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Abstract001

Recent advances in foundation models, particu-002
larly Large Language Models (LLMs) and Mul-003
timodal Large Language Models (MLLMs),004
have facilitated the development of intelligent005
agents capable of performing complex tasks.006
By leveraging the ability of (M)LLMs to pro-007
cess and interpret Graphical User Interfaces008
(GUIs), these agents can autonomously execute009
user instructions, simulating human-like inter-010
actions such as clicking and typing. This survey011
consolidates recent research on (M)LLM-based012
GUI agents, highlighting key innovations in013
data resources, frameworks, and applications.014
We begin by reviewing representative datasets015
and benchmarks, followed by an overview of016
a generalized, unified framework that encapsu-017
lates the essential components of prior studies,018
supported by a detailed taxonomy. Addition-019
ally, we explore relevant commercial applica-020
tions. Drawing insights from existing work, we021
identify key challenges and propose future re-022
search directions. We hope this survey will023
inspire further advancements in the field of024
(M)LLM-based GUI agents.025

1 Introduction026

Graphical User Interfaces (GUIs) are the primary027

medium through which humans interact with digi-028

tal devices. From mobile phones to websites, peo-029

ple engage with GUIs daily, and well-designed030

GUI agents can significantly enhance the user ex-031

perience. Thus, research on GUI agents has been032

extensive. However, traditional methods struggle033

with coomplex tasks requiring human-like inter-034

actions (Liu et al., 2018a; Toyama et al., 2021),035

limiting the applicability of GUI agents.036

Recent advancements in Large Language Mod-037

els (LLMs) and Multimodal Large Language Mod-038

els (MLLMs) have significantly enhanced their ca-039

pabilities in language understanding and cognitive040

processing (Achiam et al., 2024; Touvron et al.,041

Figure 1: The foundational aspects and goals of GUI
agents.

2023; Yang et al., 2024a). With improved natu- 042

ral language comprehension and enhanced reason- 043

ing abilities, (M)LLM-based agents can now ef- 044

fectively interpret and utilize human language, for- 045

mulate detailed plans, and execute complex tasks. 046

These breakthroughs provide new opportunities for 047

researchers to address challenges previously con- 048

sidered highly difficult, such as automating tasks 049

within GUIs. 050

As shown in Figure 2, recent studies on GUI 051

agents illustrate a shift from simple Transformer- 052

based models to (M)LLM-based agentic frame- 053

works. Their capabilities have expanded from 054

single-modality interactions to multimodal process- 055

ing, making them increasingly relevant to commer- 056

cial applications. Given these advancements, we 057

believe it is timely to systematically analyze the de- 058

velopment trends of GUI agents, particularly from 059

an application perspective. 060

This paper aims to provide a structured overview 061

of the latest and influential work in the field of GUI 062

agents. As depicted in Figure 1, we focus on the 063

foundational aspects and goals of GUI agents. Data 064

resources, such as user instructions, User Interface 065

(UI) screenshots, and behavior traces, drive the de- 066

sign of GUI agents (Rawles et al., 2023; Lu et al., 067

2024a). Frameworks define the underlying algo- 068

rithms and models that enable intelligent decision- 069

making (Li et al., 2024b; Wang et al., 2024a; Zhu 070
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Figure 2: Illustration of the growth trend in the field of GUI agents with foundation models.

et al., 2024). Applications represent the optimized071

and practical goals (Lai et al., 2024; Liu et al.,072

2024). The current state of these aspects reflects073

the maturity of the field and highlights future re-074

search priorities.075

To this end, we organize this survey around three076

key areas: Data Resources, Frameworks, and077

Applications. The main contributions of this pa-078

per are: 1) a comprehensive summary of exist-079

ing research and a detailed review of current data080

sources, providing a useful guide for newcomers081

to the field; 2) a unified and generalized GUI agent082

framework with clearly defined and categorized083

functional components to facilitate a structured re-084

view; 3) an analysis of trends in both research and085

commercial applications of GUI agents.086

2 GUI Agent Data Resources087

Recent research has focused on developing datasets088

and benchmarks to train and evaluate the capa-089

bilities of (M)LLM-based GUI agents. A variety090

of datasets are available for training GUI agents.091

These agents employ different approaches to in-092

teract with environments. Additionally, multiple093

methods have been proposed for evaluation.094

Dataset: Common datasets for training GUI095

agents typically contain natural language instruc-096

tions that describe task goals, along with demon-097

stration trajectories that include screenshots and098

action pairs. A pioneering work in this area is099

PIXELHELP (Li et al., 2020), which introduces a100

new class of problems focused on translating nat-101

ural language instructions into actions on mobile102

user interfaces. In recent years, Android in the103

Wild (Rawles et al., 2023) has created a dataset104

featuring a variety of single-step and multi-step105

tasks. Aimed at advancing GUI navigation agent re- 106

search, Android-In-The-Zoo (Zhang et al., 2024b) 107

introduces a benchmark dataset with chained action 108

reasoning annotations. 109

Insight-UI (Shen et al., 2024) automatically con- 110

structs a GUI pre-training dataset that simulates 111

multiple platforms across 312,000 domains. To 112

assess model performance both within and beyond 113

the scope of training data, AndroidControl (Li 114

et al., 2024a) includes demonstrations of daily 115

tasks along with both high- and low-level human- 116

generated instructions. The scope of mobile control 117

datasets is further extended from single-application 118

to cross-application scenarios by GUI-Odyssey (Lu 119

et al., 2024a). 120

Most of the aforementioned datasets are primar- 121

ily limited to English and image-based tasks. How- 122

ever, UGIF Dataset (Venkatesh et al., 2024) covers 123

eight languages, Mobile3M (Wu et al., 2024) fo- 124

cuses on Chinese, and GUI-WORLD (Chen et al., 125

2024a) includes video annotations, expanding the 126

dataset landscape for broader multilingual and mul- 127

timodal research. 128

Environment: GUI agents require environments 129

for task execution, which can be broadly catego- 130

rized into three types. The first category is static en- 131

vironments, where the environment remains fixed 132

as it was when developed. Agents in this category 133

operate within predefined datasets without the abil- 134

ity to create new states. 135

In contrast, the second and third categories in- 136

volve dynamic environments, where new outcomes 137

can emerge during agent execution. The key dis- 138

tinction between these categories lies in whether 139

the dynamic environment is simulated or realistic. 140

Simulations of real-world environments require ad- 141
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ditional implementation but are often cleaner and142

