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Abstract

Image-based methods for indoor lighting estimation suf-

fer from the problem of intensity-distance ambiguity. This

paper introduces a novel setup to help alleviate the ambi-

guity based on the event camera. We further demonstrate

that estimating the distance of a light source becomes a

well-posed problem under this setup, based on which an

optimization-based method and a learning-based method

are proposed. Our experimental results validate that our

approaches not only achieve superior performance for in-

door lighting estimation (especially for the close light) but

also significantly alleviate the intensity-distance ambiguity.

1. Introduction

Obtaining lighting information is a classic problem in

computer vision and graphics. It contributes to solving a

variety of vision tasks, such as photometric stereo [29, 78],

virtual object compositing [31], and scene understanding

[55]. A field of researches study to estimate or calibrate

lighting by taking a single image of an illuminated object

(e.g., [9, 34]) or scene (e.g., [59, 35]) as the input.

Early work assumes the light source to be distant and fo-

cuses on the estimation of light direction (e.g., [15]). This

assumption is often violated for indoor scenes due to the lo-

calized light sources. Recent advances tackle this problem

by either estimating a spatially-varying lighting at different

scene points (e.g., [16]) or predicting the light source posi-

tions in 3D space (e.g., [14]). However, as these approaches

take a single image as the input, this inherently ill-posed

problem is likely to suffer from the problem of intensity-

distance ambiguity. Because the light distance inferred

from a given intensity (recorded by an image) is not guaran-

teed to be unique if the light source intensity changes [36].

Recently, the event camera (e.g., [37]) has attracted the

attention of many academics due to its advantages of high
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Figure 1. The setup of our method: using an event camera to cap-

ture the intensity changes on a purely diffuse sphere, which is

placed in a dark room, for the split second of turning light on.

temporal resolution, high dynamic range, and sensitivity to

small intensity changes. And it has been used to solve vari-

ous vision tasks such as 3D reconstruction [64], optical flow

estimation [13], and segmentation [62].

In this paper, we leverage the event camera to alleviate

the intensity-distance ambiguity for indoor lighting estima-

tion. Our basic idea is to use more information to better

constrain the estimation of light source parameters, because

the event camera can capture signals in a split second. To be

specific, we introduce a novel setup as shown in Figure 1.

With such a setup, we observe that the intensity-distance

ambiguity can hardly be found for the event streams (Fig-

ure 2). We detail the analysis about the ambiguity in Sec-

tion 3.2, which is based on our analytic formulation of event

streams (Section 3.1). We further show that estimating the

distance of light source becomes a well-posed problem with

the input of event streams, based on which an optimization-

based method is proposed (Section 4.1). We also propose a

learning-based method for robust lighting estimation (Sec-

tion 4.2). To evaluate our methods, we collect two testing

datasets with paired data captured by a traditional camera

and an event camera (Section 4.2). Experimental results
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Figure 2. (a)&(b) (or (c)&(d)) are paired data, captured with the

same light-emitting diode, i.e., LED, 3w (or 5w), and the same

distance of light source 119 cm (or 213 cm). (a)&(c) are RGB im-

ages captured by a digital camera while (b)&(d) are event streams

captured by an event camera (all event streams in this paper are vi-

sualized based on the method in [81]). Even though (a)&(c) have

a similar appearance, (b)&(d) display discriminative features.

demonstrate that our methods not only achieve superior per-

formance for lighting estimation, but also significantly alle-

viate the intensity-distance ambiguity. In addition, we pro-

vide a byproduct application to classify the types of the light

source. Our contributions are summarized as:

1. We introduce a novel setup, based on which we show

that the intensity-distance ambiguity can be alleviated

for the problem of indoor lighting estimation.

2. We show that estimating lighting distance becomes a

well-posed problem with our setup, based on which we

propose an optimization-based method and a learning-

based method.

3. We demonstrate that our methods not only achieve su-

perior performance but also significantly alleviate the

intensity-distance ambiguity for the problem of indoor

lighting estimation. Our byproduct of lamp classifica-

tion also verifies the effectiveness of our methods.

