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Abstract

Gradient compression is a popular technique for improving communication com-
plexity of stochastic first-order methods in distributed training of machine learning
models. However, the existing works consider only with-replacement sampling of
stochastic gradients. In contrast, it is well-known in practice and recently confirmed
in theory that stochastic methods based on without-replacement sampling, e.g.,
Random Reshuffling (RR) method, perform better than ones that sample the gradi-
ents with-replacement. In this work, we close this gap in the literature and provide
the first analysis of methods with gradient compression and without-replacement
sampling. We first develop a distributed variant of random reshuffling with gradient
compression (Q-RR), and show how to reduce the variance coming from gradient
quantization through the use of control iterates. Next, to have a better fit to Feder-
ated Learning applications, we incorporate local computation and propose a variant
of Q-RR called Q-NASTYA. Q-NASTYA uses local gradient steps and different local
and global stepsizes. Next, we show how to reduce compression variance in this
setting as well. Finally, we prove the convergence results for the proposed methods
and outline several settings in which they improve upon existing algorithms.

1 Introduction

Distributed learning plays a crucial role in the training of modern Deep Learning (DL) models since
distributed approaches are able to significantly reduce training time [Goyal et al., 2017, You et al.,
2019]. Moreover, distributed methods are mandatory for such applications as Federated learning
(FL) [Konečný et al., 2016, McMahan et al., 2017], where multiple nodes connected over a network
collaborate on a learning task. Each node possesses its own dataset and cannot share this data with
other nodes or a central server. As a result, algorithms for federated learning often rely on local
computation and lack access to the entire dataset of training examples. Federated learning finds
applications in diverse fields, including language modeling for mobile keyboards [Liu et al., 2021],
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healthcare [Antunes et al., 2022], and wireless communications [Yang et al., 2022]. Its applications
extend to various other domains [Kairouz et al., 2019].

Distributed learning tasks are often solved through empirical-risk minimization (ERM), where the
m-th device contributes an empirical loss function fm(x) representing the average loss of model x
on its local dataset, and our goal is to then minimize the average loss over all the nodes:

min
x∈Rd

[
f(x)

def
=

1

M

M∑
m=1

fm(x)

]
, (1)

where the function f represents the average loss. Every fm is an average of sample loss functions f i
m

each representing the loss of model x on the i-th datapoint on the m-th clients’ dataset: that is for
each m ∈ {1, 2, . . . ,M} we have

fm(x)
def
=

1

nm

nm∑
i=1

f i
m(x).

For simplicity we shall assume that the datasets on all clients are of equal size: n1 = n2 = . . . = nM ,
though this assumption is only for convenience and our results easily extend to the case when clients
have datasets of unequal sizes. Thus our optimization problem is

min
x∈Rd

[
f(x) =

1

nM

M∑
m=1

n∑
i=1

f i
m(x)

]
. (2)

Because d is often very large in practice, the dominant paradigm for solving (2) relies on first-order
(gradient) information. Federated learning algorithms have access to two key primitives: (a) local
computation, where for a given model x ∈ Rd we can compute stochastic gradients ∇f i

m(x) locally
on client m, and (b) communication, where the different clients can exchange their gradients or
models with a central server.

1.1 Communication compression

In practice, communication is more expensive than local computation [Kairouz et al., 2019], and as
such one of the chief concerns of algorithms for distributed learning is communication efficiency.
Algorithms for distributed/federated learning have thus focused on achieving communication effi-
ciency, with one common ingredient being the use of gradient compression, where each client sends
a compressed or quantized version of their update instead of the full update vector, potentially saving
communication bandwidth by sending fewer bits over the network. There are many operators that can
be used for compressing the update vectors: stochastic quantization [Alistarh et al., 2017], random
sparsification [Wangni et al., 2018, Stich et al., 2018], and others [Tang et al., 2020]. In this work we
consider compression operators satisfying the following assumption:
Assumption 1. A compression operator is an operator Q : Rd → Rd such that for some ω > 0, the
relations

E [Q(x)] = x and E
[
∥Q(x)− x∥2

]
≤ ω∥x∥2 hold for x ∈ Rd.

Unbiased compressors can reduce the number of bits clients communicate per round, but also increases
the variance of the stochastic gradients used slowing down overall convergence, see e.g. [Khirirat
et al., 2018, Theorem 5.2] and [Stich, 2020, Theorem 1]. By using control iterates, Mishchenko et al.
[2019b] developed DIANA—an algorithm that can reduce the variance due to gradient compression
with unbiased compression operators, and thus ensure fast convergence. DIANA has been extended
and analyzed in many settings [Horváth et al., 2019, Stich, 2020, Safaryan et al., 2021] and forms an
important tool in our arsenal for using gradient compression.

1.2 Random Reshuffling

Despite the importance of addressing the communication bottleneck, local computations also signifi-
cantly affect the training. For simplicity, consider the 1-node scenario. In this case, the update rule
of the standard work-horse method in stochastic optimization – stochastic gradient descent (SGD)
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Table 1: Summary of known and new complexity results for solving distributed finite-sum optimization problem (2). Column “Complexity"
indicates the number of communication rounds to find a solution with accuracy ε > 0. Column “RR?" shows whether an algorithm uses
Random Reshuffling, “C?" indicates whether a method applies the compression of gradients or difference between the gradients and also whether
methods for communication, “H?" means independence from the constant of data heterogeneity in the complexity, “CVX?" indicates whether
each loss on the i-th datapoint on the m-th client is convex, but not strongly convex. Notation: κ = Lmax/µ and κ̃ = Lmax/µ̃ are conditional
number of problem (2), where Lmax = Lipschitz constant, µ and µ̃ are the strong convexity constants of f and fi

m respectively; variances

at the solution point x⋆: σ2
∗ = 1

Mn

M∑
m=1

n∑
i=1

∥∇fi
m(x⋆) − ∇fm(x⋆)∥2 and σ2

∗,n = 1
n

n∑
i=1

∥∇fi(x⋆)∥2; heterogeneity constant

ζ2
⋆ = 1

M

M∑
m=1

∥∇fm(x⋆)∥2. The results of this paper are highlighted in blue.

Method Complexity RR? C? H? CVX?
SGD

[Gower et al., 2019] κ+
σ2
⋆,n

µ2ε
✗ ✗ ✗(1) ✓

RR
[Mishchenko et al., 2020] κ̃+

σ⋆,n

µ̃

√
κ̃n
ε

✓ ✗ ✗(1) ✗

RR
[Mishchenko et al., 2020] nκ+

σ⋆,n

µ̃

√
κn
ε

✓ ✗ ✗(1) ✓

QSGD
[Gorbunov et al., 2020]

(
1 + ω

M

)
κ+ ω

M

σ2
⋆+ζ2⋆
µ2ε

+
σ2
⋆

Mµ2ε
(2) ✗ ✓ ✗ ✓

Q-RR
Corollary 1

(
1 + ω

M

)
κ̃+ ω

M

σ2
⋆+ζ2⋆
µ̃2ε

+
σ⋆,n

µ̃

√
κ̃n
ε

✓ ✓ ✗ ✗

Q-RR
Corollary 6

(
n+ ω

M

)
κ+ ω

M

σ2
⋆+ζ2⋆
µ2ε

+ ρ⋆
µ

√
κn
ε

(3) ✓ ✓ ✗ ✓

DIANA
[Mishchenko et al., 2019a]

(
1 + ω

M

)
κ+ ω

M

σ2
⋆

µ2ε
+

σ2
⋆

Mµ2ε
✗ ✓ ✓ ✓

DIANA-RR
Corollary 2 n(1 + ω) +

(
1 + ω

M

)
κ̃+

σ⋆,n

µ̃

√
κ̃n
ε

✓ ✓ ✓ ✗

DIANA-RR
Corollary 8 n(1 + ω) +

(
n+ ω

M

)
κ+

σ⋆,n

µ

√
κn
ε

✓ ✓ ✓ ✓

(1) In the case of SGD, RR we use ✗ in “H?" to show that the complexity of these methods is provided in the non-distributed setup.
(2) The following inequality is useful for the comparison of complexities: σ2

⋆,n ≤ σ2
⋆.

(3) We denote ρ2
⋆ = ω

M (σ2
⋆ + ζ2

⋆) + σ2
⋆,n.

[Robbins and Monro, 1951] – can be written as follows: xt+1 = xt − γ∇f j(xt), where j is sampled
from {1, . . . , n} uniformly at random. This procedure thus uses with-replacement sampling in order
to select the stochastic gradient used at each step from the dataset. However, in the training of DL
models, without-replacement sampling is used much more often: that is, at the beginning of each
epoch we choose a permutation π1, π2, . . . , πn of {1, 2, . . . , n} and do the i-th update using the πi-ith
gradient: xi+1

t = xi
t − γ∇fπi(xi

t). Without-replacement sampling SGD, also known as Random
Reshuffling (RR) [Bottou, 2009], typically achieves better asymptotic convergence rates compared
to with-replacement SGD and can improve upon it in many settings as shown by recent theoretical
progress [Mishchenko et al., 2020, Ahn et al., 2020, Rajput et al., 2020, Safran and Shamir, 2021].
While with-replacement SGD achieves an error proportional to O

(
1
T

)
after T steps [Stich, 2019],

Random Reshuffling achieves an error of O
(

n
T 2

)
after T steps, faster than SGD when the number of

steps T is large.

1.3 Can Communication Compression and Random Reshuffling be Friends?

As we described earlier, Random Reshuffling and communication compression are two important
tools for training modern DL models, and both techniques are relatively well understood. However,
there are no papers that study Random Reshuffling and communication compression in combination.
This leads us to the natural question: how these techniques should be combined to improve the
convergence speed of existing distributed methods?

1.4 Contributions

In this paper, we aim to develop methods for Distributed and Federated Learning that combine
gradient compression and random reshuffling. While each of these techniques can aid in reducing the
communication complexity of distributed optimization, their combination is under-explored. Thus
our goal is to design methods that improve upon existing algorithms in convergence rates and in
practice. We summarize our contributions as follows.
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⋄ The issue: naïve combination has no improvements. As a natural step towards our goal, we
propose and study a new algorithm, Q-RR (Algorithm 1), that combines random reshuffling with
gradient compression at every communication round. However, for Q-RR our theoretical results do
not show any improvement upon QSGD when the compression level is reasonable (see Table 1).
Moreover, we observe similar performance of Q-RR and QSGD in various numerical experiments.
Therefore, we conclude that this phenomenon is not an artifact of our analysis but rather an issue of
Q-RR: communication compression adds an additional noise that dominates the one coming from
the stochastic gradients sampling.

⋄ The remedy: reduction of compression variance. To remove the additional variance added
by the compression and unleash the potential of Random Reshuffling in distributed learning
with compression, we propose DIANA-RR (Algorithm 2), a combination of Q-RR and the DIANA
algorithm. We derive the convergence rates of the new method and show that it improves upon the
convergence rates of Q-RR, QSGD, and DIANA (see Table 1). We point out that to achieve such
results we use n shift-vectors per worker in DIANA-RR unlike DIANA that uses only 1 shift-vector.

⋄ Extensions to the local steps. Inspired by the NASTYA algorithm of Malinovsky et al. [2022], we
propose a variant of NASTYA, Q-NASTYA (Algorithm 3), that naïvely mixes quantization, local
steps with random reshuffling, and uses different local and server stepsizes. Although it improves
in per-round communication cost over NASTYA but, similar to Q-RR, we show that Q-NASTYA
suffers from added variance due to gradient quantization. To overcome this issue, we propose
another algorithm, DIANA-NASTYA (Algorithm 4), that adds DIANA-style variance reduction to
Q-NASTYA and removes the additional variance.

Finally, to illustrate our theoretical findings we conduct experiments on federated logistic regression
tasks and on distributed training of neural networks.

2 Algorithms and convergence theory

We will primarily consider the setting of strongly-convex and smooth optimization. We assume that
the average function f is strongly convex:
Assumption 2. Function f : Rd → R is µ-strongly convex, i.e., for all x, y ∈ Rd,

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ

2
∥x− y∥2, (3)

and functions f i
1, f

i
2, . . . , f

i
M : Rd → R are convex for all i = 1, . . . , n.

Examples of objectives satisfying Assumption 2 include ℓ2-regularized linear and logistic regression.
Throughout the paper, we assume that f has the unique minimizer x⋆ ∈ Rd. We also use the
assumption that each individual loss f i

m is smooth, i.e. has Lipschitz-continuous first-order derivatives:

Assumption 3. Function f i
m : Rd → R is Li,m-smooth for every i ∈ [n] and m ∈ [M ], i.e., for all

x, y ∈ Rd and for all m ∈ [M ] and i ∈ [n],

∥∇f i
m(x)−∇f i

m(y)∥ ≤ Li,m∥x− y∥. (4)

We denote the maximal smoothness constant as Lmax
def
= maxi,m Li,m.

For some methods, we shall additionally impose the assumption that each function is strongly convex:
Assumption 4. Each function f i

m : Rd → R is µ̃-strongly convex.

The Bregman divergence associated with a convex function h is defined for all x, y ∈ Rd as

Dh(x, y)
def
= h(x)− h(y)− ⟨∇h(y), x− y⟩ .

Note that the inequality (3) defining strong convexity can be written as Df (x, y) ≥ µ
2 ∥x− y∥2.

2.1 Algorithm Q-RR

The first method we introduce is Q-RR (Algorithm 1). Q-RR is a straightforward combination of
distributed random reshuffling and gradient quantization. This method can be seen as the stochastic
without-replacement analogue of the distributed quantized gradient method of Khirirat et al. [2018].
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Algorithm 1 Q-RR: Distributed Random Reshuffling with Quantization

Input: x0 – starting point, γ > 0 – stepsize
1: for t = 0, 1, . . . , T − 1 do
2: Receive xt from the server and set x0

t,m = xt

3: Sample random permutation of [n]: πm = (π0
m, . . . , πn−1

m )
4: for i = 0, 1, . . . , n− 1 do
5: for m = 1, . . . ,M in parallel do
6: Receive xi

t from the server, compute and send Q
(
∇f

πi
m

m (xi
t)
)

back
7: end for
8: Compute and send xi+1

t = xi
t − γ 1

M

∑M
m=1 Q

(
∇f

πi
m

m (xi
t)
)

to the workers
9: end for

10: xt+1 = xn
t

11: end for
Output: xT

We shall use the notion of shuffling radius defined by Mishchenko et al. [2021] for the analysis of
distributed methods with random reshuffling:

Definition 2.1. Define the iterate sequence xi+1
⋆ = xi

⋆ −
γ
M

∑M
m=1 ∇f

πi
m

m (x⋆). Then the shuffling
radius is the quantity

σ2
rad

def
= max

i

{
1

γ2M

M∑
m=1

EDfπi
m
(xi

⋆, x⋆)

}
.

We provide clarifications regarding this term in Appendix C.1. To compare our subsequent results
with known ones, we introduce bounds on the shuffling radius. The following lemma demonstrates
that these bounds are independent of the stepsize γ, even though γ is used in Definition 2.1.
Lemma 2.1 ([Mishchenko et al., 2020]). Let Assumptions 3, 4 hold. Then the shuffling radius σ2

rad
satisfies the following inequlity

µ̃n

8
σ2
⋆,n ≤ σ2

rad ≤ Lmaxn

4
σ2
⋆,n,

where σ2
⋆,n

def
= 1

n

n∑
i=1

∥∇f i(x⋆)∥2, and f i = 1
M

M∑
m=1

f i
m.

We now state the main convergence theorem for Algorithm 1:
Theorem 2.1. Let Assumptions 1, 3, 4 hold and let the stepsize satisfy 0 < γ ≤ 1

(1+2 ω
M )Lmax

. Then,

for all T ≥ 0 the iterates produced by Q-RR (Algorithm 1) satisfy

E∥xT − x⋆∥2 ≤ (1− γµ̃)
nT ∥x0 − x⋆∥2 +

2γ2σ2
rad

µ̃
+

2γω

µ̃M
(ζ2⋆ + σ2

⋆), (5)

where ζ2⋆
def
= 1

M

M∑
m=1

∥∇fm(x⋆)∥2, and σ2
⋆

def
= 1

Mn

M∑
m=1

n∑
i=1

∥∇f i
m(x⋆)−∇fm(x⋆)∥2.

All proofs are relegated to the appendix. By choosing the stepsize γ properly, we can obtain the
communication complexity (number of communication rounds) needed to find an ε-approximate
solution as follows:
Corollary 1. Under the same conditions as Theorem 2.1 and for Algorithm 1, there exists a stepsize
γ > 0 such that the number of communication rounds nT to find a solution with accuracy ε > 0

(i.e. E∥xT − x⋆∥2 ≤ ϵ) is equal to Õ
((

1 + ω
M

)
Lmax

µ̃ +
ω(ζ2

⋆+σ2
⋆)

Mµ̃2ε + σrad√
µ̃3ε

)
, where Õ(·) hides

constants and logarithmic factors.

The complexity of Quantized SGD (QSGD) is [Gorbunov et al., 2020]:

Õ
((

1 + ω
M

)
Lmax

µ +
(ωζ2

⋆+(1+ω)σ2
⋆)

Mµ2ε

)
. For simplicity, let us neglect the differences between
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Algorithm 2 DIANA-RR

Input: x0 – starting point, {hi
0,m}M,n

m,i=1,1 – initial shift-vectors, γ > 0 – stepsize, α > 0 – stepsize
for learning the shifts

1: for t = 0, 1, . . . , T − 1 do
2: Receive xt from the server and set x0

t,m = xt

3: Sample random permutation of [n]: πm = (π0
m, . . . , πn−1

m )
4: for i = 0, 1, . . . , n− 1 do
5: for m = 1, 2, . . . ,M in parallel do
6: Receive xi

t from the server, compute and send Q
(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

)
back

7: Set ĝπ
i
m

t,m = h
πi
m

t,m +Q
(
∇f

πi
m

m (xi
t,m)− h

πi
m

t,m

)
8: Set hπi

m
t+1,m = h

πi
m

t,m + αQ
(
∇f

πi
m

m (xi
t,m)− h

πi
m

t,m

)
9: end for

10: Compute xi+1
t = xi

t − γ 1
M

∑M
m=1 ĝ

πi
m

t,m and send xi+1
t to the workers

11: end for
12: xt+1 = xn

t
13: end for
Output: xT

µ and µ̃. First, when ω = 0 we recover the complexity of FedRR [Mishchenko et al., 2021]
which is known to be better than the one of SGD as long as ε is sufficiently small as we have
nµσ2

⋆,n/8 ≤ σ2
rad ≤ nLσ2

⋆,n/4 from Lemma 2.1. Next, when M = 1 and ω = 0 (single node, no
compression) our results recovers the rate of RR [Mishchenko et al., 2020].

However, it is more interesting to compare Q-RR and QSGD when M > 1 and ω > 1, which is
typically the case. In these settings, Q-RR and QSGD have the same complexity since the O(1/ε)
term dominates the O(1/

√
ε) one if ε is sufficiently small. That is, the derived result for Q-RR has no

advantages over the known one for QSGD unless ω is very small, which means that there is almost
no compression at all. We also observe this phenomenon in the experiments.

The main reason for that is the variance appearing due to compression. Indeed, even if the current
point is the solution of the problem (xi

t = x∗), the update direction −γ 1
M

∑M
m=1 Q

(
∇f

πi
m

m (xi
t)
)

has the compression variance

EQ

[∥∥∥∥∥ γ

M

M∑
m=1

(
Q(∇f

πi
m

m (x⋆))−∇f
πi
m

m (x⋆)
)∥∥∥∥∥

2]
≤ γ2ω

M2

M∑
m=1

∥∇f
πi
m

m (x⋆)∥2.

This upper bound is tight and non-zero in general. Moreover, it is proportional to γ2 that creates the
term proportional to γ in (5) like in the convergence results for QSGD/SGD, while the RR-variance is
proportional to γ2 in the same bound. Therefore, during the later stages of the convergence Q-RR
behaves similarly to QSGD when we decrease the stepsize.

2.2 Algorithm DIANA-RR

To reduce the additional variance caused by compression, we apply DIANA-style shift sequences
[Mishchenko et al., 2019b, Horváth et al., 2019]. Thus we obtain DIANA-RR (Algorithm 2), which
applies compression to the differences between the gradients and learnable shifts. Since the shifts are
updated using the past gradients information, one can see DIANA-RR as a method with compression
of gradient differences. We notice that unlike DIANA, DIANA-RR has n shift-vectors on each node.
Theorem 2.2. Let Assumptions 1, 3, 4 hold and suppose that the stepsizes satisfy γ ≤

min

{
α

2nµ̃ ,
1

(1+ 6ω
M )Lmax

}
, and α ≤ 1

1+ω . Define the following Lyapunov function for every t ≥ 0

Ψt+1
def
= ∥xt+1 − x⋆∥2 +

4ωγ2

αM2

M∑
m=1

n−1∑
j=0

(1− γµ)j∥∆j
t+1,m∥2, (6)
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Algorithm 3 Q-NASTYA

Input: x0 – starting point, γ > 0 – local stepsize, η > 0 – global stepsize
1: for t = 0, 1, . . . , T − 1 do
2: for m ∈ [M ] in parallel do
3: Receive xt from the server and set x0

t,m = xt

4: Sample random permutation of [n]: πm = (π0
m, . . . , πn−1

m )
5: for i = 0, 1, . . . , n− 1 do
6: Set xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

7: end for
8: Compute gt,m = 1

γn

(
xt − xn

t,m

)
and send Qt(gt,m) to the server

9: end for
10: Compute gt =

1
M

∑M
m=1 Qt(gt,m)

11: Compute xt+1 = xt − ηgt and send xt+1 to the workers
12: end for
Output: xT

where ∆j
t+1,m = h

πj
m

t+1,m − ∇f
πj
m

m (x⋆) Then, for all T ≥ 0 the iterates produced by DIANA-RR
(Algorithm 2) satisfy

E [ΨT ] ≤ (1− γµ̃)
nT

Ψ0 +
2γ2σ2

rad

µ̃

Corollary 2. Under the same conditions as Theorem 2.2 and for Algorithm 2, there exists stepsizes
γ, α > 0 such that the number of communication rounds nT to find a solution with accuracy ε > 0 is

Õ
(
n(1 + ω) +

(
1 + ω

M

)
Lmax

µ̃ + σrad√
εµ̃3

)
.

Unlike Q-RR/QSGD/DIANA, DIANA-RR does not have a Õ(1/ε)-term, which makes it superior to
Q-RR/QSGD/DIANA for small enough ε. However, the complexity of DIANA-RR has an additive
Õ(n(1 + ω)) term arising due to learning the shifts {hi

t,m}m∈[M ],i∈[n]. Nevertheless, this additional
term is not the dominating one when ε is small enough. Next, we elaborate a bit more on the
comparison between DIANA and DIANA-RR. That is, DIANA has Õ

((
1 + ω

M

)
Lmax

µ +
(1+ω)σ2

⋆

Mµ2ε

)
complexity [Gorbunov et al., 2020]. Neglecting the differences between µ and µ̃, we observe
a similar relation between DIANA-RR and DIANA as between RR and SGD: instead of the term
O((1+ω)σ2

⋆/(Mµ2ε)) appearing in the complexity of DIANA, DIANA-RR has O(σrad/
√

εµ̃3) term much
better depending on ε. To the best of our knowledge, our result is the only known one establishing
the theoretical superiority of RR to regular SGD in the context of distributed learning with gradient
compression. Moreover, when ω = 0 (no compression) we recover the rate of FedRR and when
additionally M = 1 (single worker) we recover the rate of RR.