free of distractions, such as pop-ups and adver-143

tisements. WebArena (Zhou et al., 2023) imple-144

ments a versatile website covering e-commerce,145

social forums, collaborative software development,146

and content management. Similarly, GUI Testing147

Arena (Zhao et al., 2024) provides a standardized148

environment for testing GUI agents, including de-149

fect injection.150

For realistic environments, agents interact di-151

rectly with web or mobile platforms as human users152

do, better reflecting real-world conditions. SPA-153

Bench (Chen et al., 2024b) encompasses tasks that154

involve both system and third-party mobile appli-155

cations, supporting single-app and cross-app sce-156

narios in both English and Chinese.157

Evaluation: Another critical component of GUI158

agent datasets is the evaluation of agent perfor-159

mance. The most common and important metric160

is success rate, which measures how effectively an161

agent completes tasks. Additional metrics, such as162

efficiency, are sometimes considered as well.163

Evaluation methods are often closely tied to the164

environment type. In static environments, action165

matching is a widely used method that compares an166

agent’s executed action sequence with a human we167

may demonstration (e.g., Rawles et al. (2023), Li168

et al. (2024a)). However, a major limitation of169

action matching is its inability to account for mul-170

tiple successful execution paths, leading to false171

negatives when evaluating agent performance.172

Evaluating dynamic environments, whether sim-173

ulated or realistic, presents additional challenges174

due to their uncertain conditions. Evaluation meth-175

ods can range from fully human-dependent to semi-176

automated and fully automated approaches. Hu-177

man evaluations require manual verification, mak-178

ing them non-reusable. In AppAgent (Li et al.,179

2024b) and MobileAgent (Ding, 2024), human180

evaluators assess whether each agent-executed task181

was successful. Semi-automated evaluations in-182

volve human-developed validation logic that can183

be reused for different execution trajectories of the184

same task. For example, WebArena (Zhou et al.,185

2023) and AndroidWorld (Rawles et al., 2024) in-186

corporate handcrafted validation functions for task187

completion. Fully automated evaluations eliminate188

human involvement by relying on models for suc-189

cess detection. SPA-Bench (Chen et al., 2024b),190

for instance, employs MLLMs for evaluating task191

completion. Although reducing human labor is cru-192

cial for large-scale evaluation, balancing efficiency193

with accuracy remains a key research challenge. 194

3 (M)LLM-based GUI Agent 195

With the human-like capabilities of (M)LLMs, GUI 196

agents aim to handle various tasks to meet users’ 197

needs. Organizing the frameworks of GUI agents 198

and designing methods to optimize their perfor- 199

mance is crucial to unlocking the full potential of 200

(M)LLMs. As shown in Figure 4, we summarize 201

a generalized Framework and discuss its compo- 202

nents in relation to existing works in Section 3.1. 203

Building on this foundation, we then review re- 204

cent influential Methods for constructing and op- 205

timizing GUI agents, categorizing them with an 206

exhaustive taxonomy in Section 3.2. 207

3.1 (M)LLM-based GUI Agent Framework 208

209

The goal of GUI agents is to automatically con- 210

trol a device to complete tasks defined by the user. 211

Typically, GUI agents take a user’s query and the 212

device’s UI status as inputs and generate a series of 213

human-like actions to achieve the tasks. 214

As shown in Figure 3, we present a generalized 215

(M)LLM-based GUI agent framework, consisting 216

of five components: GUI Perceiver, Task Planner, 217

Decision Maker, Memory Retriever, and Execu- 218

tor. Many variations of this framework exist. For 219

instance, Wang et al. (2024a) proposes a multi- 220

agent GUI control framework comprising a plan- 221

ning agent, a decision agent, and a reflection agent 222

to tackle navigation challenges in mobile device 223

operations. This approach shares functional simi- 224

larities with our proposed framework. A follow-up 225

study (Wang et al., 2025) further disentangles high- 226

level planning from low-level actions by employ- 227

ing dedicated agents and introduces memory-based 228

self-evolution to enhance performance. 229

GUI Perceiver: To effectively complete a de- 230

vice task, a GUI agent should accurately interpret 231

user input and detect changes in the device’s UI. 232

Although language models excel in understanding 233

user intent (Touvron et al., 2023; Achiam et al., 234

2024), navigating device UIs requires a reliable 235

visual perception model to understand GUIs. 236

A GUI Perceiver appears explicitly or implicitly 237

in GUI agent frameworks. For agents based on 238

single-modal LLMs (Wen et al., 2023a,b; Li et al., 239

2020), a GUI Perceiver is usually an explicit mod- 240

ule of the frameworks. However, for agents with 241

multi-modal LLMs (Hong et al., 2024; Zhang et al., 242
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Figure 3: (M)LLM-based GUI agents: the generalized framework and key technologies.

2023; Wang et al., 2024b), UI perception is seen as243

a capability of the model itself.244

UI perception is an important problem in GUI245

agents research. Hence, some research (You et al.,246

2024; Zhang et al., 2021; Lu et al., 2024b) focuses247

on processing UI, rather than building the agent.248

For example, Pix2struct (Lee et al., 2023a) em-249

ploys a ViT-based image-encoder-text-decoder ar-250

chitecture, which pre-trains on Screenshot-HTML251

data pairs and fine-tunes for downstream tasks.252

Screen2words (Wang et al., 2021)encapsulates a253

UI screen into a coherent language representation,254

which is based on a transformer encoder-decoder255

architecture to process UIs and generate the repre-256

sentation. To address the defects of purely vision-257

based screen parsing methods, Ge et al. (2024)258

introduces Iris, a visual agent for GUI understand-259

ing, addressing challenges related to architectural260

limitations for heterogeneous GUI information and261

annotation bias in GUI training.262

Task Planner: The GUI agent should effec-263

tively decompose complex tasks, often employing264

a Chain-of-Thought (CoT) approach. Due to the265

complexity of tasks, recent studies (Zhang et al.,266

2024a; Wang et al., 2024a) introduce an additional267

module to support more detailed planning.268

In GUI agents, plan should adapt dynamically269

based on decision feedback, typically achieved270

through a ReAct-style. For instance, Zhang et al.271

(2023) uses on-screen observations to enhance the272

CoT for improved decision-making, while Wang273

et al. (2024a) develops a reflection agent that pro-274

vides feedback to refine plans. 275

Decision Maker: A Decision Maker provides 276

the next operation(s) to control a device. Most stud- 277

ies (Lu et al., 2024a; Zhang et al., 2024a; Wen et al., 278

2024) define a set of UI-related actions—such as 279

click, text, and scroll—as a basic action space. In a 280

more complicated case, Ding (2024) encapsulates 281

a sequence of actions to create Standard Operating 282

Procedures(SOPs) to guide further operations. 283

As the power of GUI agents improves, the gran- 284

ularity of operations becomes more refined. Re- 285

cent work has progressed from element-level op- 286

erations (Zhang et al., 2023; Wang et al., 2024b) 287

to coordinate-level controls (Wang et al., 2024a; 288

Hong et al., 2024). 289

Executor: An Executor maps outputs to the 290

relevant environments. While most studies use 291

Android Debug Bridge (ADB) to control real de- 292

vices (Li et al., 2024b; Wang et al., 2024a), Rawles 293

et al. (2024) develops a simulator to access addi- 294

tional UI-related information. 295

Memory Retriever: A Memory Retriever is 296

designed as an additional source of information to 297

help agents perform tasks more effectively (Wang 298

et al., 2024c). 299

GUI agents’ memory is typically divided into in- 300

ternal and external categories. Internal memory (Lu 301

et al., 2024a) consists of prior actions, screenshots, 302

and system states during execution, while external 303

memory (Zhang et al., 2023; Ding, 2024) includes 304

knowledge and rules related to the UI or task, pro- 305

viding additional inputs for the agent. 306
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3.2 (M)LLM-based GUI Agent Taxonomy307

