoted by R. Ideally a regulation implemented by a test must deter null agents from entering297

the market, i.e. non obedient agents self opt out of the market while the keeping the obedient298

agents in the market. With the statistical test proposed above to check the effective dimension of
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Figure 2: The strategic reaction of null and non-null agents in the market to regulations via testing.
The above figures (b) and (c) assume the incentives in the market by fixing C/R = 0.15

299
the model and thus for the use of sensitive attribute, let us assume that the final test implemented300

by the regulator has false positive rate α, the type II error β(α) is denoted as a function of the301

choice α made by the regulator thus the choice of false positive rate also dictates the power of the302

test 1 − β(α). In an Ex-ante analysis we can observe that null agents participation in the market303

depends directly on this α, as for a null agent, αR ≥ C means that the gamble to enter into the304

market has net positive expected utility. Thus for α > C
R , the market will see full participation305

for approval by the null agents (see Fig 2 a), and because of test properties α proportion of the306

nul agents will also get approved (see Fig 2 b). Whereas for the non-null agents, the decision307

to participate in the market depends upon the power of the test i.e. (1 − β(α))R ≥ C which308

can be seen in the Fig 2 c that the too strict value of α results in a power below 0.15 and thus309

lower than C
R resulting in no participants in the market. As α gradually increases to α = 0.15 and310

thus equal to C
R the power of the test increases resulting in more and more non-null agents being311

approved and eventually for further increase in α, null agents also start to participate in market.312
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Figure 3: The strategic reaction of
null and non-null agents to regula-
tions under private costs.

313

Strategic Behaviour with private costs In Figure 3 we314

aim to show that incentive aware regulations when ignoring315

the diversity in development costs, fail to achieve their pur-316

pose and therefore must account for the private costs of the317

agents. We assume total N = 1050 model service providers318

and Figure 3(c) shows the prior distribution of null and non-319

null agents, and assume that there are 20x more null agents320

than non-null agents. This results in 1000 null agents and 50321

non-null agents naturally. We also assume private costs for322

each agent shown in million in Figure 3(a). Naturally, on av-323

erage the non-null agents have to invest more in satisfying the324

requirements while null agents on average would have a lower325

cost. This reflects also in the bids of the agents (Figure 3(b))326

where null agents are willing to bid more to gain access to327

the market because their costs are less, we assume Cmax = 1328

million when plotting the bid distributions of null and non null329

agents. We run a Vickery auction for selecting K = 1000 top330

bidders who pay the 1001th bid as their price for market entry.331

This allows us to identify the private costs of the providers and332

now gambles are sold to them contextually. In Figure 3(d) we333
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compare this to setup where regulator assumes a flat fees and evaluates incentive aligned C/R = 0.05,334

for a market where R = 10 million and the regulator sets C = 500k as the flat fee. Since the flat335

fee ignores the private costs, it benefits the null agents and hurts the non-null agents, forfeiting the336

purpose of deterring null agents from entering the contract. Due the cost distribution of null agents,337

for total of 740 out of 1000 null agents, the flat fee makes it desirable for them to enter the gamble.338

Therefore they apply to enter the market and C/R-percent of them get through the test. Whereas in339

case of regulation which is private cost aware, null agents are strategically deterred from entering the340

market. Since no agent is willing to pay more than Cmax = 1 million to enter the market setting a341

flat fee of C = 500k means only the non-null agents whose private cost is less 500k would enter the342

market. As compared to scenario of eliciting private costs where fees is 320k allowing more non-null343

agents to participate in the market while allowing no null agents to participate in the market. The344

choice of auction parameter K dictates the number of non-null agents but for all choices of K, with345

truthful elicitation via auction, null agents do not enter the market. In general larger values of K as a346

hyper-parameter allow for larger market, however, in K is too large then the bidders may not fear347

competition allowing them to strategically lie about their bids, anticipating access almost always.348

5 Related Works349

Strategic aspects in Hypothesis Testing Recently there has been a large interest in intersection350

of economics and hypothesis testing [Bates et al., 2022, 2023, Min, 2023, Hossain et al., 2025].351

Applications to clinical trails have motivated study of stragetic aspects within classical hypothesis352

tests, where Bates et al. [2022, 2023], Min [2023] follow a principal agent framework for their353

strategic hypothesis test assuming that the principal knows nothing about the distribution of the types354

of agents, while Hossain et al. [2025] follow a Bayesian game theoretic framework by assuming the355

distribution of types of agents. Our work is similar to that of the Bates et al. [2022, 2023], Min356