2.3 Algorithms with Local Steps

In this subsection, we study a new variant of NASTYA, Q-NASTYA (Algorithm 3), that unifies
quantization, local steps with random reshuffling, and uses different local and server stepsizes.
Although it improves in per-round communication cost over NASTYA but, similar to Q-RR, we show
that Q-NASTYA suffers from added variance due to gradient quantization. To overcome this issue, we
propose another algorithm, DIANA-NASTYA (Algorithm 4), that adds DIANA-style variance reduction
to Q-NASTYA and removes the additional variance.

Theorem 2.3. Let Assumptions 1, 2, 3 hold. Let the stepsizes γ, η satisfy 0 < η ≤ 1

16Lmax(1+ ω
M )

,

0 < γ ≤ 1
5nLmax

. Then, for all T ≥ 0 the iterates produced by Q-NASTYA (Algorithm 3) satisfy

E
[
∥xT − x⋆∥2

]
≤
(
1− ηµ

2

)T
∥x0 − x⋆∥2 + 8

ηω

µM
ζ2⋆ +

9

2

γ2nLmax

µ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
.

Corollary 3. Under the same conditions as Theorem E.1 and for Algorithm 3, there exist stepsizes
γ = η/n and η > 0 such that the number of communication rounds T to find a solution with accuracy
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Algorithm 4 DIANA-NASTYA

Input: x0 – starting point, {h0,m}Mm=1 – initial shift-vectors, γ > 0 – local stepsize, η > 0 – global
stepsize, α > 0 – stepsize for learning the shifts

1: for t = 0, 1, . . . , T − 1 do
2: for m = 1, . . . ,M in parallel do
3: Receive xt from the server and set x0

t,m = xt

4: Sample random permutation of [n]: πm = (π0
m, . . . , πn−1

m )
5: for i = 0, 1, . . . , n− 1 do
6: Set xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

7: end for
8: Compute gt,m = 1

γn

(
xt − xn

t,m

)
and send Qt (gt,m − ht,m) to the server

9: Set ht+1,m = ht,m + αQt (gt,m − ht,m)
10: Set ĝt,m = ht,m +Qt (gt,m − ht,m)
11: end for
12: ht+1 = 1

M

∑M
m=1 ht+1,m = ht +

α
M

∑M
m=1 Qt (gt,m − ht,m)

13: ĝt =
1
M

∑M
m=1 ĝt,m = ht +

1
M

∑M
m=1 Qt (gt,m − ht,m)

14: xt+1 = xt − ηĝt
15: end for
Output: xT

ε > 0 is Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M
ζ2
⋆

εµ3 +
√

Lmax

εµ3

√
ζ2⋆ +

σ2
⋆

n

)
. If γ → 0, one can choose η > 0 such

that the above complexity bound improves to Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M
ζ2
⋆

εµ3

)
.

We emphasize several differences with the known theoretical results. First, the FedCOM method
of Haddadpour et al. [2021] was analyzed in the homogeneous setting only, i.e., fm(x) = f(x)
for all m ∈ [M ], which is an unrealistic assumption for FL applications. In contrast, our result
holds in the fully heterogeneous case. Next, the analysis of FedPAQ of Reisizadeh et al. [2020]
uses a bounded variance assumption, which is also known to be restrictive. Nevertheless, let us
compare to their result. Reisizadeh et al. [2020] derive the following complexity for their method:
Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M
σ2

µ2ε + σ2

Mµ2ε

)
. This result is inferior to the one we show for Q-NASTYA:

when ω is small, the main term in the complexity bound of FedPAQ is Õ (1/ε), while for Q-NASTYA
the dominating term is of the order Õ (1/

√
ε) (when ω and ε are sufficiently small). We also highlight

that FedCRR [Malinovsky and Richtárik, 2022] does not converge if ω > M2γµε/(2∥xn
∗,m∥2

), while
Q-NASTYA does for any ω ≥ 0. Finally, when ω = 0 (no compression) we recover NASTYA as a
special case, and using γ = η/n, we recover the rate of FedRR [Mishchenko et al., 2021].

Theorem 2.4. Let Assumptions 1, 2, 3 hold. Suppose the stepsizes γ, η, α satisfy 0 < γ ≤ 1
16Lmaxn

,

0 < η ≤ min

{
α
2µ ,

1

16Lmax(1+ 9ω
M )

}
, and α ≤ 1

1+ω . Define the following Lyapunov function:

Ψt+1
def
= ∥xt+1 − x⋆∥2 +

8ωη2

αM2

M∑
m=1

∥ht+1,m − h⋆
m∥2. (7)

Then, for all T ≥ 0 the iterates produced by DIANA-NASTYA (Algorithm 4) satisfy

E [ΨT ] ≤
(
1− ηµ

2

)T
Ψ0 +

9

2

γ2nL

µ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
. (8)

Corollary 4. Under the same conditions as Theorem E.2 and for Algorithm 4, there exist stepsizes
γ = η/n, η > 0, α > 0 such that the number of communication rounds T to find a solution with

accuracy ε > 0 is Õ
(
ω + Lmax

µ

(
1 + ω

M

)
+
√

Lmax

εµ3

√
ζ2⋆ +

σ2
⋆

n

)
. If γ → 0, one can choose η > 0

such that the above complexity bound improves to Õ
(
ω + Lmax

µ

(
1 + ω

M

))
.

8



1000 3000 5000
Data passes

10 7

10 5

10 3

10 1

f(x
t)

f(x
)

mushrooms; Rand-2
QSGD
Q-RR
DIANA
DIANA-RR
DIANA-RR-1S

1000 3000 5000
Data passes

10 7

10 5

10 3

10 1

f(x
t)

f(x
)

w8a; Rand-6
QSGD
Q-RR
DIANA
DIANA-RR
DIANA-RR-1S

1000 3000 5000
Data passes

10 7

10 5

10 3

10 1

f(x
t)

f(x
)

a9a; Rand-2

QSGD
Q-RR
DIANA
DIANA-RR
DIANA-RR-1S

Figure 1: Non-local methods
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Figure 2: Local methods

Figure 3: The comparison of the proposed methods (Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR),
DIANA-RR-1S (a modification of DIANA-RR), and existing baselines (QSGD, DIANA, FedCOM,
FedPAQ). All methods use tuned stepsizes and the Rand-k compressor.

In contrast to Q-NASTYA, DIANA-NASTYA does not suffer from the Õ(1/ε) term in the complexity
bound. This shows the superiority of DIANA-NASTYA to Q-NASTYA. Next, FedCRR-VR [Malinovsky

and Richtárik, 2022] has the rate Õ
(

(ω+1)(1− 1
κ )

n

(1−(1− 1
κ )

n
)
2 +

√
κ(ζ⋆+σ⋆)
µ
√
ε

)
, which depends on Õ (1/

√
ε).

However, the first term is close to Õ
(
(ω + 1)κ2

)
for a large condition number. FedCRR-VR-2

utilizes variance reduction technique from Malinovsky et al. [2021] and it allows to get rid of

permutation variance. This method has Õ

 (ω+1)
(
1− 1

κ
√

κn

)n
2(

1−
(
1− 1

κ
√

κn

)n
2

)2 +
√
κζ⋆

µ
√
ε

 complexity, but it requires

additional assumption on number of functions n and thus not directly comparable with our result.
Note that if we have no compression (ω = 0), DIANA-NASTYA recovers rate of NASTYA.

In Appendix J, we provide versions of Q-NASTYA and DIANA-NASTYA with partial participation of
clients, which is another important aspect of FL, and derive the convergence results for them.

3 Experiments

We evaluated our methods for solving logistic regression problems and training neural networks
in three parts: (i) Comparison of the proposed non-local methods with existing baselines; (ii)
Comparison of the proposed local methods with existing baselines; (iii) Comparison of the proposed
non-local methods in training ResNet-18 on CIFAR10.

Logistic Regression. To confirm our theoretical results we conducted several numerical experiments
on binary classification problem with L2 regularized logistic regression of the form

min
x∈Rd

[
f(x)

def
=

1

M

M∑
m=1

1

nm

nm∑
i=1

fm,i

]
, (9)

where fm,i
def
= log

(
1 + exp(−ymia

⊤
mix)

)
+ λ∥x∥22 (ami, ymi) ∈ Rd× ∈ {−1, 1}, i = 1, . . . , nm

are the training data samples stored on machines m = 1, . . . ,M , and λ > 0 is a regularization
parameter. In all experiments, for each method, we used the largest stepsize allowed by its theory

9



multiplied by some individually tuned constant multiplier. For better parallelism, each worker m
uses mini-batches of size ≈ 0.1nm. In all algorithms, as a compression operator Q, we use Rand-k
[Beznosikov et al., 2020] with fixed compression ratio k/d ≈ 0.02, where d is the number of features
in the dataset.

In our first experiment (see Figure 1), we compare Q-RR, DIANA-RR, and DIANA-RR-1S with
classical baselines (QSGD [Alistarh et al., 2017], DIANA [Mishchenko et al., 2019b]) that use a with-
replacement mini-batch SGD estimator. DIANA-RR-1S is a memory-friendly version of DIANA-RR

that stores and uses a single shift ht,m on the worker side rather than n individual shifts hπi
m

t,m. Figure 1
illustrates that Q-RR exhibits similar behavior to QSGD, with both methods being slower than DIANA
methods across all considered datasets. DIANA-RR-1S and DIANA show comparable convergence
rates, indicating that random reshuffling alone, without introducing additional shifts, does not make
a significant difference. Finally, DIANA-RR achieves the best rate among all considered non-local
methods, efficiently reducing the variance and reaching the lowest functional sub-optimality tolerance.
These experimental results align perfectly with our theoretical analysis.

The second experiment shows that DIANA-based method can significantly outperform in practice
when one applies it to local methods as well. In particular, whereas Q-NASTYA shows comparative
behavior as existing methods FedCOM [Haddadpour et al., 2021], FedPAQ [Reisizadeh et al., 2020]
in all considered datasets, DIANA-NASTYA noticeably outperforms other methods.
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Figure 4: The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet-18
on CIFAR-10 with n = 10 workers. Top-1 accuracy on test set is reported. Stepsizes were tuned and
workers used Rand-k compressor with k/d ≈ 0.05.

Training Deep Neural Network model: ResNet-18 on CIFAR-10. Since random reshuffling is a
very popular technique in training neural networks, it is natural to test the proposed methods on such
problems. Therefore, in the second set of experiments, we consider training ResNet-18 [He et al.,
2016] model on the CIFAR10 dataset Krizhevsky and Hinton [2009]. To conduct these experiments
we use FL_PyTorch simulator [Burlachenko et al., 2021].

The main goal of this experiment is to verify the phenomenon observed in Experiment 1 on the
training of a deep neural network. That is, we tested Q-RR, QSGD, DIANA, and DIANA-RR in
the distributed training of ResNet-18 on CIFAR10, see Figure 4. As in the logistic regression
experiments, we observe that (i) Q-RR and QSGD behave similarly and (ii) DIANA-RR outperforms
DIANA. For further experimental results and details, we refer to Appendix B.

4 Conclusion

In this work, we provide the first study of distributed random reshuffling with communication
compression. Our theoretical and empirical findings illustrate the inefficiency of naïve combination
of random reshuffling and communication compression. We also show how this issue can be resolved
via the usage of shifts for communication compression. Finally, we develop and analyze methods
with random reshuffling, communication compression, and local steps. It is worth mentioning that
although our theoretical results are obtained for strongly convex problems, the considered methods
perform well in the experiments on non-convex tasks like training neural networks.
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A Extra Related Works

Federated optimization has been the subject of intense study, with many open questions even in the
setting when all clients have identical data [Woodworth et al., 2020b,a, 2021]. The FedAvg algorithm
(also known as Local SGD) has also been a subject of intense study, with tight bounds obtained only
very recently by Glasgow et al. [2022]. It is now understood that using many local steps adds bias to
distributed SGD, and hence several methods have been developed to mitigate it, e.g. [Karimireddy
et al., 2020, Murata and Suzuki, 2021], see the work of Gorbunov et al. [2021] for a unifying lens on
many variants of Local SGD. Note that despite the bias, even vanilla FedAvg/Local SGD still reduces
the overall communication overhead in practice [Ortiz et al., 2021].

The success of RR in the single-machine setting has inspired several recent methods that use it as a
local update method as part of distributed training: Mishchenko et al. [2021] developed a distributed
variant of random reshuffling, FedRR. FedRR uses RR as a local client update method in lieu of SGD.
They show that FedRR can improve upon the convergence of Local SGD when the number of local
steps is fixed as the local dataset size, i.e. when H = n. Yun et al. [2021] study the same method
under the name Local RR under a more restrictive assumption of bounded inter-machine gradient
deviation and show that by varying H to be smaller than n better rates can be obtained in this setting
than the rates of Mishchenko et al. [2021]. Other work has explored more such combinations between
RR and distributed training algorithms [Huang et al., 2021, Malinovsky et al., 2022, Horváth et al.,
2022].

There are several methods that combine compression or quantization and local steps: both Basu et al.
[2019] and Reisizadeh et al. [2020] combined Local SGD with quantization and sparsification, and
Haddadpour et al. [2021] later improved their results using a gradient tracking method, achieving
linear convergence under strong convexity. In parallel, Mitra et al. [2021] also developed a variance-
reduced method, FedLin, that achieves linear convergence under strong convexity despite using local
steps and compression. The paper most related to our work is [Malinovsky and Richtárik, 2022]
in which the authors combine iterate compression, random reshuffling, and local steps. We study
gradient compression instead, which is a more common form of compression in both theory and
practice [Kairouz et al., 2019]. We compare our results against [Malinovsky and Richtárik, 2022] and
show we obtain better rates compared to their work.

B Experimental details

In this section, we provide missing details on the experimental setting from Section 3. The codes
are provided in the following anonymous repository: https://anonymous.4open.science/r/
diana_rr-[]B0A5.

B.1 Logistic Regression

To confirm our theoretical results we conducted several numerical experiments on binary classification
problem with L2 regularized logistic regression of the form

min
x∈Rd

[
f(x)

def
=

1

M

M∑
m=1

1

nm

nm∑
i=1

fm,i

]
, (10)

where fm,i
def
= log

(
1 + exp(−ymia

⊤
mix)

)
+ λ∥x∥22 (ami, ymi) ∈ Rd× ∈ {−1, 1}, i = 1, . . . , nm

are the training data samples stored on machines m = 1, . . . ,M , and λ > 0 is a regularization
parameter. In all experiments, for each method, we used the largest stepsize allowed by its theory
multiplied by some individually tuned constant multiplier. For better parallelism, each worker m
uses mini-batches of size ≈ 0.1nm. In all algorithms, as a compression operator Q, we use Rand-k
[Beznosikov et al., 2020] with fixed compression ratio k/d ≈ 0.02, where d is the number of features
in the dataset.

Hardware and Software. All algorithms were written in Python 3.8. We used three different CPU
cluster node types:

1. AMD EPYC 7702 64-Core;
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2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz;

3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Datasets. The datasets were taken from open LibSVM library Chang and Lin [2011], sorted in
ascending order of labels, and equally split among 20 machines \clients\workers. The remaining
part of size N − 20 · ⌊N/20⌋ was assigned to the last worker, where N =

∑M
m=1 nm is the total size

of the dataset. A summary of the splitting and the data samples distribution between clients can be
found in Tables 2, 3, 4, 5.

Table 2: Summary of the datasets and splitting of the data samples among clients.
Dataset M N (dataset size) d (# of features) nm (# of datasamples per client)

mushrooms 20 8120 112 406
w8a 20 49749 300 2487
a9a 20 32560 123 1628

Table 3: Partition of the mushrooms dataset among clients.
Client’s № # of datasamples of class "-1" # of datasamples of class "+1"

1 – 9 406 0
10 262 144
11 – 19 0 406
20 0 410

Table 4: Partition of the w8a dataset among clients.
Client’s № # of datasamples of class "-1" # of datasamples of class "+1"

1 – 19 2487 0
20 1017 1479

Table 5: Partition of the a9a dataset among clients.
Client’s № # of datasamples of class "-1" # of datasamples of class "+1"

1 – 14 1628 0
15 1328 300
16 – 19 0 1628
20 0 1629

Hyperparameters. Regularization parameter λ was chosen individually for each dataset to guar-
antee the condition number L/µ to be approximately 104, where L and µ are the smoothness and
strong-convexity constants of function f . For the chosen logistic regression problem of the form
(10), smoothness and strong convexity constants L, Lm, Li,m, µ, µ̃ of functions f , fm and f i

m were
computed explicitly as
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L = λmax

(
1

M

M∑
m=1

1

4nm
A⊤

mAm + 2λI

)

Lm = λmax

(
1

4nm
A⊤

mAm + 2λI

)
Li,m = λmax

(
1

4
amia

⊤
mi + 2λI

)
µ = 2λ

µ̃ = 2λ,

where Am is the dataset associated with client m, and ami is the i-th row of data matrix Am. In
general, the fact that f is L-smooth with

L ≤ 1

M

M∑
m=1

1

nm

nm∑
i=1

Li,m

follows from the Li,m-smoothness of f i
m (see Assumption 3).

In all algorithms, as a compression operator Q, we use Rand-k as a canonical example of unbiased
compressor with relatively bounded variance, and fix the compression parameter k = ⌊0.02d⌋, where
d is the number of features in the dataset.

In addition, in all algorithms, for all clients m = 1, . . . ,M , we set the batch size for the SGD
estimator to be bm = ⌊0.1nm⌋, where nm is the size of the local dataset.

The summary of the values L, Lm, Li,m Lmax, µ, bm and k for each dataset can be found in Table 6.

Table 6: Summary of the hyperparameters.
Dataset L Lmax µ λ k bm (batchsize)

mushrooms 2.59 5.25 2.58 · 10−4 1.29 · 10−4 2 40
w8a 0.66 28.5 6.6 · 10−5 3.3 · 10−5 6 248
a9a 1.57 3.5 1.57 · 10−4 7.85 · 10−5 2 162

In all experiments, we follow constant stepsize strategy within the whole iteration procedure. For each
method, we set the largest possible stepsize predicted by its theory multiplied by some individually
tuned constant multiplier. For a more detailed explanation of the tuning routine, see Sections B.1.1
and B.1.2.

SGD implementation. We considered two approaches to minibatching: random reshuffling and
with-replacement sampling. In the first, all clients m = 1, . . . ,M independently permute their local
datasets and pass through them within the next subsequent ⌊nm

bm
⌋ steps. In our implementations

of Q-RR, Q-NASTYA and DIANA-NASTYA, all clients permuted their datasets in the beginning of
every new epoch, whereas for the DIANA-RR method they do so only once in the beginning of the
iteration procedure. Second approach of minibatching is called with-replacement sampling, and it
requires every client to draw bm data samples from the local dataset uniformly at random. We used
this strategy in the baseline algorithms (QSGD, DIANA, FedCOM and FedPAQ) we compared our
proposed methods to.

Experimental setup. To compare the performance of methods within the whole optimization
process, we track the functional suboptimality metric f(xt)− f(x⋆) that was recomputed after each
epoch. For each dataset, the value f(x⋆) was computed once at the preprocessing stage with 10−16

tolerance via conjugate gradient method. We terminate our algorithms after performing 5000 epochs.

B.1.1 Experiment 1: Comparison of the Proposed Non-Local Methods with Existing Baselines

In our first experiment (see Figure 1), we compare Q-RR, DIANA-RR, and DIANA-RR-1S with
classical baselines (QSGD [Alistarh et al., 2017], DIANA [Mishchenko et al., 2019b]) that use
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Figure 7: The comparison of the proposed methods (Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR),
DIANA-RR-1S (a modification of DIANA-RR), and existing baselines (QSGD, DIANA, FedCOM,
FedPAQ). All methods use tuned stepsizes and the Rand-k compressor.

a with-replacement mini-batch SGD estimator. DIANA-RR-1S is a memory-friendly version of
DIANA-RR that stores and uses a single shift ht,m on the worker side rather than n individual shifts

h
πi
m

t,m. Figure 1 illustrates that Q-RR exhibits similar behavior to QSGD, with both methods be-
ing slower than DIANA methods across all considered datasets. DIANA-RR-1S and DIANA show
comparable convergence rates, indicating that random reshuffling alone, without introducing ad-
ditional shifts, does not make a significant difference. Finally, DIANA-RR achieves the best rate
among all considered non-local methods, efficiently reducing the variance and reaching the lowest
functional sub-optimality tolerance. These experimental results align perfectly with our theoret-
ical analysis. For each of the considered non-local methods, we take the stepsize as the largest
one predicted by the theory premultiplied by the individually tuned constant factor from the set
{0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096} .
Therefore, for each local method on every dataset, we performed 20 launches to find the stepsize
multiplier showing the best convergence behavior (the fastest reaching the lowest possible level of
functional suboptimality f(xt)− f(x⋆)).

Theoretical stepsizes for methods Q-RR and DIANA-RR are provided by the Theorems 2.1 and 2.2,
whereas stepsizes for QSGD and DIANA were taken from the paper Gorbunov et al. [2020].

B.1.2 Experiment 2: Comparison of the Proposed Local Methods with Existing Baselines

The second experiment shows that DIANA-based method can significantly outperform in practice
when one applies it to local methods as well. In particular, whereas Q-NASTYA shows comparative
behavior as existing methods FedCOM [Haddadpour et al., 2021], FedPAQ [Reisizadeh et al., 2020]
in all considered datasets, DIANA-NASTYA noticeably outperforms other methods.

In this set of experiments, we tuned stepsizes similarly to the non-local methods. However, for
algorithms Q-NASTYA, DIANA-NASTYA, and FedCOM we needed to independently adjust the client
and server stepsizes, leading to a more extensive tunning routine.

As before, for each local method on every dataset, tuned client and server stepsizes are defined by the
theoretical one and adjusted constant multiplier. Theoretical stepsizes for methods Q-NASTYA and
DIANA-NASTYA are given by the Theorems E.1 and E.2, whereas FedCOM and FedPAQ stepsizes
were taken from the papers by Haddadpour et al. [2021] and Reisizadeh et al. [2020] respectively.
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We now list all the considered multipliers of client and server stepsizes for every method (i.e. γ and η
respectively):

• Q-NASTYA:

– Multipliers for γ : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125,
0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,128};

– Multipliers for η : {0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8,
16, 32, 64, 128}.

• DIANA-NASTYA:

– Multipliers for γ and η : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625,
0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,128};

• FedCOM:

– Multipliers for γ : {0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512,1024, 2048, 4096, 8192, 16384, 32768 };

– Multipliers for η : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125,
0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128}.

• FedPAQ:

– Multipliers for γ : {0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5,
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
131072, 262144, 524288, 1048576 }.

For example, to find the best pair (γ, η) for FedCOM method on each dataset, we performed 378
launches. A similar subroutine was executed for all algorithms on all datasets independently.

B.1.3 Experiment 3: Comparison of DIANA-RR with EF21 and DIANA

In our third experiment (see Figure 8), we compared DIANA-RR with DIANA and EF21-SGD
[Fatkhullin et al., 2021]. The EF21-SGD is the state-of-the-art algorithm for contractive compressors
in distributed non-convex settings. All compared algorithms used a with-replacement mini-batch
SGD estimator, consistent with the setup in Section B.1.1. However, in this experiment contrast with
Section B.1.1, we employed reliable theoretical step sizes that ensure guaranteed convergence.

