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Abstract

Graph neural networks (GNNs) have achieved superior performance in various
applications, but training dedicated GNNs can be costly for large-scale graphs.
Some recent work started to study the pre-training of GNNs. However, none of
them provide theoretical insights into the design of their frameworks, or clear re-
quirements and guarantees towards their transferability. In this work, we establish
a theoretically grounded and practically useful framework for the transfer learning
of GNNs. Firstly, we propose a novel view towards the essential graph information
and advocate the capturing of it as the goal of transferable GNN training, which
motivates the design of EGI (Ego-Graph Information maximization) to analytically
achieve this goal. Secondly, when node features are structure-relevant, we conduct
an analysis of EGI transferability regarding the difference between the local graph
Laplacians of the source and target graphs. We conduct controlled synthetic experi-
ments to directly justify our theoretical conclusions. Comprehensive experiments
on two real-world network datasets show consistent results in the analyzed setting
of direct-transfering, while those on large-scale knowledge graphs show promising
results in the more practical setting of transfering with fine-tuning.1

1 Introduction

Graph neural networks (GNNs) have been intensively studied recently [29, 26, 39, 68], due to their
established performance towards various real-world tasks [15, 69, 53], as well as close connections
to spectral graph theory [12, 9, 16]. While most GNN architectures are not very complicated, the
training of GNNs can still be costly regarding both memory and computation resources on real-world
large-scale graphs [10, 63]. Moreover, it is intriguing to transfer learned structural information across
different graphs and even domains in settings like few-shot learning [56, 44, 25]. Therefore, several
very recent studies have been conducted on the transferability of GNNs [21, 23, 22, 59, 31, 3, 47].
However, it is unclear in what situations the models will excel or fail especially when the pre-training
and fine-tuning tasks are different. To provide rigorous analysis and guarantee on the transferability
of GNNs, we focus on the setting of direct-transfering between the source and target graphs, under an
analogous setting of “domain adaptation” [7, 59].

In this work, we establish a theoretically grounded framework for the transfer learning of GNNs,
and leverage it to design a practically transferable GNN model. Figure 1 gives an overview of our
framework. It is based on a novel view of a graph as samples from the joint distribution of its k-hop
ego-graph structures and node features, which allows us to define graph information and similarity,

∗These two authors contribute equally.
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Figure 1: Overview of our GNN transfer learning framework: (1) we represent the toy graph as a combination
of its 1-hop ego-graph and node feature distributions; (2) we design a transferable GNN regarding the capturing
of such essential graph information; (3) we establish a rigorous guarantee of GNN transferability based on the
node feature requirement and graph structure difference.

so as to analyze GNN transferability (§3). This view motivates us to design EGI, a novel GNN
training objective based on ego-graph information maximization, which is effective in capturing the
graph information as we define (§3.1). Then we further specify the requirement on transferable node
features and analyze the transferability of EGI that is dependent on the local graph Laplacians of
source and target graphs (§3.2).

All of our theoretical conclusions have been directly validated through controlled synthetic experi-
ments (Table 1), where we use structural-equivalent role identification in an direct-transfering setting
to analyze the impacts of different model designs, node features and source-target structure similari-
ties on GNN transferability. In §4, we conduct real-world experiments on multiple publicly available
network datasets. On the Airport and Gene graphs (§4.1), we closely follow the settings of our
synthetic experiments and observe consistent but more detailed results supporting the design of EGI
and the utility of our theoretical analysis. On the YAGO graphs (§4.2), we further evaluate EGI on
the more generalized and practical setting of transfer learning with task-specific fine-tuning. We
find our theoretical insights still indicative in such scenarios, where EGI consistently outperforms
state-of-the-art GNN representation and transfer learning frameworks with significant margins.

2 Related Work

Representation learning on graphs has been studied for decades, with earlier spectral-based methods
[6, 46, 52] theoretically grounded but hardly scaling up to graphs with over a thousand of nodes.
With the emergence of neural networks, unsupervised network embedding methods based on the
Skip-gram objective [37] have replenished the field [51, 14, 42, 45, 66, 62, 65]. Equipped with
efficient structural sampling (random walk, neighborhood, etc.) and negative sampling schemes,
these methods are easily parallelizable and scalable to graphs with thousands to millions of nodes.
However, these models are essentially transductive as they compute fully parameterized embeddings
only for nodes seen during training, which are impossible to be transfered to unseen graphs.