2. Related Work

2.1. Lighting Estimation

Existing lighting estimation methods can be roughly cat-

egorized according to whether the assumption of distant

light is taken. Such an assumption is often applied to the

outdoor scenes [26, 27, 25, 76, 24, 45, 33], or found from

methods that rely on an object, e.g., light probes [9, 10, 6,

34], faces [75, 5], cars [20], bags of chips [50], glass [77],

or illuminated objects [6, 42, 19]. The assumption of dis-

tant light often violates for indoor scenes. Except for a few

early works [15], recent advances address the problem of

spatially-varying lighting estimation. These methods either

recover a spherical panorama for each point of the given

scene [16, 59, 35, 61, 65] or directly predict the position of

light sources in 3D space [14].

In this paper, we also consider the problem of parametric

indoor lighting estimation. Different from existing meth-

ods, we also predict the intensity changing function of the

light source when turning it on.

2.2. Event­based Camera

The event camera (e.g., DVS [37]) is a bio-inspired sen-

sor that imitates the neural structure of the eye. Differ-

ent from traditional cameras that directly collect the radi-

ant intensity, event cameras capture small changes of in-

tensity with high temporal resolution (in microseconds)

with significantly lower power consumption. These ad-

vantages are imposed to solve versatile vision tasks such

as tracking [18, 43, 52, 74, 69], optical flow estimation

[13, 11, 62, 17, 49, 2, 47, 1], image restoration or enhance-

ment [54, 66, 53, 48, 38, 30, 8, 67, 70, 22, 63], depth estima-

tion [81, 3, 80, 79, 64], SLAM [12, 44, 39], segmentation

and recognition [62, 46, 4, 41, 68, 58, 56, 7, 28, 40].

Most the existing works produce the event signal based

on the relative motion between the camera and the scene.

In contrast, this paper focuses on the signal brought by the

intensity changes of a light source, in a static scene without

relative motion. To the best of our knowledge, this is the

first attempt to use event cameras for lighting estimation.

3. Modeling

This section models our setup shown in Figure 1. The

scene is considered to be static during the split second. Due

to the short period, the fact that both the camera and the

sphere stay static, and the time window of the event camera

is very short (less than 0.1 second), we consider our setup

to be single shot.

3.1. Analytic Formulation of Event Streams

Thanks to the static scene, we build the analytic formu-

lation of event streams based on the radiant intensity.

Analytic formulation of radiant intensity. As the dis-

tance of the light source (> 70 cm) is much larger than the

size of the sphere (8 cm), we assume that the direction and

intensity of incoming light for all points on the sphere sur-

face are the same, similar to other topics (e.g., photometric

stereo [57]). We also assume the illuminance of emitting

light obeys the inverse square law [36]. Then the incoming

light on the sphere surface S at time t can be formulated as

L(t) =
exp(Φ(t))

4πd2
, (1)

where d is the distance between the light source and sphere.
We consider the intensity changing function as a power-on
step function [32], and represent it as exp(Φ(t)). As we
use a purely diffuse sphere, the radiant intensity of point
x at time t can be formulated according to the Lambertian
reflectance model

I(x, t) = ρL(t)max(〈nl,nx〉 , 0), t ∈ [t0, tn], x ∈ S, (2)

where ρ is the albedo which is a constant, nl is the direction

of the light source, nx is the surface normal of point x, the
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action of turning light source on starts at time t0, and Φ(t)
is stable at time tn.

Radiant intensity from event streams. On the other

hand, the event camera captures the intensity changes for

each point x ∈ S for the split second of turning light

on, and produces a stream of asynchronous sparse events

e
.
= (x, t, p) [37]. As the intensity changes are monotoni-

cally non-decreasing for this split second, we have polarity

p = 1 and such the event streams can be described as1

e(x, t)
.
=

{

1, if ∆I = C,
none, otherwise.

t ∈ [t0, tn], x ∈ S, (3)

where

∆I = lg I(x, t)− lg I(x, t−∆t), (4)

I(x, t) is the intensity captured by the camera for a point x

at time t, C is the contrast threshold and is obtained from

the camera configuration (0.812 in this paper), ∆t is the

time since the last event is triggered at position x. Due to the

darkroom, all initial intensity captured by the camera can be

regarded as the same value I0, i.e., ∀x ∈ S, I(x, t0) = I0.

