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Abstract
Modern machine learning models are often over-parameterized and as a result they can interpolate
the training data. Under such a scenario, we study the convergence properties of a sampling-
without-replacement variant of Stochastic Gradient Descent (SGD), known as Random Reshuffling
(RR). Unlike SGD that samples data with replacement at every iteration, RR chooses a random
permutation of data at the beginning of each epoch. For under-parameterized models, it has been
recently shown that RR converges faster than SGD when the number of epochs is larger than the
condition number (κ) of the problem under standard assumptions like strong convexity. However,
previous works do not show that RR outperforms SGD under interpolation for strongly convex
objectives. Here, we show that for the class of Polyak-Łojasiewicz (PL) functions that generalizes
strong convexity, RR can outperform SGD as long as the number of samples (n) is less than the
parameter (ρ) of a strong growth condition (SGC).

1. Introduction

We consider finite-sum minimization problems of the form

min

{
f(x) =

1

n

n∑
i=1

f(x; i)

}
. (1)

Stochastic gradient descent (SGD) is a popular algorithm for solving machine learning problems of
this form. A significant amount of effort has been made to understand its theoretical and empirical
properties (Bottou et al., 2018). SGD has a simple update rule in which a sample ik is chosen
randomly with replacement at each iteration to compute xk+1 = xk−ηk∇f(xk; ik). This is cheaper
than using the full gradient at each iteration. However, it is well known that the convergence rates of
SGD, O( 1k ) and O( 1√

k
) for strongly-convex and convex objectives respectively (Nemirovski et al.,

2009), are worse than those of full gradient descent.
Given the increasing complexity of modern learning models, a practically-relevant question

to ask is how SGD performs in over-parameterized settings, under which the model fits or inter-
polates the data completely. Previously, it has been shown that SGD can achieve a linear con-
vergence rate like full gradient descent under various interpolation conditions for strongly-convex
functions (Moulines and Bach, 2011, Needell et al., 2014, Schmidt and Roux, 2013). An assump-
tion that is weaker than strong convexity which allows full gradient descent to achieve a linear rate
is the Polyak-Łojasiewicz (PL) condition (Polyak, 1963). Recently, the PL condition has gained
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Table 1: Number of gradient evaluations of each algorithm to obtain an ϵ-accurate
solution, which is defined as ∥x − x∗∥2 ≤ ϵ and f(x) − f(x∗) ≤ ϵ for µ-strongly
convex and µ-PL objectives respectively. (1) All results hold under interpolation.

Citation Algorithm µ-Strongly Convex µ-PL
Needell et al. (2014) SGD Lmax

µ -
Vaswani et al. (2019)(2) SGD αL

µ -
Mishchenko et al. (2020)(3) IG nLmax

µ -
RR nLmax

µ -

Bassily et al. (2018) SGD - L2
max
µ2

Vaswani et al. (2019) SGD - ρL
µ

Nguyen et al. (2021)(4) IG - n√
ϵ

RR -
√
n√
ϵ

This work (SGC) IG - n
√
ρLmax

µ

RR -
√
n
√
ρ+ 1 + nLmax

µ
(1) We ignore numerical constants and logarithmic factors.
(2) For µ-strongly convex objectives, Vaswani et al. (2019) assume a weak growth condition (WGC), i.e.
1
n

∑n
i=1∥∇f(x; i)∥ ≤ 2ρL[f(x) − f(x∗)]; for µ-PL, they assume the SGC. Note that L ≤ Lmax,

α ≤ Lmax
L

, and ρ ≤ Lmax
µ

(Mishkin, 2020).
(3) Mishchenko et al. (2020) assume that each f(·; i) is convex. We do not make this assumption.
(4) The dependence on ϵ outside of a logarithmic factor in the results of Nguyen et al. (2021) yields slower
sublinear convergence rates.

popularity in machine learning (Karimi et al., 2016) and it has been shown that several overparam-
eterized models that interpolate the data satisfy the PL condition (Bassily et al., 2018, Oymak and
Soltanolkotabi, 2019, Soltanolkotabi et al., 2018). Notably, under interpolation and the PL condition
SGD can achieve a linear rate similar to full gradient descent (Bassily et al., 2018, Vaswani et al.,
2019). This paper shows that further convergence gains can be achieved under the PL condition and
an interpolation assumption when a sampling-without-replacement counterpart of SGD, known as
Random Reshuffling (RR) is used.