More recently, researchers introduce the family of graph neural networks (GNNs) that are capable of
inductive learning and generalizing to unseen nodes given meaningful node features [29, 12, 15, 67].
Yet, most existing GNNs require task-specific labels for training in a semi-supervised fashion to
achieve satisfactory performance [29, 15, 53, 64], and their usage is limited to single graphs where
the downstream task is fixed. To this end, several unsupervised GNNs are presented, such as the
auto-encoder-based ones like VGAE [28] and GNFs [35], as well as the deep-infomax-based ones
like DGI [54] and InfoGraph [50]. Their potential in the transfer learning of GNN remains unclear
when the node features and link structures vary across different graphs.

Although the architectures of popular GNNs such as GCN [29] may not be very complicated
compared with heavy vision and language models, training a dedicated GNN for each graph can still
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be cumbersome [10, 63]. Moreover, as pre-training neural networks are proven to be successful in
other domains [13, 18], the idea is intriguing to transfer well-trained GNNs from relevant source
graphs to improve the modeling of target graphs or enable few-shot learning [59, 31, 3] when
labeled data are scarce. In light of this, pioneering works have studied both generative [22] and
discriminative [21, 23] GNN pre-training schemes. Though Graph Contrastive Coding [43] shares
the most similar view towards graph structures as us, it utilizes contrastive learning across all
graphs instead of focusing on the transfer learning between any specific pairs. On the other hand,
unsupervised domain adaptive GCNs [59] study the domain adaption problem only when the source
and target tasks are homogeneous.

Most previous pre-training and self-supervised GNNs lack a rigorous analysis towards their trans-
ferability and thus have unpredictable effectiveness. The only existing theoretical work on GNN
transferability studies the performance of GNNs across different permutations of a single original
graph [33, 34] and the tradeoff between discriminability and transferability of GNNs [47]. We,
instead, are the first to rigorously study the more practical setting of transferring GNNs across pairs
of different source and target graphs.

3 Transferable Graph Neural Networks

In this paper, we design a more transferable training objective for GNN (EGI) based on our novel
view of essential graph information (§3.1). We then analyze its transferability as the gap between its
abilities to model the source and target graphs, based on their local graph Laplacians (§3.2).

Based on the connection between GNN and spectral graph theory [29], we describe the output of a
GNN as a combination of its input node features X , fixed graph Laplacian L and learnable graph
filters Ψ. The goal of training a GNN is then to improve its utility by learning the graph filters that
are compatible with the other two components towards specific tasks.

In the graph transfer learning setting where downstream tasks are often unknown during pre-training,
we argue that the general utility of a GNN should be optimized and quantified w.r.t. its ability of
capturing the essential graph information in terms of the joint distribution of its topology structures
and node features, which motivates us to design a novel ego-graph information maximization model
(EGI) (§3.1). The general transferability of a GNN is then quantified by the gap between its abilities
to model the source and target graphs. Under reasonable requirements such as using structure-
respecting node features as the GNN input, we analyze this gap for EGI based on the structural
difference between two graphs w.r.t. their local graph Laplacians (§3.2).

3.1 Transferable GNN via Ego-graph Information Maximization

In this work, we focus on the direct-transfering setting where a GNN is pre-trained on a source graph
Ga in an unsupervised fashion and applied on a target graph Gb without fine-tuning.2 Consider a
graph G = {V,E}, where the set of nodes V are associated with certain features X and the set of
edges E form graph structures. Intuitively, the transfer learning will be successful only if both the
features and structures of Ga and Gb are similar in some ways, so that the graph filters of a GNN
learned on Ga are compatible with the features and structures of Gb.

Graph kernels [57, 8, 30, 38] are well-known for their capability of measuring similarity between pair
of graphs. Motivated by k-hop subgraph kernels [4], we introduce a novel view of a graph as samples
from the joint distribution of its k-hop ego-graph structures and node features. Since GNN essentially
encodes such k-hop ego graph samples, this view allows us to give concrete definitions towards
structural information of graphs in the transfer learning setting, which facilitates the measuring of
similarity (difference) among graphs. Yet, none of the existing GNN training objectives are capable of
recovering such distributional signals of ego graphs. To this end, we design Ego-Graph Information
maximization (EGI), which alternatively reconstructs the k-hop ego-graph of each center node via
mutual information maximization [20].