The EF21 algorithm family is designed for usage with contraction compressors in non-convex
optimization for L-smooth objective functions in for of Equation 1. For scenarios involving un-
biased compressors such as Rand-k, the EF21-SGD can be adapted through scaling [Fatkhullin
et al., 2021]. More specifically, an unbiased compressor C(x) : Rd → Rd which satisfied Assump-
tion 1 via applying the transformation C ′(x)

def
= (ω + 1)−1 · C(x) yields a contraction compressor

E
[
∥C ′(x)− x∥2

]
≤ (1 − α)∥x∥2,∀x ∈ Rd with α = 1/ω+1. In particular, this procedure makes

Rand-k compatible with the EF21 algorithm family. In this experiment, we implemented EF21-SGD
following the refined analysis from [Richtárik et al., 2024], which offers a stricter better convergence
guarantee through improved bounds on the theoretical step size compared to [Fatkhullin et al., 2021].

As shown in Figure 8 EF21-SGD does not perform fast enough in scenarios involving using unbiased
compressors for strongly-convex optimization problems compared to DIANA-RR and DIANA.

B.2 Training Deep Neural Network model: ResNet-18 on CIFAR-10

Since random reshuffling is a very popular technique in training neural networks, it is natural to test
the proposed methods on such problems. Therefore, in the second set of experiments, we consider
training ResNet-18 [He et al., 2016] model on the CIFAR10 dataset Krizhevsky and Hinton [2009].
To conduct these experiments we use FL_PyTorch simulator [Burlachenko et al., 2021].

The main goal of this experiment is to verify the phenomenon observed in Experiment 1 on the
training of a deep neural network. That is, we tested Q-RR, QSGD, DIANA, and DIANA-RR in
the distributed training of ResNet-18 on CIFAR10, see Figure 9. As in the logistic regression
experiments, we observe that (i) Q-RR and QSGD behave similarly and (ii) DIANA-RR outperforms
DIANA.
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Figure 8: The comparison of the proposed variance-reduced DIANA-RR and baselines DIANA, EF21-
SGD. All algorithms use theoretical step-sizes, Rand-k compressor, number of workers is 20.
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Figure 9: The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet-18
on CIFAR-10 with n = 10 workers. Top-1 accuracy on test set is reported. Stepsizes were tuned and
workers used Rand-k compressor with k/d ≈ 0.05.

To illustrate the behavior of the proposed methods in training Deep Neural Networks (DNN), we
consider the ResNet-18 [He et al., 2016] model. This model is used for image classification,
feature extraction for image segmentation, object detection, image embedding, and image captioning.
We train all layers of ResNet-18 model meaning that the dimension of the optimization problem
equals d = 11, 173, 962. During the training, the ResNet-18 model normalizes layer inputs via
exploiting 20 Batch Normalization [Ioffe and Szegedy, 2015] layers that are applied directly before
nonlinearity in the computation graph of this model. Batch normalization (BN) layers add 9600
trainable parameters to the model. Besides trainable parameters, a BN layer has its internal state
that is used for computing the running mean and variance of inputs due to its own specific regime of
working. We use He initialization [He et al., 2015].

B.2.1 Computing Environment

We performed numerical experiments on a server-grade machine running Ubuntu 18.04 and Linux
Kernel v5.4.0, equipped with 16-cores (2 sockets by 16 cores per socket) 3.3 GHz Intel Xeon, and
four NVIDIA A100 GPU with 40GB of GPU memory. The distributed environment is simulated
in Python 3.9 via using the software suite FL_PyTorch [Burlachenko et al., 2021] that serves for
carrying complex Federate Learning experiments. FL_PyTorch allowed us to simulate the distributed
environment in the local machine. Besides storing trainable parameters per client, this simulator
stores all not trainable parameters including BN statistics per client.

B.2.2 Loss Function

Training of ResNet-18 can be formalized as problem (1) with the following choice of f i
m

fm(x) =
1

|nm|

|nm|∑
j=1

CE(b(j), g(a(j), x)), (11)
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where CE(p, q)
def
= −

∑#classes
k=1 pi · log(qi) with agreement 0 · log(0) = 0 is a standard cross-entropy

loss, function g : R28×28 × Rd → [0, 1]#classes is a neural network taking image a(j) and vector
of parameters x as an input and returning a vector in probability simplex, and nm is the size of the
dataset on worker m.

B.2.3 Dataset and Metric

In our experiments, we used CIFAR10 dataset Krizhevsky and Hinton [2009]. The dataset consists of
input variables ai ∈ R28×28×3, and response variables bi ∈ {0, 1}10 and is used for training 10-way
classification. The sizes of training and validation set are 5× 104 and 104 respectively. The training
set is partitioned heterogeneously across 10 clients. To measure the performance, we evaluate the loss
function value f(x), norm of the gradient ∥∇f(x)∥2 and the Top-1 accuracy of the obtained model
as a function of passed epochs and the normalized number of bits sent from clients to the server.

B.2.4 Tuning Process

In this set of experiments, we tested QSGD [Alistarh et al., 2017], Q-RR (Algorithm 1), DI-
ANA [Mishchenko et al., 2019a] and DIANA-RR (Algorithm 2) algorithms. For all algorithms,
we tuned the strategy ∈ {A,B,C} of decaying stepsize model via selecting the best in terms of the
norm of the full gradient on the train set in the final iterate produced after 20000 rounds. The stepsize
policies are described below.

A. Stepsizes decaying as inverse square root of the number epochs

γe =

γinit ·
1√

e− s+ 1
, if e ≥ s,

γinit, if e < s,

where γe denotes the stepsize used during epoch e+ 1, s is a fixed shift.

B. Stepsizes decaying as inverse of number epochs

γ =

γinit ·
1

e− s+ 1
, if e ≥ s,

γinit, if e < s.

C. Fixed stepsize

γ = γinit.

We say that the algorithm passed e epochs if the total number of computed gradient oracles lies
between e

∑M
m=1 nm and (e + 1)

∑M
m=1 nm. For each algorithm the used stepsize γinit and shift

parameter s were tuned via selecting from the following sets:

γinit ∈ γset
def
= {4.0, 3.75, 3.00, 2.5, 2.00, 1.25, 1.0, 0.75, 0.5, 0.25,

0.2, 0.1, 0.06, 0.03, 0.01, 0.003, 0.001, 0.0006}.

s ∈ sset
def
= {50, 100, 200, 500, 1000}.

In all tested methods, clients independently apply Rand-k compression with carnality k = ⌊0.05d⌋.
Computation for all gradient oracles is carried out in single precision float (FP64) arithmetic.
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Figure 10

Figure 11: Comparison of QSGD and Q-RR in the training of ResNet-18 on CIFAR-10, with n = 10
workers. Here (a) and (d) show Top-1 accuracy on test set, (b) and (e) – norm of full gradient on the
train set, (c) and (f) – loss function value on the train set. Stepsizes and decay shift has been tuned
from sset and γset based on minimum achievable value of loss function on the train set.
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Figure 12: Comparison of DIANA and DIANA-RR in the training of ResNet-18 on CIFAR-10, with
n = 10 workers. Here (a) and (d) show Top-1 accuracy on test set, (b) and (e) – norm of full gradient
on the train set, (c) and (f) – loss function value on the train set. Stepsizes and decay shift has been
tuned from sset and γset based on minimum achievable value of loss function on the train set. For
both algorithms stepsize is fixed. For both algorithms stepsize is decaying according to srategy B.

B.2.5 Optimization-Based Fine-Tuning for Pretrained ResNet-18.

In this setting, we trained ResNet-18 image classification in a distributed way across n = 10 clients.
In this experiment, we have trained only the last linear layer.

Next, we have turned off batch normalization. Turning off batch normalization implies that the
computation graph of NN g(a, x) with weights of NN denoted as x is a deterministic function and
does not include any internal state.

The loss function is a standard cross-entropy loss augmented with extra ℓ2-regularization α∥x∥2
/2

with α = 0.0001. Initially used weights of NN are pretrained parameters after training the model on
ImageNet.

The dataset distribution across clients has been set in a heterogeneous manner via presorting dataset
D by label class and after this, it was split across 10 clients.

The comparison of stepsizes policies used in QSGD and Q-RR is presented in Figure 14. The behavior
of the algorithms with best tuned step sizes is presented in Figure 13. These results demonstrate that
in this setting there is no real benefit of using Q-RR in comparison to QSGD.

B.2.6 Experiments

The comparison of QSGD and Q-RR is presented in Figure 11. In particular, Figure 9 shows that in
terms of the convergence to stationary points both algorithms exhibit similar behavior. However, Q-
RR has better generalization and in fact, converges to the better loss function value. This experiment
demonstrates that Q-RR with manually tuned stepsize can be better compared to QSGD in terms
of the final quality of obtained Deep Learning model. For QSGD the tuned meta parameters are:
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γinit = 3.0,s = 200, strategy = B. For QSGD-RR tuned meta parameters are: γinit = 3.0, s = 1000,
strategy = B.

The results of comparison of DIANA and DIANA-RR are presented in Figure 12. For DIANA the tuned
meta parameters are: γinit = 1.0,s = 0, strategy = C and for DIANA-RR tuned meta parameters are:
γinit = 1.0, s = 0, strategy = C. These results show that DIANA-RR outperforms DIANA in terms of
all reported metrics.

B.3 Discussion

More about used arithmetics. We used FP64 (IEEE 754) due to its superior numerical stability
compared to FP32, FP16, and BFloat16. While FP32 and FP16 are commonly used for inference
tasks, the choice of precision for training depends on the specific requirements of the task. In certain
cases, FP32 may be sufficient, but for others, FP64 is necessary to ensure stability.

The performance gain from switching from FP64 to FP32 can indeed vary based on the GPU model.
For instance, the NVIDIA A100 40GB GPU used in our experiments offers approximately a two-fold
increase in computational throughput with FP32 compared to FP64. The specific architecture of
the GPU influences the choice of precision, and these characteristics can differ across various GPU
models and updates.

The computational burden. The primary focus of the paper is to highlight the fundamental
complexities and limits of algorithmic behavior. The experiments presented in our paper are intended
for illustrative purposes.

The computational demands of our work are significant. Performing experiments beyond
ResNet-18/CIFAR-10/FP64 with 10 clients is near the limit of what is feasible with our com-
putational resources. In our simulation involving 10 clients sharing a common dataset, we ran 2000
rounds/epochs for fine-tuning. Based on an estimate of 2 minutes per epoch, the total computation
time would be approximately 66 hours per run (2 minutes/epoch × 2000 epochs = 66 hours). Taking
into account the grid search with 18 preset learning rates, 5 sets of decay parameters, and 4 algorithms,
the total estimated computation time would be around 23760 hours (66 hours × 18 × 5 × 4). This
represents a substantial amount of computation time. Therefore, conducting a comprehensive compar-
ison involving four algorithms with an extensive grid of hyperparameters is already challenging for
models larger than ResNet-18 on CIFAR10. To cover 23760 hours of training would indeed require
approximately 40 GPUs running continuously for about 25 days. Nonetheless, we have conducted
numerous experiments to ensure a thorough and fair comparison.

Training in overparameterized regime. During training image classification Convolution Neural
Networks, we got two results for QSGD-RR as an improvement of QSGD. During training only the
last layer (see Fig. 13) there are no benefits QSGD-RR, but QSGD does not behave worse.

When training the whole network (Fig. 11), the results suggest that Q-RR is much better than Q-SGD.
Although we do not have formal proof explaining this phenomenon, we conjecture that this can be
related to the significant overparameterization occurring during the training of a large model on a
relatively small dataset. That is, the model can almost perfectly fit the training data on all clients,
leading to a decrease in the heterogeneity parameter. In this case, there is no need for shifts since
the variance coming from compression naturally goes to zero, and the complexities of QSGD and
DIANA match (see Table 1). In this situation, Q-RR performs better than QSGD since the compression
does not spoil the convergence of RR. Therefore, DIANA-type shifts are not always necessary to get
improvements. Nevertheless, we conjecture that they are necessary when the datasets are larger and
more complex.
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Figure 13: Comparison of QSGD and Q-RR in the training of the last linear layer of ResNet-18
on CIFAR-10, with n = 10 workers. Here (a) shows Top-1 accuracy on test set, (b) – norm of full
gradient on the train set, (c) – loss function value on the train set. Stepsizes and decay shift has been
tuned from sset and γset based on minimum achievable value of loss function on the train set. Both
algorithms used fixed stepsize during training.
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Figure 14: Comparison of QSGD and Q-RR in the training of the last linear layer of ResNet-18 on
CIFAR-10, with n = 10 workers. Here (a) and (b) show Top-1 accuracy on test set, (c) and (d) – loss
function value on the train set, (e) and (f) – norm of full gradient on the train set. Stepsizes and decay
shift has been tuned from sset and γset based on minimum achievable value of loss function on the
train set. During training stepsize was fixed. Batch Normalization was turned off.
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C Missing Proofs for Q-RR

In the main part of the paper, we introduce Assumptions 3 and 4 for the analysis of Q-RR and
DIANA-RR. These assumptions can be refined as follows.

Assumption 5. Function fπi

= 1
M

∑M
i=1 f

πi
m

m : Rd → R is L̃-smooth for all sets of permutations
π = (π1, . . . , πm) from [n] and all i ∈ [n], i.e.,

max
i∈[n],π

∥∇fπi

(x)−∇fπi

(y)∥ ≤ L̃∥x− y∥ ∀x, y ∈ Rd.

Assumption 6. Function fπi

= 1
M

∑M
i=1 f

πi
m

m : Rd → R is µ̃-strongly convex for all sets of
permutations π = (π1, . . . , πm) from [n] and all i ∈ [n], i.e.,

min
i∈[n],π

{
fπi

(x)− fπi

(y)− ⟨∇f i,π(y), x− y⟩
}
≥ µ̃

2
∥x− y∥2 ∀x, y ∈ Rd.

Moreover, functions f i
1, f

i
2, . . . , f

i
M : Rd → R are convex for all i = 1, . . . , n.

We notice that Assumptions 3 and 4 imply Assumptions 5 and 6. In the proofs of the results for
Q-RR and DIANA-RR, we use Assumptions 5 in addition to Assumptions 3 and we use Assumption 6
instead of Assumption 4.

C.1 Shuffle Radius Clarification

Our results depend on the so-called shuffling radius proposed by Mishchenko et al. [2021]:

σ2
rad

def
= max

i

{
1

γ2M

M∑
m=1

EDfπi
m
(xi

⋆, x⋆)

}
,

where xi+1
⋆ = xi

⋆ −
γ
M

∑M
m=1 ∇f

πi
m

m (x⋆).

One can think of the shuffling radius as a counterpart to the variance term in SGD. Both concepts
measure how much the algorithm’s performance can fluctuate near the optimal solution, but the
cause of these fluctuations is different: in SGD, it is due to random sampling, and in RR, it is due
to reshuffling. Additionally, Lemma 2.1 provides bounds for the shuffling radius — showing the
maximum and minimum possible values — based on the variance at the optimum, reinforcing the
shuffling radius as a useful way to understand how RR behaves. This relationship helps clarify how
the reshuffling process influences the algorithm’s path and its efficiency in reaching an optimal point.

C.2 Proof of Theorem 2.1

For convenience, we restate the theorem below.
Theorem C.1 (Theorem 2.1). Let Assumptions 1, 3, 5, 6 hold and 0 < γ ≤ 1

L̃+2 ω
M Lmax

. Then, for

all T ≥ 0 the iterates produced by Q-RR satisfy

E∥xT − x⋆∥2 ≤ (1− γµ̃)
nT ∥x0 − x⋆∥2 +

2γ2σ2
rad

µ̃
+

2γω

µ̃M

(
ζ2⋆ + σ2

⋆

)
,

where ζ2⋆ = 1
M

M∑
m=1

∥∇fm(x⋆)∥2, and σ2
⋆ = 1

Mn

M∑
m=1

n∑
i=1

∥∇f i
m(x⋆)−∇fm(x⋆)∥2.

Proof. Using xi+1
⋆ = xi

⋆ −
γ
M

∑M
m=1 ∇f

πi
m

m (x⋆) and line 7 of Algorithm 1, we get

∥xi+1
t − xi+1

⋆ ∥2 =

∥∥∥∥∥xi
t − xi

⋆ − γ
1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)
)
−∇f

πi
m

m (x⋆)
)∥∥∥∥∥

2

=
∥∥xi

t − xi
⋆

∥∥2 − 2γ

〈
1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)
)
−∇f

πi
m

m (x⋆)
)
, xi

t − xi
⋆

〉

+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)
)
−∇f

πi
m

m (x⋆)
)∥∥∥∥∥

2

.
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Taking the expectation w.r.t. Q, we obtain

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
=

∥∥xi
t − xi

⋆

∥∥2 − 2γ

〈
1

M

M∑
m=1

(
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆)
)
, xi

t − xi
⋆

〉

+γ2EQ

∥∥∥∥∥ 1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)
)
−∇f

πi
m

m (x⋆)
)∥∥∥∥∥

2
 .

In view of Assumption 1 and Eξ∥ξ − c∥2 = Eξ∥ξ − Eξξ∥2 + ∥Eξξ − c∥2, we have

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
=

∥∥xi
t − xi

⋆

∥∥2 − 2γ

M

M∑
m=1

〈
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆), x
i
t − xi

⋆

〉

+γ2EQ

∥∥∥∥∥ 1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)
)
−∇f

πi
m

m (xi
t)
)∥∥∥∥∥

2


+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆)
)∥∥∥∥∥

2

≤
∥∥xi

t − xi
⋆

∥∥2 − 2γ

M

M∑
m=1

〈
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆), x
i
t − xi

⋆

〉

+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆)
)∥∥∥∥∥

2

+
γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)
∥∥∥2 ,

where in the last step we apply independence of Q
(
∇f

πi
m

m (xi
t)
)

for m ∈ [M ]. Next, we use

three-point identity4 and obtain

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤

∥∥xi
t − xi

⋆

∥∥2
−2γ

M

M∑
m=1

(
D

f
πi
m

m

(xi
⋆, x

i
t) +D

f
πi
m

m

(xi
t, x⋆)−D

f
πi
m

m

(xi
⋆, x⋆)

)

+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆)
)∥∥∥∥∥

2

+
γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)
∥∥∥2 .

4For any differentiable function f : Rd → Rd we have: ⟨∇f(x)−∇f(y), x−z⟩ = Df (z, x)+Df (x, y)−
Df (z, y).
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Applying L̃-smoothness and convexity of 1
M

∑m
m=1 f

πi
m

m , µ̃-strong convexity of 1
M

∑m
m=1 f

πi
m

m , and
Lmax-smoothness and convexity of f i

m, we get

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤ (1− γµ̃)

∥∥xi
t − xi

⋆

∥∥2 − 2γ
(
1− L̃γ

) 1

M

M∑
m=1

D
f
πi
m

m

(xi
t, x⋆)

+2γ
1

M

M∑
m=1

D
f
πi
m

m

(xi
⋆, x⋆) +

γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)
∥∥∥2

≤ (1− γµ̃)
∥∥xi

t − xi
⋆

∥∥2 − 2γ
(
1− L̃γ

) 1

M

M∑
m=1

D
f
πi
m

m

(xi
t, x⋆)

+2γ
1

M

M∑
m=1

D
f
πi
m

m

(xi
⋆, x⋆) +

2γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (x⋆)
∥∥∥2

+
2γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (x⋆)
∥∥∥2 .

So, we get

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤ (1− γµ̃)

∥∥xi
t − xi

⋆

∥∥2 + 2γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (x⋆)
∥∥∥2

+
2γ

M

M∑
m=1

D
f
πi
m

m

(xi
⋆, x⋆)

−2γ

(
1− γ

(
L̃+

2ωLmax

M

))
1

M

M∑
m=1

D
f
πi
m

m

(xi
t, x⋆).

Taking the full expectation and using a definition of shuffle radius, 0 < γ ≤ 1

(L̃+2 ω
M Lmax)

, and

D
f
πi
m

m

(xi
t, x⋆) ≥ 0, we obtain

E
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤ (1− γµ̃)E

[∥∥xi
t − xi

⋆

∥∥2]+ 2γ3σ2
rad +

2γ2ω

M2

M∑
m=1

E
[∥∥∥∇f

πi
m

m (x⋆)
∥∥∥2]

= (1− γµ̃)E
[∥∥xi

t − xi
⋆

∥∥2]+ 2γ3σ2
rad +

2γ2ω

M2n

M∑
m=1

n∑
j=1

∥∥∇f j
m(x⋆)

∥∥2
≤ (1− γµ̃)E

[∥∥xi
t − xi

⋆

∥∥2]+ 2γ3σ2
rad +

2γ2ω

M

(
ζ2⋆ + σ2

⋆

)
.

Unrolling the recurrence in i, we derive

E
[
∥xt+1 − x⋆∥2

]
≤ (1− γµ̃)

n E
[
∥xt − x⋆∥2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ̃)j

+
2γ2ω

M

(
ζ2⋆ + σ2

⋆

) n−1∑
j=0

(1− γµ̃)j .

Unrolling the recurrence in t, we derive

E
[
∥xT − x⋆∥2

]
≤ (1− γµ̃)

nT ∥x0 − x⋆∥2 + 2γ3σ2
rad

T−1∑
t=0

(1− γµ̃)nt
n−1∑
j=0

(1− γµ̃)j

+
2γ2ω

M

(
ζ2⋆ + σ2

⋆

) nT−1∑
j=0

(1− γµ̃)nt
n−1∑
j=0

(1− γµ̃)j .

Since
∑nT−1

j=0 (1− γµ̃)j ≤ 1
γµ̃ , we get the result.
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Corollary 5. Let the assumptions of Theorem C.1 hold and

γ = min

{
1

L̃+ 2 ω
MLmax

,

√
εµ̃

6σ2
rad

,
εµ̃M

6ω (ζ2⋆ + σ2
⋆)

}
. (12)

Then, Q-RR finds a solution with accuracy ε > 0 after the following number of communication
rounds:

Õ

(
L̃

µ̃
+

ω

M

Lmax

µ̃
+

ω

M

ζ2⋆ + σ2
⋆

εµ̃2
+

σrad√
εµ̃3

)
.

Proof. Theorem C.1 implies

E∥xT − x⋆∥2 ≤ (1− γµ̃)
nT ∥x0 − x⋆∥2 +

2γ2σ2
rad

µ̃
+

2γω

µ̃M

(
ζ2⋆ + σ2

⋆

)
. (13)

To estimate the number of communication rounds required to find a solution with accuracy ε > 0, we
need to upper-bound each term from the right-hand side by ε/3. Thus, we get additional conditions on
γ:

2γ2σ2
rad

µ̃
<

ε

3
,

2γω

µ̃M

(
ζ2⋆ + σ2

⋆

)
<

ε

3

and also the upper bound on the number of communication rounds nT

nT = Õ
(

1

γµ̃

)
.

Substituting (12), we get a final result.

C.3 Non-Strongly Convex Summands

In this section, we provide the analysis of Q-RR without using Assumptions 4, 6. Before we move
one to the proofs, we would like to emphasize that

xi+1
t = xi

t − γ
1

M

M∑
m=1

Q
(
∇f

πi
m

m (xi
t)
)
.

Then we have

xt+1 = xt − γ

n−1∑
i=0

1

M

M∑
m=1

Q
(
∇f

πi
m

m (xi
t)
)
= xt − τ

1

Mn

n−1∑
i=0

M∑
m=1

Q
(
∇f

πi
m

m (xi
t)
)
,

where τ = γn. For convenience, we denote

gt =
1

Mn

n−1∑
i=0

M∑
m=1

Q
(
∇f

πi
m

m (xi
t)
)

allowing to write the update rule as xt+1 = xt − τgt.