RR has long been known to converge faster than SGD empirically for certain problems (Bottou,
2009, 2012). However, analyzing RR is more difficult than SGD because (conditioned on the past
iterates) each individual gradient is no longer an unbiased estimate of the full gradient. Thus, the
analysis of RR has only emerged in a series of recent efforts (Gürbüzbalaban et al., 2021, Haochen
and Sra, 2019, Nagaraj et al., 2019, Safran and Shamir, 2020). Previous works have shown that
RR outperforms SGD for strongly-convex objectives in various under-parameterized settings, when
the the number of epochs (T ) is larger than the condition number of the problem (κ). However,
in the over-parameterized settings current convergence rate analyses do not show that RR is faster
than SGD (see Table 1). In this work, we address these questions by analyzing RR (and IG) for
PL functions under the strong growth condition (SGC) interpolation condition (Schmidt and Roux,
2013). Under the SGC, we give an explicit convergence rate for RR (and IG) that can be faster than
the best known rate for SGD. These advantages of RR do not exist for current analyses of convex or
strongly-convex functions.
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1.1. Problem Statement

The update rule of Random Reshuffling (RR) is as follows:

xtj+1 = xtj − ηtj∇f(xtj ;π
t
j+1). (2)

That is, at each epoch t ∈ {1, 2, ..., T}, πt is chosen randomly from the set of all possible permuta-
tions, and πt

j+1 is sampled without replacement from the set {1, 2, ..., n} for j ∈ {0, 1, ..., n − 1}.
Note that x0 ≜ x10 is the initialization and xt+1

0 = xtn ∀t ≥ 1. A deterministic counterpart of RR is
the Incremental Gradient method (IG), where πt is deterministic and fixed over all epochs. For IG,
we take the ordering to be cyclic, i.e. πt

j+1 = j + 1.

1.2. Assumptions

In this section, we present the assumptions made in our analyses. First, we give the definition of the
Polyak-Łojasiewicz (PL) inequality

Assumption 1 (µ-PL) There exists some µ > 0 such that

f(x)− f∗ ≤ 1

2µ
∥∇f(x)∥2 ∀x ∈ dom(f), (3)

where f∗ is the optimal value of f .

PL implies that every stationary point of f is a global minimum, but is weaker than strong convexity.
The textbook example of a non-strongly convex function that satisfies PL is that of least-squares (see
Karimi et al., 2016). More recent literature shows that PL condition holds for more complex over-
parameterized models, including several classes of neural networks that interpolate under square
loss (Soltanolkotabi et al., 2018). Second, we assume that the individual functions are smooth.

Assumption 2 The objective f is L-smooth and each individual loss f(·; i) is Li-smooth such that
∀x, x′ ∈ dom(f)

∥∇f(x; i)−∇f(x′; i)∥ ≤ Li∥x− x′∥. (4)

Denote Lmax = max
i

Li. We assume f is lower bounded by f∗, which is achieved at some x∗, so

f∗ = f(x∗). We also assume that each f(·; i) is lower bounded by some f∗
i .

Next, we formally define interpolation.

Assumption 3 We are in the interpolating regime, which we take to mean that

∇f(x∗) = 0 =⇒ ∇f(x∗; i) = 0. (5)

Thus, by interpolation we mean that stationary points with respect to the function f are also station-
ary points with respect to the individual functions f(·; i). Finally, we introduce the strong growth
condition, which is stronger than interpolation as it implies Assumption 3.

Assumption 4 (SGC) There exists a constant ρ ≥ 1 such that the following holds

1

n

n∑
i=1

∥∇f(x; i)∥2 ≤ ρ∥∇f(x)∥2, ∀x ∈ dom(f). (6)
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For smooth functions in interpolating settings, the SGC is related to PL. Concretely: under interpo-
lation, a smooth and PL objective f also satisfies the SGC with a ρ that is at most Lmax

µ (Vaswani
et al., 2019, Prop. 2). There are also other interesting function classes, not necessarily PL, that
satisfy the SGC. The proposition below extends (Vaswani et al., 2019, Lem. 1) to a function class
that includes squared-hinge or logistic losses as special cases.

Proposition 1 Assume binary linearly-separable dataset (ai, yi), i ∈ [n] of size n with margin
τ := argmax∥x∥2=1mini∈[n] yia

T
i x > 0, normalized features ∥ai∥2 ≤ 1 and yi ∈ {±1}. Let

f(x; i) = ℓ(yia
T
i x) for a smooth monotonic function ℓ. Then, SGC (6) holds with ρ = n/τ2.

We also consider a relaxation of the SGC that does not require the data to be fit exactly (Cevher and
Vũ, 2019, Polyak and Tsypkin, 1973).

Assumption 5 There exists constants ρ ≥ 0 and σ ≥ 0 such that the following holds: ∀x ∈
dom(f),

1

n

n∑
i=1

∥∇f(x; i)∥2 ≤ ρ∥∇f(x)∥2 + σ2. (7)

Assumption 5 reduces to the SGC when σ = 0, and reduces to the bounded variance assumption
1
n

∑n
i=1∥∇f(x; i)−∇f(x)∥2 ≤ σ2 when ρ = 1, which is commonly used in the analysis of SGD

(Bottou et al., 2018).