Definition 3.1 (K-hop ego-graph). We call a graph gi = {V (gi), E(gi)} a k-hop ego-graph centered
at node vi if it has a k-layer centroid expansion [4] such that the greatest distance between vi and

2In the experiments, we show our model to be generalizable to the more practical settings with task-specific
pre-training and fine-tuning, while the study of rigorous bound in such scenarios is left as future work.
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any other nodes in the ego-graph is k, i.e. ∀vj ∈ V (gi), |d(vi, vj)| ≤ k, where d(vi, vj) is the graph
distance between vi and vj .

In this paper, we use directed k-hop ego-graph and its direction is decided by whether it is composed
of incoming or outgoing edges to the center node, i.e., gi and g̃i. The results apply trivially to
undirected graphs with gi = g̃i.

Definition 3.2 (Structural information). Let G be a topological space of sub-graphs, we view a
graph G as samples of k-hop ego-graphs {gi}ni=1 drawn i.i.d. from G with probability µ, i.e.,
gi

i.i.d.∼ µ ∀i = 1, · · · , n. The structural information of G is then defined to be the set of k-hop
ego-graphs of {gi}ni=1 and their empirical distribution.

As shown in Figure 1, three graphs G0, G1 and G2 are characterized by a set of 1-hop ego-graphs
and their empirical distributions, which allows us to quantify the structural similarity among graphs
as shown in §3.2 (i.e., G0 is more similar to G1 than G2 under such characterization). In practice,
the nodes in a graph G are characterized not only by their k-hop ego-graph structures but also their
associated node features. Therefore, G should be regarded as samples {(gi, xi)} drawn from the joint
distribution P on the product space of G and a node feature space X .

Ego-graph (𝒈𝒈𝒊𝒊,𝒙𝒙𝒊𝒊)

Ego-graph (𝒈𝒈𝒊𝒊′,𝒙𝒙𝒊𝒊′)
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Figure 2: The overall EGI training framework.

Ego-Graph Information Maximization. Given a set of ego-graphs {(gi, xi)}i drawn from an
empirical joint distribution (gi, xi) ∼ P. We aim to train an GNN encoder Ψ to maximize the
mutual informaion (MI (gi,Ψ(gi, xi))) between the defined structural information gi3 (i.e. k-hop
ego-graph) and node embedding zi = Ψ(gi, xi). To maximize the MI, another discriminator
D(gi, zi) : E(gi)× zi → R+ is introduced to compute the probability of an edge e belongs to the
given ego-graph gi. We use the Jensen-Shannon MI estimator [20] in the EGI objective,

LEGI = −MI(JSD) (G,Ψ) = 1
N

N∑
i=1

[sp (D(gi, z
′
i)) + sp (−D(gi, zi))] , (1)

where sp(x) = log(1+ex) is the softplus function and (gi, z
′
i) is randomly drawn from the product of

marginal distributions, i.e. z′i = Ψ(gi′ , xi′), (gi′ , xi′) ∼ P, i′ 6= i. In general, we can also randomly
draw negative g′i in the topological space, while enumerating all possible graphs gi′ leads to high
computation cost.

In Eq. 1, the computation of D on E(gi) depends on the node orders. Following the common practice
in graph generation [70], we characterize the decision process of D with a fixed graph ordering, i.e.,
the BFS-ordering π over edges E(gi). D = f ◦ Φ is composed by another GNN encoder Φ and
scoring function f over an edge sequence Eπ : {e1, e2, ..., en}, which makes predictions on the
BFS-ordered edges.

3Later in section 3.2, we will discuss the equivalence between MI(gi, zi) and MI((gi, xi), zi) when node
feature is structure-respecting.
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Recall our previous definition on the direction of k-hop ego-graph, the center node encoder Ψ receives
pairs of (gi, xi) while the neighbor node encoder Φ in discriminator D receives (g̃i, xi). Both
encoders are parameterized as GNNs,

Ψ(gi, xi) = GNNΨ(Ai, Xi),Φ(g̃i, xi) = GNNΦ(A′i, Xi),

where Ai, A′i is the adjacency matrix with self-loops of gi and g̃i, respectively. The self-loops are
added following the common design of GNNs, which allows the convolutional node embeddings to
always incorporate the influence of the center node. Ai = A′i

ᵀ. The output of Ψ, i.e., zi ∈ Rn, is
the center node embedding, while Φ outputs representation H ∈ R|gi|×n for neighbor nodes in the
ego-graph.