We set I0 = 1 to simplify the computation. As the position

of point x regarding the event camera is unchanged during

this split second, the radiant intensity of x at time t can be

calculated based on the summation of events

Ie(x, t) = I0 exp(C

∫ t

t0

e(x, t)dt), t ∈ [t0, tn], x ∈ S.

(5)

The equality of Ie(x, t) and I(x, t) builds the analytic

formulation of e(x, t). This formulation describes the rela-

tion between e(x, t) and the parameters of light source, i.e.,

distance d, direction nl, intensity changing function Φ(t).

3.2. Ambiguity Analysis

According to Equation (1), the intensity of incoming

light is determined by Φ(t) and d. We consider an object

or a scene is illuminated by two different light sources with

intensity functions of Φ1(t) and Φ2(t), respectively.

For image-based lighting estimation methods, intensity-

distance ambiguity exists if exp(Φ1(tn)) = α exp(Φ2(tn))
holds, where α is a positive constant. For our methods that

take event streams as the inputs, intensity-distance ambigu-

ity exists only if the following equation holds

exp(Φ1(t)) = α exp (Φ2(t)), ∀t ∈ [t0, tn]. (6)

As Φ(t) is determined by a sophisticated physical process

including inherent factors such as current, resistance, and

1We replace the condition ∆I ≥ C by ∆I = C. This replacement

has little impact on our following analysis. It only brings a consistent

transformation to function Φ(t), while the accurate Φ(t) is not necessarily

required in our solution or analysis.
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Figure 3. For each tt ∈ [t0, tn] where events are triggered, Φ(tt)
can be calculated based on the analytic formulation of e(x, t), with

known d and nl. We plot points {tt,Φ(tt)} (Φ(tt) is averaged

over different x at time tt) according to eight event streams (rep-

resent by different colors). For each set of points, we fit it based

on Equation (7). The data are from controlled dataset and wild

dataset.

the arrangement&number of LEDs, we argue that any two

Φ(t) can hardly satisfy the constraint in Equation (6).

Obviously, satisfying the constraint in Equation (6) is

much more difficult than that for images. Therefore, our

setup is expected to alleviate the intensity-distance ambi-

guity for lighting estimation. The experimental validation

about the ambiguity can be found in Section 5.2.

3.3. Approximating Φ(t)

Although Φ(t) is determined by a sophisticated physical

process, it is determined by finite inherent factors. Inspired

by the shapes of curves in Figure 3, we use an empirical

formulation to approximate Φ(t)2

Φ(t) = a lg(t+ c) + b, (7)

where a and b are used to formulate the inherent factors of

the light source. c ∈ [0, 2000] is used to model the time de-

lay from the moment of turning light on to t0 to tolerate the

fluctuation caused by unexpected noises. We observe that

approximation in Equation (7) works well for the estima-

tion of light source distance 3. The experimental validation

can be found in Section 5.3.

3.4. Parametric Lighting

We use the parametric lighting-to-environment map pro-

jection function described in GH19 [14] to convert para-

metric light into an environment map. Unlike GH19 [14],

our method cannot estimate color, since the event camera

can only capture intensity changes. In addition, since the

2The curve describes the intensity changes caused by transient current

spikes in a rise time [72] and a step function can always fit well.
3The function in Equation (7) can be revised with more parameters

(e.g., higher-order polynomials) for more complicated cases only if the

numbers of the unknown is smaller than the number of constraints used in

our paper (e.g., 7).
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distance of the light source (> 70 cm) is much larger than

its radius (∼ 10 cm), we replaced the angular size [73] in

GH19 [14] by s/d, where s is a fixed value (10 cm) indicat-

ing the radius of the point light source and d is the distance

of the light source. The projection function can be written

as:

f(nl, s, d,nx) = exp(
nl · nx − 1

1

4π
s
d

) (8)

4. Proposed Method

Inspired by the analytic formulation of event streams,

our indoor lighting estimation aims to estimate the light

source parameters of distance d, direction nl, and intensity

changing function Φ(t) by taking event streams as the input.