2. Related Work

Optimization under the PL condition The PL inequality (Assumption 1) was first explored
by Polyak (1963) and Lojasiewicz (1963). It applies to a wide range of important machine learning
problems such as least square and logistic regression (over a compact set) (Karimi et al., 2016).
More generally, any function of the form f(x) = g(Ax) for a matrix A with a g being µ-strongly
convex satisfies the µ-PL condition. Some over-parametrized models such as deep neural networks
may contain stationary points that are sub-optimal, which is incompatible with the PL assumption.
Nevertheless, several works have argued that considering a local PL condition around minimizers
can be used as a model for analyzing the effectiveness of SGD in training deep neural networks (Liu
et al., 2022, Oymak and Soltanolkotabi, 2019). Polyak (1963) showed that full gradient descent can
achieve linear convergence rate under the PL condition. But it has recently been highlighted that the
PL condition can be used to show linear convergence rates of a variety of methods (Karimi et al.,
2016). Typically, the PL condition leads to similar convergence rates as those obtained under the
stronger condition of strong convexity. In the case of SGD under interpolation, it has been shown
that the rate of SGD under the PL condition is linear (Bassily et al., 2018, Vaswani et al., 2019).
However, the convergence rates for SGD under interpolation for µ-PL functions are slower than
those for strongly convex functions (see Table 1).

RR for Under-Parameterized Problems The difficulty in the analysis of RR arises because of
the bias in the conditional expectation of gradients, i.e. E

[
∇f(xti;π

t
i+1) | xti

]
̸= ∇f(xti). An early

attempt to analyze RR by Recht and Ré (2012) was not successful because their noncommutative
arithmetic-geometric mean inequality conjecture was proven to be false (Lai and Lim, 2020). The
non-asymptotic convergence properties of RR have only been addressed recently. Haochen and Sra
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(2019) give the first convergence result of Õ( 1
n2T 2 +

1
T 3 ), where T is the number of epochs. The rate

of RR was improved by Nagaraj et al. (2019) to Õ( 1
nT 2 ) when T ≳ κ2 by assuming component-

wise convexity of each f(·; i), with a matching lower bound of Ω( 1
nT 2 ) given by Rajput et al.

(2020). Note that this rate is faster than the Õ( 1
nT ) rate of SGD when the large epoch requirement

is satisfied. Mishchenko et al. (2020) obtain the same rate of Õ( 1
nT 2 ) but only require T ≳ κ. Their

analysis is also dependent on the underlying component-wise convexity structure. Ahn et al. (2020)
remove this dependence and obtain the same rate with T ≳ κ. However, their analysis relies on each
f(·; i) being G-Lipschitz (∥∇f(·; i)∥ ≤ G for all i), which may require a constraint on problem (1)
and a projection operation is needed to ensure the iterates are bounded (Ahn et al., 2020, Nguyen
et al., 2021). Besides this, Nguyen et al. (2021) have given a unified analysis for shuffling schemes
other than RR. Safran and Shamir (2020) have provided a lower bound of Ω( 1

T 2 + n2

T 3 ) when f is a
sum of n quadratics. In a more recent work, they have shown that RR does not significantly improve
over SGD unless T is larger than κ in the worst case (Safran and Shamir, 2021). Our analysis does
not make the component-wise convexity or G-Lipschitzness assumption.

RR for Over-Parameterized Problems Despite the widespread use of RR for training over-parame
terized models, there is relatively little literature analyzing this setting. Haochen and Sra (2019)
show that the convergence rate of RR is at least as fast as SGD under interpolation even without any
epoch requirements. However, the result of Haochen and Sra (2019) does not show that a gap in the
rates can exist and only applies in the degenerate case where each function is strongly-convex.1 We
can also obtain results under interpolation as special cases of the results of Mishchenko et al. (2020)
and Nguyen et al. (2021). However, in the interpolation setting the rates obtained by these works
for convex and strongly-convex functions are slower than the rate obtained by Vaswani et al. (2019)
for SGD (see Table 1). To our knowledge this is the first work to show RR can outperform SGD in
an over-parameterized setting.

3. Contributions

Our main contributions are summarized as follows:

• For µ-PL functions satisfying the SGC, we derive the sample complexity of RR to be
Õ(Lmax

µ

√
n
√
ρ+ 1 + n). In comparison, the sample complexity of SGD in this case is

Õ(Lµρ). Hence, RR outperforms SGD when ρ ≫ n and Lmax ∼ L without requiring a
large epoch. The situation ρ ≫ n happens when there is a large amount of disagreements in
the gradients. This is in clear contrast with the strongly convex case where existing bounds
for RR do not show any gains over SGD.

• While the choice of RR over SGD under the SGC crucially depends on the relative magnitude
of ρ and n, we show that RR consistently outperforms IG for both small and large ρ. Moreover,
IG can outperform SGD for the µ-PL case when ρ ≫ n2 and Lmax ∼ L.