Consequently, this paper classifies existing work308

with the difference of input modality and learning309

mode in Figure 4.310

3.2.1 GUI Agents with Different Input311

modality312

LLM-based GUI Agents: With the limited mul-313

timodal capability, earlier GUI agents (Lee et al.,314

2023b; Li et al., 2020; Ma et al., 2023; Lai et al.,315

2024; Putta et al., 2024; Nakano et al., 2021) often316

require a GUI perceiver to convert GUI screens317

into text-based inputs.318

So, parsing and grounding the GUI screens is the319

first step. For instance, Li et al. (2020) transforms320

the screen into a series of object descriptions and321

applies a transformer-based action mapping. The322

problem definitions and datasets have spurred fur-323

ther research. You et al. (2024) proposes a series324

of referring and grounding tasks, which provide325

valuable insights into the pre-training of GUIs. Lu326

et al. (2024b) proposes a screen parsing framework327

incorporating the local semantics of functionality328

with interactable region detection for better UI un-329

derstanding and element grounding.330

Afterward, LLMs are used as the brains of331

agents. Wen et al. (2024) further converts GUI332

screenshots into a simplified HTML representation333

for compatibility with the LLMs. By combining334

GUI representation with app-specific knowledge,335

they build Auto-Droid, a GUI agent based on online336

GPT and on-device Vicuna. In the field of web au-337

tomation, LASER (Ma et al., 2023) navigates web338

environments purely through text, treating web nav-339

igation as state-space exploration to enable flexible340

state transitions and error recovery. Similarly, Au-341

toWebGLM (Lai et al., 2024) processes HTML text342

data without visual inputs, refining webpage struc-343

tures to preserve key information for ChatGLM3-344

6B. Agent Q (Putta et al., 2024) further extends this345

paradigm by relying solely on HTML DOM text346

for reasoning and decision-making, emphasizing347

language models for planning and action execution.348

MLLM-based GUI Agents: Recent stud-349

ies (Wang et al., 2024a; Bai et al., 2021; Zhang350

et al., 2023; Kim et al., 2023) utilize the multimodal351

capabilities of advanced (M)LLMs to improve GUI352

comprehension and task execution.353

Leveraging the visual understanding capabilities354

of MLLMs, recent studies (Wang et al., 2024a; Li355

and Li, 2023; Bai et al., 2021; Zhu et al., 2024;356

Qin et al., 2025) explore end-to-end frameworks357

for GUI device control. For example, Spotlight (Li 358

and Li, 2023) proposes a Vision-Language model 359

framework, pre-trained on web/mobile data and 360

fine-tuned for UI tasks. UIbert is a transformer- 361

based joint image-text model, which is pre-trained 362

in large-scale unlabeled GUI data to learn the fea- 363

ture representation of UI elements. Zhu et al. (2024) 364

presents a two-level agent structure for executing 365

complex and dynamic GUI tasks. Moba’s Global 366

Agent handles high-level planning, while the Local 367

Agent selects actions for sub-tasks, streamlining 368

the decision-making process with improved effi- 369

ciency. UI-TARS (Qin et al., 2025) navigates in- 370

terfaces through screenshots, enabling human-like 371

interactions via keyboard and mouse. Leveraging a 372

large-scale GUI dataset, it achieves context-aware 373

UI understanding and precise captioning. 374

To enhance performance, some studies (Zhang 375

et al., 2023; Rawles et al., 2024) utilize addi- 376

tional invisible metadata. For instance, Android- 377

World (Rawles et al., 2024) establishes a fully 378

functional Android environment with real-world 379

tasks, serving as a benchmark for evaluating GUI 380

agents. They propose M3A, a zero-shot prompt- 381

ing agent that uses Set-of-Marks as input. Exper- 382

iments with M3A variants assess how different 383

input modalities—text, screenshots, and accessi- 384

bility trees—affect GUI agent performance. Yang 385

et al. (2024b) proposes a framework incorporat- 386

ing dynamic action history with both textual and 387

interleaved text-image formats, which allows it 388

to ground elements more effectively for dynamic, 389

multi-step scenarios. 390

3.2.2 GUI Agents with Different Learning 391

Mode 392

Prompting-based GUI Agents: Prompting is an 393

effective approach to building agents with minimal 394

extra computational overhead. Given the diver- 395

sity of GUIs and tasks, numerous studies (Zhang 396

et al., 2023; Li et al., 2024b; Wang et al., 2024a; 397

Wen et al., 2023b; Xie et al., 2024; Zhang et al., 398

2024a; He et al., 2024a) use prompting to create 399

GUI agents, adopting CoT or ReAct styles. 400

Recent studies use prompting to simulate the 401

functions of GUI agent components. For exam- 402

ple, Yan et al. (2023) introduces MM-Navigator, 403

which utilizes GPT-4V for zero-shot GUI under- 404

standing and navigation. Additionally, Wen et al. 405

(2023b) presents DroidBot-GPT, which summa- 406

rizes the app’s status, past actions, and tasks into a 407

prompt, using ChatGPT to choose the next action. 408
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(M)LLM-based
GUI Agent

(M)LLM-based
GUI Agent
Framework
(Section 3.1)

GUI Perceiver Wen (Wen et al., 2023a,b), Li (Li et al., 2020), Ferret-UI (You et al., 2024),
Omniparser (Lu et al., 2024b), Iris (Ge et al., 2024) Ferret-UI (You et al., 2024),

Task Planner UFO (Zhang et al., 2024a), Mobile-Agent-V2 (Wang et al., 2024a), AppAgent (Zhang et al., 2023)

Decision Maker GUI Odyssey (Lu et al., 2024a), UFO (Zhang et al., 2024a), GUI AutoDroid (Wen et al., 2024),
MobileAgent (Ding, 2024)

Executor AndroidWorld (Rawles et al., 2024)

Memory Retriever Wang (Wang et al., 2024c), GUI Odyssey (Lu et al., 2024a), AppAgent (Zhang et al., 2023),
MobileAgent (Ding, 2024), Agent Q (Putta et al., 2024)

(M)LLM-based
GUI Agent
Taxonomy
(Section 3.2)

LLM-based

Prompting-based Lee (Lee et al., 2023b), Li (Li et al., 2020), WebGPT (Nakano et al., 2021),
Laser (Ma et al., 2023), AutoWebGLM (Lai et al., 2024), Agent Q (Putta et al., 2024)

Tuning-based WebGPT (Nakano et al., 2021), Lee (Lee et al., 2023b)