Once node representation H is computed, we now describe the scoring function f . For each of
the node pair (p, q) ∈ Eπ, hp is the source node representation from Φ, xq is the destination node
features. The scoring function is,

f(hp, xq, zi) = σ
(
UT · τ

(
WT [hp||xq||zi]

))
, (2)

where σ and τ are Sigmoid and ReLU activation functions. Thus, the discriminator D is asked to
distinguish a positive ((p, q), zi) and negative pair ((p, q), z′i)) for each edge in gi.

D(gi, zi) =
∑

(p,q)∈Eπ
log f(hp, xq, zi), D(gi, z

′
i) =

Eπ∑
(p,q)

log f(hp, xq, z
′
i). (3)

There are two types of edges (p, q) in our consideration of node orders, type-a - the edges across
different hops (from the center node), and type-b - the edges within the same hop (from the center
node). The aforementioned BFS-based node ordering guarantees that Eq. 3 is sensitive to the ordering
of type-a edges, and invariant to the ordering of type-b edges, which is consistent with the requirement
of our theoretical analysis on ∆D. Due to the fact that the output of a k-layer GNN only depends on
a k-hop ego-graph for both encoders Ψ and Φ, EGI can be trained in parallel by sampling batches of
gi’s. Besides, the training objective of EGI is transferable as long as (gi, xi) across source graph Ga
and Gb satisfies the conditions given in §3.2. More model details in Appendix §B and source code in
the Supplementary Materials.

Connection with existing work. To provide more insights into the EGI objective, we also present it
as a dual problem of ego-graph reconstruction. Recall our definition of ego-graph mutual information
MI(gi,Ψ(gi, xi)). It can be related to an ego-graph reconstruction loss R(gi|Ψ(gi, xi)) as

max MI(gi,Ψ(gi, xi)) = H(gi)−H(gi|Ψ(gi, xi)) ≤ H(gi)−R(gi|Ψ(gi, xi)). (4)

When EGI is maximizing the mutual information, it simultaneously minimizes the upper error bound
of reconstructing an ego-graph gi. In this view, the key difference between EGI and VGAE [28] is
they assume each edge in a graph to be observed independently during the reconstruction. While in
EGI, edges in an ego-graph are observed jointly during the GNN decoding. Moreover, existing mutual
information based GNNs such as DGI [54] and GMI [41] explicitly measure the mutual information
between node features x and GNN output Ψ. In this way, they tend to capture node features instead
of graph structures, which we deem more essential in graph transfer learning as discussed in §3.2.

Use cases of EGI framework. In this paper, we focus on the classical domain adaption (direct-
transferring) setting [7], where no target domain labels are available and transferability is measured
by the performance discrepancy without fine-tuning. In this setting, the transferability of EGI is
theoretically guaranteed by Theorem 3.1. In §4.1, we validated this with the airport datasets. Beyond
direct-transferring, EGI is also useful in the more generalized and practical setting of transfer learning
with fine-tuning, which we introduced in §4.2 and validated with the YAGO datasets. In this setting,
the transferability of EGI is not rigorously studied yet, but is empirically shown promising.

Supportive observations. In the first three columns of our synthetic experimental results (Table 1),
in both cases of transfering GNNs between similar graphs (F-F) and dissimilar graphs (B-F), EGI
significantly outperforms all competitors when using node degree one-hot encoding as transferable
node features. In particular, the performance gains over the untrained GIN show the effectiveness of
training and transfering, and our gains are always larger than the two state-of-the-art unsupervised
GNNs. Such results clearly indicate advantageous structure preserving capability and transferability
of EGI.
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3.2 Transferability analysis based on local graph Laplacians

We now study the transferability of a GNN (in particular, with the training objective of LEGI) between
the source graph Ga and target graph Gb based on their graph similarity. We firstly establish the
requirement towards node features, under which we then focus on analyzing the transferability of
EGI w.r.t. the structural information of Ga and Gb.

Recall our view of the GNN output as a combination of its input node features, fixed graph Laplacian
and learnable graph filters. The utility of a GNN is determined by the compatibility among the three.
In order to fulfill such compatibility, we require the node features to be structure-respecting:
Definition 3.3 (Structure-respecting node features). Let gi be an ordered ego-graph centered on
node vi with a set of node features {xip,q}

k,|Vp(gi)|
p=0,q=1 , where Vp(gi) is the set of nodes in p-th hop of gi.