4.1. Optimization­based Method

Based on Equation (2) and Equation (5), our indoor

lighting estimation is to solve an over-determined system:

∀t ∈ [t0, tn], ∀x ∈ S, ‖Ie(x, t) − I(x, t)‖ = 0, which can

be achieved by the following minimization4

min
d,nl,a,b,c

∫

S

∫ tn

t0

‖Ie(x, t)− I(x, t)‖dtdx. (9)

To solve Equation (9), we first optimize the light direction

nl by minimizing the difference between the analytic illu-

minated region and that captured by the event camera:

min
nl

∫

S

‖B(

∫ tn

t0

Ie(x, t)dt)−B(

∫ tn

t0

I(x, tn)dt)‖dx,

(10)

where function B(I) produces the binarization result of I ,

B(I) =

{

1, if I > I0
0, otherwise,

(11)

and we have B(
∫ tn

t0
I(x, tn)dt) = B(max(〈nl,nx〉 , 0))

This is achieved by the stochastic gradient descent

technique[60] with n
0

l initialized as (1, 0, 0). With the es-

timated nl, we alternatively optimize d and {a, b, c} with

an iteration scheme, and they are initialized as {5, 0.01,

100}, which is also solved by the stochastic gradient de-

scent technique[60].5

4.2. Learning­based Method

Lighting estimation by the optimization-based method

may produce unreliable results due to the unexpected ran-

dom noise in event streams and the fact that I(x, t) is not

completely equivalent to Ie(x, t). Besides, the problem of

4We integrate ρ to Φ(t).
5More details about our algorithm can be found in the supplementary

material.
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Figure 4. Example of an unreliable prediction by our

optimization-based method (ground truth vs. prediction: 182 cm

vs. 270 cm). (a) The RGB image. (b) Event streams. (c) A set of

points {tt, Φ(tt)} obtained as the same way in Figure 3.

the local minimum leads to less accurate estimation (Sec-

tion 5.3). Figure 4 shows an example of such an unreliable

prediction, i.e., Φ(t) cannot be well fitted due to the outliers

from unexpected noise. To this end, we propose a learning-

based method in this section.

Our learning-based method focuses on the estimation

of d and {a, b, c} and leaves the prediction of nl for the

optimization-based method. Because the optimization in

Equation (10) addresses the influence of noise by integrat-

ing signals with respect to time t and is free from the prob-

lem of local minimum due to the binarization. The overview

of our framework is shown in Figure 5.

Streams pre-processing. Similar to several previous

methods, we pre-process the event stream so that it can be

used as an input of a neural network. We adopt a similar

data pre-processing strategy as that in [81]. The temporal

dimension (i.e., 24 ms) is discretized into 24 bins. Tem-

poral information is preserved by the sequential order of

these bins. For the temporal information in each bin, we en-

code the event streams according to the relative timestamp

of the first event for each point x. We also align the input

to make their elevation angles uniform based on the esti-

mated nl (i.e., 45◦). Experimental results show that such a

pre-processing strategy is sufficient to obtain discriminative

cues for lighting estimation.

Network architecture and loss functions. The input

passed through the headless ResNet-50 architecture [23]

and produce a 2048-dimensional latent vector. This vec-

tor is then fed to three fully-connected layers with 1024

units, 500 units and 100 units respectively to regress d and

{a, b, c} separately. We use L1 loss [21] to perform super-

vised training and the loss function is

L = L1(dgt, dpre) + w1L1(agt, apre)+ (12)

w2L1(bgt, bpre) + w3L1(cgt, cpre) (13)

where subscript ‘gt’ and ‘pre’ represent the ground truth

and prediction of a variable. We empirically set the weight

w1 = 70, w2 = 40, w3 = 0.001 in our experiment.
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Figure 5. The framework of our learning-based method. Training data augmentation: each real data will generate 48 synthetic data based on

the angle map. Estimating nl: we estimate the direction of the light source by minimizing the difference between the analytic illuminated

area and that captured by the event camera. Estimating Φ(t) and d: the event streams are discretized into frames and then fed to our

network.

(a) (b)

Figure 6. (a) Illustration of our data collection. (b) Schematic di-

agram of data collection. We randomly collect the same number

of samples in each colored area, where the elevation angle ranges

from 0◦ to 60◦, and azimuth angle ranges from 0◦ to 75◦ and from

105◦ to 180◦. Note that the variation of elevation angle is less

considered as it is aligned in our pre-processing procedure.

Training details. We implement the network using Py-

torch [51] and our entire network contains 3.6M parame-

ters. The parameters of ResNet-50 are initialized by their

pre-trained model. The network is trained for 100 epochs

with an early stopping mechanism. The Adam optimizer is

used with a learning rate of 0.001 and a batch size of 64.