SFT-based

Prompting-based

AppAgent (Zhang et al., 2023), AppAgent V2 (Li et al., 2024b), Wang (Wang et al., 2023),
Mobile-Agent-E (Ding, 2024), Wen (Wen et al., 2023b), OpenAgents (Xie et al., 2024),
UFO (Zhang et al., 2024a), WebVoyager (He et al., 2024a), Moba (Zhu et al., 2024),
Yan (Yan et al., 2023), Zheng (Zheng et al., 2024), Mobile-Agent-V2 (Wang et al., 2024a),

SFT-based

Kil (Kil et al., 2024), MobileVLM (Wu et al., 2024), Furuta (Furuta et al., 2024),
MobileAgent (Ding, 2024), META-GUI (Sun et al., 2022), Kim (Kim et al., 2023),
PC Agent (He et al., 2024b), OdysseyAgent (Lu et al., 2024a), Zhang (Zhang and Zhang, 2023),
Aria-UI (Yang et al., 2024b), Aguvis (Xu et al., 2024), SeeAct (Zheng et al., 2024),
Wen (Wen et al., 2023a), AutoGLM (Liu et al., 2024), ScreenAgent (Niu et al., 2024)

RL-based AndroidEnv (Toyama et al., 2021), Liu (Liu et al., 2018b), AutoGLM (Liu et al., 2024),
UI-R1 (Lu et al., 2025), GUI-R1 (Xia and Luo, 2025), InfiGUI-R1 (Liu et al., 2025)

Figure 4: A comprehensive taxonomy of (M)LLM-based GUI Agents: frameworks, modality, and learning
paradigms.

Beyond mobile applications, prompting-based ap-409

proaches have also been widely adopted in web-410

based GUI agents. Zheng et al. (2024) proposes411

SeeAct, a GPT-4V-based generalist web agent.412

With screenshots as input, SeeAct generates ac-413

tion descriptions and converts them into executable414

actions with designed action grounding techniques.415

Similarly, WebVoyager (He et al., 2024a) integrates416

visual and textual information from screenshots and417

web pages, using prompts to interpret UI elements418

and execute interactions like clicking and typing.419

UFO (Zhang et al., 2024a) dynamically generates420

task plans and executes actions through prompting,421

allowing it to generalize across diverse web tasks422

without requiring task-specific adaptations.423

Some research enhances GUI agent with external424

knowledge through prompting to complete tasks.425

AppAgent (Zhang et al., 2023) proposes a multi-426

modal agent framework to simulate human-like427

mobile phone operations. The framework is di-428

vided into two phases: Exploration, where agents429

explore applications and document their operations,430

and Deployment, where these documents guide431

the agent in observing, thinking, acting, and sum-432

marizing tasks. This is the first work to claim433

human-like GUI automation capabilities. AppA-434

gent V2 (Li et al., 2024b) further improves GUI435

parsing, document generation, and prompt inte-436

gration by incorporating optical character recog-437

nition (OCR) and detection tools, moving beyond438

the limitations of off-the-shelf parsers for UI ele-439

ment identification. Wang et al. (2023) uses a pure 440

in-context learning method to implement interac- 441

tion between LLMs and mobile UIs. The method 442

divides the conversations between agents and users 443

into four categories from the originator and designs 444

a series of structural CoT prompting to adapt an 445

LLM to execute mobile UI tasks. MobileGPT (Lee 446

et al., 2023b) emulates the cognitive processes of 447

human use of applications to enhance the LLM- 448

based agent with a human-like app memory. Mo- 449

bileGPT uses a random explorer to explore and 450

generate screen-related subtasks on many apps and 451

save them as app memory. During the execution, 452

the related memory is recalled to complete tasks. 453

SFT-based GUI Agents: Supervised fine-tuning 454

(SFT) allows (M)LLMs to adapt to specific do- 455

mains and perform customized tasks. Recent stud- 456

ies on GUI agents (Wen et al., 2023a; Furuta et al., 457

2024; Niu et al., 2024; He et al., 2024b; Kil et al., 458

2024) demonstrate the benefits of SFT for GUI 459

agents to process multi-modal inputs, learn specific 460

procedures or execute specialized tasks. 461

For instance, Furuta et al. (2024) proposes We- 462

bGUM for web navigation. WebGUM is jointly 463

fine-tuned with an instruction-optimized language 464

model and a vision encoder, incorporating temporal 465

and local perceptual capabilities. Zhang and Zhang 466

(2023) introduces Auto-UI, a multimodal solution 467

combining an image-language encoder-decoder ar- 468

chitecture with a Chain of Actions policy, fine- 469

tuned on the AitW dataset. This Chain of Actions 470
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captures intermediate previous action histories and471

future action plans. Xu et al. (2024) introduces a472

two-stage training paradigm for AGUVIS. In the473

first stage, the agent learns visual representations474

of GUI components through self-supervised learn-475

ing. In the second stage, it fine-tunes interactive476

tasks using reinforcement learning, enabling effi-477

cient autonomous GUI interaction. PC-Agent (He478

et al., 2024b) employs a multi-agent architecture,479

fine-tuning a planning agent on cognitive trajecto-480

ries collected via PC Tracker, enabling it to model481

human cognitive patterns.482

RL-based GUI Agents:483

Early efforts (Liu et al., 2018a; Toyama et al.,484

2021) used reinforcement learning to enhance mod-485

els for controling UI interfaces, but with limited486

success. To overcome the lack of offline data, Au-487

toGLM adopted a self-evolving online curriculum488

reinforcement learning approach, and showed great489

ability for task exploration. More recently, the490

effectiveness of Group Relative Policy Optimiza-491

tion(GRPO) (Shao et al., 2024) has led to the devel-492

opment of several GRPO-based GUI Agents (Lu493

et al., 2025; Xia and Luo, 2025; Liu et al., 2025),494

which have been applied to grounding and reason-495

ing tasks, however, lack GUI domain special algo-496

rithm improvement.497

In summary, we provide a systematic overview498

of recent influential research on (M)LLM-based499

GUI agents. We address their goal formulations, in-500

put perceptions, and learning paradigms, as shown501

in Figure 4 in appendix.502

4 GUI Agents Performance Analysis503

Recent GUI agents have achieved marked advances504

in GUI understanding, grounding and execution.505

This paper analyses their results on the broadly506

recognized ScreenSpot and AndroidWorld bench-507

marks to provide an overview of the performance508

of GUI Agents with various technical designs.509

Vanilla commercial and open-source multi-510

modal foundation models perform poorly on UI511

understanding and grounding tasks. In contrast,512

models reported adding GUI-specific knowledge513

perform much better, even outperform early work514

SFT on GUI data. Among the latest SFT-based515

methods, exemplified by UI-Tars, outperform lead-516

ing commercial models with arge-scale UI cor-517

pus construction. Recently, with GRPO becom-518

ing widely accepted, RL-based methods show a519

great advantage on mitigating decision-data spar-520

sity. InfiGUI-R1 has achieved comparable perfor- 521

mance to SOTA methods with only 3B parame- 522

ters. The performance of representative methods is 523

shown in Table 3 in Appendix. 524

Table 1: Android World Performance Comparison. “-”
indicates missing values due to unavailable results in
the original paper, unreleased model checkpoints, and
unreleased inference code.