1. This setting is uninteresting under interpolation because we could solve the problem by simply applying gradient
descent to any individual function and ignoring all other training examples.
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4. Theory Results

We present the convergence results of RR and IG for µ-PL objectives under SGC. Below, we use
a constant step size η. When comparing our results to SGD, we assume Lmax ∼ L, and denote
κ = Lmax

µ ∼ L
µ .

Theorem 1 (µ-PL + RR) Suppose Assumptions 1,2,5 hold, and choose a step size η ≤ 1

2
√
2Lmax

√
n(ρ+1+n)

.

Then, we have for RR that

E[f(xTn )− f(x∗)] ≤
(
1− 1

2
nµη

)T (
f(x0)− f∗)+ 4L2

maxη
2nσ2

µ
. (8)

Further assuming SGC (Assumption 4), we obtain for η = 1

2
√
2Lmax

√
n(ρ+1+n)

that

E[f(xTn )− f(x∗)] ≤
(
1−

√
n

4
√
2κ

√
ρ+ 1 + n

)T
(f
(
x0)− f∗). (9)

With a proper choice of η, we can in fact translate (8) into a sample complexity of Õ(κ
√
n
√
ρ+ 1 + n+

κ
√
nσ√
µϵ ); see Corollary 1 in Appendix. Comparing this with Õ(κρ+

κ
√
ρσ√
µϵ ) for SGD (Vaswani et al.,

2019), we see that RR performs better than SGD provided n ≪ ρ. Setting σ = 0 reduces to the
result shown in Table 1.

Theorem 2 (µ-PL + IG) Suppose Assumptions 1,2,5 hold, and choose a step size η ≤ 1
2nLmax

√
ρ .

Then, we have for IG that

f(xTn )− f∗ ≤ (1− 1

2
nµη)T (f(x0)− f∗) +

2L2
maxη

2n2σ2

µ
. (10)

Further assuming SGC (Assumption 4), set η = 1
2nLmax

√
ρ to obtain

f(xTn )− f∗ ≤ (1− 1

4κ
√
ρ
)T (f(x0)− f∗). (11)

The sample complexity of IG for the µ-PL case is Õ(κn
√
ρ+ κnσ√

µϵ); see Corollary 2 in the Appendix.
Under SGC, this is worse than RR whether n < ρ or n ≥ ρ. IG is also worse than RR in the case
of σ ̸= 0 due to the extra factor of

√
n in the 2nd term of the sample complexity. On the other

hand, IG can outperform SGD under SGC, provided that n2 ≪ ρ. In summary, under SGC and PL,
RR always outperforms IG, and also, it outperforms SGD in ill-conditioned or low-sample regimes
n ≪ ρ. Moreover, when n2 ≪ ρ IG outperforms SGD.

5. Conclusion

In this paper, we have derived convergence rates of Random Reshuffling under interpolation as
implied by the SGC for µ-PL objectives. In this setting, Random Reshuffling converges faster than
SGD provided the key condition ρ ≪ n helps. Moreover, we show that IG can outperform SGD
when ρ ≪ n2, and RR outperforms IG whether ρ is small or large. We remark that none of these
conclusions follows from previous analysis under the strong convexity assumption.

6



Acknowledgement This research was partially supported by the Canada CIFAR AI Chair Pro-
gram, the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grants RGPIN-2022-03669.

References

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. Sgd with shuffling: optimal rates without component
convexity and large epoch requirements. Advances in Neural Information Processing Systems,
33:17526–17535, 2020.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.
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Appendix A. Key Lemmas

We draw ideas from Nguyen et al. (2021) and Mishchenko et al. (2020) to construct our proofs. The
high-level idea is to first bound the decrease in the objective value (see Lemma 2), then bound the
progression term

∑n−1
i=0 ∥xti−xt0∥2 for IG and E[

∑n−1
i=0 ∥xti−xt0∥2] for RR respectively (see Lemma

3 and Lemma 4). In this section, we present these lemmas that will be used in the theory proofs.
Lemma 1 is a restatement of (Mishchenko et al., 2020, Lemma 1).

Lemma 1 Let X1, ..., Xn be a given set of vectors in Rd, denote their average to be X̄ = 1
n

∑n
i=1Xi

and population variance to be σ2 = 1
n

∑n
i=1∥Xi−X̄∥2. Fix k ∈ {1, ..., n}, let Xπ1 , ..., Xπk

be sam-
pled uniformly without replacement from {X1, ..., Xn} and X̄π be their average. Then the following
hold true

E[X̄π] = X̄ E[∥X̄π − X̄∥2] = n− k

k(n− 1)
σ2. (12)

Lemma 2 is proved in (Nguyen et al., 2021, Lemma 8). Here we replace L with Lmax and take
the step size η to be constant for all iterations and epochs.