[2023] in the spirit that we model the problem of regulating model providers also as an principal357

agent problem in clinical trials where the FDA acts as a regulator and the drug designers as the358

agents. However, our setup argues for an analysis where the cost of developement of the model is359

also additonal private information that the model providers possess and the license menus offered to360

the agents depends on it. Additionally, in our setup of model regulation it is unrealistic to assume that361

the provider exactly knows their type, i.e. the model they train obeys the regulation or not, which is362

relaxed by assuming a second order distribution which acts as prior knowledge of the agent that363

reflects their private information.364

365

Game Theoretic Probability and Auditing While our results characterises the menu of366

regulation enforcing licenses as desirable gambles leveraging tools from Imprecise Probabil-367

ity [Walley, 1991, Augustin et al., 2014, Crane, 2018] and theory of desirabililty [De Cooman and368

Quaeghebeur, 2012, De Bock, 2023] an alternative characterisation of regulation enforcing licenses369

is also possible via e-variables [Shafer, 2021, Vovk and Shafer, Ramdas et al., 2023, Grünwald et al.,370

2024] as provided in Bates et al. [2022]. E-values or variables have become the standard back bone371

of methods that perform auditing of machine learning models via sequential tests with applications in372

risk monitoring and control [Bates et al., 2021, Waudby-Smith and Ramdas, 2024, Timans et al.,373

2025], fairness [Chugg et al., 2023], differential privacy [González et al., 2025] and many other374

applications [Shekhar and Ramdas, 2023, Xu and Ramdas, 2024]. However, unlike our method the375

sequential testing methods that leverage e-variables rather focus on anytime valid statistical inference376

and do not account from incentives of strategic agents, keeping their betting interpretation only as a377

didactic tool to demonstrate the validity of their tests.378

379

AI governance and Regulation The rapid development in AI with recent breakthroughs380

has allowed deployment of AI in the real world. Which consequentially have its societal impacts,381

causing significant interest in the economists, political scientists, law and policy makers on topics382

related to AI governance and regulation of AI. This has resulted in a spark of research on topics383

related to AI governance and regulation that approaches theses questions from ethical [Jobin384

et al., 2019, Hagendorff, 2020, Huang et al., 2022], policy [Diakopoulos, 2016, O’neil, 2017],385

socio-cultural [Awad et al., 2018, Vesnic-Alujevic et al., 2020] and political [Pavel et al., 2023,386

Schmid et al., 2025] perspectives. With our research we aim to surface some technical challenges in387

achieving the normative requirements that the policy makers aim for and also provide new insights388

into the operationalising these normative requirements.389
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6 Conclusion390

Statistical contracts embed mechanism design into rulemaking, turning noisy, sample-based verifica-391

tion into an incentive-compatible enforcement mechanism that maps observed model performance392

to licensed market outcomes and thereby induces non-compliant providers to self-select out while393

keeping compliant providers viable. This treatment of enforcement as an economic design problem394

offers a new perspective that can circumvent several prior challenges in AI regulation by shifting the395

regulator’s burden from perfect verification to carefully designed incentives. Allowing regulators396

to refrain from costly, exhaustive monitoring toward economically sustainable rules that exploit397

private incentives and sampling noise rather than being defeated by it. The approach reduces the need398

for perfect verification, limits opportunities for benchmark gaming, and clarifies tradeoffs between399

monitoring cost, statistical power, and market participation. It is not a panacea, the contracts must400

be carefully calibrated and paired with provenance and cross-jurisdictional governance. However,401

it offers a practical, theory-grounded path for regulators to enforce trustworthy AI in environments402

where traditional verification is infeasible.403
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A Appendix587

A.1 Proof of Proposition588

(⇒)589

Let us assume that the set of contracts Π satisfy Obedience to regulation (Def 3.2) i.e.590

sup
π∈Π

EZ∼P [π(Z)] ≤ C ∀P ∈ P0

=⇒ sup
π∈Π

sup
P∈P0

EZ∼P [π(Z)] ≤ C

=⇒ sup
P∈P0

EZ∼P [π(Z)− C] ≤ 0 ∀π ∈ Π

inf
P∈P0

EZ∼P [C − π(Z)] ≥ 0 ∀π ∈ Π

Which shows that C −Π ⊆ G≥0,P0
.591

(⇐) Let us assume that C −Π ⊆ G≥0,P0
i.e. the gambles C −Π, induced by the license menu are592

desirable to the Regulator.593

inf
P∈P0

EZ∼P [C − π(Z)] ≥ 0 ∀π ∈ Π

=⇒ sup
P∈P0

EZ∼P [π(Z)] ≤ C ∀π ∈ Π

=⇒ sup
π∈Π

sup
P∈P0

EZ∼P [π(Z)] ≤ C

sup
P∈P0

sup
π∈Π

EZ∼P [π(Z)] ≤ C

sup
π∈Π

EZ∼P [π(Z)] ≤ C ∀P ∈ P0

which shows that Π satisfies Definition 3.2.594
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A.2 Proof of Proposition595