Then we say the node features on gi are structure-respecting if xip,q = [f(gi)]p,q ∈ Rd for any node
vq ∈ Vp(gi), where f : G → Rd×|V (gi)| is a function. In the strict case, f should be injective.

In its essence, Def 3.3 requires the node features to be a function of the graph structures, which is
sensitive to changes in the graph structures, and in an ideal case, injective to the graph structures
(i.e., mapping different graphs to different features). In this way, when the learned graph filters of a
transfered GNN is compatible to the structure of G, they are also compatible to the node features of
G. As we will explain in Remark 2 of Theorem 3.1, this requirement is also essential for the analysis
of EGI transferability which eventually only depends on the structural difference between two graphs.

In practice, commonly used node features like node degrees, PageRank scores [40], spectral em-
beddings [11], and many pre-computed unsupervised network embeddings [42, 51, 14] are all
structure-respecting in nature. However, other commonly used node features like random vectors [68]
or uniform vectors [60] are not and thus non-transferable. When raw node attributes are available,
they are transferable as long as the concept of homophily [36] applies, which also implies Def 3.3,
but we do not have a rigorous analysis on it yet.

Supportive observations. In the fifth and sixth columns in Table 1, where we use same fixed
vectors as non-transferable node features to contrast with the first three columns, there is almost no
transferability (see δ(acc.)) for all compared methods when non-transferable features are used, as the
performance of trained GNNs are similar to or worse than their untrained baselines. More detailed
experiments on different transferable and non-transferable features can be found in Appendix §C.1.

With our view of graphs and requirement on node features both established, now we derive the
following theorem by characterizing the performance difference of EGI on two graphs based on Eq. 1.
Theorem 3.1 (GNN transferability). Let Ga = {(gi, xi)}ni=1 and Gb = {(gi′ , xi′)}mi′=1 be two
graphs, and assume node features are structure-relevant. Consider GCN Ψθ with k layers and a
1-hop polynomial filter φ. With reasonable assumptions on the local spectrum of Ga and Gb, the
empirical performance difference of Ψθ evaluated on LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O (∆D(Ga, Gb) + C) . (5)

On the RHS, C is only dependent on the graph encoders and node features, while ∆D(Ga, Gb)
measures the structural difference between the source and target graphs as follows,

∆D(Ga, Gb) = C̃
1

nm

n∑
i=1

m∑
i′=1

λmax(L̃gi − L̃gi′ ) (6)

where λmax(A) := λmax(ATA)1/2, and L̃gi denotes the normalised graph Laplacian of g̃i by its
in-degree. C̃ is a constant dependant on λmax(L̃gi) and D.

Proof. The full proof is detailed in Appendix §A.

The analysis in Theorem 3.1 naturally instantiates our insight about the correspondence between
structural similarity and GNN transferability. It allows us to tell how well an EGI trained on Ga can
work on Gb by only checking the local graph Laplacians of Ga and Gb without actually training any
model. In particular, we define the EGI gap as ∆D in Eq. 6, as other term C is the same for different
methods using same GNN encoder. It can be computed to bound the transferability of EGI regarding
its loss difference on the source and target graphs.
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Remark 1. Our view of a graph G as samples of k-hop ego-graphs is important, as it allows us to
obtain node-wise characterization of GNN similarly as in [55]. It also allows us to set the depth of
ego-graphs in the analysis to be the same as the number of GNN layers (k), since the GNN embedding
of each node mostly depends on its k-hop ego-graph instead of the whole graph.
Remark 2. For Eq. 1, Def 3.3 ensures the sampling of GNN embedding at a node always corresponds
to sampling an ego-graph from G, which reduces to uniformly sampling from G = {gi}ni=1 under
the setting of Theorem 3.1. Therefore, the requirement of Def 3.3 in the context of Theorem 3.1
guarantees the analysis to be only depending on the structural information of the graph.

Supportive observations. In Table 1, in the d̄ columns, we compute the average structural difference
between two Forest-fire graphs (∆D(F,F)) and between Barabasi and Forest-fire graphs (∆D(B,F)),
based on the RHS of Eq. 5. The results validate the topological difference between graphs generated
by different random-graph models, while also verifying our view of graph as k-hop ego-graph
samples and the way we propose based on it to characterize structural information of graphs. We
further highlight in the δ(acc) columns the accuracy difference between the GNNs transfered from
Forest-fire graphs and Barabasi graphs to Forest-fire graphs. Since Forest-fire graphs are more similar
to Forest-fire graphs than Barabasi graphs (as verified in the ∆D columns), we expect δ(acc.) to be
positive and large, indicating more positive transfer between the more similar graphs. Indeed, the
behaviors of EGI align well with the expectation, which indicates its well-understood transferability
and the utility of our theoretical analysis.