Model Name Size Screen Format Success(%)

V-Droid (Llama8B) 8B A11y tree 59.5
Agent S2 (Agashe et al., 2025) - Screenshot 54.3
UI-TARS (Qin et al., 2025) 72B Screenshot 46.6
GPT-4o + Aria-UI - Screenshot 44.8
GPT-4o + UGround - Screenshot 44.0
GPT-4o - Screenshot 34.5
GPT-4 Turbo - A11y tree 30.6
InfiGUIAgent 2B Screenshot 9.00
ShowUI-2B 2B Screenshot 7.00
Qwen2-VL-2B 2B Screenshot 0.00

Human - - 80.0

Compared to UI understanding and grounding, 525

end-to-end task execution remains significantly 526

more challenging for GUI agents. As shown in 527

Table.1, even the latest research on the Android- 528

World benchmark still lags behind human perfor- 529

mance. Among methods with provided models or 530

APIs, UI-TARS, an example of the single-model ap- 531

proachs, achieves substantially better performance 532

than previous work, however, smaller open-source 533

SFT models still perform poorly. On the other 534

hand, Multi-agent frameworks continue to dom- 535

inate. Notably, AgentS2 achieves state-of-the- 536

art performance through a combination of strate- 537

gies such as enhanced visual perception and task 538

planning. Furthermore, GPT-4o-based multi-agent 539

frameworks substantially outperform their single- 540

agent GPT-4o counterparts, highlighting the bene- 541

fits of the Multi-agent frameworks design. 542

5 Industrial Applications of 543

(M)LLM-Based GUI Agents 544

GUI agents have been widely used in industrial set- 545

tings, such as mobile assistants and search agents, 546

demonstrating significant potential. 547

Google Assistant for Android: By saying “Hey 548

Google, start a run on Example App” users can 549

use Google Assistant for Android to launch apps, 550

perform tasks, and access content. App Actions, 551

powered by built-in intents (BIIs), enhance app 552

functionality by integrating with Google Assistant. 553

This enables users to navigate apps and access fea- 554

tures through voice queries, which the Assistant 555

interprets to display the desired screen or widget. 556
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Apple Intelligence: Apple Intelligence is the557

suite of AI-powered features and services devel-558

oped by Apple. This includes technologies such as559

machine learning, natural language processing, and560

computer vision that power features like Siri, facial561

recognition, and photo organization. Apple also562

integrates AI into its hardware and software ecosys-563

tem to improve device performance and user expe-564

rience. Their focus on privacy means that much565

of this AI processing happens on-device, ensuring566

that user data remains secure.567

Anthropic Computer Use: Anthropic’s “Com-568

puter Use” feature enables Claude to interact569

with tools and manipulate a desktop environ-570

ment. By understanding and executing commands,571

Computer-Using Agent can perform the necessary572

actions to complete tasks, much like a human.573

OpenAI Operator: OpenAI recently introduced574

Operator, an AI agent capable of autonomously per-575

forming tasks using its own browser. This agent576

leverages the CUA model, which combines GPT-577

4o’s vision capabilities with advanced reasoning578

through reinforcement learning. Operator can in-579

terpret screenshots and interact with GUIs just as580

humans do.581

AutoGLM: AutoGLM (Liu et al., 2024) is de-582

signed for autonomous mission completion via con-583

trolling GUIs on platforms like phones and the web.584

Its Android capability allows it to understand user585

instructions autonomously without manual input,586

enabling it to handle complex tasks such as or-587

dering takeout, editing comments, shopping, and588

summarizing articles.589

MagicOS 9.0 YOYO: An advanced assistant590

with four features: natural language and vision pro-591

cessing, user behavior learning, intent recognition592

and decision-making, and seamless app integration.593

It understands user habits to autonomously fulfill594

requests, such as ordering coffee through voice595

commands, by navigating apps and services.596

6 Challenges597

Due to the rapid development of this field, we sum-598

marize several key research questions that require599

urgent attention:600

Personalized GUI Agents: Due to the personal601

nature of user devices, GUI agents inherently inter-602

act with personalized information. As an example,603

users may commute from home to work during604

weekdays, while walking to their favorite restau- 605

rants and cafes on weekends. The integration of 606

personalized information would clearly enhance 607

the user experience with GUI agents. As the capa- 608

bilities of (M)LLMs continue to improve, personal- 609

ized GUI agents have become a priority. Effectively 610

collecting and utilizing personal information to de- 611

liver a more intelligent experience for users is an 612

essential topic for future research and applications. 613

Security of GUI Agents: GUI devices play a cru- 614

cial role in modern life, making the idea of allowing 615

GUI agents to take control a significant concern for 616

users. For instance, improper operations in finan- 617

cial apps could lead to substantial financial losses, 618

while inappropriate comments on social media apps 619

could damage one’s reputation and privacy. Ensur- 620

ing that GUI agents are not only highly efficient 621

and capable of generalizing but also uphold user- 622

specific security and provide transparency about 623

their actions is an urgent research challenge. This 624

is a critical issue, as it directly impacts the viability 625

of applying GUI agents in real-world scenarios. 626

Inference Efficiency: Humans are highly sen- 627

sitive to GUI response time, which significantly 628

impacts the user experience. Current (M)LLM- 629

based GUI agents still face notable drawbacks with 630

inference latency. Additionally, communication de- 631

lay is also an important consideration in real-world 632

applications. As a result, efficient device-cloud 633

collaboration strategies and effective device-side 634

(M)LLM research will become critical areas of fo- 635

cus in the future. 636

7 Conclusion 637

In this paper, we provide a comprehensive review 638

of the rapidly evolving field of (M)LLM-based GUI 639

Agents. The review is organized into three main 640

perspectives: Data Resources, Frameworks, and 641

Applications. Additionally, we present a detailed 642

taxonomy that connects existing research and high- 643

lights key techniques. We also discuss several chal- 644

lenges and propose potential future directions for 645

GUI Agents that leverage foundation models. 646

Limitations 647

This paper provides a survey of GUI agents based 648

on (M)LLMs. Several limitations should be noted: 649

First, the review focuses on recent (M)LLM-based 650

approaches for GUI interaction and does not cover 651
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earlier methods based on traditional machine learn-652

ing. Second, due to varying development speeds653

across areas, the included works are mostly cen-654

tered on mobile and web applications, with fewer655

for PC. Finally, only some representative works in656

every topics are selected but not all relevant GUI657

agent studies are included.658

References659

Josh Achiam, Steven Adler, and 1 others. 2024. Gpt-4660
technical report. Preprint, arXiv:2303.08774.661

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang,662
Ang Li, and Xin Eric Wang. 2025. Agent s2: A com-663
positional generalist-specialist framework for com-664
puter use agents. arXiv preprint arXiv:2504.00906.665