Lemma C.1 (Lemma 1 from [Malinovsky et al., 2022]). For any k ∈ [n], let ξπ1 , . . . , ξπk
be

sampled uniformly without replacement from a set of vectors {ξ1, . . . , ξn} and ξ̄π be their average.
Then, it holds

Eξ̄π = ξ̄, E
[
∥ξ̄π − ξ̄∥2

]
=

n− k

k(n− 1)
σ2, (14)

where ξ̄ = 1
n

∑n
i=1 ξi, ξ̄π = 1

k

∑k
i=1 ξπi

, σ2 = 1
n

∑n
i=1 ∥ξi − ξ̄∥2

Lemma C.2. Under Assumptions 1, 2, 3, 5, the following inequality holds

EQ [−2τ⟨gt, xt − x⋆⟩] ≤ −τµ

2
∥xt − x⋆∥2 − τ(f(xt)− f(x⋆)) +

τL̃

n

n−1∑
i=0

∥xi
t − xt∥2.
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Proof. Using that EQ [gt] =
1

Mn

∑n−1
i=0

∑M
m=1 ∇f

πi
m

m (xi
t) and definition of h⋆, we get

−2τEQ [⟨gt, xt − x⋆⟩] = − 1

Mn

n−1∑
i=0

M∑
m=1

〈
∇f

πi
m

m (xi
t), xt − x⋆

〉
= − 1

Mn

M∑
m=1

n−1∑
i=0

〈
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆), xt − x⋆

〉
.

Using three-point identity, we obtain

−2τEQ [⟨gt, xt − x⋆⟩] = − 2τ

Mn

M∑
m=1

n−1∑
i=0

(
D

f
πi
m

m

(xt, x⋆) +D
f
πi
m

m

(x⋆, x
i
t)−D

f
πi
m

m

(xt, x
i
t)
)

= −2τDf (xt, x⋆)−
2τ

n

n−1∑
i=0

Dfπi (x⋆, x
i
t) +

2τ

n

n−1∑
i=0

Dfπi (xt, x
i
t)

≤ −2τDf (xt, x⋆) +
τL̃

n

n−1∑
i=0

∥xi
t − xt∥2,

where in the last inequality we apply L̃-smoothness and convexity of each function fπi

. Finally,
using µ-strong convexity of f , we finish the proof of the lemma.

Lemma C.3. Under Assumptions 1, 2, 3, 5, the following inequality holds

EQ
[
∥gt∥2

]
≤ 2L̃

(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]
+

4ω

Mn

(
ζ2⋆ + σ2

⋆

)
+8
(
L̃+

ω

Mn
Lmax

)
(f(xt)− f(x⋆)).

Proof. Taking the expectation w.r.t. Q and using variance decomposition E
[
∥ξ∥2

]
=

E
[
∥ξ − E [ξ] ∥2

]
+ ∥Eξ∥2, we get

EQ
[
∥gt∥2

]
= EQ

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

Q
(
∇f

πi
m

m (xi
t)
)∥∥∥∥∥

2


= EQ

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)
)
−∇f

πi
m

m (xi
t)
)∥∥∥∥∥

2


+

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

∇f
πi
m

m (xi
t)

∥∥∥∥∥
2

.
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Next, Assumption 1 and conditional independence of Q
(
∇f

πi
m

m (xi
t)
)

for m = 1, . . . ,M, i =

0, . . . , n− 1 imply

EQ
[
∥gt∥2

]
=

1

M2n2

n−1∑
i=0

M∑
m=1

EQ

[∥∥∥Q(∇f
πi
m

m (xi
t)
)
−∇f

πi
m

m (xi
t)
∥∥∥2]

+

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

∇f
πi
m

m (xi
t)

∥∥∥∥∥
2

≤ ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)
∥∥∥2 + ∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

∇f
πi
m

m (xi
t)

∥∥∥∥∥
2

≤ 2ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (xt)
∥∥∥2 + 2ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xt)
∥∥∥2

+2

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

(
∇f

πi
m

m (xi
t)−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+2

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

∇f
πi
m

m (xt)

∥∥∥∥∥
2

.

Using Lmax-smoothness and convexity of f i
m and L̃-smoothness and convexity of fπi

=
1
M

∑M
m=1 f

πi
m

m , we derive

EQ
[
∥gt∥2

]
≤ 4ω

M2n2
Lmax

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xi
t, xt) +

2ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xt)
∥∥∥2

+4L̃
1

n

n−1∑
i=0

Dfπi (xi
t, xt) + 2 ∥∇f(xt)∥2

≤ 4
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

Dfπi (xi
t, xt) +

4ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (x⋆)
∥∥∥2

+
4ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xt)−∇f
πi
m

m (x⋆)
∥∥∥2 + 2 ∥∇f(xt)−∇f(x⋆)∥2

≤ 2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

∥∥xi
t − xt

∥∥2 + 4ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (x⋆)
∥∥∥2

+
8ω

M2n2
Lmax

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xt, x⋆) + 4L̃ (f(xt)− f(x⋆)) .

Taking the full expectation, we obtain

E
[
∥gt∥2

]
≤ 2L̃

(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

E
[∥∥xi

t − xt

∥∥2]+ 4ω

M2n2

n−1∑
i=0

M∑
m=1

E
[∥∥∥∇f

πi
m

m (x⋆)
∥∥∥2]

+

(
4L̃+

8ω

Mn
Lmax

)
E [f(xt)− f(x⋆)]

= 2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

E
[∥∥xi

t − xt

∥∥2]+ 4ω

Mn

(
ζ2⋆ + σ2

⋆

)
+

(
4L̃+

8ω

Mn
Lmax

)
E [f(xt)− f(x⋆)] .
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Lemma C.4. Let Assumptions 1, 2, 3, 5 hold and τ ≤ 1

2
√

L̃(L̃+ ω
MnLmax)

. Then, the following

inequality holds

1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

≤ 24τ2
(
L̃+

ω

Mn
Lmax

)
E [f(xt)− f(x⋆)]

+8τ2
ω

Mn

(
ζ2⋆ + σ2

⋆

)
+ 8τ2

σ2
⋆,n

n
,

where σ2
⋆,n = 1

n

∑n
i=1 ∥∇f i(x⋆)∥2, f i(x) = 1

M

∑M
m=1 f

i
m(x), i ∈ [n].

Proof. Since xi
t = xt − τ

Mn

∑M
m=1

∑i−1
j=0 Q

(
∇f

πj
m

m (xj
t )
)

, we have

EQ
[
∥xi

t − xt∥2
]

= τ2EQ


∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

Q
(
∇f

πj
m

m (xj
t )
)∥∥∥∥∥∥

2


= τ2EQ


∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

(
Q
(
∇f

πj
m

m (xj
t )
)
−∇f

πj
m

m (xj
t )
)∥∥∥∥∥∥

2


+τ2

∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

∇f
πj
m

m (xj
t )

∥∥∥∥∥∥
2

≤ τ2

M2n2

M∑
m=1

i−1∑
j=0

EQ

[∥∥∥Q(∇f
πj
m

m (xj
t )
)
−∇f

πj
m

m (xj
t )
∥∥∥2]

+τ2

∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

∇f
πj
m

m (xj
t )

∥∥∥∥∥∥
2

.
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Using Assumption 1, L̃-smoothness and convexity of fπi

= 1
M

∑M
m=1 f

πi
m

m and Lmax-smoothness
and convexity of f i

m, we obtain

EQ
[
∥xi

t − xt∥2
]

≤ τ2ω

M2n2

M∑
m=1

i−1∑
j=0

∥∥∥∇f
πj
m

m (xj
t )
∥∥∥2 + τ2

∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

∇f
πj
m

m (xj
t )

∥∥∥∥∥∥
2

≤ 2τ2ω

M2n2

M∑
m=1

i−1∑
j=0

∥∥∥∇f
πj
m

m (xj
t )−∇f

πj
m

m (xt)
∥∥∥2 + 2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2

+2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

(
∇fπj

(xj
t )−∇fπj

(xt)
)∥∥∥∥∥∥

2

(15)

+
2τ2ω

M2n2

M∑
m=1

i−1∑
j=0

∥∥∥∇f
πj
m

m (xt)
∥∥∥2

≤ 4τ2ω

M2n2

M∑
m=1

n−1∑
j=0

LmaxD
f
π
j
m

m

(xj
t , xt) + 2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2

+4L̃τ2
1

n

n−1∑
j=0

Dfπj (xj
t , xt) +

2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

∥∥∥∇f
πj
m

m (xt)
∥∥∥2

= 4τ2
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
j=0

Dfπj (xj
t , xt)

+2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2

+
2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

∥∥∥∇f
πj
m

m (xt)
∥∥∥2 . (16)

Next, we need to estimate the second term from the previous inequality. Taking the full expectation
and using Lemma C.1 and using new notation σ2

t = 1
n

∑n
j=1 E[∥∇f j(xt)−∇f(xt)∥2], we get

E


∥∥∥∥∥∥ 1n

i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2
 =

i2

n2
E
[
∥∇f(xt)∥2

]
+

i2

n2
E


∥∥∥∥∥∥1i

i−1∑
j=0

(
∇fπj

(xt)−∇f(xt)
)∥∥∥∥∥∥

2


≤ i2

n2
E
[
∥∇f(xt)∥2

]
+

i2

n3

n− i

i(n− 1)

n∑
j=1

E
[
∥∇f j(xt)−∇f(xt)∥2

]
≤ E

[
∥∇f(xt)∥2

]
+

1

n
σ2
t . (17)

Taking the full expectation from (16) and using (17), we obtain

E
[
∥xi

t − xt∥2
]

≤ 4τ2
(
L̃+

ω

Mn
Lmax

) n−1∑
j=0

E
[
Dfπj (xj

t , xt)
]

+2τ2E
[
∥∇f(xt)∥2

]
+

2τ2

n
σ2
t +

2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (xt)
∥∥∥2] .

Using L̃-smoothness of fπj

, we get

E
[
∥xi

t − xt∥2
]

≤ 2L̃τ2
(
L̃+

ω

Mn
Lmax

) n−1∑
j=0

E
[
∥xj

t − xt∥2
]

+2τ2E
[
∥∇f(xt)∥2

]
+

2τ2

n
σ2
t +

2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (xt)
∥∥∥2] .
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Since τ ≤ 1

2
√

L̃(L̃+ ω
MnLmax)

, we have

E
[
∥xi

t − xt∥2
]

≤ 2
(
1− 2L̃τ2

(
L̃+

ω

Mn
Lmax

)) n−1∑
j=0

E
[
∥xj

t − xt∥2
]

≤ 4τ2E
[
∥∇f(xt)∥2

]
+

4τ2

n
σ2
t +

4τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (xt)
∥∥∥2]

≤ 8τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (xt)−∇f
πj
m

m (x⋆)
∥∥∥2]

+
8τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (x⋆)
∥∥∥2]+ 4τ2E

[
∥∇f(xt)−∇f(x⋆)∥2

]

+
4τ2

n

 1

n

n∑
j=1

E
[
∥∇f j(xt)∥

]
− E

[
∥∇f(xt)∥2

]
≤ 8τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (xt)−∇f
πj
m

m (x⋆)
∥∥∥2]

+
8τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥∇f

πj
m

m (x⋆)
∥∥∥2]+ 8τ2E

[
∥∇f(xt)−∇f(x⋆)∥2

]
+
8τ2

n2

n∑
j=1

E
[
∥∇f j(xt)−∇f j(x⋆)∥2

]
+

8τ2

n2

n∑
j=1

E
[
∥∇f j(x⋆)∥2

]
.

Summing from i = 0 to n− 1 and using L̃-smoothness of f i and Lmax-smoothness of f i
m, we obtain

1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

≤ 16τ2ω

Mn
LmaxE [f(xt)− f(x⋆)] +

16τ2

n
L̃E [f(xt)− f(x⋆)]

+
8τ2ω

Mn

(
ζ2⋆ + σ2

⋆

)
+

8τ2

n
σ2
⋆,n + 8τ2L̃E [f(xt)− f(x⋆)] .

Theorem C.2. Let Assumptions 1, 2, 3, 5 hold and stepsize γ satisfy

0 < γ ≤ 1

16n
(
L̃+ ω

MnLmax

) . (18)

Then, for all T ≥ 0 the iterates produced by Q-RR satisfy

E
[
∥xT − x⋆∥2

]
≤

(
1− nγµ

2

)T
∥x0 − x⋆∥2 + 18

γ2nL̃

µ

( ω

M
(ζ2⋆ + σ2

⋆) + σ2
⋆,n

)
+8

γω

µM
(ζ2⋆ + σ2

⋆),

where

σ2
⋆,n =

1

n

n∑
i=1

∥∇f i(x⋆)∥2. (19)
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Proof. Taking expectation w.r.t. Q and using Lemma C.3, we get

EQ
[
∥xt+1 − x⋆∥2

]
= ∥xt − x⋆∥2 − 2τEQ [⟨gt, xt − x⋆⟩] + τ2EQ

[
∥gt∥2

]
≤ ∥xt − x⋆∥2 − 2τEQ

[〈
gt, xt − x⋆

〉]
+2τ2L̃

(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

+8τ2
(
L̃+

ω

Mn
Lmax

)
(f(xt)− f(x⋆)) +

4τ2ω

Mn
(ζ2⋆ + σ2

⋆).

Using Lemma C.2, we obtain

EQ
[
∥xt+1 − x⋆∥2

]
≤ ∥xt − x⋆∥2

−τµ

2
∥xt − x⋆∥2 − τ(f(xt)− f(x⋆)) +

τL̃

n

n−1∑
i=0

∥xi
t − xt∥2

+2τ2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

+8τ2
(
L̃+

ω

Mn
Lmax

)
(f(xt)− f(x⋆)) +

4τ2ω

Mn
(ζ2⋆ + σ2

⋆)

≤
(
1− τµ

2

)
∥xt − x⋆∥2

−τ
(
1− 8τ

(
L̃+

ω

Mn
Lmax

))
(f(xt)− f(x⋆))

+τL̃
(
1 + 2τ

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

+
4τ2ω

Mn
(ζ2⋆ + σ2

⋆).

Next, we take the full expectation and apply Lemma C.4:

E
[
∥xt+1 − x⋆∥2

]
≤
(
1− τµ

2

)
E
[
∥xt − x⋆∥2

]
−τ
(
1− 8τ

(
L̃+

ω

Mn
Lmax

))
E [f(xt)− f(x⋆)]

+24τ3L̃
(
1 + 2τ

(
L̃+

ω

Mn
Lmax

))(
L̃+

ω

Mn
Lmax

)
(f(xt)− f(x⋆))

+8τ3L̃
(
1 + 2τ

(
L̃+

ω

Mn
Lmax

))( ω

Mn
(ζ2⋆ + σ2

⋆) +
σ2
⋆,n

n

)
+

4τ2ω

Mn
(ζ2⋆ + σ2

⋆).

Using (18), we derive

E
[
∥xt+1 − x⋆∥2

]
≤

(
1− τµ

2

)
E
[
∥xt − x⋆∥2

]
+9τ3L̃

(
ω

Mn
(ζ2⋆ + σ2

⋆) +
σ2
⋆,n

n

)
+

4τ2ω

Mn
(ζ2⋆ + σ2

⋆)

Recursively unrolling the inequality, substituting τ = nγ and using
+∞∑
t=0

(
1− τµ

2

)t ≤ 2
µτ , we get the

result.

Corollary 6. Let the assumptions of Theorem C.2 hold and

γ = min

 1

16n
(
L̃+ ω

MnLmax

) ,√ εµ

82nL̃

( ω

M
∆2

⋆ + σ2
⋆,n

)− 1
2

,
εµM

24ω∆2
⋆

 , (20)
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where ∆2
⋆ = ζ2⋆ + σ2

⋆. Then, Q-RR finds a solution with accuracy ε > 0 after the following number
of communication rounds:

Õ

nL̃

µ
+

ω

M

Lmax

µ
+

ω

M

ζ2⋆ + σ2
⋆

εµ2
+

√
nL̃

εµ3

√
ω

M
(ζ2⋆ + σ2

⋆) + σ2
⋆,n

 .

Proof. Theorem C.2 implies

E
[
∥xT − x⋆∥2

]
≤

(
1− nγµ

2

)T
∥x0 − x⋆∥2 + 18

γ2nL̃

µ

( ω

M

(
ζ2⋆ + σ2

⋆

)
+ σ2

⋆,n

)
+8

γω

µM

(
ζ2⋆ + σ2

⋆

)
.

To estimate the number of communication rounds required to find a solution with accuracy ε > 0, we
need to upper bound each term from the right-hand side by ε/3. Thus, we get additional conditions on
γ:

18
γ2nL̃

µ

( ω

M

(
ζ2⋆ + σ2

⋆

)
+ σ2

⋆,n

)
<

ε

3
, 8

γω

µM

(
ζ2⋆ + σ2

⋆

)
<

ε

3
,

and also the upper bound on the number of communication rounds nT

nT = Õ
(

1

γµ

)
.

Substituting (20) in the previous equation, we get the result.
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D Missing Proofs for DIANA-RR

D.1 Proof of Theorem 2.2

Lemma D.1. Let Assumptions 1, 3, 5, 6 hold and α ≤ 1
1+ω . Then, the iterates of DIANA-RR satisfy

1

M

M∑
m=1

EQ

[
∥hπi

m
t+1,m −∇f

πi
m

m (x⋆)∥2
]

≤ 1− α

M

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+
2αLmax

M

M∑
m=1

D
f
πi
m

m

(xi
t, x⋆).

Proof. Taking expectation w.r.t. Q, we obtain

EQ

[
∥hπi

m
t+1,m −∇f

πi
m

m (x⋆)∥2
]

= EQ

[
∥hπi

m
t,m + αQ(∇f

πi
m

m (xi
t)− h

πi
m

t,m)−∇f
πi
m

m (x⋆)∥2
]

= ∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+2αEQ

[〈
Q(∇f

πi
m

m (xi
t)− h

πi
m

t,m), h
πi
m

t,m −∇f
πi
m

m (x⋆)
〉]

+α2EQ

[
∥Q(∇f

πi
m

m (xi
t)− h

πi
m

t,m)∥2
]

= ∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+2α
〈
∇f

πi
m

m (xi
t)− h

πi
m

t,m, h
πi
m

t,m −∇f
πi
m

m (x⋆)
〉

+α2EQ

[
∥Q(∇f

πi
m

m (xi
t)− h

πi
m

t,m)∥2
]
.

Assumption 1, Lmax-smoothness and convexity of f i
m and α ≤ 1/(1+ω) imply

EQ

[
∥hπi

m
t+1,m −∇f

πi
m

m (x⋆)∥2
]

≤ ∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+2α
〈
∇f

πi
m

m (xi
t)− h

πi
m

t,m, h
πi
m

t,m −∇f
πi
m

m (x⋆)
〉

+α2(1 + ω)∥∇f
πi
m

m (xi
t)− h

πi
m

t,m∥2

≤ ∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+α
〈
∇f

πi
m

m (xi
t)− h

πi
m

t,m, h
πi
m

t,m +∇f
πi
m

m (xi
t)− 2∇f

πi
m

m (x⋆)
〉

≤ ∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+α∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (x⋆)∥2 − α∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

≤ (1− α)∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+α∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (x⋆)∥2 (21)

≤ (1− α)∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2 + 2αLmaxD
f
πi
m

m

(xi
t, x⋆).

Summing up the above inequality for m = 1, . . . ,M , we get the result.

Theorem D.1. Let Assumptions 1, 3, 5, 6 hold and 0 < γ ≤ min
{

α
2nµ̃ ,

1

L̃+ 6ω
M Lmax

}
, α ≤ 1

1+ω .

Then, for all T ≥ 0 the iterates produced by DIANA-RR satisfy

E [ΨT ] ≤ (1− γµ̃)
nT

Ψ0 +
2γ2σ2

rad

µ̃
,

where Ψt is defined in (6).
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Proof. Using xi+1
⋆ = xi

⋆ −
γ
M

∑M
m=1 ∇f

πi
m

m (x⋆) and line 9 of Algorithm 2, we derive

∥xi+1
t − xi+1

⋆ ∥2 =

∥∥∥∥∥xi
t − xi

⋆ − γ
1

M

M∑
m=1

(
ĝ
πi
m

t,m −∇f
πi
m

m (x⋆)
)∥∥∥∥∥

2

=
∥∥xi

t − xi
⋆

∥∥2 − 2γ

M

M∑
m=1

〈(
ĝ
πi
m

t,m −∇f
πi
m

m (x⋆)
)
, xi

t − xi
⋆

〉

+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
ĝ
πi
m

t,m −∇f
πi
m

m (x⋆)
)∥∥∥∥∥

2

.

Taking expectation w.r.t. Q and using E∥ξ − c∥2 = E∥ξ − Eξ∥2 + ∥Eξ − c∥2, we obtain

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
=
∥∥xi

t − xi
⋆

∥∥2 − 2γ

M

M∑
m=1

〈
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆), x
i
t − xi

⋆

〉

+γ2EQ

∥∥∥∥∥ 1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

)
+ h

πi
m

t,m −∇f
πi
m

m (x⋆)
)∥∥∥∥∥

2


≤
∥∥xi

t − xi
⋆

∥∥2 − 2γ

M

M∑
m=1

〈
∇f

πi
m

m (xi
t)−∇f

πi
m

m (x⋆), x
i
t − xi

⋆

〉

+γ2EQ

∥∥∥∥∥ 1

M

M∑
m=1

(
Q
(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

)
−∇f

πi
m

m (xi
t) + h

πi
m

t,m

)∥∥∥∥∥
2


+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇f

πi
m

m (x⋆)−∇f
πi
m

m (xi
t)
)∥∥∥∥∥

2

.

Independence of Q
(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

)
, m ∈ [M ], assumption 1, and three-point identity imply

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤

∥∥xi
t − xi

⋆

∥∥2
−2γ

M

M∑
m=1

(
D

f
πi
m

m

(xi
⋆, x

i
t) +D

f
πi
m

m

(xi
t, x⋆)−D

f
πi
m

m

(xi
⋆, x⋆)

)
+
γ2ω

M2

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)− h

πi
m

t,m

∥∥∥2
+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇f

πi
m

m (x⋆)−∇f
πi
m

m (xi
t)
)∥∥∥∥∥

2

≤
∥∥xi

t − xi
⋆

∥∥2
−2γ

M

M∑
m=1

(
D

f
πi
m

m

(xi
⋆, x

i
t) +D

f
πi
m

m

(xi
t, x⋆)−D

f
πi
m

m

(xi
⋆, x⋆)

)
+
2γ2ω

M

1

M

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (x⋆)
∥∥∥2

+γ2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇f

πi
m

m (x⋆)−∇f
πi
m

m (xi
t)
)∥∥∥∥∥

2

+
2γ2ω

M2

M∑
m=1

∥∥∥hπi
m

t,m −∇f
πi
m

m (x⋆)
∥∥∥2 .
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Using Lmax-smoothness and µ-strong convexity of functions f i
m and L̃-smoothness and µ̃-strong

convexity of fπi

= 1
M

∑M
i=1 f

πi
m

m , we obtain

EQ
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤ (1− γµ̃)

∥∥xi
t − xi

⋆

∥∥2
−2γ

(
1− γ

(
L̃+

2ω

M
Lmax

))
1

M

M∑
m=1

D
f
πi
m

m

(xi
t, x⋆)

+
2γ

M

M∑
m=1

D
f
πi
m

m

(xi
⋆, x⋆) +

2γ2ω

M2

M∑
m=1

∥∥∥hπi
m

t,m −∇f
πi
m

m (x⋆)
∥∥∥2 .