Use cases of Theorem 3.1. Our Theorem 3.1 naturally allows for two practical use cases among
many others: point-wise pre-judge and pair-wise pre-selection for EGI pre-training. Suppose we
have a target graph Gb which does not have sufficient training labels. In the first setting, we have a
single source graph Ga which might be useful for pre-training a GNN to be used on Gb. The EGI gap
∆D(Ga, Gb) in Eq. 6 can then be computed between Ga and Gb to pre-judge whether such transfer
learning would be successful before any actual GNN training (i.e., yes if ∆D(Ga, Gb) is empirically
much smaller than 1.0; no otherwise). In the second setting, we have two or more source graphs
{G1

a, G
2
a, . . .} which might be useful for pre-training the GNN. The EGI gap can then be computed

between every pair of Gia and Gb to pre-select the best source graph (i.e., select the one with the least
EGI gap).

In practice, the computation of eigenvalues on the small ego-graphs can be rather efficient [2], and
we do not need to enumerate all pairs of ego-graphs on two compared graphs especially if the graphs
are really large (e.g., with more than a thousand nodes). Instead, we can randomly sample pairs of
ego-graphs from the two graphs, update the average difference on-the-fly, and stop when it converges.
Suppose we need to sample M pairs of k-hop ego-graphs to compare two large graphs, and the
average size of ego-graphs are L, then the overall complexity of computing Eq. 5 is O(ML2), where
M is often less than 1K and L less than 50. In Appendix §C.4, we report the approximated ∆D’s
w.r.t. different sampling frequencies, and they are indeed pretty close to the actual value even with
smaller sample frequencies, showing the feasible efficiency of computing ∆D through sampling.

Limitations. EGI is designed to account for the structural difference captured by GNNs (i.e., k-
hop ego-graphs). The effectiveness of EGI could be limited if the tasks on target graphs depend
on different structural signals. For example, as Eq. 6 is computing the average pairwise distances
between the graph Laplacians of local ego-graphs, ∆D is possibly less effective in explicitly capturing
global graph properties such as numbers of connected components (CCs). In some specific tasks
(such as counting CCs or community detection) where such properties become the key factors, ∆D
may fail to predict the transferability of GNNs.

4 Real Data Experiments

Baselines. We compare the proposed model against existing self-supervised GNNs and pre-training
GNN algorithms. To exclude the impact of different GNN encoders Ψ on transferability, we always
use the same encoder architecture for all compared methods (i.e., GIN [60] for direct-transfering
experiments, GCN [29] for transfering with fine-tuning).

The self-supervised GNN baselines are GVAE [28], DGI [54] and two latest mutual information
estimation methods GMI [41] and MVC [17]. As for pre-training GNN algorithms, MaskGNN
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Table 1: Synthetic experiments of identifying structural equivalent nodes. We randomly generate 40 graphs
with the Forest-fire model (F) [32] and 40 graphs with the Barabasi model (B) [1], The GNN model is GIN [60]
with random parameters (baseline with only the neighborhood aggregation function), VGAE[28], DGI [54], and
EGI with GIN encoder. We train VGAE, DGI and EGI on one graph from either set (F and B), and test them on
the rest of Forest-fire graphs (F). Transferable feature is node degree one-hot encoding and non-transferable
feature is uniform vectors. More details about the results and dataset can be found in Appendix §C.1

.

Method transferable features non-transferable feature structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GIN (untrained) 0.572 0.572 / 0.358 0.358 /

0.752 0.883
VGAE (GIN) 0.498 0.432 +0.066 0.240 0.239 0.001
DGI (GIN) 0.578 0.591 -0.013 0.394 0.213 +0.181
EGI (GIN) 0.710 0.616 +0.094 0.376 0.346 +0.03

and ContextPredGNN are two node-level pre-training models proposed in [21] Besides, Structural
Pre-train [23] also conducts unsupervised node-level pre-training with structural features like node
degrees and clustering coefficients.