Data collection. We collect two types of data for

training and testing: controlled dataset and wild dataset.

The controlled dataset is to investigate the effectiveness of

our method that alleviates the intensity-distance ambiguity.

Specifically, we collect 400 real data with different d ranges

from 70 cm to 300 cm and different nl evenly sampled from

the orange surface as shown in Figure 6 6. To simulate dif-

6We suppress the influence of inter-reflection by putting a black cloth

between the sphere and the upholder and keeping the distance between the

ferent types of lighting, we use LED lamps with different

powers (i.e., 0.5w, 3w, 5w) and an ILB (15w) to capture

these data (100 for each). Their corresponding RGB im-

ages (shown in Figure 7(a)) on the illuminated sphere are

also captured for comparison with image-based methods.

The wild dataset is to investigate the robustness and prac-

ticability of our methods. Specifically, we collect 363 real

data from 19 different real scenes. Most of the wild dataset

are captured with a single light source, and only a few of

them are captured with multiple light sources where lights

are close to each other. Due to the close distance between

multiple light sources, we also consider them to be single

light sources. The mean of light distances in wild dataset

is 198cm. Each data includes event data, an RGB image,

the position of the light source, and the environment map

collected at the same position with a light probe (shown in

Figure 7(b))7.

Data processing. We identify time t0 = 0 as the moment

when 30 events appeared within 1 ms. To balance the effi-

ciency and efficient, we set the split second of turning the

light on to be 24 ms, i.e., tn = 24. We find it is sufficient to

extract discriminative features for lighting estimation.

Training and testing data. We randomly select 160 data

from controlled dataset and augment 7680 = 48× 160 data

for training. Note that these 160 data are not included in

our training dataset. The augmentation is achieved by using

another 48 different nl to synthesize 48 new data based on

sphere and other objects as far as possible.
7We transform light probes as panoramas through HDRshop. HDR-

shop: https://vgl.ict.usc.edu/HDRShop/.
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(b)(a)

Figure 7. (a) RGB data in controlled dataset (upper left: LED

lamps (3w), upper right: LED lamps (5w), bottom left: ILB lamp

(15w), bottom right: LED lamps (0.5w)) (b) RGB data in wild

dataset (upper), their corresponding light probes (bottom).
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Figure 8. (a).The error distribution is displayed using the box-and-

whisker plot. Red lines indicate mean values, top and bottom

bounds of boxes indicate the first and third quartile values, and the

top and bottom ends of the vertical black lines indicate the min-

imum and maximum values. (b).The distance distribution. The

middle line of each curve indicates the mean value. The differ-

ence between sidelines and middle lines for each curve reflects the

standard deviation values.

each of 160 data. We build the distribution of events, and let

the distribution of synthetic data be the same as that of real

data, regarding each point with the same < nl,nx >. We

augmented 48 data for each data by increasing the original

nl by 4◦, 5◦ and 6◦, which brings (3 ∗ 2 + 1)2 − 1 = 48
surrounding directions as shown in Figure 5 (angle map).

We use the remaining 240 data from controlled dataset and

all data in wild dataset for testing.

5. Experiments

We perform the comparison with a parametric method

GH19 [14] and an object image method WP18 [71].

GH19 [14] predicts the 3D positions of three light sources

in an indoor scene, the one which is closest to the ground

truth is used for our comparison. WP18 [71] provides three

pre-train models of different materials, the best one is used

for our comparison. We define the direction error as the an-

gle between the direction of prediction and that of ground

truth. Similar to [14], we use metric RMSE to evaluate the

quantitative performance of estimated light distance.

Table 1. Quantitative performance comparison in terms of RMSE

for distance and direction estimation in controlled dataset (mean

± std).

Method Distance Direction

Ours (optimization) 51.70±62.59 13.4◦ ±5.26◦

Ours (learning) 27.05±35.78 13.4◦±5.26◦

GH19 [14] 75.63±89.99 38.44◦ ±7.77◦

Table 2. Quantitative performance comparison in terms of RMSE

for distance and direction estimation in wild dataset (mean ± std).