Without any loss of generality let us assume that the preference relation ≻ on Z is such that smaller596

the evidence the better, as in case of loss values. Therefore, in order to show that menu Π must597

be monotone in the preference order of Z, we need to show that every π ∈ Π is monotonically598

decreasing in Z. (⇒) Let us assume that the license function menu Π is monotonically decreasing in599

z for every π ∈ Π. That is,600

∀z1, z2 ∈ Z z1 < z2 =⇒ π(z1) > π(z2) ∀π ∈ Π

From which we can say that, for any two distributions P1 and P2 in ∆(Z), which are induced by601

models f1 and f2, the following holds,602

EZ∼P1
[Z] < EZ∼P2

[Z] =⇒ EZ∼P1
[π(Z)] > EZ∼P2

[π(Z)] ∀π ∈ Π (2)

Intutively, for reducting the expected value of random variable Z, the distribution P1 must put larger603

mass on smaller values of Z as compared to P2 and since π is monotonically decreasing, for smaller604

values of Z it will be larger, thus making the expectation EZ∼P1
[π(Z)] larger in comparison to605

EZ∼P2
[π(Z)].606

EZ∼P1
[Z] < EZ∼P2

[Z] max
π∈Π

EZ∼P1
[π(Z)] > max

π∈Π
EZ∼P2

[π(Z)] (from Eq. 2) (3)

Since Equation 2 is elementwise valid for all π ∈ Π we can say that maxπ∈Π EZ∼P1
[π(Z)] >607

maxπ∈Π EZ∼P2
[π(Z)] and thus Π is incentive compatible.608

A.3 Proof of Proposition609

π∗ = argmax
π∈Π

Eθ[EZ∼P [π(Z)]]− C

Then the above optimisation task can be re-written as610

max
π:Z→R≥0

Eθ[EZ∼P [π(Z)]] subject to sup
P∈P0

EP [π(Z)] ≤ C

max
π:Z→R≥0

∫
P∈P

[∫
Z

π(Z)P (Z)dZ

]
dθ(P ) subject to sup

P∈P0

EP [π(Z)] ≤ C

max
π:Z→R≥0

∫
Z

π(Z)

[∫
P∈P

P (Z)dθ(P )

]
dZ subject to sup

P∈P0

EP [π(Z)] ≤ C

max
π:Z→R≥0

EZ∼
∫
P (Z)dθ(P )[π(Z)] subject to sup

P∈P0

EP [π(Z)] ≤ C

max
π:Z→R≥0

EZ∼Q[π(Z)] subject to sup
P∈P0

EP [π(Z)] ≤ C

where Q is the mariginalised distribution over θ. Since θ was a second order distribution Q is a611

valid distribution over Z. Also notice that then the above problem translates to a known problem of612

testing a simple point alternative against a composite null P0 once we scale φ := 1
Cπ then the above613

problem is equivalent to,614

max
φ:Z→[0,1]

EZ∼Q[φ(Z)] subject to sup
P∈P0

EP [φ(Z)] ≤ 1

This problem has an optimal solution via Reverse Information Projection (RiPr) which is defined as615

the numeraire e-variable and also shown to be unique (See Chapter 6 [Ramdas and Wang, 2024]).616

Formally,617

ϕ∗(Z) =
dQ
dP∗ where P∗ = argmin

P∈conv(P0)

KL(P ||Q)

And therefore π∗ = C dQ
dP∗ .618
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A.4 Distribution of Excess Risk619

We consider a fixed-design linear model with Gaussian noise. The data-generating process is620

yi = x⊤
i θ

∗ + ϵ, ϵ ∼ N (0, σ2) (4)
where yi ∈ R is the observed output, xi ∈ Rd is the input and θ∗ ∈ Rd is the true (unknown)621

parameter vector, X ∈ Rd×n is the fixed design matrix. ϵ ∼ N (0, σ2In) is a zero-mean Gaussian622

noise vector with independent entries and variance σ2. Thus in the matrix notation we will write623

y = Xθ∗ + ϵ. The agent observes (X,y) and estimates θ∗ via Ordinary Least Squares (OLS):624

θ̂ = (X⊤X)−1X⊤y = θ∗ + (X⊤X)−1X⊤ϵ. (5)

Under these assumptions, the covariance of the estimator is Cov(θ̂) = σ2(X⊤X)−1 = σ2

n Σ̂−1.625

The agent’s risk for some parameter θ, evaluated using a positive semi-definite matrix Σ̂ = 1
nX

⊤X ,626

is627

R(θ) =
1

n
Ey[||y −Xθ||22] =

1

n
Eϵ[||Xθ∗ + ϵ−Xθ||22]

=
1

n
Eϵ[||X(θ − θ∗)||22 + ϵT (Xθ −Xθ∗) + ||ϵ||22]

= (θ − θ∗)⊤Σ̂(θ − θ∗) + σ2

= ||θ − θ∗||Σ̂ + σ2

.