Anthropic. 2024. Developing a computer use666
model. https://www.anthropic.com/news/667
developing-computer-use. Accessed: 2025-04-12.668

Chen Bai, Xiaoyu Zang, Yan Xu, Srinivas Sunkara,669
Abhinav Rastogi, and Jieshan Chen. 2021. Uibert:670
Learning generic multimodal representations for ui671
understanding.672

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-673
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie674
Wang, Jun Tang, and 1 others. 2025. Qwen2. 5-vl675
technical report. arXiv preprint arXiv:2502.13923.676

Dongping Chen, Yue Huang, Siyuan Wu, and 1 oth-677
ers. 2024a. Gui-world: A dataset for gui-oriented678
multimodal llm-based agents. arXiv preprint679
arXiv:2406.10819.680

Jingxuan Chen, Derek Yuen, Bin Xie, and 1 others.681
2024b. Spa-bench: A comprehensive benchmark682
for smartphone agent evaluation. In NeurIPS 2024683
Workshop on Open-World Agents.684

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,685
Li YanTao, Jianbing Zhang, and Zhiyong Wu. 2024.686
Seeclick: Harnessing gui grounding for advanced687
visual gui agents. In Proceedings of the 62nd Annual688
Meeting of the Association for Computational Lin-689
guistics (Volume 1: Long Papers), pages 9313–9332.690

Google DeepMind. 2024. Gemini-2.0 (project691
mariner). https://deepmind.google/technologies/692
project-mariner. Accessed: 2025-04-12.693

Tinghe Ding. 2024. Mobileagent: enhancing mobile694
control via human-machine interaction and sop inte-695
gration. arXiv preprint arXiv:2401.04124.696

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, and697
1 others. 2024. Multimodal web navigation with698
instruction-finetuned foundation models. In ICLR.699

Zhiqi Ge, Juncheng Li, Xinglei Pang, and 1 others. 2024.700
Iris: Breaking gui complexity with adaptive focus and701
self-refining. arXiv preprint arXiv:2412.10342.702

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, 703
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su. 704
2025. Navigating the digital world as humans do: 705
Universal visual grounding for gui agents. In 13th In- 706
ternational Conference on Learning Representations, 707
ICLR 2025. 708

Hongliang He, Wenlin Yao, Kaixin Ma, and 1 others. 709
2024a. Webvoyager: Building an end-to-end web 710
agent with large multimodal models. arXiv preprint 711
arXiv:2401.13919. 712

Yanheng He, Jiahe Jin, Shijie Xia, and 1 others. 713
2024b. Pc agent: While you sleep, ai works–a 714
cognitive journey into digital world. arXiv preprint 715
arXiv:2412.17589. 716

Wenyi Hong, Weihan Wang, Qingsong Lv, and 1 others. 717
2024. Cogagent: A visual language model for gui 718
agents. In CVPR, pages 14281–14290. 719

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang 720
Deng, Yu Su, and Wei-Lun Chao. 2024. Dual- 721
view visual contextualization for web navigation. In 722
CVPR, pages 14445–14454. 723

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 724
2023. Language models can solve computer tasks. 725
In NIPS, pages 39648–39677. 726

Hanyu Lai, Xiao Liu, Iat Long Iong, and 1 others. 2024. 727
Autowebglm: A large language model-based web 728
navigating agent. In SIGKDD, pages 5295–5306. 729

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, and 1 730
others. 2023a. Pix2struct: Screenshot parsing as 731
pretraining for visual language understanding. In 732
ICML, pages 18893–18912. 733

Sunjae Lee, Junyoung Choi, Jungjae Lee, and 1 others. 734
2023b. Explore, select, derive, and recall: Augment- 735
ing llm with human-like memory for mobile task 736
automation. arXiv preprint arXiv:2312.03003. 737

Gang Li and Yang Li. 2023. Spotlight: Mobile ui under- 738
standing using vision-language models with a focus. 739
In ICLR. 740

Wei Li, William Bishop, Alice Li, and 1 others. 2024a. 741
On the effects of data scale on computer control 742
agents. arXiv preprint arXiv:2406.03679. 743

Yanda Li, Chi Zhang, Wanqi Yang, and 1 others. 2024b. 744
Appagent v2: Advanced agent for flexible mobile 745
interactions. arXiv preprint arXiv:2408.11824. 746

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason 747
Baldridge. 2020. Mapping natural language instruc- 748
tions to mobile ui action sequences. In ACL, pages 749
8198–8210. 750

Yang Li, Gang Li, Xin Zhou, Mostafa Dehghani, and 751
Alexey Gritsenko. 2021. Vut: Versatile ui trans- 752
former for multi-modal multi-task user interface mod- 753
eling. arXiv preprint arXiv:2112.05692. 754

9

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/news/developing-computer-use
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://openreview.net/pdf?id=ikXjMk8RUs
https://openreview.net/pdf?id=ikXjMk8RUs
https://openreview.net/pdf?id=ikXjMk8RUs
https://deepmind.google/technologies/project-mariner
https://deepmind.google/technologies/project-mariner
https://deepmind.google/technologies/project-mariner
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2408.11824
https://arxiv.org/abs/2408.11824
https://arxiv.org/abs/2408.11824


Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan755
Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan756
Wang, and Mike Zheng Shou. 2024. Showui: One757
vision-language-action model for gui visual agent.758
arXiv preprint arXiv:2411.17465.759

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-760
lin Shi, and Percy Liang. 2018a. Reinforcement761
learning on web interfaces using workflow-guided762
exploration. In ICLR.763

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-764
lin Shi, and Percy Liang. 2018b. Reinforcement765
learning on web interfaces using workflow-guided766
exploration. arXiv preprint arXiv:1802.08802.767

Xiao Liu, Bo Qin, Dongzhu Liang, and 1 others. 2024.768
Autoglm: Autonomous foundation agents for guis.769
arXiv preprint arXiv:2411.00820.770

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu,771
Xiaotian Han, Shengyu Zhang, Hongxia Yang, and772
Fei Wu. 2025. Infigui-r1: Advancing multimodal gui773
agents from reactive actors to deliberative reasoners.774
arXiv preprint arXiv:2504.14239.775

Quanfeng Lu, Wenqi Shao, Zitao Liu, and 1 others.776
2024a. Gui odyssey: A comprehensive dataset for777
cross-app gui navigation on mobile devices. arXiv778
preprint arXiv:2406.08451.779

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed780
Awadallah. 2024b. Omniparser for pure vision based781
gui agent. arXiv preprint arXiv:2408.00203.782

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang783
Liu, Hao Wang, Han Xiao, Shuai Ren, Guanjing784
Xiong, and Hongsheng Li. 2025. Ui-r1: Enhanc-785
ing action prediction of gui agents by reinforcement786
learning. arXiv preprint arXiv:2503.21620.787