Method Distance Direction

Ours (optimization) 53.0±67.9 28.8◦ ±34.3◦

Ours (learning) 34.0±46.5 28.8◦±34.3◦

GH19 [14] 112.4±126.8 43.0◦ ±48.6◦

5.1. Overall Performance

Controlled dataset. Table 1 and Figure 8 display the

quantitative performance in controlled dataset. Since

WP18 [71] cannot predict the lighting distance, we only

compare with GH19 [14]. As can be observed, both

our optimization-based method and learning-based method

achieve much better overall performance regarding mean

and standard deviation as compared with GH19 [14]. The

performance advantage of our methods benefits from more

constraints from event streams than those from an image for

lighting estimation. It can also be found that our learning-

based method outperforms the optimization-based method,

due to the unreliable prediction of our optimization-based

method as introduced in Section 4.2. Although our methods

achieve superior performance advantage over GH19 [14]

for a close distance (i.e., < 200cm), it fails to outperform

GH19 [14] for a large distance (i.e., > 200cm). This is for

two reasons: 1) A larger distance indicates a smaller inten-

sity of the incoming light on the sphere, leading to a smaller

number of events triggered. This makes the random noise

more dominant. The unreliable input of event streams de-

grades the performance of our methods. 2) GH19 [14] tends

to produce results between 200 cm and 300 cm for most im-

ages as shown in Figure 8 (b).

Wild dataset. Table 2 displays the quantitative perfor-

mance in wild dataset. As can be observed, due to the

more complex scenarios (i.e., different light source shapes)

in wild dataset, the results are not as good as controlled

dataset, Even so, our method achieves better results as

compared with GH19 [14], which indicates its good gen-

eralization to real scenarios. We further perform visual

quality study for outputs of our methods, GH19 [14], and

WP18 [71]. Figure 9 shows the environment maps results

of real indoor scenes. As can be observed, our method

produces a much reliable estimation as compared with that

from GH19 [14] and WP18 [71]. We also investigate the

visual quality performance by inserting objects into indoor
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Ours (optimization) Ours (learning) GH19 WP18GTRGB input

Figure 9. Visual comparison of environment maps for data in wild datasets. From left to right: the RGB input, the ground truth, results

from our optimization-based method, our learning-based method, GH19 [14], and WP18 [71].

Real Scene Ours (optimization) Ours (learning) GH19 WP18

168 cm 100 cm 170 cm 200 cm not applicable

202 cm 184 cm 188 cm 327 cm not applicable

Figure 10. Visual comparison of object insertion results for data in wild datasets. From left to right: the scene image, results from our

optimization-based method, our learning-based method, GH19 [14], and WP18 [71]. Numbers below each image indicates the ground

truth or predicted result of light source distance. The input data of our method is captured by putting the diffuse sphere on the desk (in the

middle of each scene).

scenes in the real world. Kindly note that the natural lamps

in these scenes (i.e., ceiling lamp and table lamp) are quite

different from those lights in the training data. As can be

observed from Figure 10, the inserted objects are more re-

alistic based on results from our methods than those from

GH19 [14] and WP18 [71]. For example, the cast shadows

rendered with our results are more consistent with those in

the scene, while those rendered with results from GH19 [14]

are very concentrated, caused by their incorrectly predicted

direction and distance of the light source. The virtual ob-

jects at several positions in WP18 [71] are same since their

methods assume that the light source is distant. The per-

formance advantage of our optimization-based method and

learning-based method validates the good generalization of

our methods to indoor scenes in the real world.

5.2. Validation for Ambiguity Alleviation

To further investigate the effectiveness of our method

that alleviates the intensity-distance ambiguity, we collect

another testing dataset. To be specific, we collect 20 paired

data from controlled dataset, each pair contains two images

as well as their corresponding event streams. We use dif-

ferent lamps and carefully adjust the light source distance

to ensure the images in each pair have a similar appearance

while quite different light distances d.

As can be observed from Table 3, our methods achieve

much smaller RMSE for all these paired data while produc-

ing more discriminative results for two data from each pair.

Figure 11 visualizes the distributions of predicted results.

It can be found that our methods successfully distinguish

close (green dots) and far (orange dots) light source dis-

tance and produce more accurate predictions. GH19 [14]

fails to separate data captured based on close (yellow dots)

and far lights (blue dots). These results clearly show that

our method successfully alleviates the ambiguity between

light source intensity and light source distance.