Taking the full expectation and using Defenition 2, we derive

E
[
∥xi+1

t − xi+1
⋆ ∥2

]
≤ (1− γµ̃)E

[∥∥xi
t − xi

⋆

∥∥2]
−2γ

(
1− γ

(
L̃+

2ω

M
Lmax

))
1

M

M∑
m=1

E
[
D

f
πi
m

m

(xi
t, x⋆)

]
+2γ3σ2

rad +
2γ2ω

M2

M∑
m=1

E
[∥∥∥hπi

m
t,m −∇f

πi
m

m (x⋆)
∥∥∥2] .

Recursively unrolling the inequality, we get

E
[
∥xt+1 − x⋆∥2

]
≤ (1− γµ̃)nE

[
∥xt − x⋆∥2

]
+
2γ2ω

M2

M∑
m=1

n−1∑
j=0

(1− γµ̃)jE
[∥∥∥hπi

m
t,m −∇f

πi
m

m (x⋆)
∥∥∥2]

−2γ

(
1− γ

(
L̃+

2ω

M
Lmax

))
1

M

M∑
m=1

n−1∑
j=0

(1− γµ̃)jE
[
D

f
πi
m

m

(xi
t, x⋆)

]

+2γ3σ2
rad

n−1∑
j=0

(1− γµ̃)j .

Next, we apply (6) and Lemma D.1:

E [Ψt+1] ≤ (1− γµ̃)nE
[
∥xt − x⋆∥2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ̃)j

+

(
c(1− α) +

2ω

M

)
γ2

M

M∑
m=1

n−1∑
j=0

(1− γµ̃)jE
[∥∥∥hπi

m
t,m −∇f

πi
m

m (x⋆)
∥∥∥2]

−2γ

(
1− cγαLmax − γ

(
L̃+

2ω

M
Lmax

))
1

M

M∑
m=1

n−1∑
j=0

(1− γµ̃)jE
[
D

f
πi
m

m

(xi
⋆, x⋆)

]
,
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where c = 4ω
αM2 . Using α ≤ 1

1+ω and γ ≤ min

{
α

2nµ ,
1

(L̃+6ω/MLmax)

}
, we obtain

E [Ψt+1] ≤ (1− γµ̃)nE
[
∥xt − x⋆∥2

]
+
(
1− α

2

) 4ωγ2

αM2

M∑
m=1

n−1∑
j=0

(1− γµ̃)jE
[∥∥∥hπi

m
t,m −∇f

πi
m

m (x⋆)
∥∥∥2]

+2γ2σ3
rad

n−1∑
j=0

(1− γµ̃)j

≤ max
{
(1− γµ̃)n,

(
1− α

2

)}
E [Ψt]

+2γ2σ3
rad

n−1∑
j=0

(1− γµ̃)j

≤ (1− γµ̃)nE [Ψt] + 2γ3σ2
rad

n−1∑
j=0

(1− γµ̃)j .

Recursively rewriting the inequality, we obtain

E [ΨT ] ≤ (1− γµ̃)nTΨ0 + 2γ3σ2
rad

T−1∑
t=0

(1− γµ̃)tn
n−1∑
j=0

(1− γµ̃)j

≤ (1− γµ̃)nTΨ0 + 2γ3σ2
rad

nT−1∑
k=0

(1− γµ̃)k

Using that
+∞∑
k=0

(
1− γµ̃

2

)k
≤ 2

µ̃γ , we finish proof.

Corollary 7. Let the assumptions of Theorem D.1 hold, α = 1
1+ω and

γ = min

{
α

2nµ̃
,

1

L̃+ 6ω
M Lmax

,

√
εµ̃

2σrad

}
. (22)

Then DIANA-RR finds a solution with accuracy ε > 0 after the following number of communication
rounds:

Õ

(
n(1 + ω) +

L̃

µ̃
+

ω

M

Lmax

µ̃
+

σrad√
εµ̃3

)
.

Proof. Theorem D.1 implies

E [ΨT ] ≤ (1− γµ̃)
nT

Ψ0 +
2γ2σ2

rad

µ̃
.

To estimate the number of communication rounds required to find a solution with accuracy ε > 0, we
need to upper bound each term from the right-hand side by ε

2 . Thus, we get an additional condition
on γ:

2γ2σ2
rad

µ̃
<

ε

2
,

and also the upper bound on the number of communication rounds nT

nT = Õ
(

1

γµ

)
.

Substituting (22) in the previous equation, we get the result.
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D.2 Non-Strongly Convex Summands

In this section, we provide the analysis of DIANA-RR without using Assumptions 4, 6. We emphasize
that xi+1

t = xi
t − γ 1

M

∑M
m=1 ĝ

πi
m

t,m. Then we have

xt+1 = xt − γ

n−1∑
i=0

1

M

M∑
m=1

ĝ
πi
m

t,m = xt − τ
1

Mn

n−1∑
i=0

M∑
m=1

ĝ
πi
m

t,m.

We denote ĝt =
1

Mn

∑n−1
i=0

∑M
m=1 ĝ

πi
m

t,m.
Lemma D.2. Let Assumptions 1, 2, 3, 5 hold. Then, the following inequality holds

−2τEQ [⟨ĝt − h⋆, xt − x⋆⟩] ≤ −τµ

2
∥xt − x⋆∥2 − τ (f(xt)− f(x⋆)) + τL̃

1

n

n−1∑
i=1

∥xt − xi
t∥2,

where h⋆ = ∇f(x⋆) = 0.

Proof. Since h⋆ = ∇f(x⋆) = 0, the proof of Lemma D.2 is identical to the proof of Lemma C.2.

Lemma D.3. Let Assumptions 1, 2, 3, 5 hold. Then, the following inequality holds

EQ
[
∥ĝt − h⋆∥2

]
≤ 2L̃

(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

∥xi
t − xt∥2 + 8

(
L̃+

ω

Mn
Lmax

)
(f(xt)− f(x⋆))

+
4ω

M2n2

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

Proof. Taking expectation w.r.t. Q, we get

EQ

[
∥ĝt − h⋆∥2

]
= EQ

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

ĝ
πi
m

t,m − h⋆

∥∥∥∥∥
2


= EQ

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

(
h
πi
m

t,m +Q
(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

))
− h⋆

∥∥∥∥∥
2


= EQ

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

(
h
πi
m

t,m −∇f
πi
m

m (xi
t) +Q

(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

))∥∥∥∥∥
2


+

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

∇f
πi
m

m (xi
t)− h⋆

∥∥∥∥∥
2

.

Independence of Q
(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

)
, m ∈ [M ] and Assumption 1 imply

EQ
[
∥ĝt − h⋆∥2

]
=

1

M2n2

n−1∑
i=0

M∑
m=1

EQ

[∥∥∥hπi
m

t,m −∇f
πi
m

m (xi
t) +Q

(
∇f

πi
m

m (xi
t)− h

πi
m

t,m

)∥∥∥2]

+

∥∥∥∥∥ 1

Mn

n−1∑
i=0

M∑
m=1

∇f
πi
m

m (xi
t)− h⋆

∥∥∥∥∥
2

≤ ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)− h

πi
m

t,m

∥∥∥2 + ∥∥∥∥∥ 1n
n−1∑
i=0

∇fπi

(xi
t)− h⋆

∥∥∥∥∥
2

≤ 2ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (xt)
∥∥∥2 + 2

n

n−1∑
i=0

∥∥∥∇fπi

(xi
t)−∇fπi

(xt)
∥∥∥2

+
2ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥hπi
m

t,m −∇f
πi
m

m (xt)
∥∥∥2 + 2

∥∥∥∥∥ 1n
n−1∑
i=0

∇fπi

(xt)− h⋆

∥∥∥∥∥
2

.
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Using Lmax-smoothness and convexity of f i
m and L̃-smoothness and convexity of fπi

, we obtain

EQ
[
∥ĝt − h⋆∥2

]
≤ 4ωLmax

M2n2

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xi
t, xt) +

4L̃

n

n−1∑
i=0

Dfπi (xi
t, xt)

+
4ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥hπi
m

t,m −∇f
πi
m

m (x⋆)
∥∥∥2 + 4L̃ (f(xt)− f(x⋆))

+
4ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥∇f
πi
m

m (xt)−∇f
πi
m

m (x⋆)
∥∥∥2

≤ 2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

∥xi
t − xt∥2 + 4L̃ (f(xt)− f(x⋆))

+
8ω

Mn
Lmax

1

Mn

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xt, x⋆)

+
4ω

M2n2

n−1∑
i=0

M∑
m=1

∥∥∥hπi
m

t,m −∇f
πi
m

m (x⋆)
∥∥∥2 .

Lemma D.4. Let α ≤ 1
1+ω and Assumptions 1, 2, 3, 5 hold. Then, the iterates produced by DIANA-RR

satisfy

1

Mn

n−1∑
i=0

M∑
m=1

EQ

[
∥hπi

m
t+1,m −∇f

πi
m

m (x⋆)∥2
]

≤ 1− α

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+
2αL̃Lmax

n

n−1∑
i=0

∥xi
t − xt∥2

+4αLmax (f(xt)− f(x⋆)) .

Proof. Fist of all, we introduce new notation: Ht =
1

Mn

∑n−1
i=0

∑M
m=1 EQ

[
∥hπi

m
t,m −∇f

πi
m

m (x⋆)∥2
]
.

Using (21) and summing it up for i = 0, . . . , n− 1, we obtain

Ht+1 ≤ 1− α

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2 +
α

Mn

n−1∑
i=0

M∑
m=1

∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (x⋆)∥2

≤ 1− α

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2 +
2α

Mn

n−1∑
i=0

M∑
m=1

∥∇f
πi
m

m (xi
t)−∇f

πi
m

m (xt)∥2

+
2α

Mn

n−1∑
i=0

M∑
m=1

∥∇f
πi
m

m (xt)−∇f
πi
m

m (x⋆)∥2.

Next, we apply Lmax-smoothness and convexity of f i
m and L̃-smoothness and convexity of fπi

:

Ht+1 ≤ 1− α

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2 +
4α

Mn
Lmax

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xi
t, xt)

+
4α

Mn
Lmax

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xt, x⋆)

≤ 1− α

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2 +
2α

n
L̃Lmax

n−1∑
i=0

∥xi
t − xt∥2

+
4α

Mn
Lmax

n−1∑
i=0

M∑
m=1

D
f
πi
m

m

(xt, x⋆).
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Lemma D.5. Let Assumptions 1, 2, 3, 5 and τ ≤ 1

2
√

L̃(L̃+ ω
MnLmax)

. Then, the following inequality

holds

1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

≤ 24τ2
(
L̃+

ω

Mn
Lmax

)
E [f(xt)− f(x⋆)] + 8τ2

σ2
⋆,n

n

+8
τ2ω

M2n2

n−1∑
i=0

M∑
m=1

E
[
∥hπi

m
t,m −∇f

πi
m

m (x⋆)∥2
]
,

where σ2
⋆,n = 1

n

∑n
i=1 ∥∇f i(x⋆)∥2.

Proof. Since xi
t = xt − τ

Mn

∑M
m=1

∑i−1
j=0

(
h
πj
m

t,m +Q
(
∇f

πj
m

m (xj
t )− h

πi
m

t,m

))
, we have

EQ
[
∥xi

t − xt∥2
]

= τ2EQ


∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

(
h
πj
m

t,m +Q
(
∇f

πj
m

m (xj
t )− h

πj
m

t,m

))∥∥∥∥∥∥
2


= τ2EQ


∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

(
h
πj
m

t,m −∇f
πj
m

m (xj
t ) +Q

(
∇f

πi
m

m (xj
t )− h

πj
m

t,m

))∥∥∥∥∥∥
2


+τ2

∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

∇f
πj
m

m (xj
t )

∥∥∥∥∥∥
2

.

Independence of Q
(
∇f

πi
m

m (xj
t )− h

πj
m

t,m

)
, m ∈ [M ] and Assumption 1 imply

EQ
[
∥xi

t − xt∥2
]

=
τ2

M2n2

M∑
m=1

i−1∑
j=0

EQ

[∥∥∥hπj
m

t,m −∇f
πj
m

m (xj
t ) +Q

(
∇f

πi
m

m (xj
t )− h

πj
m

t,m

)∥∥∥2]

+τ2

∥∥∥∥∥∥ 1

Mn

M∑
m=1

i−1∑
j=0

∇f
πj
m

m (xj
t )

∥∥∥∥∥∥
2

≤ τ2ω

M2n2

M∑
m=1

i−1∑
j=0

∥∥∥∇fπj
m(xj

t )− h
πj
m

t,m

∥∥∥2 + τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xj
t )

∥∥∥∥∥∥
2

≤ 2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

∥∥∥∇f
πj
m

m (xj
t )−∇f

πj
m

m (xt)
∥∥∥2 + 2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2

+
2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

∥∥∥hπj
m

t,m −∇f
πj
m

m (xt)
∥∥∥2 + 2τ2

n

n−1∑
j=0

∥∥∥∇fπj

(xj
t )−∇fπj

(xt)
∥∥∥2 .
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Using Lmax-smoothness and convexity of f i
m and L̃-smoothness and convexity of fπj

, we obtain

EQ
[
∥xi

t − xt∥2
]

≤ 4τ2ω

M2n2
Lmax

M∑
m=1

n−1∑
j=0

D
f
π
j
m

m

(xj
t , xt) + 2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2

+
2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

∥∥∥hπj
m

t,m −∇f
πj
m

m (xt)
∥∥∥2 + 2τ2L̃2

n

n−1∑
j=0

∥∥∥xj
t − xt

∥∥∥2

≤ 2τ2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
j=0

∥xj
t − xt∥2 + 2τ2

∥∥∥∥∥∥ 1n
i−1∑
j=0

∇fπj

(xt)

∥∥∥∥∥∥
2

+
2τ2ω

M2n2

M∑
m=1

n−1∑
j=0

∥∥∥hπj
m

t,m −∇f
πj
m

m (xt)
∥∥∥2 .

Taking the full expectation and using (17), we derive

E
[
∥xi

t − xt∥2
]

≤ 2τ2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
j=0

E
[
∥xj

t − xt∥2
]
+ 2τ2E

[
∥∇f(xt)∥2

]
+

4τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥hπj

m
t,m −∇f

πj
m

m (x⋆)
∥∥∥2]+ 2τ2

n
E
[
σ2
t

]
+

8τ2ω

M2n2
Lmax

M∑
m=1

n−1∑
j=0

E
[
D

f
π
j
m

m

(xt, x⋆)

]
.

Using Lmax-smoothness and convexity of f i
m and L̃-smoothness and convexity of fπj

, we obtain

E
[
∥xi

t − xt∥2
]

≤ 2τ2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
j=0

E
[
∥xj

t − xt∥2
]

+
4τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥hπj

m
t,m −∇f

πj
m

m (x⋆)
∥∥∥2]+ 2τ2

n
E
[
σ2
t

]
+4τ2

(
L̃+

2ω

M2n2
Lmax

)
E [f(xt)− f(x⋆)] .

Now we need to estimate 2τ2

n E
[
σ2
t

]
. Due to E

[
σ2
t

]
≤ 1

n

∑n
i=1 E

[
∥∇f i(xt)∥2

]
, we get

2τ2

n
E
[
σ2
t

]
≤ 2τ2

n2

n∑
j=1

E
[
∥∇f j(xt)∥2

]
≤ 4τ2

n2

n∑
j=1

E
[
∥∇f j(xt)−∇f j(x⋆)∥2

]
+

4τ2

n2

n∑
j=1

E
[
∥∇f j(x⋆)∥2

]
≤ 8τ2

n2
L̃

n∑
j=1

E
[
Dfj (xt, x⋆)

]
+

4τ2

n2

n∑
j=1

σ2
n,⋆.
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Combining two previous inequalities, we get

E
[
∥xi

t − xt∥2
]

≤ 2τ2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
j=0

E
[
∥xj

t − xt∥2
]

+
4τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥hπj

m
t,m −∇f

πj
m

m (x⋆)
∥∥∥2]

+4τ2
(
L̃+

2ω

M2n2
Lmax

)
E [f(xt)− f(x⋆)]

+
8τ2

n
L̃E [f(xt)− f(x⋆)] +

4τ2

n2

n∑
j=1

σ2
n,⋆.

Summing from i = 0 to n− 1 and using τ ≤ 1

2
√

L̃(L̃+ ω
MnLmax)

, we obtain

1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

≤ 2
(
1− 2τ2L̃

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

≤ 8τ2ω

M2n2

M∑
m=1

n−1∑
j=0

E
[∥∥∥hπj

m
t,m −∇f

πj
m

m (x⋆)
∥∥∥2]

+8τ2
(
L̃+

2ω

M2n2
Lmax

)
E [f(xt)− f(x⋆)]

+
16τ2

n
L̃E [f(xt)− f(x⋆)] +

8τ2

n2

n∑
j=1

σ2
n,⋆.

We consider the following Lyapunov function:

Ψt+1 = ∥xt+1 − x⋆∥2 +
cτ2

Mn

M∑
m=1

n−1∑
j=0

∥∥∥hπi
m

t+1,m −∇f
πi
m

m (x⋆)
∥∥∥2 . (23)

Theorem D.2. Let Assumptions 1, 2, 3, 5 hold and

γ ≤ min

 α

nµ
,

1

12n
(
L̃+ 11ω

MnLmax

)
 , α ≤ 1

1 + ω
, c =

10ω

αMn
.

Then, for all T ≥ 0 the iterates produced by DIANA-RR satisfy

E [ΨT ] ≤
(
1− nγµ

2

)T
Ψ0 + 20

γ2nL̃

µ
σ2
⋆,n.

Proof. Taking expectation w.r.t. Q and using Lemma D.2, we get

EQ
[
∥xt+1 − x⋆∥2

]
= ∥xt − τ ĝt − x⋆ + τh⋆∥2

= ∥xt − x⋆∥2 − 2τEQ [⟨ĝt − h⋆, xt − x⋆⟩] + τ2EQ
[
∥ĝt − h⋆∥2

]
≤ ∥xt − x⋆∥2 −

τµ

2
∥xt − x⋆∥2 + τ2EQ

[
∥ĝt − h⋆∥2

]
−τ (f(xt)− f(x⋆)) + τL̃

1

n

n−1∑
i=1

∥xt − xi
t∥2.
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Next, due to Lemma D.3 we have

EQ
[
∥xt+1 − x⋆∥2

]
≤

(
1− τµ

2

)
∥xt − x⋆∥2 − τ (f(xt)− f(x⋆)) + τL̃

1

n

n−1∑
i=1

∥xt − xi
t∥2

+2τ2L̃
(
L̃+

ω

Mn
Lmax

) 1

n

n−1∑
i=0

∥xi
t − xt∥2

+8τ2
(
L̃+

ω

Mn
Lmax

)
(f(xt)− f(x⋆))

+
4ωτ2

M2n2

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

≤
(
1− τµ

2

)
∥xt − x⋆∥2 +

4ωτ2

M2n2

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

−τ
(
1− 8τ

(
L̃+

ω

Mn
Lmax

))
(f(xt)− f(x⋆))

+τL̃
(
1 + 2τ

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

∥xi
t − xt∥2.

Using (23), we obtain

EQ [Ψt+1] ≤
(
1− τµ

2

)
∥xt − x⋆∥2 +

4ωτ2

M2n2

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

−τ
(
1− 8τ

(
L̃+

ω

Mn
Lmax

))
(f(xt)− f(x⋆))

+τL̃
(
1 + 2τ

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

∥xi
t − xt∥2

+
cτ2

Mn

M∑
m=1

n−1∑
j=0

E
[∥∥∥hπi

m
t+1,m −∇f

πi
m

m (x⋆)
∥∥∥2] .

To estimate the last term in the above inequality, we apply Lemma D.4:

EQ [Ψt+1] ≤
(
1− τµ

2

)
∥xt − x⋆∥2 +

4ωτ2

M2n2

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

−τ
(
1− 8τ

(
L̃+

ω

Mn
Lmax

))
(f(xt)− f(x⋆))

+τL̃
(
1 + 2τ

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

∥xi
t − xt∥2

+cτ2
1− α

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

+cτ2
2αL̃Lmax

n

n−1∑
i=0

∥xi
t − xt∥2 + 4cτ2αLmax (f(xt)− f(x⋆))

≤
(
1− τµ

2

)
∥xt − x⋆∥2 +

(
1− α+

4ω

cMn

)
cτ2

Mn

n−1∑
i=0

M∑
m=1

∥hπi
m

t,m −∇f
πi
m

m (x⋆)∥2

−τ
(
1− 4cταLmax − 8τ

(
L̃+

ω

Mn
Lmax

))
(f(xt)− f(x⋆))

+τL̃
(
1 + 2cταLmax + 2τ

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

∥xi
t − xt∥2.
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Let Ht = cτ2

Mn

∑n−1
i=0

∑M
m=1 E

[
∥hπi

m
t,m −∇f

πi
m

m (x⋆)∥2
]
. Taking the full expectation and using

Lemma D.5, we get

E [Ψt+1] ≤
(
1− τµ

2

)
E
[
∥xt − x⋆∥2

]
+

(
1− α+

4ω

cMn

)
Ht

−τ
(
1− 4cταLmax − 8τ

(
L̃+

ω

Mn
Lmax

))
E [f(xt)− f(x⋆)]

+τL̃
(
1 + 2cταLmax + 2τ

(
L̃+

ω

Mn
Lmax

)) 1

n

n−1∑
i=0

E
[
∥xi

t − xt∥2
]

≤
(
1− τµ

2

)
E
[
∥xt − x⋆∥2

]
+

(
1− α+

4ω

cMn

)
Ht

−τ
(
1− 4cταLmax − 8τ

(
L̃+

ω

Mn
Lmax

))
E [f(xt)− f(x⋆)]

+24τ3L̃
(
1 + 2cταLmax + 2τ

(
L̃+

ω

Mn
Lmax

))(
L̃+

ω

Mn
Lmax

)
E [f(xt)− f(x⋆)]

+8τ3L̃
(
1 + 2cταLmax + 2τ

(
L̃+

ω

Mn
Lmax

)) σ2
⋆,n

n

+
8τL̃ω

cMn

(
1 + 2cταLmax + 2τ

(
L̃+

ω

Mn
Lmax

))
Ht.

Selecting c = Aω
αMn , where A is a positive number to be specified later, we have

1 + 2cταLmax + 2τ
(
L̃+

ω

Mn
Lmax

)
= 1 + 2τ

(
L̃+

(A+ 1)ω

Mn
Lmax

)
,

1− 4cταLmax − 8τ
(
L̃+

ω

Mn
Lmax

)
≥ 1− 8τ

(
L̃+

(A+ 1)ω

Mn
Lmax

)
.

Then, we have

E [Ψt+1] ≤
(
1− τµ

2

)
E
[
∥xt − x⋆∥2

]
+

(
1− α+

4α

A

)
Ht

−τ

(
1− 8τ

(
L̃+

(A+ 1)ω

Mn
Lmax

))
E [f(xt)− f(x⋆)]

+24τ3L̃
(
L̃+

ω

Mn
Lmax

)(
1 + 2τ

(
L̃+

(A+ 1)ω

Mn
Lmax

))
E [f(xt)− f(x⋆)]

+8τ3L̃

(
1 + 2τ

(
L̃+

(A+ 1)ω

Mn
Lmax

))
σ2
⋆,n

n

+
8α

A
τL̃

(
1 + 2τ

(
L̃+

(A+ 1)ω

Mn
Lmax

))
Ht.