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiao-788
man Pan, and Dong Yu. 2023. Laser: Llm agent789
with state-space exploration for web navigation. In790
NeurIPS Workshop.791

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, and 1792
others. 2021. Webgpt: Browser-assisted question-793
answering with human feedback. arXiv preprint794
arXiv:2112.09332.795

Runliang Niu, Jindong Li, Shiqi Wang, and 1 oth-796
ers. 2024. Screenagent: A vision language model-797
driven computer control agent. arXiv preprint798
arXiv:2402.07945.799

OpenAI. 2024. Gpt-4o. Accessed: 2025-01-03.800

Lihang Pan, Bowen Wang, Chun Yu, Yuxuan Chen,801
Xiangyu Zhang, and Yuanchun Shi. 2023. Auto-802
task: Executing arbitrary voice commands by explor-803
ing and learning from mobile gui. arXiv preprint804
arXiv:2312.16062.805

Pranav Putta, Edmund Mills, Naman Garg, and 1806
others. 2024. Agent q: Advanced reasoning and807
learning for autonomous ai agents. arXiv preprint808
arXiv:2408.07199.809

Yujia Qin, Yining Ye, Junjie Fang, and 1 others. 2025. 810
Ui-tars: Pioneering automated gui interaction with 811
native agents. arXiv preprint arXiv:2501.12326. 812

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, 813
and 1 others. 2024. Androidworld: A dynamic bench- 814
marking environment for autonomous agents. arXiv 815
preprint arXiv:2405.14573. 816

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori- 817
ana Riva, and Timothy P Lillicrap. 2023. An- 818
droidinthewild: A large-scale dataset for android 819
device control. In NIPS Datasets and Benchmarks 820
Track. 821

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 822
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 823
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek- 824
math: Pushing the limits of mathematical reason- 825
ing in open language models. arXiv preprint 826
arXiv:2402.03300. 827

Huawen Shen, Chang Liu, Gengluo Li, and 1 others. 828
2024. Falcon-ui: Understanding gui before following 829
user instructions. arXiv preprint arXiv:2412.09362. 830

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, 831
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards 832
multi-modal conversational agents on mobile gui. In 833
EMNLP, pages 6699–6712. 834

Hugo Touvron, Thibaut Lavril, Gautier Izacard, and 1 835
others. 2023. Llama: Open and efficient foundation 836
language models. arXiv preprint arXiv:2302.13971. 837

Daniel Toyama, Philippe Hamel, Anita Gergely, and 838
1 others. 2021. Androidenv: A reinforcement 839
learning platform for android. arXiv preprint 840
arXiv:2105.13231. 841

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini 842
Narayanan. 2024. Ugif-dataset: A new dataset for 843
cross-lingual, cross-modal sequential actions on the 844
ui. In Findings of NAACL, pages 1390–1399. 845

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling 846
conversational interaction with mobile ui using large 847
language models. In CHI, pages 1–17. 848

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi 849
Grossman, and Yang Li. 2021. Screen2words: Au- 850
tomatic mobile ui summarization with multimodal 851
learning. In UIST, pages 498–510. 852

Junyang Wang, Haiyang Xu, Haitao Jia, and 1 others. 853
2024a. Mobile-agent-v2: Mobile device operation 854
assistant with effective navigation via multi-agent 855
collaboration. In NIPS. 856

Junyang Wang, Haiyang Xu, Jiabo Ye, and 1 others. 857
2024b. Mobile-agent: Autonomous multi-modal 858
mobile device agent with visual perception. arXiv 859
preprint arXiv:2401.16158. 860

Lei Wang, Chen Ma, Xueyang Feng, and 1 others. 861
2024c. A survey on large language model based 862
autonomous agents. FCS, 18(6):186345. 863

10

https://openai.com/index/hello-gpt-4o/


Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-864
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin865
Wang, Wenbin Ge, and 1 others. 2024d. Qwen2-866
vl: Enhancing vision-language model’s perception867
of the world at any resolution. arXiv preprint868
arXiv:2409.12191.869

Zhenhailong Wang, Haiyang Xu, Junyang Wang, and 1870
others. 2025. Mobile-agent-e: Self-evolving mo-871
bile assistant for complex tasks. arXiv preprint872
arXiv:2501.11733.873

Hao Wen, Yuanchun Li, Guohong Liu, and 1 oth-874
ers. 2023a. Empowering LLM to use Smartphone875
for Intelligent Task Automation. arXiv preprint876
arXiv:2308.15272.877

Hao Wen, Yuanchun Li, Guohong Liu, and 1 others.878
2024. Autodroid: Llm-powered task automation in879
android. In MobiCom, pages 543–557.880

Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun881
Li. 2023b. Droidbot-gpt: Gpt-powered ui automation882
for android. arXiv preprint arXiv:2304.07061.883

Qinzhuo Wu, Weikai Xu, Wei Liu, and 1 others. 2024.884
Mobilevlm: A vision-language model for better intra-885
and inter-ui understanding. In EMNLP, pages 10231–886
10251.887

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang,888
Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen889
Ding, Liheng Chen, Paul Pu Liang, and 1 others.890
2025. Os-atlas: A foundation action model for gener-891
alist gui agents. In 13th International Conference on892
Learning Representations, ICLR 2025.893

Xiaobo Xia and Run Luo. 2025. Gui-r1: A generalist894
r1-style vision-language action model for gui agents.895
arXiv preprint arXiv:2504.10458.896

Tianbao Xie, Fan Zhou, and 1 others. 2024. Openagents:897
An open platform for language agents in the wild.898
In ICLR 2024 Workshop on Large Language Model899
(LLM) Agents.900

Yiheng Xu, Zekun Wang, Junli Wang, and 1 oth-901
ers. 2024. Aguvis: Unified pure vision agents902
for autonomous gui interaction. arXiv preprint903
arXiv:2412.04454.904

An Yan, Zhengyuan Yang, Wanrong Zhu, and 1 others.905
2023. Gpt-4v in wonderland: Large multimodal mod-906
els for zero-shot smartphone gui navigation. arXiv907
preprint arXiv:2311.07562.908

An Yang, Baosong Yang, and 1 others. 2024a. Qwen2909
technical report. Preprint, arXiv:2407.10671.910

Yuhao Yang, Yue Wang, Dongxu Li, and 1 others. 2024b.911
Aria-ui: Visual grounding for gui instructions. arXiv912
preprint arXiv:2412.16256.913

Keen You, Haotian Zhang, Eldon Schoop, and 1 others.914
2024. Ferret-ui: Grounded mobile ui understanding915
with multimodal llms. In ECCV, pages 240–255.916

Chaoyun Zhang, Liqun Li, Shilin He, and 1 others. 917
2024a. Ufo: A ui-focused agent for windows os 918
interaction. arXiv preprint arXiv:2402.07939. 919

Chi Zhang, Zhao Yang, Jiaxuan Liu, and 1 others. 2023. 920
AppAgent: Multimodal Agents as Smartphone Users. 921
arXiv preprint arXiv:2312.13771. 922