Lemma 2 Suppose Assumption 2 holds. Given a shuffling scheme {πt}t and a constant step size η
such that η ≤ 1

nL , we have the following:

f(xt+1
0 ) ≤ f(xt0)−

nη

2
∥∇f(xt0)∥2 +

L2
maxη

2

n∑
i=0

∥xti − xt0∥2. (13)

Taking total expectation over the randomness

E[f(xt+1
0 )] ≤ E[f(xt0)]−

nη

2
E[∥∇f(xt0)∥2] +

L2
maxη

2

n∑
i=0

E[∥xti − xt0∥2]. (14)

The remaining Lemmas 3-4 concern the update rules in Eqn (2). Recall that xt+1
0 = xtn ∀t ≥ 0.

Also recall that for RR the permutation vector πt is chosen randomly at each epoch t while it is fixed
for IG. Lemma 3 will be combined with Lemma 2 in the proofs of IG.

Lemma 3 Suppose Assumptions 2, 5 hold. For a step size η ≤ 1√
2nLmax

, it holds for IG that

n−1∑
i=0

∥xti − xt0∥2 ≤ 2η2n3ρ∥∇f(xt0)∥2 + 2η2n3σ2. (15)
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Proof By the update rule

∥xti − xt0∥2 = η2∥
i−1∑
j=0

∇f(xtj ; j + 1)∥2

= η2∥
i−1∑
j=0

∇f(xtj ; j + 1)−∇f(xt0; j + 1) +∇f(xt0; j + 1)∥2

≤ 2η2∥
i−1∑
j=0

∇f(xtj ; j + 1)−∇f(xt0; j + 1)∥2 + 2η2∥
i−1∑
j=0

∇f(xt0; j + 1)∥2

≤ 2η2i
i−1∑
j=0

∥∇f(xtj ; j + 1)−∇f(xt0; j + 1)∥2 + 2η2i
i−1∑
j=0

∥∇f(xt0; j + 1)∥2

≤ 2η2L2
maxi

i−1∑
j=0

∥xtj − xt0∥2 + 2η2i
i−1∑
j=0

∥∇f(xt0; j + 1)∥2. (16)

Summing over i = 0, ..., n− 1 gives

n−1∑
i=0

∥xti − xt0∥2 ≤ 2η2L2
max

i−1∑
j=0

∥xtj − xt0∥2
n−1∑
i=0

i+ 2η2
n−1∑
j=0

∥∇f(xt0; j + 1)∥2
n−1∑
i=0

i

≤ η2L2
maxn

2
n−1∑
j=0

∥xtj − xt0∥2 + η2n3 1

n

n−1∑
j=0

∥∇f(xt0; j + 1)∥2

≤ η2L2
maxn

2
n−1∑
j=0

∥xtj − xt0∥2 + η2n3(ρ∥∇f(xt0)∥2 + σ2)

= η2L2
maxn

2
n−1∑
j=0

∥xtj − xt0∥2 + η2n3ρ∥∇f(xt0)∥2 + η2n3σ2. (17)

Finally, choosing η ≤ 1√
2nLmax

leads to

n−1∑
i=0

∥xti − xt0∥2 ≤ 2η2n3ρ∥∇f(xt0)∥2 + 2η2n3σ2. (18)

Lemma 4 below will be combined with Lemma 2 in the proofs of RR.

Lemma 4 Suppose Assumption 2, 5 hold. For a step size η ≤ 1√
3nLmax

, the following holds for RR

E
[n−1∑
i=0

∥xti − xt0∥2
]
≤ 4n2η2(ρ+ 1 + n)E[∥∇f(xt0)∥2] + 4η2n2σ2. (19)
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Proof By the update rule

∥xti − xt0∥2 = η2∥
i−1∑
j=0

∇f(xtj ;π
t
j+1)∥2

= η2∥
i−1∑
j=0

∇f(xtj ;π
t
j+1)−∇f(xt0;π

t
j+1) +∇f(xt0;π

t
j+1)−∇f(xt0) +∇f(xt0)∥2

≤ 3η2∥
i−1∑
j=0

∇f(xtj ;π
t
j+1)−∇f(xt0;π

t
j+1)∥2 + 3η2∥

i−1∑
j=0

∇f(xt0;π
t
j+1)

−∇f(xt0)∥2 + 3η2∥
i−1∑
j=0

∇f(xt0)∥2

≤ 3η2i

i−1∑
j=0

∥∇f(xtj ;π
t
j+1)−∇f(xt0;π

t
j+1)∥2 + 3η2i2∥1

i

i−1∑
j=0

∇f(xt0;π
t
j+1)

−∇f(xt0)∥2 + 3η2i2∥∇f(xt0)∥2

≤ 3η2iL2
max

i−1∑
j=0

∥xtj − xt0∥2 + 3η2i2∥1
i

i−1∑
j=0

∇f(xt0;π
t
j+1)−∇f(xt0)∥2 (20)

+ 3η2i2∥∇f(xt0)∥2.