The expected risk is then628

E[R(θ̂)] = E[||θ − θ∗||Σ̂] + σ2

=
1

n
E[ϵ⊤X(X⊤X)−1(X⊤X)(X⊤X)−1X⊤ϵ] + σ2

=
1

n
E[ϵ⊤X(X⊤X)−1X⊤ϵ] + σ2

=
1

n
E[tr(ϵ⊤X(X⊤X)−1X⊤ϵ)] + +σ2

=
1

n
tr(E[ϵϵ⊤X(X⊤X)−1X⊤]) + σ2

=
1

n
tr(E[ϵϵ⊤]X(X⊤X)−1X⊤) + σ2

=
σ2

n
tr(X⊤X(X⊤X)−1) + σ2 =

σ2

n
tr(Id) + σ2 =

σ2d

n
+ σ2.

Let us define the excess risk in the quadratic form as629

Q := R(θ̂)− σ2 = (θ̂ − θ∗)⊤Σ̂(θ̂ − θ∗), (6)

Since θ̂ − θ∗ = (X⊤X)−1X⊤y − θ∗ = (X⊤X)−1X⊤Xθ∗ + (X⊤X)−1X⊤ϵ − θ∗ =630

(X⊤X)−1X⊤ϵ is a linear function of a multivariate Gaussian ϵ, we have631

θ̂ − θ∗ ∼ N
(
0,Σθ̂

)
, Σθ̂ := σ2(X⊤X)−1 =

σ2

n
Σ̂−1. (7)

The excess risk is a quadratic form of a Gaussian:632

Q = (θ̂ − θ∗)⊤Σ(θ̂ − θ∗) ∼ Chi-squared. (8)

Let Σθ̂
1/2 denote a square root of Σθ̂. Then633

Q = (Σ
1/2
θ z)⊤Σ̂(Σ

1/2
θ z), z ∼ N (0, Id) (9)

=
σ2

n
z⊤(Σ̂−1/2Σ̂Σ̂−1/2)z (10)

=:
σ2

n
z⊤Idz (11)

=
σ2

n
z⊤z (12)
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Therefore Q ∼ σ2

n χd where χd is a Chi-square distribution with degree of freedom d which denote634

the parameters in our model.635

A.5 Challenges beyond statistical issues636

Statistical or technical challenges set aside, AI regulation has several non technical challenges in637

regulation as there is seldom any goods or process that are as general as “intelligence” and have638

such close human interaction. One key issue is that the liability of AI model’s risk is fragmented639

across model designers, data suppliers, integrators, and deployers, complicating enforcement [Tabassi,640

2023, Bertolini and Episcopo, 2021]. Another aspect Jurisdictional fragmentation and cross-border641

deployment, which undermine coherent remedies and legal actions on designers or other stake642

holders[Edwards, 2021, UK AI Safety Summit, 2023]. There are no widely adopted technical643

standards or certification regimes; proprietary intellectual-property and trade secrets conflict with644

transparency and auditability [Raji et al., 2020]. Supply-chain opacity in data provenance, labeling,645

and collection prevents reliable forensics also offer some additional challenges[Bender et al., 2021].646

Market concentration of some large scale service providers also known as “big-tech” in compute and647

data creates political-economy pressures and regulatory capture [Lohn and Musser, 2022, Korinek648

and Vipra, 2025]. Dual-use capabilities, adversarial gaming, and benchmark overfitting lets actors649

satisfy narrow tests while retaining harmful capacity [Blum and Hardt, 2015, Mazeika et al., 2024,650

Hardt, 2025]. Often evidence standards in courts and agencies are immature for probabilistic, high-651

dimensional technical proofs [Kroll, 2015]. Certification and continuous audit impose high fixed costs652

that raise market-entry barriers [Raji et al., 2020]. Human-in-the-loop requirements are hard to specify653

and brittle in practice [Amodei et al., 2016]. Finally, cultural and ethical pluralism, privacy tradeoffs654

in monitoring, and systemic risks from correlated deployments mean regulation must reconcile655

competing values under uncertainty [Unesco, 2022]. These legal, economic, organizational, and656

security frictions interact with the two-layer statistical uncertainty to make AI regulation both harder657

to formulate and easier for stakeholders to plausibly evade than conventional product regulation658

[Brundage et al., 2018].659
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