Jiwen Zhang, Jihao Wu, Yihua Teng, and 1 others. 923
2024b. Android in the zoo: Chain-of-action-thought 924
for gui agents. arXiv preprint arXiv:2403.02713. 925

Xiaoyi Zhang, Lilian De Greef, Amanda Swearngin, 926
and 1 others. 2021. Screen recognition: Creating 927
accessibility metadata for mobile applications from 928
pixels. In CHI, pages 1–15. 929

Zhuosheng Zhang and Aston Zhang. 2023. You only 930
look at screens: Multimodal chain-of-action agents. 931
arXiv preprint arXiv:2309.11436. 932

Kangjia Zhao, Jiahui Song, Leigang Sha, and 1 oth- 933
ers. 2024. Gui testing arena: A unified benchmark 934
for advancing autonomous gui testing agent. arXiv 935
preprint arXiv:2412.18426. 936

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and 937
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent, 938
if grounded. arXiv preprint arXiv:2401.01614. 939

Shuyan Zhou, Frank F Xu, Hao Zhu, and 1 others. 2023. 940
Webarena: A realistic web environment for building 941
autonomous agents. In ICLR. 942

Zichen Zhu, Hao Tang, Yansi Li, and 1 others. 2024. 943
Moba: A two-level agent system for efficient mobile 944
task automation. arXiv preprint arXiv:2410.13757. 945

11

https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671


Table 2: Overview of (M)LLM-Based GUI Agents.

Model Name Category GUI Perceiver Learning Method Base Model Scenarios

Prompting-based

PaLM (Wang et al., 2023) Single Step HTML Few-shot prompting PaLM Mobile
MM-Navigator (Yan et al., 2023) Single Step Screenshot Zero-shot prompting GPT-4V Mobile
MemoDroid (Lee et al., 2023b) End-to-End HTML Few-shot prompting ChatGPT/GPT-4V Mobile/Desktop
AutoTask (Pan et al., 2023) End-to-End Screenshot/API Zero-shot prompting GPT-4V Mobile
AppAgent (Zhang et al., 2023) End-to-End Screenshot Exploration-based/In-context learning GPT4V Mobile
DroidBot-GPT (Wen et al., 2023b) End-to-End Screenshot Zero-shot prompting ChatGPT Mobile
Mobile-Agent-V2 (Wang et al., 2024a) End-to-End Screenshot Zero-shot prompting GPT4V Mobile
SeeAct (Zheng et al., 2024) End-to-End Screenshot/HTML Few-shot prompting GPT-4V Web
Mobile-Agent-E (Wang et al., 2025) End-to-End Screenshot Zero-shot prompting GPT-4o/Claude-3.5-Sonnet/Gemini-1.5-pro Mobile

Learning-based

Spotlight (Li and Li, 2023) UI modeling Screenshot Pretrain/SFT ViT Mobile/Web
Pix2Struct (Lee et al., 2023a) UI modeling Screenshot Pretrain/SFT ViT Web
VUT (Li et al., 2021) UI modeling Screenshot SFT Transformer Mobile/Web
Screen Recognition (Zhang et al., 2021) UI modeling Screenshot SFT Faster R-CNN Mobile
Screen2Words (Wang et al., 2021) UI modeling Screenshot SFT Transformer Mobile
Aria-UI (Yang et al., 2024b) UI modeling Screenshot Pretrain/SFT Aria Mobile/Web/Desktop
Ferret-UI (You et al., 2024) UI modeling Screenshot Pretrain/SFT Ferret Mobile
AutoDroid (Wen et al., 2024) End-to-End HTML Exploration-based/SFT Vicuna-7B Mobile
Seq2Act (Li et al., 2020) End-to-End Texts Supervised learning Transformer Mobile
Meta-GUI (Sun et al., 2022) End-to-End Screenshot/XML Supervised learning Transformer Mobile
Agent Q (Putta et al., 2024) End-to-End Screenshot/DOM RL/BC Training Transformer Web
WebGUM (Furuta et al., 2024) End-to-End Screenshot/HTML SFT Flan-T5 Web
CogAgent (Hong et al., 2024) End-to-End Screenshot SFT CogVLM Mobile/Desktop
MobileVLM (Wu et al., 2024) End-to-End XML/Screenshot Pretrain/SFT Qwen-VL-Chat Mobile
WebGPT (Nakano et al., 2021) End-to-End Texts SFT GPT-3 Web
AutoGLM (Liu et al., 2024) End-to-End Screenshot/HTML Pretrain/SFT/RL ChatGLM Mobile/Web
OdysseyAgent (Lu et al., 2024a) End-to-End Screenshot SFT Qwen-VL Mobile

Table 3: Performance on ScreenSpot across Mobile, Desktop, and Web. “-” indicates missing values due to
unavailable results in the original paper, unreleased model checkpoints, and unreleased inference code.

Model Name Accuracy (%) Avg.

Mobile Desktop Web

Text Icon Text Icon Text Icon

Proprietary Models
GPT-4o (OpenAI, 2024) 30.5 23.2 20.6 19.4 11.1 7.8 18.8
Claude Computer Use (Anthropic, 2024) - - - - - - 83.0
Gemini 2.0 (Project Mariner) (DeepMind, 2024) - - - - - - 84.0

General Open-source Models
Qwen2-VL-7B (Wang et al., 2024d) 61.3 39.3 52.0 45.0 33.0 21.8 42.9
Qwen2.5-VL-3B (Bai et al., 2025) - - - - - - 55.5
Qwen2.5-VL-7B (Bai et al., 2025) - - - - - - 84.7

GUI-specific Models (SFT)
CogAgent-18B (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick-9.6B (Cheng et al., 2024) 78.0 52.0 72.2 30.0 55.7 32.5 53.4
UGround-7B (Gou et al., 2025) 82.8 60.3 82.5 63.6 80.4 70.4 73.3
OS-Atlas-7B (Wu et al., 2025) 93.0 72.9 91.8 62.9 90.9 74.3 82.5
ShowUI-2B (Lin et al., 2024) 92.3 75.5 76.3 61.1 81.7 63.6 75.1
Aguvis-7B (Xu et al., 2024) 95.6 77.7 93.8 67.1 88.3 75.2 84.4
UI-TARS-7B (Qin et al., 2025) 94.5 89.2 95.9 85.7 90.0 83.5 89.5
UI-TARS-72B (Qin et al., 2025) 94.9 82.5 89.7 88.6 88.7 85.0 88.4

GUI-specific Models (RL)
UI-R1-3B (Lu et al., 2025) - - 90.2 59.3 85.2 73.3 -
GUI-R1-3B (Xia and Luo, 2025) - - 93.8 64.8 89.6 72.1 -
GUI-R1-7B (Xia and Luo, 2025) - - 91.8 73.6 91.3 75.7 -
InfiGUI-R1-3B (Liu et al., 2025) 97.1 81.2 94.3 77.1 91.7 77.6 87.5
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