Let σt be a sigma algebra on the iterates {x10, ..., xt0}. We take conditional expectation w.r.t σt and
apply Lemma 1 to find that

E
[
∥1
i

i−1∑
j=0

∇f(xt0;π
t
j+1)−∇f(xt0)∥2|σt

]
=

n− i

i(n− 1)

1

n

n−1∑
j=0

∥∇f(xt0; j + 1)−∇f(xt0)∥2

≤ n− i

i(n− 1)

1

n

n−1∑
j=0

[2∥∇f(xt0; j + 1)∥2 + 2∥∇f(xt0)∥2].

(21)

Take conditional expectation of (20) and substitute (21) back

E
[
∥xti − xt0∥|σt

]
≤ 3η2iL2

max

n−1∑
j=0

E[∥xtj − xt0∥|σt] + 6η2
i(n− i)

(n− 1)

1

n

n−1∑
j=0

∥∇f(xt0; j + 1)∥2+

6η2
i(n− i)

n− 1
∥∇f(xt0)∥2 + 3η2i2∥∇f(xt0)∥2 (22)

≤ 3η2iL2
max

n−1∑
j=0

E[∥xtj − xt0∥|σt] + 6η2
i(n− i)

n− 1
(ρ∥∇f(xt0)∥2 + σ2)+

6η2
i(n− i)

n− 1
∥∇f(xt0)∥2 + 3η2i2∥∇f(xt0)∥2. (23)

12



Next, take total expectation and sum over i = 0, ..., n− 1:

E
[n−1∑
i=0

∥xti − xt0∥2
]
≤ 3η2L2

maxE[
n−1∑
j=0

∥xtj − xt0∥2]
n−1∑
i=0

i+ 6η2
1

n− 1
(ρE[∥∇f(xt0)∥2] + σ2)

n−1∑
i=0

i(n− i)+

6η2
1

n− 1
E[∥∇f(xt0)∥2]

n−1∑
i=0

i(n− i) + 3η2E[∥∇f(xt0)∥2]
n−1∑
i=0

i2

≤ 3

2
η2L2

maxn
2E[

n−1∑
j=0

∥xtj − xt0∥2] + 2η2n2ρE[∥∇f(xt0)∥2] + 2η2n2σ2+

2η2n2E[∥∇f(xt0)∥2] + 2η2n3E[∥∇f(xt0)∥2] (24)

=
3

2
η2L2

maxn
2E[

n−1∑
j=0

∥xtj − xt0∥2] + 2η2n2(ρ+ 1 + n)E[∥∇f(xt0)∥2] + 2η2n2σ2.

(25)

In (24), we have used
∑n−1

i=0 i ≤ n2

2 ,
∑n−1

i=0 i2 ≤ n3

3 , and
∑n−1

i=0 i(n − i) ≤ n2(n−1)
3 . Choosing

η ≤ 1√
3Lmaxn

, we have

E[
n−1∑
i=0

∥xti − xt0∥2] ≤ 4η2n2(ρ+ 1 + n)E[∥∇f(xt0)∥2] + 4η2n2σ2. (26)

Appendix B. Convergence Proofs

B.1. Proof of Proposition 1

Proof We consider smooth monotonic non-increasing functions of the form fi(x) = l(yia
T
i x) =

l(zTi x), where zi = yiai and ai is the feature vector for the ith sample. We assume the values
of zi are properly normalized such that max

i
∥zi∥ ≤ 1. Define x∗ = argmax

∥x∥2=1
min
i

ztix and τ =

max
∥x∥2=1

min
i

zTi x. Then we have

∥ 1
n

n∑
i=1

∇f(x; i)∥22 = ∥ 1
n

n∑
i=1

l
′
(zTi x)zi∥22. (27)

(28)

13



Note that for a vector u, its 2-norm is ∥u∥2 = max
∥v∥2=1

vTu. Hence, we have the following

∥ 1
n

n∑
i=1

∇f(x; i)∥22 ≥
( 1
n

n∑
i=1

l
′
(zTi x)z

T
i x

∗)2
= τ2

( 1
n

n∑
i=1

l
′
(zTi x)

)2
= τ2

{ 1

n2

n∑
i=1

l
′
(zTi x)

2 +
1

n2

∑
i ̸=j

l
′
(zTi x)l

′
(zTj x)

}
≥ τ2

n

( 1

n

n∑
i=1

l
′
(zTi x)

2
)

(29)

≥ τ2

n

( 1

n

n∑
i=1

l
′
(zTi x)

2∥zi∥2
)

=
τ2

n

1

n

n∑
i=1

∥∇f(x; i)∥2, (30)

where the inequality in (29) follows because l is monotonic, that is l
′
(t1)l

′
(t2) ≥ 0 ∀t1, t2 ∈ R.