Taking τ = 1

B(L̃+
(A+1)ω

Mn Lmax)
, where B is some positive constant, we obtain

E [Ψt+1] ≤
(
1− τµ

2

)
E
[
∥xt − x⋆∥2

]
+

(
1− α+

4α

A
+

8α

A
τL̃

(
1 +

2

B

))
Ht

−τ

(
1− 8

B
− 24

B2

(
1 +

2

B

))
E [f(xt)− f(x⋆)]

+8τ3L̃

(
1 +

2

B

)
σ2
⋆,n

n
.

Choosing A = 10, B = 12, τ ≤ α
µ , we have

E [Ψt+1] ≤
(
1−min

{τµ
2
,
α

2

})
E [Ψt] + 10τ3L̃

σ2
⋆,n

n

≤
(
1− τµ

2

)
E [Ψt] + 10τ3L̃

σ2
⋆,n

n
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Recursively unrolling the inequality, substituting τ = nγ and using
+∞∑
t=0

(
1− τµ

2

)t ≤ 2
µτ , we finish

proof.

Corollary 8. Let the assumptions of Theorem D.2 hold, α = 1
1+ω , and

γ = min

 α

2nµ
,

1

12n
(
L̃+ 11ω

MnLmax

) ,√ εµ

40nL̃σ2
⋆,n

 . (24)

Then, DIANA-RR finds a solution with accuracy ε > 0 after the following number of communication
rounds:

Õ

n(1 + ω) +
nL̃

µ
+

ω

M

Lmax

µ
+

√
nL̃

εµ3
σ⋆,n

 .

Proof. Theorem D.2 implies

E [ΨT ] ≤ (1− γµ)
nT

Ψ0 + 20
γ2nL̃

µ
σ2
⋆,n.

To estimate the number of communication rounds required to find a solution with accuracy ε > 0, we
need to upper bound each term from the right-hand side by ε

2 . Thus, we get an additional condition
on γ:

20
γ2nL̃

µ
σ2
⋆,n <

ε

2
,

and also the upper bound on the number of communication rounds nT

nT = Õ
(

1

γµ

)
.

Substituting (24) in the previous equation, we obtain the result.
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E Theoretical Results for Q-NASTYA and DIANA-NASTYA

Theorem E.1. Let Assumptions 1, 2, 3 hold. Let the stepsizes γ, η satisfy 0 < η ≤ 1

16Lmax(1+ ω
M )

,

0 < γ ≤ 1
5nLmax

. Then, for all T ≥ 0 the iterates produced by Q-NASTYA (Algorithm 3) satisfy

E
[
∥xT − x⋆∥2

]
≤
(
1− ηµ

2

)T
∥x0 − x⋆∥2 + 8

ηω

µM
ζ2⋆ +

9

2

γ2nLmax

µ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
.

Corollary 9. Under the same conditions as Theorem E.1 and for Algorithm 3, there exist stepsizes
γ = η/n and η > 0 such that the number of communication rounds T to find a solution with accuracy

ε > 0 is Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M
ζ2
⋆

εµ3 +
√

Lmax

εµ3

√
ζ2⋆ +

σ2
⋆

n

)
. If γ → 0, one can choose η > 0 such

that the above complexity bound improves to Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M
ζ2
⋆

εµ3

)
.

We emphasize several differences with the known theoretical results. First, the FedCOM method
of Haddadpour et al. [2021] was analyzed in the homogeneous setting only, i.e., fm(x) = f(x)
for all m ∈ [M ], which is an unrealistic assumption for FL applications. In contrast, our result
holds in the fully heterogeneous case. Next, the analysis of FedPAQ of Reisizadeh et al. [2020]
uses a bounded variance assumption, which is also known to be restrictive. Nevertheless, let us
compare to their result. Reisizadeh et al. [2020] derive the following complexity for their method:
Õ
(

Lmax

µ

(
1 + ω

M

)
+ ω

M
σ2

µ2ε + σ2

Mµ2ε

)
. This result is inferior to the one we show for Q-NASTYA:

when ω is small, the main term in the complexity bound of FedPAQ is Õ (1/ε), while for Q-NASTYA
the dominating term is of the order Õ (1/

√
ε) (when ω and ε are sufficiently small). We also highlight

that FedCRR [Malinovsky and Richtárik, 2022] does not converge if ω > M2γµε/(2∥xn
∗,m∥2

), while
Q-NASTYA does for any ω ≥ 0. Finally, when ω = 0 (no compression) we recover NASTYA as a
special case, and using γ = η/n, we recover the rate of FedRR [Mishchenko et al., 2021].
Theorem E.2. Let Assumptions 1, 2, 3 hold. Suppose the stepsizes γ, η, α satisfy 0 < γ ≤ 1

16Lmaxn
,

0 < η ≤ min

{
α
2µ ,

1

16Lmax(1+ 9ω
M )

}
, and α ≤ 1

1+ω . Define the following Lyapunov function:

Ψt+1
def
= ∥xt+1 − x⋆∥2 +

8ωη2

αM2

M∑
m=1

∥ht+1,m − h⋆
m∥2. (25)

Then, for all T ≥ 0 the iterates produced by DIANA-NASTYA (Algorithm 4) satisfy

E [ΨT ] ≤
(
1− ηµ

2

)T
Ψ0 +

9

2

γ2nL

µ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
. (26)

Corollary 10. Under the same conditions as Theorem E.2 and for Algorithm 4, there exist stepsizes
γ = η/n, η > 0, α > 0 such that the number of communication rounds T to find a solution with

accuracy ε > 0 is Õ
(
ω + Lmax

µ

(
1 + ω

M

)
+
√

Lmax

εµ3

√
ζ2⋆ +

σ2
⋆

n

)
. If γ → 0, one can choose η > 0

such that the above complexity bound improves to Õ
(
ω + Lmax

µ

(
1 + ω

M

))
.

In contrast to Q-NASTYA, DIANA-NASTYA does not suffer from the Õ(1/ε) term in the complexity
bound. This shows the superiority of DIANA-NASTYA to Q-NASTYA. Next, FedCRR-VR [Malinovsky

and Richtárik, 2022] has the rate Õ
(

(ω+1)(1− 1
κ )

n

(1−(1− 1
κ )

n
)
2 +

√
κ(ζ⋆+σ⋆)
µ
√
ε

)
, which depends on Õ (1/

√
ε).

However, the first term is close to Õ
(
(ω + 1)κ2

)
for a large condition number. FedCRR-VR-2

utilizes variance reduction technique from Malinovsky et al. [2021] and it allows to get rid of

permutation variance. This method has Õ

 (ω+1)
(
1− 1

κ
√

κn

)n
2(

1−
(
1− 1

κ
√

κn

)n
2

)2 +
√
κζ⋆

µ
√
ε

 complexity, but it requires

additional assumption on number of functions n and thus not directly comparable with our result.
Note that if we have no compression (ω = 0), DIANA-NASTYA recovers rate of NASTYA.
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F Missing Proofs for Q-NASTYA

We start with deriving a technical lemma along with stating several useful results from [Malinovsky
et al., 2022]. For convenience, we also introduce the following notation:

gt,m =
1

n

n−1∑
i=0

∇f
πi
m

m (xi
t,m).

Lemma F.1. Let Assumptions 1, 2, 3 hold. Then, for all t ≥ 0 the iterates produced by Q-NASTYA
satisfy

EQ
[
∥gt∥2

]
≤

2L2
max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2+8Lmax

(
1 +

ω

M

)
(f(xt)− f(x⋆))+

4ω

M
ζ2⋆ ,

where EQ is expectation w.r.t. Q, and ζ2⋆ = 1
M

∑M
m=1 ∥∇fm(x⋆)∥2.

Proof. Using the variance decomposition E
[
∥ξ∥2

]
= E

[
∥ξ − E [ξ] ∥2

]
+ ∥Eξ∥2, we obtain

EQ
[
∥gt∥2

]
=

1

M2

M∑
m=1

EQ

∥∥∥∥∥Q
(
1

n

n−1∑
i=0

∇f
πi
m

m (xi
t,m)

)
− 1

n

n−1∑
i=0

∇f
πi
m

m (xi
t,m)

∥∥∥∥∥
2


+

∥∥∥∥∥ 1

Mn

M∑
m=1

n−1∑
i=0

∇f
πi
m

m (xi
t,m)

∥∥∥∥∥
2

Asm.1
≤ ω

M2

M∑
m=1

∥∥∥∥∥ 1n
n−1∑
i=0

∇f
πi
m

m (xi
t,m)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

Mn

M∑
m=1

n−1∑
i=0

∇f
πi
m

m (xi
t,m)

∥∥∥∥∥
2

.

Next, we use ∇fm(xt) =
1
n

∑n−1
i=0 ∇f

πi
m

m (xt) and ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

EQ
[
∥gt∥2

]
≤ 2ω

M2

M∑
m=1

∥∥∥∥∥ 1n
n−1∑
i=0

(
∇f

πi
m

m (xi
t,m)−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+
2ω

M2

M∑
m=1

∥∇fm(xt)∥2

+2

∥∥∥∥∥ 1

Mn

M∑
m=1

n−1∑
i=0

(
∇f

πi
m

m (xi
t,m)−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+ 2

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xt)

∥∥∥∥∥
2

≤
2
(
1 + ω

M

)
M

M∑
m=1

∥∥∥∥∥ 1n
n−1∑
i=0

(
∇f

πi
m

m (xi
t,m)−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+
2ω

M2

M∑
m=1

∥∇fm(xt)∥2 + 2 ∥∇f(xt)∥2 .

Using Li,m-smoothness of f i
m and f and also convexity of fm, we obtain

EQ
[
∥gt∥2

]
≤

2
(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥∥∥∇f
πi
m

m (xi
t,m)−∇f

πi
m

m (xt)
∥∥∥2 + 4ω

M2

M∑
m=1

∥∇fm(xt)−∇fm(x⋆)∥2

+
4ω

M2

M∑
m=1

∥∇fm(x⋆)∥2 + 2 ∥∇f(xt)−∇f(x⋆)∥2

≤
2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 8Lmax

(
1 + ω

M

)
M

M∑
m=1

Dfm(xt, x⋆) +
4ω

M
ζ2⋆ .
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Lemma F.2 (see [Malinovsky et al., 2022]). Under Assumptions 1, 2, 3, it holds

− 1

Mn

M∑
m=1

n−1∑
i=0

〈
f
πi
m

m (xi
t,m), xt − x⋆

〉
≤ −µ

4
∥xt−x⋆∥2−

1

2
(f(xt)− f(x⋆))+

Lmax

2Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 .
Lemma F.3 (see [Malinovsky et al., 2022]). Under Assumptions 1, 2, 3 and γ ≤ 1

2Lmaxn
, it holds

1

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 ≤ 8γ2n2Lmax (f(xt)− f(x⋆)) + 2γ2n
(
σ2
⋆ + (n+ 1)ζ2⋆

)
.

Theorem F.1. Let Assumptions 1, 2, 3 hold and stepsizes γ, η satisfy

0 < η ≤ 1

16Lmax

(
1 + ω

M

) , 0 < γ ≤ 1

5nLmax
. (27)

Then, for all T ≥ 0 the iterates produced by Q-NASTYA satisfy

E
[
∥xT − x⋆∥2

]
≤

(
1− ηµ

2

)T
∥x0 − x⋆∥2 +

9

2

γ2nLmax

µ

(
σ2
⋆ + (n+ 1)ζ2⋆

)
+ 8

ηω

µM
ζ2⋆ .

Proof. Taking expectation w.r.t. Q and using Lemma F.1, we get

EQ
[
∥xt+1 − x⋆∥2

]
= ∥xt − x⋆∥2 − 2ηEQ [⟨gt, xt − x⋆⟩] + η2EQ

[
∥gt∥2

]
≤ ∥xt − x⋆∥2 − 2ηEQ

[〈
1

M

M∑
m=1

Q

(
1

n

n−1∑
i=0

∇f
πi
m

m (xi
t,m)

)
, xt − x⋆

〉]

+
2η2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2
+8η2Lmax

(
1 +

ω

M

)
(f(xt)− f(x⋆)) + 4η2

ω

M
ζ2⋆

≤ ∥xt − x⋆∥2 − 2η
1

Mn

M∑
m=1

n−1∑
i=0

〈
∇f

πi
m

m (xi
t,m), xt − x⋆

〉
+
2η2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2
+8η2Lmax

(
1 +

ω

M

)
(f(xt)− f(x⋆)) + 4η2

ω

M
ζ2⋆ .

Next, Lemma F.2 implies

EQ
[
∥xt+1 − x⋆∥2

]
≤ ∥xt − x⋆∥2 −

ηµ

2
∥xt − x⋆∥2 − η (f(xt)− f(x⋆))

+8η2Lmax

(
1 +

ω

M

)
(f(xt)− f(x⋆)) +

ηLmax

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2
+
2η2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 4η2
ω

M
ζ2⋆

≤
(
1− ηµ

2

)
∥xt − x⋆∥2 − η

(
1− 8ηLmax

(
1 +

ω

M

))
(f(xt)− f(x⋆))

+
ηLmax

(
1 + 2ηLmax

(
1 + ω

M

))
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 4η2
ω

M
ζ2⋆ .

54



Using Lemma F.3, we get

EQ
[
∥xt+1 − x⋆∥2

]
≤

(
1− ηµ

2

)
∥xt − x⋆∥2 − η

(
1− 8ηL

(
1 +

ω

M

))
(f(xt)− f(x⋆))

+ηLmax

(
1 + 2ηLmax

(
1 +

ω

M

))
· 8γ2n2Lmax (f(xt)− f(x⋆))

+ηLmax

(
1 + 2ηLmax

(
1 +

ω

M

))
· 2γ2n

(
σ2
⋆ + (n+ 1)ζ2⋆

)
+4η2

ω

M
ζ2⋆ .

In view of (27), we have

EQ
[
∥xt+1 − x⋆∥2

]
≤

(
1− ηµ

2

)
∥xt − x⋆∥2 + 4η2

ω

M
ζ2⋆

−η
(
1− 8ηLmax

(
1 +

ω

M

)
− 8γ2n2L2

max

(
1 + 2Lmaxη

(
1 +

ω

M

)))
(f(xt)− f(x⋆))

+2γ2nηLmax

(
1 + 2ηL

(
1 +

ω

M

)) (
σ2
⋆ + nζ2⋆

)
≤

(
1− ηµ

2

)
∥xt − x⋆∥2 + 4η2

ω

M
ζ2⋆ +

9

4
ηLmaxγ

2n
(
σ2
⋆ + (n+ 1)σ2

⋆

)
.

Recursively unrolling the inequality and using
+∞∑
t=0

(
1− ηµ

2

)t ≤ 2
µη , we get the result.

Corollary 11. Let the assumptions of Theorem E.1 hold, γ = η/n, and

η = min

{
1

16Lmax

(
1 + ω

M

) ,√ εµn

9Lmax

(
(n+ 1)ζ2⋆ + σ2

⋆

)−1/2
,
εµM

24ωζ2⋆

}
. (28)

Then, Q-NASTYA finds a solution with accuracy ε > 0 after the following number of communication
rounds:

Õ

(
Lmax

µ

(
1 +

ω

M

)
+

ω

M

ζ2⋆
εµ3

+

√
Lmax

εµ3

√
ζ2⋆ + σ2

⋆/n

)
.

If γ → 0, one can choose η = min

{
1

16Lmax(1+ ω
M )

, εµM
24ωζ2

⋆

}
such that the above complexity bound

improves to

Õ
(
Lmax

µ

(
1 +

ω

M

)
+

ω

M

ζ2⋆
εµ3

)
.

Proof. Theorem E.1 implies

E
[
∥xT − x⋆∥2

]
≤
(
1− ηµ

2

)T
∥x0 − x⋆∥2 +

9

2

γ2nLmax

µ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
+ 8

ηω

µM
ζ2⋆ .

To estimate the number of communication rounds required to find a solution with accuracy ε > 0, we
need to upper bound each term from the right-hand side by ε/3. Thus, we get additional conditions on
η:

9

2

η2Lmax

nµ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
<

ε

3
, 8

ηω

µM
ζ2⋆ <

ε

3

and also the upper bound on the number of communication rounds T

T = Õ
(

1

ηµ

)
.

Substituting (31) in the previous equation, we get the first part of the result. When γ → 0, the proof
follows similar steps.
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G Missing Proofs for DIANA-NASTYA

Lemma G.1. Under Assumptions 1, 2, 3, the iterates produced by DIANA-NASTYA satisfy

−EQ

[
1

M

M∑
m=1

⟨ĝt,m − h⋆, xt − x⋆⟩

]
≤ −µ

4
∥xt − x⋆∥2 −

1

2
(f(xt)− f(x⋆))

− 1

Mn

M∑
m=1

n−1∑
i=0

D
f
πi
m

m

(x⋆, x
i
t,m)

+
Lmax

2Mn

M∑
m=1

n−1∑
i=0

∥xt − xi
t,m∥2,

where h⋆ = ∇f(x⋆).

Proof. Using that EQ [ĝt,m] = gt,m and definition of h⋆, we get

−EQ

[
1

M

M∑
m=1

⟨ĝt,m − h⋆, xt − x⋆⟩

]
= − 1

M

M∑
m=1

⟨gt,m − h⋆, xt − x⋆⟩

= − 1

Mn

M∑
m=1

n−1∑
i=0

〈
∇f

πi
m

m (xi
t,m)−∇f

πi
m

m (x⋆), xt − x⋆

〉
.

Next, three-point identity and Lmax-smoothness of each function f i
m imply

−EQ

[
1

M

M∑
m=1

⟨ĝt,m − h⋆, xt − x⋆⟩

]
= − 1

Mn

M∑
m=1

n−1∑
i=0

(
D

f
πi
m

m

(xt, x⋆) +D
f
πi
m

m

(x⋆, x
i
t,m)−D

f
πi
m

m

(xt, x
i
t,m)

)
≤ −Df (xt, x⋆)−

1

Mn

M∑
m=1

n−1∑
i=0

D
f
πi
m

m

(x⋆, x
i
t,m)

+
Lmax

2Mn

M∑
m=1

n−1∑
i=0

∥xt − xi
t,m∥2

Finally, using µ-strong convexity of f , we finish the proof of lemma.

Lemma G.2. Under Assumptions 1, 2, 3, the iterates produced by DIANA-NASTYA satisfy

EQ
[
∥ĝt − h⋆∥2

]
≤

2L2
max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 + 8Lmax

(
1 +

ω

M

)
(f(xt)− f(x⋆))

+
4ω

M2

M∑
m=1

∥ht,m − h⋆
m∥2.

Proof. Since gt =
1
M

∑M
m=1 gt,m and E∥ξ − c∥2 = E∥ξ − Eξ∥2 + E∥Eξ − c∥2, we have

EQ
[
∥ĝt − h⋆∥2

]
= EQ

∥∥∥∥∥ 1

M

M∑
m=1

(ht,m +Q (gt,m − ht,m)− h⋆
m)

∥∥∥∥∥
2


= EQ

∥∥∥∥∥ 1

M

M∑
m=1

(ht,m +Q (gt,m − ht,m))− gt

∥∥∥∥∥
2
+ ∥gt − h⋆∥2 .
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Next, independence of Q (gt,m − ht,m), m ∈ M , Assumption 1, and Lmax-smoothness and convex-
ity of each function f i

m imply

EQ
[
∥ĝt − h⋆∥2

]
≤ ω

M2

M∑
m=1

∥gt,m − ht,m∥2 + ∥gt − h⋆∥2

≤ 2ω

M2

M∑
m=1

∥∥∥∥∥ 1n
n−1∑
i=0

∇f
πi
m

m (xi
t,m)−∇fm(xt)

∥∥∥∥∥
2

+
2ω

M2

M∑
m=1

∥∇fm(xt)− ht,m∥2

+2 ∥gt −∇f(xt)∥2 + 2 ∥∇f(xt)− h⋆∥2

≤ 2ω

M2

M∑
m=1

∥∥∥∥∥ 1n
n−1∑
i=0

∇f
πi
m

m (xi
t,m)−∇fm(xt)

∥∥∥∥∥
2

+
2ω

M2

M∑
m=1

∥∇fm(xt)− ht,m∥2

+2

∥∥∥∥∥ 1

M

M∑
m=1

(
1

n

n−1∑
i=0

∇f
πi
m

m (xi
t,m)−∇fm(xt)

)∥∥∥∥∥
2

+ 2 ∥∇f(xt)− h⋆∥2

≤
2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 +

2ω

M2

M∑
m=1

∥∇fm(xt)− ht,m∥2

+2 ∥∇f(xt)− h⋆∥2 .

Using Lmax-smoothness and convexity of fm, we get

EQ
[
∥ĝt − h⋆∥2

]
≤

2L2
max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 +

2ω

M2

M∑
m=1

∥∇fm(xt)− ht,m∥2

+4Lmax (f(xt)− f(x⋆))

≤
2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 +

4ω

M2

M∑
m=1

∥∇fm(xt)− h⋆
m∥2

+
4ω

M2

M∑
m=1

∥ht,m − h⋆
m∥2 + 4Lmax (f(xt)− f(x⋆))

≤
2L2

max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 +

8Lmaxω

M2

M∑
m=1

Dfm(xt, x⋆)

+
4ω

M2

M∑
m=1

∥ht,m − h⋆
m∥2 + 4Lmax (f(xt)− f(x⋆)) .

Lemma G.3. Under Assumptions 1, 2, 3, and α ≤ 1
1+ω , the iterates produced by DIANA-NASTYA

satisfy

1

M

M∑
m=1

EQ
[
∥ht+1,m − h⋆

m∥2
]

≤ 1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2 + 2αL2

max

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2

+4αLmax (f(xt)− f(x⋆)) .
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Proof. Taking expectation w.r.t. Q and using Assumption 1, we obtain

1

M

M∑
m=1

EQ
[
∥ht+1,m − h⋆

m∥2
]

=
1

M

M∑
m=1

EQ
[
∥ht,m + αQ(gt,m − ht,m)− h⋆

m∥2
]

≤ 1

M

M∑
m=1

(
∥ht,m − h⋆

m∥2 + 2αEQ [⟨Q(gt,m − ht,m), ht,m − h⋆
m⟩]
)

+α2 1

M

M∑
m=1

EQ
[
∥Q(gt,m − ht,m)∥2

]
≤ 1

M

M∑
m=1

(
∥ht,m − h⋆

m∥2 + 2α ⟨gt,m − ht,m, ht,m − h⋆
m⟩
)

+α2(1 + ω)
1

M

M∑
m=1

∥gt,m − ht,m∥2

Using α ≤ 1
1+ω , we get

1

M

M∑
m=1

EQ
[
∥ht+1,m − h⋆

m∥2
]

≤ 1

M

M∑
m=1

(
∥ht,m − h⋆

m∥2 + α ⟨gt,m − ht,m, ht,m + gt,m − 2h⋆
m⟩
)

≤ 1

M

M∑
m=1

(
∥ht,m − h⋆

m∥2 + α∥gt,m − h⋆
m∥2 − α∥ht,m − h⋆

m∥2
)

≤ 1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2 + α

M

M∑
m=1

∥gt,m − h⋆
m∥2.