Experimental Settings. The main hyperparameter k is set 2 in EGI as a common practice. We use
Adam [27] as optimizer and learning rate is 0.01. We provide the experimental result with varying k in
the Appendix §C.4. All baselines are set with the default parameters. Our experiments were run on an
AWS g4dn.2xlarge machine with 1 Nvidia T4 GPU. By default, we use node degree one-hot encoding
as the transferable feature across all different graphs. As stated before, other transferable features
like spectral and other pre-computed node embeddings are also applicable. We focus on the setting
where the downstream tasks on target graphs are unspecified but assumed to be structure-relevant,
and thus pre-train the GNNs on source graphs in an unsupervised fashion.4 In terms of evaluation, we
design two realistic experimental settings: (1) Direct-transfering on the more structure-relevant task
of role identification without given node features to directly evaluate the utility and transferability
of EGI. (2) Few-shot learning on relation prediction with task-specific node features to evaluate the
generalization ability of EGI.

4.1 Direct-transfering on role identification

First, we use the role identification without node features in a direct-transfering setting as a reliable
proxy to evaluate transfer learning performance regarding different pre-training objectives. Role in a
network is defined as nodes with similar structural behaviors, such as clique members, hub and bridge
[19]. Across graphs in the same domain, we assume the definition of role to be consistent, and the
task of role identification is highly structure-relevant, which can directly reflect the transferability of
different methods and allows us to conduct the analysis according to Theorem 3.1. Upon convergence
of pre-training each model on the source graphs, we directly apply them to the target graphs and
further train a multi-layer perceptron (MLP) upon their outputs. The GNN parameters are frozen
during the MLP training. We refer to this strategy as direct-transfering since there is no fine-tuning
of the models after transfering to the target graphs.

We use two real-world network datasets with role-based node labels: (1) Airport [45] contains three
networks from different regions– Brazil, USA and Europe. Each node is an airport and each link
is the flight between airports. The airports are assigned with external labels based on their level of
popularity. (2) Gene [68] contains the gene interactions regarding 50 different cancers. Each gene
has a binary label indicating whether it is a transcription factor. More details about the results and
dataset can be found in Appendix C.2.

The experimental setup on the Airport dataset closely resembles that of our synthetic experiments
in Table 1, but with real data and more detailed comparisons. We train all models (except for
the untrained ones) on the Europe network, and test them on all three networks. The results are
presented in Table 2. We notice that the node degree features themselves (with MLP) show reasonable
performance in all three networks, which is not surprising since the popularity-based airport role
labels are highly relevant to node degrees. The untrained GIN encoder yields a significant margin
over just node features, as GNN encoder incorporates structural information to node representations.

4The downstream tasks are unspecified because we aim to study the general transferability of GNNs that is
not bounded to specific tasks. Nevertheless, we assume the tasks to be relevant to graph structures.
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While training of the DGI can further improve the performance on the source graph, EGI shows the
best performance there with the structure-relevant node degree features, corroborating the claimed
effectiveness of EGI in capturing the essential graph information (i.e. recover the k-hop ego-graph
distributions) as we stress in §3.

When transfering the models to USA and Brazil networks, EGI further achieves the best performance
compared with all baselines when structure relevant features are used (64.55 and 73.15), which
reflects the most significant positive transfer. Interestingly, direct application of GVAE, DGI and
MVC that do not capture the input k-hop graph jointly, leads to rather limited and even negative
transferrability (through comparison against the untrained GIN encoders). The recently proposed
transfer learning frameworks for GNN like MaskGNN and Structural Pre-train are able to mitigate
negative transfer to some extent, but their performances are still inferior to EGI. We believe this is
because their models are prone to learn the graph-specific information that is less transferable across
different graphs. GMI is also known to capture the graph structure and node features, so it achieves
second best result comparing with EGI.

Similarly as in Table 1, we also compute the structural differences among three networks w.r.t. the
EGI gap in Eq. 6. The structural difference is 0.869 between the Europe and USA networks, and 0.851
between the Europe and Brazil datasets, which are pretty close. Consequently, the transferability of
EGI regarding its performance gain over the untrained GIN baseline is 4.8% on the USA network
and 4.4% on the Brazil network, which are also close. Such observations again align well with our
conclusion in Theorem 3.1 that the transferability of EGI is closely related to the structural differences
between source and target graphs.