Therefore, we have the following

1

n

n∑
i=1

∥∇f(x; i)∥2 ≤ n

τ2
∥ 1
n

n∑
i=1

∇f(x; i)∥22

= ρ∥∇f(x)∥2, (31)

where ρ = n
τ2

.

B.2. Proof of Theorem 1

Apply Lemma 2 and Lemma 4

E[f(xt+1
0 )] ≤ E[f(xt0)]−

nη

2
E[∥∇f(xt0)∥2] +

L2
maxη

2
[4η2n2(ρ+ 1 + n)E[∥∇f(xt0)∥2] + 4η2n2σ2]

= E[f(xt0)]−
nη

2
[1− 4L2

maxη
2n(ρ+ 1 + n)]E[∥∇f(xt0)∥2] + 2L2

maxη
3n2σ2. (32)

Further use the PL inequality in Assumption 1 to arrive at

E[f(xt+1
0 )− f(x∗)] ≤ E[f(xt0)− f(x∗)]− nηµ[1− 4L2

maxη
2n(ρ+ 1 + n)]E[f(xt0)− f(x∗)]+

2L2
maxη

3n2σ2. (33)

Choosing η ≤ 1

2
√
2Lmax

√
n(ρ+1+n)

gives

E[f(xt+1
0 )− f(x∗)] ≤ (1− 1

2
nµη)E[f(xt0)− f(x∗)] + 2L2

maxη
3n2σ2. (34)

14



Solving (34) recursively for t = 1, ..., T gives

E[f(xT+1
0 )− f(x∗)] ≤ (1− 1

2
nµη)T (f(x10)− f(x∗)) + 2L2

maxη
3n2σ2

T∑
j=0

(1− 1

2
nµη)j . (35)

This implies (recalling that x10 = x0):

E[f(xTn )− f(x∗)] ≤ (1− 1

2
nµη)T (f(x10)− f(x∗)) + 2L2

maxη
3n2σ2

∞∑
j=0

(1− 1

2
nµη)j

≤ (1− 1

2
nµη)T (f(x0)− f(x∗)) + 2L2

maxη
3n2σ2(

2

nµη
)

= (1− 1

2
nµη)T (f(x0)− f(x∗)) +

4L2
maxη

2nσ2

µ
. (36)

Note that for (36) to hold, we require η ≤ min{ 1

2
√
2Lmax

√
n(ρ+1+n)

, 1√
3Lmaxn

} because of Lemma

4. This condition becomes η ≤ 1

2
√
2Lmax

√
n(ρ+1+n)

as 1

2
√
2Lmax

√
n(ρ+1+n)

≤ 1√
3Lmaxn

. Under

SGC, substitute σ = 0 with η = 1

2
√
2Lmax

√
n(ρ+1+n)

to obtain the desired result.

B.3. Sample Complexity for Strongly-Convex Objective under RR

Corollary 1 Suppose Assumptions 1,2,5 hold. Assume f is µ-strongly convex, choose η = min{ 1

2
√
2Lmax

√
n(ρ+1+n)

,

2
nµT log( (f(x0)−f(x∗))µ3T 2n

L2
maxσ

2 )}, and define κ ≜ Lmax
µ . Then we have for RR

E[f(xTn )− f(x∗)] = Õ
(
exp

(
− T

√
n

κ
√
ρ+ 1 + n

)
)(
f(x0)− f(x∗)

)
+

κ2σ2

nµT 2

)
. (37)

Proof For the case η = 1

2
√
2Lmax

√
n(ρ+1+n)

≤ 2
nµT log( (f(x0)−f(x∗))µ3T 2n

L2
maxσ

2 ), substitute this η into

(36)

E[f(xTn )− f(x∗)] ≤ (1−
√
n

4
√
2κ

√
ρ+ 1 + n)

)T (f(x0)− f(x∗)) +
σ2

2µ(ρ+ 1 + n)

≤ exp(− T
√
n

4
√
2κ

√
ρ+ 1 + n

)(f(x0)− f(x∗)) +
16L2

maxσ
2

nµ3T 2
log2(

(f(x0)− f(x∗))µ3T 2n

L2
maxσ

2
)

= Õ
(
exp

(
− T

√
n

κ
√
ρ+ 1 + n

)
)(
f(x0)− f(x∗)

)
+

κ2σ2

nµT 2

)
. (38)
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For the case η = 2
nµT log( (f(x0)−f(x∗))µ3T 2n

L2
maxσ

2 ) ≤ 1

2
√
2Lmax

√
n(ρ+1+n)

, we have

E[f(xTn )− f(x∗)] ≤ exp(−nµT

2

2

nµT
log(

((f(x0)− f(x∗)))µ3T 2n

L2
maxσ

2
)(f(x0)− f(x∗))+

4L2
maxnσ

2

µ

4

n2µ2T 2
log2(

(f(x0)− f(x∗))µ3T 2n

L2
maxσ

2
)

=
L2
maxσ

2

µ3T 2n
+

16L2
maxσ

2

µ3T 2n
log2(

(f(x0)− f(x∗))µ3T 2n

L2
maxσ

2
)

= Õ(
κ2σ2

nµT 2
). (39)

Combining (38) and (39), we obtain

E[f(xTn )− f(x∗)] = Õ
(
exp

(
− T

√
n

κ
√
ρ+ 1 + n

)
∆0 +

κ2σ2

nµT 2

)
, (40)

where ∆0 = f(x0)−f(x∗). This translates to a sample complexity of Õ(κ
√
n
√
ρ+ 1 + n+ κ

√
nσ√
µϵ )

where logarithmic factors are ignored.