Finally, Lmax-smoothness and convexity of fm imply

1

M

M∑
m=1

EQ
[
∥ht+1,m − h⋆

m∥2
]

≤ 1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2

+
2α

M

M∑
m=1

(
∥gt,m −∇fm(xt)∥2 + ∥∇fm(xt)− h⋆

m∥2
)

≤ 1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2 + 4Lmaxα

M

M∑
m=1

Dfm(xt, x⋆)

+
2α

M

M∑
m=1

∥∥∥∥∥ 1n
n−1∑
i=0

(∇f
πi
m

m (xi
t,m)−∇f i

m(xt))

∥∥∥∥∥
2

≤ 1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2 + 4Lmaxα (f(xt)− f(x⋆))

+
2L2

maxα

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 .
Theorem G.1. Let Assumptions 1, 2, 3 hold and stepsizes γ, η, α satisfy

0 < γ ≤ 1

16Lmaxn
, 0 < η ≤ min

{
α

2µ
,

1

16Lmax

(
1 + 9ω

M

)} , α ≤ 1

1 + ω
. (29)

Then, for all T ≥ 0 the iterates produced by DIANA-NASTYA satisfy

E [ΨT ] ≤
(
1− ηµ

2

)T
Ψ0 +

9

2

γ2nL

µ

(
σ2
⋆ + (n+ 1)ζ2⋆

)
. (30)
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Proof. We have

∥xt+1 − x⋆∥2 = ∥xt − ηĝt − x⋆ + ηh⋆∥2

= ∥xt − x⋆∥2 − 2η⟨ĝt − h⋆, xt − x⋆⟩+ η2∥ĝt − h⋆∥2.

Taking expectation w.r.t. Q and using Lemma G.1, we obtain

EQ
[
∥xt+1 − x⋆∥2

]
= ∥xt − x⋆∥2 − 2ηEQ [⟨ĝt − h⋆, xt − x⋆⟩] + η2EQ

[
∥ĝt − h⋆∥2

]
≤

(
1− ηµ

2

)
∥xt − x⋆∥2 − η(f(xt)− f(x⋆))−

2η

Mn

M∑
m=1

n−1∑
i=0

D
f
πi
m

m

(x⋆, x
i
t,m)

+
Lmaxη

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 + η2EQ

[
∥ĝt − h⋆∥2

]
.

Next, Lemma G.2 implies

EQ
[
∥xt+1 − x⋆∥2

]
≤

(
1− ηµ

2

)
∥xt − x⋆∥2 − η(f(xt)− f(x⋆))−

2η

Mn

M∑
m=1

n−1∑
i=0

D
f
πi
m

m

(x⋆, x
i
t,m)

+
Lmaxη

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 +

2η2L2
max

(
1 + ω

M

)
Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2

+η2

(
8Lmax

(
1 +

ω

M

)
(f(xt)− f(x⋆)) +

4ω

M2

M∑
m=1

∥ht,m − h⋆
m∥2

)
≤

(
1− ηµ

2

)
∥xt − x⋆∥2 − η

(
1− 8ηLmax

(
1 +

ω

M

))
(f(xt)− f(x⋆))

+Lmaxη
(
1 + 2ηLmax

(
1 +

ω

M

)) 1

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2

− 2η

Mn

M∑
m=1

n−1∑
i=0

D
f
πi
m

m

(x⋆, x
i
t,m) +

4η2ω

M2

M∑
m=1

∥ht,m − h⋆
m∥2.

Using (6) and Lemma G.3, we get

EQ [Ψt+1]

≤
(
1− ηµ

2

)
∥xt − x⋆∥2 − η

(
1− 8ηLmax

(
1 +

ω

M

))
(f(xt)− f(x⋆))

+Lmaxη
(
1 + 2ηLmax

(
1 +

ω

M

)) 1

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2

− 2η

Mn

M∑
m=1

n−1∑
i=0

D
f
πi
m

m

(x⋆, x
i
t,m) +

4η2ω

M2

M∑
m=1

∥ht,m − h⋆
m∥2

+cη2

(
1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2 + 2αL2

max

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2 + 4αLmax (f(xt)− f(x⋆))

)

≤
(
1− ηµ

2

)
∥xt − x⋆∥2 + η2

(
c(1− α) +

4ω

M

)
1

M

M∑
m=1

∥ht,m − h⋆
m∥2

−η
(
1− 8ηLmax

(
1 +

ω

M

)
− 4αηcLmax

)
(f(xt)− f(x⋆))

+Lη
(
1 + 2ηLmax

(
1 +

ω

M

)
+ 2αηcLmax

) 1

Mn

M∑
m=1

n−1∑
i=0

∥xi
t,m − xt∥2.
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Taking the full expectation, we derive

E [Ψt+1] ≤
(
1− ηµ

2

)
E
[
∥xt − x⋆∥2

]
+ η2

(
c(1− α) +

4ω

M

)
1

M

M∑
m=1

E
[
∥ht,m − h⋆

m∥2
]

−η
(
1− 8ηLmax

(
1 +

ω

M

)
− 4αηcL

)
E [f(xt)− f(x⋆)]

+Lmaxη
(
1 + 2ηLmax

(
1 +

ω

M

)
+ 2αηcLmax

) 1

Mn

M∑
m=1

n−1∑
i=0

E
[
∥xi

t,m − xt∥2
]
.

Using Lemma F.3, we get

E [Ψt+1] ≤
(
1− ηµ

2

)
E
[
∥xt − x⋆∥2

]
+ η2

(
c(1− α) +

4ω

M

)
1

M

M∑
m=1

E
[
∥ht,m − h⋆

m∥2
]

−η
(
1− 8ηLmax

(
1 +

ω

M

)
− 4αηcLmax

)
E [f(xt)− f(x⋆)]

+8γ2n2L2
maxη

(
1 + 2ηLmax

(
1 +

ω

M

)
+ 2αηcLmax

)
E [f(xt)− f(x⋆)]

+2γ2nLmaxη
(
1 + 2ηLmax

(
1 +

ω

M

)
+ 2αηcLmax

) (
σ2
⋆ + (n+ 1)ζ2⋆

)
.

In view of (29), we have

E [Ψt+1] ≤
(
1− ηµ

2

)
E
[
∥xt − x⋆∥2

]
+
(
1− α

2

) cη2

M

M∑
m=1

E
[
∥ht,m − h⋆

m∥2
]

+
9

4
γ2nLmaxη

(
σ2
⋆ + (n+ 1)ζ2⋆

)
Using definition of Lyapunov function and using

+∞∑
t=0

(
1− ηµ

2

)t ≤ 2
µη , we get the result.

Corollary 12. Let the assumptions of Theorem E.2 hold, γ = η/n, α = 1
1+ω , and

η = min

{
α

2µ
,

1

16Lmax

(
1 + 9ω

M

) ,√ εµn

9Lmax

(
(n+ 1)ζ2⋆ + σ2

⋆

)−1/2

}
. (31)

Then, DIANA-NASTYA finds a solution with accuracy ε > 0 after the following number of communi-
cation rounds:

Õ

(
ω +

Lmax

µ

(
1 +

ω

M

)
+

√
Lmax

εµ3

√
ζ2⋆ + σ2

⋆/n

)
.

If γ → 0, one can choose η = min

{
α
2µ ,

1

16Lmax(1+ 9ω
M )

}
such that the number of communication

rounds T to find solution with accuracy ε > 0 is

Õ
(
ω +

Lmax

µ

(
1 +

ω

M

))
.

Proof. Theorem E.2 implies

E [ΨT ] ≤
(
1− ηµ

2

)T
Ψ0 +

9

2

γ2nLmax

µ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
.

To estimate the number of communication rounds required to find a solution with accuracy ε > 0, we
need to upper bound each term from the right-hand side by ε

2 . Thus, we get an additional restriction
on η:

9

2

η2Lmax

nµ

(
(n+ 1)ζ2⋆ + σ2

⋆

)
<

ε

2
,

and also the upper bound on the number of communication rounds T

T = Õ
(

1

ηµ

)
.

Substituting (31) in the previous equation, we get the first part of the result. When γ → 0, the proof
follows similar steps.
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H Alternative Analysis of Q-NASTYA

In this analysis, we will use additional sequence:

xi
⋆,m = x⋆ − γ

i−1∑
j=0

∇fm(x⋆). (32)

Theorem H.1. Let Assumptions 1, 3, 4 hold. Moreover, we assume that (1 − γµ)n ≤ 9/10−1/C
1+1/C =

Ĉ < 1 for some numerical constant C > 1. Also let β = η
γn ≤ 1

3C ω
M +1 and γ ≤ 1

Lmax
. Then, for all

T ≥ 0 the iterates produced by Q-NASTYA satisfy

≤ max

(
1− β

10
, 1− α

2

)
Ψt +

2

µ
βγ2σ̂2

rad (33)

E
[
∥xT − x⋆∥2

]
≤
(
1− β

10

)
∥xt − x∗∥2 +

4

µ
βγ2σ̂2

rad + 3β2 ω

M

1

M
∆̂⋆,

where ∆̂⋆ = 1
M

∑M
m=1 ∥xn

⋆,m − x⋆∥2 and σ̂2
rad ≤ Lmax

(
ζ2⋆ + nσ2

⋆/4
)
.

Proof. The update rule for one epoch can be rewritten as

xt+1 = xt − η
1

M

m=1∑
M

Q

(
xt − xn

t,m

γn

)
.

Using this, we derive

∥xt+1 − x∗∥2 =

∥∥∥∥∥xt − η
1

M

M∑
m=1

Q

(
xt − xn

t,m

γn

)
− x∗

∥∥∥∥∥
2

= ∥xt − x∗∥2 − 2η

〈
xt − x∗,

1

M

M∑
m=1

Q

(
xt − xn

t,m

γn

)〉

+ η2

∥∥∥∥∥ 1

M

M∑
m=1

Q

(
xt − xn

t,m

γn

)∥∥∥∥∥
2

.

Taking conditional expectation w.r.t. the randomness comming from compression, we get

EQ∥xt+1 − x∗∥2 = ∥xt − x∗∥2 − 2η

〈
xt − x∗,

1

M

M∑
m=1

(
xt − xn

t,m

γn

)〉

+ η2EQ

∥∥∥∥∥ 1

M

M∑
m=1

Q

(
xt − xn

t,m

γn

)∥∥∥∥∥
2

.

Next, we use the definition of quantization operator and independence of Q
(

xt−xn
t,m

γn

)
, m ∈ [M ]:

EQ∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2η

〈
xt − x∗,

1

M

M∑
m=1

(
xt − xn

t,m

γn

)〉

+ η2

 ω

M

1

M

M∑
m=1

∥∥∥∥xt − xn
t,m

γn

∥∥∥∥2 +
∥∥∥∥∥ 1

M

M∑
m=1

xt − xn
t,m

γn

∥∥∥∥∥
2
 .
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Since β = η
γn , we obtain

EQ∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2β

〈
xt − x∗,

1

M

M∑
m=1

(
xt − xn

t,m

)〉

+ β2 ω

M

1

M

M∑
m=1

∥∥xt − xn
t,m

∥∥2 + β2

∥∥∥∥∥ 1

M

M∑
m=1

(
xt − xn

t,m

)∥∥∥∥∥
2

= ∥xt − x∗∥2 + 2β

〈
xt − x∗,

1

M

M∑
m=1

(
xn
t,m − xt

)〉

+ β2 ω

M

1

M

M∑
m=1

∥∥xt − xn
t,m

∥∥2 + β2

∥∥∥∥∥ 1

M

M∑
m=1

(
xn
t,m − xt

)∥∥∥∥∥
2

=

∥∥∥∥∥xt − x∗ + β

(
1

M

M∑
m=1

(
xn
t,m − xt

))∥∥∥∥∥
2

+ β2 ω

M

1

M

M∑
m=1

∥∥xt − xn
t,m

∥∥2
=

∥∥∥∥∥(1− β)(xt − x∗) + β

(
1

M

M∑
m=1

(
xn
t,m

)
− x∗

)∥∥∥∥∥
2

+ β2 ω

M

1

M

M∑
m=1

∥∥xt − xn
t,m

∥∥2 .
Using the condition that x∗ = 1

M

∑M
m=1 x

n
∗,m we have:

EQ∥xt+1 − x∗∥2 ≤

∥∥∥∥∥(1− β)(xt − x∗) + β

(
1

M

M∑
m=1

(
xn
t,m − xn

∗,m
))∥∥∥∥∥

2

+ β2 ω

M

1

M

M∑
m=1

∥∥xt − xn
t,m

∥∥2 .
Convexity of squared norm and Jensen’s inequality imply

EQ∥xt+1 − x∗∥2 ≤ (1− β)∥xt − x∗∥2 + β

∥∥∥∥∥ 1

M

M∑
m=1

(
xn
t,m − xn

∗,m
)∥∥∥∥∥

2

+ β2 ω

M

1

M

M∑
m=1

∥∥xt − xn
t,m

∥∥2 .
Next, from Young’s inequality we get

EQ∥xt+1 − x∗∥2 ≤ (1− β)∥xt − x∗∥2 + β

∥∥∥∥∥ 1

M

M∑
m=1

(
xn
t,m − xn

∗,m
)∥∥∥∥∥

2

+ 3β2 ω

M
∥xt − x∗∥2

+ 3β2 ω

M

1

M

M∑
m=1

∥xn
t,m − xn

∗,m∥2 + 3β2 ω

M

1

M

M∑
m=1

∥xn
∗,m − x∗∥2.

Theorem 4 from [Mishchenko et al., 2021] gives

E

[
1

M

M∑
m=1

∥xn
t,m − xn

∗,m∥2
]
≤ (1− γµ)n

[
∥xt − x⋆∥2

]
+ 2γ3σ̂2

rad

n−1∑
j=0

(1− γµ)j


= (1− γµ)n

[
∥xt − x⋆∥2

]
+ 2γ2σ̂2

rad

1

γµ
.
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It leads to

E∥xt+1 − x∗∥2 ≤ (1− β)∥xt − x∗∥2 + β

(
(1− γµ)n

[
∥xt − x⋆∥2

]
+ 2γ3σ̂2

rad

1

γµ

)
+ 3β2 ω

M
∥xt − x∗∥2 + 3β2 ω

M

(
(1− γµ)n

[
∥xt − x⋆∥2

]
+ 2γ3σ̂2

rad

1

γµ

)
+ 3β2 ω

M

1

M

M∑
m=1

∥xn
∗,m − x∗∥2

≤
(
1− β + β(1− γµ)n + 3β2 ω

M
+ 3β2 ω

M
(1− γµ)n

)
∥xt − x∗∥2

+ 2βγ3σ̂2
rad

1

γµ

(
1 + 3β

ω

M

)
+ 3β2 ω

M

1

M

M∑
m=1

∥xn
∗,m − x∗∥2.

Using (1− γµ)n ≤ 9/10−1/C
1+1/C , we have

(1− γµ)n ≤
9/10 − 1/C

1 + 1/C

(1− γµ)n
(
1 +

1

C

)
≤ 9

10
− 1

C

− 9

10
β + β(1− γµ)n +

β

C
+

β

C
(1− γµ)n ≤ 0

1− β + β(1− γµ)n +
β

C
+

β

C
(1− γµ)n ≤ 1− β

10
.

Next, applying β ≤ 1
1+3C ω

M
, we derive

1− β + β(1− γµ)n + 3β2 ω

M
+ 3β2 ω

M
(1− γµ)n ≤ 1− β

10
.

Finally, we have

E∥xt+1 − x⋆∥2 ≤
(
1− β

10

)
∥xt − x∗∥2 + 2βγ2σ̂2

rad

1

µ

(
1 +

1

C

)
+ 3β2 ω

M

1

M

M∑
m=1

∥xn
∗,m − x∗∥2

≤
(
1− β

10

)
∥xt − x∗∥2 +

4

µ
βγ2σ̂2

rad

+ 3β2 ω

M

1

M

M∑
m=1

∥xn
∗,m − x∗∥2.
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I Alternative Analysis of DIANA-NASTYA

Theorem I.1. Let Assumptions 1, 3, 4 hold. Moreover, we assume that (1−γµ)n ≤ 9/10−1/B
1+1/B = B̂ < 1

for some numerical constant B > 1. Also let β = η
γn ≤ 1

12B ω
M +1 and γ ≤ 1

Lmax
and also α ≤ 1

ω+1 .
Then, for all T ≥ 0 the iterates produced by DIANA-NASTYA satisfy

EΨT ≤ max

(
1− β

10
, 1− α

2

)T

Ψ0 +
2

µmin( β
10 ,

α
2 )

βγ2σ̂2
rad. (34)

Proof. We start with expanding the square:

∥xt+1 − x∗∥2 = ∥xt − ηĝt − x∗∥2

=

∥∥∥∥∥xt − η
1

M

M∑
m=1

(ht,m +Q(gt,m − ht,m))− x∗

∥∥∥∥∥
2

= ∥xt − x∗∥2 − 2η

〈
1

M

M∑
m=1

(ht,m +Q(gt,m − ht,m)) , xt − x∗

〉

+ η2

∥∥∥∥∥ 1

M

M∑
m=1

(ht,m +Q(gt,m − ht,m))

∥∥∥∥∥
2

.

Taking the expectation w.r.t. Q, we get

EQ∥xt+1 − x∗∥2 = ∥xt − x∗∥2 − 2η

〈
1

M

M∑
m=1

gt,m, xt − x∗

〉

+ η2EQ

∥∥∥∥∥ 1

M

M∑
m=1

(ht,m +Q(gt,m − ht,m))

∥∥∥∥∥
2

= ∥xt − x∗∥2 − 2η

〈
1

M

M∑
m=1

gt,m, xt − x∗

〉

+ η2EQ

∥∥∥∥∥ 1

M

M∑
m=1

(ht,m +Q(gt,m − ht,m)− gt,m)

∥∥∥∥∥
2

+ η2

∥∥∥∥∥ 1

M

M∑
m=1

gt,m

∥∥∥∥∥
2

≤ ∥xt − x∗∥2 − 2η

〈
1

M

M∑
m=1

gt,m, xt − x∗

〉

+ η2
ω

M2

M∑
m=1

∥gt,m − ht,m∥2 + η2

∥∥∥∥∥ 1

M

M∑
m=1

gt,m

∥∥∥∥∥
2

≤ ∥xt − x∗∥2 − 2η

〈
1

M

M∑
m=1

gt,m, xt − x∗

〉

+ η2
2ω

M2

M∑
m=1

∥gt,m − h∗,m∥2 + η2
2ω

M2

M∑
m=1

∥ht,m − h∗,m∥2 + η2

∥∥∥∥∥ 1

M

M∑
m=1

gt,m

∥∥∥∥∥
2

.
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Next, using definition of gt,m, we obtain

E∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2η

〈
1

M

M∑
m=1

xt − xn
t,m

γn
, xt − x∗

〉
+ η2

∥∥∥∥∥ 1

M

M∑
m=1

xt − xn
t,m

γn

∥∥∥∥∥
2

+ η2
2ω

M2

M∑
m=1

∥gt,m − h∗,m∥2 + η2
2ω

M2

M∑
m=1

∥ht,m − h∗,m∥2

= ∥xt − x∗∥2 + 2α

〈
1

M

M∑
m=1

(
xn
t,m − xt

)
, xt − x∗

〉
+ α2

∥∥∥∥∥ 1

M

M∑
m=1

(
xn
t,m − xt

)∥∥∥∥∥
2

+ η2
2ω

M2

M∑
m=1

∥gt,m − h∗,m∥2 + η2
2ω

M2

M∑
m=1

∥ht,m − h∗,m∥2

=

∥∥∥∥∥xt − x∗ + α
1

M

M∑
m=1

(
xn
t,m − xt

)∥∥∥∥∥
2

+ η2
2ω

M2

M∑
m=1

∥gt,m − h∗,m∥2 + η2
2ω

M2

M∑
m=1

∥ht,m − h∗,m∥2

=

∥∥∥∥∥(1− β)(xt − x∗) + β

(
1

M

M∑
m=1

(
xn
t,m − xn

∗,m
))∥∥∥∥∥

2

≤ (1− β)∥xt − x∗∥2 + β
1

M

M∑
m=1

∥xn
t,m − xn

∗,m∥2

+ η2
2ω

M2

M∑
m=1

∥gt,m − h∗,m∥2 + η2
2ω

M2

M∑
m=1

∥ht,m − h∗,m∥2.

Let us consider recursion for control variable:

∥ht+1,m − h∗,m∥2 = ∥ht,m + αQ(gt,m − ht,m)− h∗,m∥2

= ∥ht,m − h∗,m∥2 + α ⟨Q(gt,m − ht,m), ht,m − h∗,m⟩+ α2∥Q(gt,m − ht,m)∥2.
Taking the expectation w.r.t. Q, we have

EQ∥ht+1,m − h∗,m∥2 ≤ ∥ht,m − h∗,m∥2 + 2α ⟨gt,m − ht,m, ht,m − h∗,m⟩+ α2 (ω + 1) ∥gt,m − ht,m∥2 .

Using α ≤ 1
ω+1 we have

E∥ht+1,m − h∗,m∥2 ≤ ∥ht,m − h∗,m∥2

+ 2α ⟨gt,m − ht,m, ht,m − h∗,m⟩+ α ∥gt,m − ht,m∥2

= ∥ht,m − h∗,m∥2

+ 2α ⟨gt,m − ht,m, ht,m − h∗,m⟩+ α ⟨gt,m − ht,m, gt,m − ht,m⟩
= ∥ht,m − h∗,m∥2

+ α ⟨gt,m − ht,m, gt,m − ht,m + 2ht,m − 2h∗,m⟩
= ∥ht,m − h∗,m∥2

+ α ⟨gt,m − ht,m, gt,m + ht,m − 2h∗,m⟩
= ∥ht,m − h∗,m∥2

+ α ⟨gt,m − ht,m − h∗,m + h∗,m, gt,m + ht,m − 2h∗,m⟩
= ∥ht,m − h∗,m∥2

+ α ⟨gt,m − h∗,m − (ht,m − h∗,m), (gt,m − h∗,m) + (ht,m − h∗,m)⟩
= ∥ht,m − h∗,m∥2 + α∥gt,m − h∗,m∥2 − α∥ht,m − h∗,m∥2

= (1− α)∥ht,m − h∗,m∥2 + α∥gt,m − h∗,m∥2.
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Using this bound we get that

1

M

M∑
m=1

EQ∥ht+1,m − h∗,m∥2 ≤ (1− α)
1

M

M∑
m=1

∥ht,m − h∗,m∥2 + α
1

M

M∑
m=1

∥gt,m − h∗,m∥2.

Let us consider Lyapunov function:

Ψt = ∥xt − x∗∥2 +
4ωη2

αM

1

M

M∑
m=1

∥ht,m − h∗,m∥2.

Using previous bounds and Theorem 4 from [Mishchenko et al., 2021] we have

EΨt+1 ≤ (1− β)∥xt − x∗∥2 + β

(
(1− γµ)nE∥xt − x∗∥2 + γ3 1

γµ
σ̂2
rad

)
+ η2

2ω

M

1

M

M∑
m=1

E∥gt,m − h∗,m∥2 + η2
2ω

M

1

M

M∑
m=1

E∥ht,m − h∗,m∥2

+ (1− α)
4ωη2

αM

1

M

M∑
m=1

E∥ht,m − h∗,m∥2 + α
4ωη2

αM

1

M

M∑
m=1

E∥gt,m − h∗,m∥2

≤
(
1− α

2

) 4ωη2

αM

1

M

M∑
m=1

E∥ht,m − h∗,m∥2 + η2
6ω

M

1

M

M∑
m=1

E∥gt,m − h∗,m∥2

+ (1− β)E∥xt − x∗∥2 + β

(
(1− γµ)nE∥xt − x∗∥2 + γ3 1

γµ
σ̂2
rad.