5.3. Validation for Approximation in Equation (7)

Since the controlled dataset contains the same number of

different types of light sources, in this section we validate

the approximation in Equation (7) with controlled dataset.

As there is no ground truth of Φ(t) or {a, b}, we regard

{a, b} fitted with known d and nl as the ‘ground truth’. As

can be observed from Figure 12 (left), {a, b} are well sepa-
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Figure 11. The x-axis represents the ground truth, and the y-axis

represents the predicted distance. We compare our optimization-

based method (left) and our learning-based method (right) with

GH19 [14]. Different colors of dots represent data captured

either with a close light source (green&yellow) or a far one

(blue&orange).
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Figure 12. The distribution of {a, b} for our 240 testing data from

controlled dataset. x-axis represents variable a while y-axis rep-

resents variable b. Left: {a, b} fitted by optimizing Equation (9)

with known d and nl, and are considered as the ‘ground truth’.

Middle: {a, b} fitted by optimizing Equation (9) with unknown d

and nl. Right: {a, b} calculated by our learning-based method.

Different colors represent data captured by different lamps.

Table 3. Quantitative performance comparison for distance estima-

tion (mean ± std). The average difference reflects the difference

between two predicted distances for each paired data whose RGB

images contains intensity-distance ambiguity.

Method Average error Average difference

Ours (optimization) 40.50±47.20 38.09±44.90

Ours (learning) 28.87±35.56 76.37±77.10

GH19 [14] 75.50±96.55 10.90±11.88

rated regarding different lamps. This observation verifies

the practicability of our approximation to Φ(t) in Equa-

tion (7). Note that the fluctuation of {a, b} for each lamp

is due to different initial currents at the moment of turning

light on, caused by the fact that our light sources are pow-

ered by the alternating current.

We also illustrate the distributions of {a, b} calculated by

our methods. As shown in Figure 12 (middle), although the

distribution of {a, b} by our optimization-based method is

less accurate in absolute spatial space, it also contains sep-

arated clusters regarding different lamps. Considering both

a and b have positive correlation with Φ(t), the accurate es-

timation of d by our optimization-based method (Table 1),

and also the well separated clusters in Figure 12 (middle),

we consider our optimization-based method is troubled by

the problem of local minimum. Our learning-based method

produces a much more accurate distribution of {a, b} and

which is considered to be free from the local minimum

Table 4. Light source classification results of our 240 testing data

from controlled dataset.

Lighting type LED(0.5w) LED(3w) LED(5w) ILB (15w)

Accuracy(%) 15.0 41.7 100.0 90.0

problem, as shown in Figure 12 (right).

5.4. A Byproduct for Lamp Classification

We investigate a byproduct application of lamp classifi-

cation in this section. The results from our optimization-

based are not reported due to the local minimum problem.

A simple strategy of lamp classification can be achieved by

comparing an estimated {a, b} with all {a, b} in Figure 12

(left). Table 4 shows the classification accuracy using our

learning-based method. As can be observed, our method

achieves a very high accuracy rate for the ILB lamp (15w)

and the LED lamp (5w) as the strong lighting produces

more reliable event streams for our estimation.

6. Conclusion

In this paper, we leverage the event camera to allevi-

ate the intensity-distance ambiguity for parametric indoor

lighting estimation based on its advantages of high tempo-

ral resolution and high dynamic range. To the best of our

knowledge, we are the first to estimate lighting using event

cameras. We introduce a novel step, i.e., using an event

camera to capture the intensity changes on a purely diffuse

sphere, which is placed in a dark room, for the split second

of turning the light on. We build the analytic formulation of

event streams through the radiant intensity. We then pro-

pose an optimization-based method and a learning-based

method for lighting estimation. The comparison with the

state-of-the-art method demonstrates that our methods not

only significantly alleviate the intensity-distance ambiguity

but also achieve superior performance for lighting estima-

tion.

Limitations. Although our methods alleviate the intensity-

distance ambiguity for the indoor lighting estimation, they

require a controlled environment such as the dark scene, sin-

gle light source, and the action of turning light on. And our

methods cannot be applied to natural lighting. The diffuse

sphere also limits our methods to predict high-frequency

lighting.
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