B.4. Proof of Theorem 2

Proof Apply Lemma 2 and Lemma 3

f(xt+1
0 ) ≤ f(xt0)−

nη

2
∥∇f(xt0)∥2 +

L2
maxη

2
(2η2n3ρ∥∇f(xt0)∥2 + 2η2n3σ2)

= f(xt0)−
nη

2
(1− 2L2

maxη
2n2ρ)∥∇f(xt0)∥2 + L2

maxη
3n3σ2. (41)

Choose η ≤ 1
2nLmax

√
ρ and apply PL inequality in Assumption 1

f(xt+1
0 )− f(x∗) ≤ (1− 1

2
nµη)(f(xt0)− f(x∗)) + L2

maxη
3n3σ2. (42)

Solve (42) recursively

f(xT+1
0 )− f(x∗) ≤ (1− 1

2
nµη)T (f(x10)− f(x∗)) + L2

maxη
3n3σ2

T∑
j=0

(1− 1

2
nµη)j . (43)

This implies

f(xTn )− f(x∗) ≤ (1− 1

2
nµη)T (f(x0)− f(x∗)) + L2

maxη
3n3σ2

∞∑
j=0

(1− 1

2
nµη)j

≤ (1− 1

2
nµη)T (f(x0)− f(x∗)) + L2

maxη
3n3σ2(

2

nµη
)

= (1− 1

2
nµη)T (f(x0)− f(x∗)) +

2L2
maxη

2n2σ2

µ
. (44)
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Note for (44) to hold, we require η ≤ min{ 1
2nLmax

√
ρ ,

1√
2nLmax

} as we used Lemma 3. This reduces

to η ≤ 1
2nLmax

√
ρ provided ρ ≥ 1. Under SGC, set σ = 0 and substitute η = 1

2nLmax
√
ρ , we obtain

the desired result.

B.5. Sample Complexity of Strongly-Convex Objective under IG

Corollary 2 Suppose Assumptions 1,2,5 hold. Assume f is µ-strongly convex, set η = min{ 1
2nLmax

√
ρ ,

2
nµT log( (f(x0)−f(x∗))µ3T 2

L2
maxσ

2 )}, and define κ ≜ Lmax
µ . Then we have for IG

f(xTn )− f(x∗) ≤ Õ
(
exp

( −T

κ
√
ρ

)(
f(x0)− f(x∗)

)
+

κ2σ2

µT 2

)
. (45)

Proof First consider η = 1
2nLmax

√
ρ ≤ 2

nµT log( (f(x0)−f(x∗))µ3T 2

L2
maxσ

2 )

f(xTn )− f(x∗) ≤ (1− 1

4κ
√
ρ
)T (f(x0)− f(x∗)) +

σ2

4µρ

≤ exp(
−T

4κ
√
ρ
)(f(x0)− f(x∗)) +

8L2
maxσ

2

µ3T 2
log2(

f(x0)− f(x∗)µ3T 2

L2σ2
)

= Õ
(
exp

( −T

κ
√
ρ

)(
f(x0)− f(x∗)

)
+

κ2σ2

µT 2

)
. (46)

For η = 2
nµT log( (f(x0)−f(x∗))µ3T 2

L2
maxσ

2 ) ≤ 1
2
√
2nLmax

√
ρ

f(xTn )− f(x∗) ≤ exp(−nµT

2

2

nµT
log(

(f(x0)− f(x∗))µ3T 2

L2
maxσ

2
))(f(x0)− f(x∗))+

2L2
maxn

2σ2

µ

4

n2µ2T 2
log2(

(f(x0)− f(x∗))µ3T 2

L2
maxσ

2
)

=
L2
maxσ

2

µ3T 2
+

8L2
maxσ

2

µ3T 2
log2(

(f(x0)− f(x∗))µ3T 2

L2
maxσ

2
)

= Õ(
κ2σ2

µT 2
). (47)

Combine (46) and (47) together

f(xTn )− f(x∗) ≤ Õ
(
exp

( −T

κ
√
ρ

)
∆0 +

κ2σ2

µT 2

)
, (48)

where ∆0 = f(x0) − f(x∗). This translates to a sample complexity of Õ(nκ
√
ρ + nκσ√

µϵ) where
logarithmic factors are ignored.
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