)
Let us consider

η2
1

M

M∑
m=1

E∥gt,m − h∗,m∥2 = η2
1

M

M∑
m=1

E
∥∥∥∥xt − xn

t,m

γn
−

x∗ − xn
∗,m

γn

∥∥∥∥2

≤ 2η2
1

M

M∑
m=1

E
∥∥∥∥xt − x∗

γn

∥∥∥∥2 + 2η2
1

M

M∑
m=1

E
∥∥∥∥xn

t,m − xn
∗,m

γn

∥∥∥∥2

≤ 2β2 1

M

M∑
m=1

E ∥xt − x∗∥2 + 2β2 1

M

M∑
m=1

E
∥∥xn

t,m − xn
∗,m
∥∥2

≤ 2β2E ∥xt − x∗∥2 + 2β2 1

M

M∑
m=1

E
∥∥xn

t,m − xn
∗,m
∥∥2 .

Putting all the terms together and using (1− γµ)n ≤ 9/10−1/B
1+1/B = B̂ < 1, β ≤ 1

12B ω
M +1 we have

EΨt+1 ≤
(
1− β + 12

ω

M
β2 + 12

ω

M
β2(1− γµ)n + β(1− γµ)n

)
E∥xt − x∗∥2 + βγ3 1

γµ
σ̂2
rad

+ 2β2 6ω

M
γ3 1

γµ
σ̂2
rad +

(
1− α

2

) 4ωη2

αM

1

M

M∑
m=1

E∥ht,m − h∗,m∥2

≤
(
1− β

10

)
E∥xt − x⋆∥2 +

2

µ
βγ2σ̂2

rad +
(
1− α

2

) 4ωη2

αM

1

M

M∑
m=1

E∥ht,m − h∗,m∥2

≤ max

(
1− β

10
, 1− α

2

)
Ψt +

2

µ
βγ2σ̂2

rad.

Unrolling this recursion we get the final result.
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Algorithm 5 Q-NASTYA-PP

Input: x0 – starting point, γ > 0 – local stepsize, η > 0 – global stepsize
1: for t = 0, 1, . . . , T − 1 do
2: Sample a cohort St with cardinality C uniformly
3: for m ∈ St in parallel do
4: Receive xt from the server and set x0

t,m = xt

5: Sample random permutation of [n]: πm = (π0
m, . . . , πn−1

m )
6: for i = 0, 1, . . . , n− 1 do
7: Set xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

8: end for
9: Compute gt,m = 1

γn

(
xt − xn

t,m

)
and send Qt(gt,m) to the server

10: end for
11: Compute gt =

1
C

∑
m∈St

Qt(gt,m)
12: Compute xt+1 = xt − ηgt and send xt+1 to the workers
13: end for
Output: xT

J Partial Participation for Method with Local Steps

J.1 Analysis of Q-NASTYA with Partial Participation

Lemma J.1. Let Assumptions 1, 2, 3 hold. Then, for all t ≥ 0 the iterates produced by Q-NASTYA-PP
(Algorithm 5) satisfy

EQ,St

[
∥gt∥2

]
≤

2L2
max

(
1 + ω

C

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 8Lmax

(
1 +

ω

C

)
(f (xt)− f (x⋆))

+ 4

(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆,

where EQ,St
is expectation w.r.t. Q, St and σ2

⋆ = 1
M

∑M
m=1 ∥∇fm (x⋆)∥2.

Proof. E
[
∥ξ∥2

]
= E

[
∥ξ − E[ξ]∥2

]
+ ∥Eξ∥2, we obtain

EQ
[
∥gt∥2

]
=EQ

∥∥∥∥∥ 1

C

∑
m∈St

(
Q

(
1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

))
− 1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

))
+

1

Cn

∑
m∈St

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2


=
1

C2
EQ∥

∑
m∈St

(

(
1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

))
− 1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)
︸ ︷︷ ︸

=ξm

∥2]

+

∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2

=
1

C2
EQ

 ∑
m∈St

∥ξm∥2 +
∑

m,l∈St:m̸=l

2 ⟨ξm, ξl⟩

+

∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2

.
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Using independence between ξm and ξl for different m, l and Using (2), (3), we get

EQ

[
∥gt∥2

]
=

1

C2

∑
m∈St

EQ

∥∥∥∥∥Q
(
1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

))
− 1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2


+

∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2

≤ ω

C2

∑
m∈St

∥∥∥∥∥ 1n
n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2

+

∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

)∥∥∥∥∥
2

.

Rewriting previous inequality and using ∇fm(x) =
1

n

n−1∑
i=0

∇f
πi
m

m (xt) , we have

EQ

[
∥gt∥2

]
≤ 2ω

C2

∑
m∈St

∥∥∥∥∥ 1n
n−1∑
i=0

(
∇f

πi
m

m

(
xi
t,m

)
−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+
2ω

C2

∑
m∈St

∥∇fm (xt)∥2

+ 2

∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

(
∇f

πi
m

m

(
xi
t,m

)
−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+ 2

∥∥∥∥∥ 1C ∑
m∈St

∇fm (xt)

∥∥∥∥∥
2

≤
2
(
1 + ω

C

)
C

∑
m∈St

∥∥∥∥∥ 1n
n−1∑
i=0

(
∇f

πi
m

m

(
xi
t,m

)
−∇f

πi
m

m (xt)
)∥∥∥∥∥

2

+
2ω

C2

∑
m∈St

∥∇fm (xt)∥2 + 2

∥∥∥∥∥ 1C ∑
m∈St

∇fm (xt)

∥∥∥∥∥
2

Using L-smoothness of f i
m and f and also convexity of fm, we obtain

EQ

[
∥gt∥2

]
≤
2
(
1 + ω

C

)
Cn

∑
m∈St

n−1∑
i=0

∥∥∥∇f
πi
m

m

(
xi
t,m

)
−∇f

πi
m

m (xt)
∥∥∥2

+
4ω

C2

∑
m∈St

∥∇fm (xt)−∇fm (x⋆)∥2

+
4ω

C2

∑
m∈St

∥∇fm (x⋆)∥2 + 4

∥∥∥∥∥ 1C ∑
m∈St

(∇fm (xt)−∇fm (x⋆))

∥∥∥∥∥
2

+ 4

∥∥∥∥∥ 1C ∑
m∈St

∇fm (x⋆)

∥∥∥∥∥
2

≤
2L2

max

(
1 + ω

C

)
Cn

∑
m∈St

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 8Lmax

(
1 + ω

C

)
C

∑
m∈St

Dfm (xt, x
⋆)

+
4ω

C2

∑
m∈St

∥∇fm (x⋆)∥2 + 4

∥∥∥∥∥ 1C ∑
m∈St

∇fm (x⋆)

∥∥∥∥∥
2

.

Taking expectation w.r.t. St and using uniform sampling, we receive
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EQ,St

[
∥gt∥2

]
≤
2L2

max

(
1 + ω

C

)
n

ESt

[
1

C

∑
m∈St

n−1∑
i=0

∥xi
t,m − xt|2

]

+ 8Lmax

(
1 +

ω

C

)
ESt

[
1

C

∑
m∈St

Dfm (xt, x
⋆)

]

+
4ω

C
ESt

[
1

C

∑
m∈St

∥∇fm (x⋆)∥2
]
+ 4ESt

∥∥∥∥∥ 1C ∑
m∈St

∇fm (x⋆)

∥∥∥∥∥
2


≤
2L2

max

(
1 + ω

C

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 8Lmax

(
1 + ω

C

)
M

M∑
m=1

Dfm (xt, x
⋆)

+
4ω

C

1

M

M∑
m=1

∥∇fm (x⋆)∥2 + 4
M − C

MCmaxM − 1, 1

M∑
m=1

∥∇fm (x⋆)∥2 .

Theorem J.1. Let step sizes η, γ satisfy the following equations

η =
1

16Lmax

(
1 + ω

C

) , γ =
1

5nLmax

Under the Assumptions 1, 2, 3 iterates of Q-NASTYA-PP (Algorithm 5) satisfy

E
[
∥xT − x⋆∥2

]
≤
(
1− ηµ

2

)T
∥x0 − x⋆∥2 + 9

2

γ2nLmax

µ

(
1

M

M∑
m=1

σ2
⋆,m + nσ2

⋆

)

+ 8
η

µ

(
ω

C
σ2
⋆ +

M − C

Cmax(M − 1, 1)
σ2
⋆

)
,

where

σ2
⋆ =

1

M

M∑
m=1

∥∇fm (x⋆)∥2 , σ2
⋆,m =

1

n

∥∥∇f i
m (x⋆)

∥∥2

As we can see, there is an additional error term proportional to M−C
C max(M−1,1) that arises due to client

sampling in the partial participation setting. Note that when C = M (all clients are participating),
this error term vanishes, allowing us to recover the previous result for the full participation case. This
shows the consistency of our theoretical framework across different participation scenarios.
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Proof.

Taking expectation w.r.t. Q, St and using Lemma J.1 updated, we get

EQ,St

[
∥xt+1 − x⋆|2

]
=∥xt − x⋆|2 − 2ηEQ,St

[⟨gt, xt − x⋆⟩] + η2EQ,St

[∥∥gt∥∥2]
≤∥xt − x⋆∥2 − 2ηEQ,St

[〈
1

C

∑
m∈St

Q

(
1

n

n−1∑
i=0

∇f
πi
m

m

(
xi
t,m

))
, xt − x⋆

〉]

+
2η2L2

max

(
1 + ω

C

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 8η2Lmax

(
1 +

ω

C

)
(f (xt)− f (x⋆))

+ 4η2
(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆

≤∥xt − x⋆∥2 − 2η
1

Mn

M∑
m=1

n−1∑
i=0

〈
∇fπi

m

(
xi
t,m

)
, xt − x⋆

〉
+

2η2L2
max

(
1 + ω

C

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 8η2Lmax

(
1 +

ω

C

)
(f (xt)− f (x⋆))

+ 4η2
(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆.

Using Lemma F.2, we obtain

EQ,St

[
∥xt+1 − x⋆∥2

]
≤∥xt − x⋆∥2 − ηµ

2
∥xt − x⋆∥2 − η (f (xt)− f (x⋆))

+ 8η2Lmax

(
1 +

ω

C

)
(f (xt)− f (x⋆)) +

ηLmax

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2
+

2η2L2
max

(
1 + ω

C

)
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 4η2
(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆

≤
(
1− ηµ

2

)
∥xt − x⋆∥2 − η

(
1− 8ηLmax

(
1 +

ω

C

))
(f (xt)− f (x⋆))

+
ηLmax

(
1 + 2ηLmax

(
1 + ω

C

))
Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 +
4η2

(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆.

Using Lemma F.3, we have

EQ,St

[
∥xt+1 − x⋆∥2

]
≤
(
1− ηµ

2

)
∥xt − x⋆∥2 − η

(
1− 8ηL

(
1 +

ω

C

))
(f (xt)− f (x⋆))

+ ηLmax

(
1 + 2ηLmax

(
1 +

ω

C

))
· 8γ2n2Lmax (f (xt)− f (x⋆))

+ ηLmax

(
1 + 2ηLmax

(
1 +

ω

C

))
· 2γ2n

(
1

M

M∑
m=1

σ2
⋆,m + nσ2

⋆

)

+ 4η2
(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆.

Finally, we receive
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EQ,St

[
∥xt+1 − x⋆∥2

]
≤
(
1− ηµ

2

)
∥xt − x⋆∥2 + 4η2

(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆

− η
(
1− 8ηLmax

(
1 +

ω

C

)
− 8γ2n2L2

max

(
1 + 2Lmaxη

(
1 +

ω

C

)))
(f (xt)− f (x⋆))

+ 2γ2nηLmax

(
1 + 2ηL

(
1 +

ω

C

))( 1

M

M∑
m=1

σ2
⋆,m + nσ2

⋆

)

≤
(
1− ηµ

2

)
∥xt − x⋆∥2 + 4η2

(
ω

C
+

M − C

CmaxM − 1, 1

)
σ2
⋆

+
9

4
ηLmaxγ

2n

(
1

M

M∑
m=1

σ2
⋆,m + nσ2

⋆

)

Recursively rewriting the inequality and using
∑+∞

t=0

(
1− ηµ

2

)t ≤ 2
µη , we finish proof.
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Algorithm 6 DIANA-NASTYA-PP

Input: x0 – starting point, {h0,m}Mm=1 – initial shift-vectors, γ > 0 – local stepsize, η > 0 – global
stepsize, α > 0 – stepsize for learning the shifts

1: for t = 0, 1, . . . , T − 1 do
2: Sample a cohort St with cardinality C uniformly
3: for m ∈ St in parallel do
4: Receive xt from the server and set x0

t,m = xt

5: Sample random permutation of [n]: πm = (π0
m, . . . , πn−1

m )
6: for i = 0, 1, . . . , n− 1 do
7: Set xi+1

t,m = xi
t,m − γ∇f

πi
m

m (xi
t,m)

8: end for
9: Compute gt,m = 1

γn

(
xt − xn

t,m

)
and send Qt (gt,m − ht,m) to the server

10: Set ht+1,m = ht,m + αQt (gt,m − ht,m)
11: Set ĝt,m = ht,m +Qt (gt,m − ht,m)
12: end for
13: ht+1 = 1

C

∑
m∈St

ht+1,m = ht +
α
C

∑
m∈St

Qt (gt,m − ht,m)

14: ĝt =
1
C

∑
m∈St

ĝt,m = ht +
1
C

∑
m∈St

Qt (gt,m − ht,m)
15: xt+1 = xt − ηĝt
16: end for
Output: xT

J.2 Analysis of DIANA-NASTYA with Partial Participation

Theorem J.2. Let step sizes η, γ satisfy the following equations

η = min

(
1

80Lmax

(
1 + ω

C

) , C

µ(1 + ω)M

)
, γ =

1

5nLmax

Define the Lyapunov function:

Ψt = ∥xt − x⋆∥2 + A

M

M∑
m=1

∥ht,m − h⋆
m∥2 ,

where A = λη2. Selecting parameters α = 1
1+ω ;λ = 8ω

αM , γ = 1
5nLmax

, also using η ≤

min

[
C

µ(1+ω)M , 1

80Lmax(1+ ω
C )

]
Under the Assumptions 1, 2, 3 iterates of DIANA-NASTYA-PP (Algo-

rithm 6) satisfy

E [ΨT ] ≤
(
1− ηµ

2

)T
E [Ψ0] +

3γ2n2L2
max

µ

(
1

M

M∑
m=1

σ2
⋆,m + nσ2

⋆

)
+

2η(M − C)

µCmax(1,M − 1)
σ2
⋆.

Note that we eliminate the variance term proportional to ω : 8 η
µ

ω
Cσ2

⋆. In the Partial Participation

regime, we have a variance term proportional to (M−C)
C max(1,M−1) , which equals zero if C = M . This

term decreases as O
(
1
C

)
, so we achieve the expected linear speedup.
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Proof. STEP 1: we need to estimate inner product. By ĝt =
1
C

∑
m∈St

ĝt,m, we have

−Et

[〈
1

C

∑
m∈St

ĝt,m, xt − x⋆

〉]
=−

〈
1

C
Et

[ ∑
m∈St

ĝt,m

]
, xt − x⋆

〉

=−

〈
1

M

M∑
m=1

Et [ĝt,m] , xt − x⋆

〉

=− 1

M

M∑
m=1

⟨gt,m, xt − x⋆⟩

=− 1

M

M∑
m=1

⟨gt,m − h⋆
m, xt − x⋆⟩

≤ − µ

4
∥xt − x⋆∥2 − 1

2
(f (xt)− f (x⋆))

− 1

Mn

M∑
m=1

n−1∑
i=0

D
f
πim
m

m

(
x⋆, xi

t,m

)
+

Lmax

2Mn

M∑
m=1

n−1∑
i=0

∥∥xt − xi
t,m

∥∥2 .

STEP 2: We need to bound E ∥ĝt∥2 . By ĝt =
1

C

∑
m∈St

ĝt,m, we have

EQ

[
∥ĝt∥2

]
=EQ

∥∥∥∥∥ 1C ∑
m∈St

(ht,m +Q (gt,m − ht,m)− gt,m + gt,m)

∥∥∥∥∥
2


=EQ

∥∥∥∥∥ 1C ∑
m∈St

(ht,m +Q (gt,m − ht,m)− gt,m)

∥∥∥∥∥
2
+

∥∥∥∥∥ 1C ∑
m∈St

gt,m

∥∥∥∥∥
2

=
1

C2

∑
m∈St

EQ

[
∥ht,m +Q (gt,m − ht,m)∥2

]
+

∥∥∥∥∥ 1C ∑
m∈St

gt,m

∥∥∥∥∥
2

≤ ω

C2

∑
m∈St

∥gt,m − ht,m∥2 +

∥∥∥∥∥ 1C ∑
m∈St

gt,m

∥∥∥∥∥
2

≤ 2ω

C2

∑
m∈St

∥gt,m −∇fm (xt)∥2 +
2ω

C2

∑
m∈St

∥∇fm (xt)− ht,m∥2

+ 2

∥∥∥∥∥ 1C ∑
m∈St

gt,m − h⋆
m

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1C ∑
m∈St

h⋆
m

∥∥∥∥∥
2

Taking expectation by subsamling, we have
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EQ,St

[
∥ĝt∥2

]
≤2ω

C

1

M

M∑
m=1

∥gt,m −∇fm (xt)∥2 +
2ω

C

1

M

M∑
m=1

∥∇fm (xt)− ht,m∥2

+
2

M

M∑
m=1

∥gt,m − h⋆
m∥2 + 2(M − C)

C(M − 1)M

M∑
m=1

∥h⋆
m∥2

≤2ω

C

1

M

M∑
m=1

∥gt,m −∇fm (xt)∥2 +
2ω

C

1

M

M∑
m=1

∥∇fm (xt)− ht,m∥2

+
4

M

M∑
m=1

∥gt,m −∇fm (xt)∥2 +
4

M

M∑
m=1

∥∇fm (xt)− h⋆
m∥2

+
2(M − C)

C(M − 1)M

M∑
m=1

∥h⋆
m∥2

≤4
(
1 +

ω

C

) L2
max

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 2ω

C

1

M

M∑
m=1

∥∇fm (xt)− ht,m∥2

+
8Lmax

M

M∑
m=1

Dfm (xt, x
⋆) +

2(M − C)

C(M − 1)M

M∑
m=1

∥h⋆
m∥2

=
(
1 +

ω

C

) L2
max

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2 + 2ω

C

1

M

M∑
m=1

∥∇fm (xt)− ht,m∥2

+ 8Lmax (f (xt)− f (x⋆)) +
2(M − C)

C(M − 1)M

M∑
m=1

∥h⋆
m∥2

Thus, we have

EQ,St

[
∥xt+1 − x⋆∥2

]
≤
(
1− ηµ

2

)
∥xt − x⋆∥2 − η (1− 4Lmaxη) (f (xt)− f (x⋆))

+ ηLmax

(
1 + 4

(
1 +

ω

C

)
Lmaxη

) 1

Mn

M∑
m=1

n−1∑
i=0

∥∥xi
t,m − xt

∥∥2
+

2η2ω

C

1

M

M∑
m=1

∥∇fm (xt)− ht,m∥2 + 2η2(M − C)

C(M − 1)M

M∑
m=1

∥h⋆
m∥2 .

STEP 3: Note that

1

M

M∑
m=1

∥ht+1,m − h⋆
m∥2 =

C

M

1

C

∑
m∈St

∥ht+1,m − h⋆
m∥2+M − C

M

1

M − C

∑
m/∈St

∥ht+1,m − h⋆
m∥2 .

Taking expectation by compression, we have
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EQ

[
1

C

∑
m∈St

∥ht+1,m − h⋆
m∥2

]
= EQ

[
1

C

∑
m∈St

∥ht,m + αQ (gt,m − ht,m)− h⋆
m∥2

]

=
1

C

∑
m∈St

(
∥ht,m − h⋆

m∥2 + 2α ⟨gt,m − ht,m, ht,m − h⋆
m⟩+ α2(1 + ω) ∥gt,m − ht,m∥2

)
α≤1/1+ω

≤ 1

C

∑
m∈St

(
∥ht,m − h⋆

m∥2 + 2α ⟨gt,m − ht,m, ht,m − h⋆
m⟩+ α ∥gt,m − ht,m∥2

)
=

1− α

C

∑
m∈St

∥ht,m − h⋆
m∥2 + α

C

∑
m∈St

∥gt,m − ht,m∥2 .

Taking expectation by subsampling, we have

EQ,St

[
1

C

∑
m∈St

∥ht+1,m − h⋆
m∥2

]
≤ ESt

[
1− α

C

∑
m∈St

∥ht,m − h⋆
m∥2 + α

C

∑
m∈St

∥gt,m − h⋆
m∥2

]

=
1− α

M

M∑
m=1

∥ht,m − h⋆
m∥2 + α

M

M∑
m=1

∥gt,m − h⋆
m∥2 .

Thus, we have

ESt,Qt

[
1

M

M∑
m=1

∥ht+1,m − h⋆
m∥2

]
=
(1− α)C

M2

M∑
m=1

∥ht,m − h⋆
m∥2 + αC

M2

M∑
m=1

∥gt,m − h⋆
m∥2

+
M − C

M
ESt,Qt

 1

M − C

∑
m/∈St

∥ht,m − h⋆
m∥2


=
(1− α)C

M2

M∑
m=1

∥ht,m − h⋆
m∥2 + αC

M2

M∑
m=1

∥gt,m − h⋆
m∥2

+
M − C

M

1

M

M∑
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≤
(
1− αC

M

)
1

M

M∑
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M2n

M∑
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∥∥2
+
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M∑
m=1

Dfm (xt, x
⋆) .

STEP 4: Defining Lyapunov function as follows

Ψt = ∥xt − x⋆∥2 + A

M

M∑
m=1

∥ht,m − h⋆
m∥2 ,
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we have

EQ,St
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2
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(
1 + 4

(
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ω

C

)
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) 1

Mn
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∥∥2
+

2η2ω

C

1

M

M∑
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M
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Setting A = λη2 and using Lemma F.3, we have
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(
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2

)
E
[
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]
+

(
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M
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Selecting α = 1
1+ω ; λ = 8ω

αM ; η ≤ C
µ(1+ω)M , also using η = 1

80Lmax(1+ ω
C )

, γ =

1
5nLmax

and applying previous steps we obtain
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly outline our contributions in the abstract and introduction, and we
also include a dedicated Contributions section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly highlight all assumptions and limitations in the text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The main contribution of the paper is its theoretical analysis. We support the
paper with necessary definitions, assumptions, and lemmas.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper is supported by reproducible experiments, with all stochastic ele-
ments from pseudo-random generators fixed in advance. For details, see the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We aim to make the paper and all source code for experiments open-sourced
to accelerate scientific findings in the field of Federated Learning and Machine Learning in
general. For details, see the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed guidelines for experiments setup in Appendix and in the
folder with experiment source code. For details, see the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide detailed guidelines for experiments setup in Appendix and in the
folder with experiment source code. For details, see the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information on the computer resources in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research focuses on mathematical objects and does not involve human
subjects or participants. The data used for our experiments consists of publicly available
datasets. Our work does not explicitly address or examine the social implications of applying
this research in practice.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work operates on mathematical objects, and the essence of our work
provides a new optimization algorithm. Because of theoretical nature of our work the impact
discussion is not applied.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper provides an optimization algorithm with the required theory. The
data or models are not output assets of our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide references for used datasets and deep learning models used in
experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

81



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The output assets of our paper is Algorithm and Source code for experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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