Table 2: Results of role identification with direct-transfering on the Airport dataset. We report mean and standard
deviation over 100 runs. The scores marked with ∗∗ passed t-test with p < 0.01 over the second runners.

Method Airport [45]
Europe USA Brazil

features 0.528±0.052 0.557±0.028 0.671±0.089
GIN (random-init) 0.558±0.050 0.616±0.030 0.700±0.082
GVAE (GIN) [28] 0.539±0.053 0.555±0.029 0.663±0.089
DGI (GIN) [54] 0.578±0.050 0.549±0.028 0.673±0.084
Mask-GIN [21] 0.564±0.053 0.608±0.027 0.667±0.073
ContextPred-GIN [21] 0.527±0.048 0.504±0.030 0.621±0.078
Structural Pre-train [23] 0.560±0.050 0.622±0.030 0.688±0.082
MVC [17] 0.532±0.050 0.597±0.030 0.661±0.093
GMI [41] 0.581±0.054 0.593±0.031 0.731±0.107
EGI (GIN) 0.592±0.046∗∗ 0.646±0.029 ∗∗ 0.732±0.078

On the Gene dataset, with more graphs available, we focus on EGI to further validate the utility of
Eq. 5 in Theorem 3.1, regarding the connection between the EGI gap (Eq. 6) and the performance
gap (micro-F1) of EGI on them. Due to severe label imbalance that removes the performance gaps,
we only use the seven brain cancer networks that have a more consistent balance of labels. As shown
in Figure 3, we train EGI on one graph and test it on the other graphs. The x-axis shows the EGI
gap, and y-axis shows the improvement on micro-F1 compared with an untrained GIN. The negative
correlation between two quantities is obvious. Specifically, when the structural difference is smaller
than 1, positive transfer is observed (upper left area) as the performance of transferred EGI is better
than untrained GIN, and when the structural difference becomes large (> 1), negative transfer is
observed. We also notice a similar graph pattern, i.e. single dense cluster, between source graph and
positive transferred target graph G2.

4.2 Few-shot learning on relation prediction

Here we evaluate EGI in the more generalized and practical setting of few-shot learning on the less
structure-relevant task of relation prediction, with task-specific node features and fine-tuning. The
source graph contains a cleaned full dump of 579K entities from YAGO [49], and we investigate 20-
shot relation prediction on a target graph with 24 relation types, which is a sub-graph of 115K entities
sampled from the same dump. In post-fine-tuning, the models are pre-trained with an unsupervised
loss on the source graph and fine-tuned with the task-specific loss on the target graph. In joint-fine-
tuning, the same pre-trained models are jointly optimized w.r.t. the unsupervised pre-training loss
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Figure 3: Transfer learning performance of role identification on the Gene dataset. We visualize the source
graph G0 and two example target graphs that are relatively more different (G4) or similar (G2) with G0.

and task-specific fine-tuning loss on the target graph. In Table 3, we observe most of the existing
models fail to transfer across pre-training and fine-tuning tasks, especially in the joint-fine-tuning
setting. In particular, both Mask-GIN and ContextPred-GIN rely a lot on task-specific fine-tuning,
while EGI focuses on the capturing of similar ego-graph structures that are transferable across graphs.
The mutual information based method GMI also demonstrates considerable transferability and we
believe the ability to capture the graph structure is the key to the transferability. As a consequence,
EGI significantly outperforms all compared methods in both settings. More detailed statistics and
running time are in Appendix §C.3.

Table 3: Performance of few-shot relation prediction on YAGO. The scores marked with ∗∗ passed t-test with
p < 0.01 over the second best results.

Method post-fine-tuning joint-fine-tuning
AUROC MRR AUROC MRR

No pre-train 0.687±0.002 0.596±0.003 N.A. N.A.
GVAE 0.701±0.003 0.601±0.007 0.679±0.004 0.568±0.008
DGI 0.689±0.011 0.586±0.025 0.688±0.012 0.537±0.023
MaskGNN 0.713±0.009 0.631±0.015 0.712±0.005 0.560±0.010
ContextPredGNN 0.692±0.030 0.662±0.030 0.705±0.011 0.575±0.021
GMI 0.728±0.005 0.625±0.009 0.721±0.007 0.643±0.011
Structural Pre-train OOM OOM OOM OOM
MVC OOM OOM OOM OOM
EGI 0.739± 0.009∗∗ 0.670±0.014 0.787 ± 0.011∗∗ 0.729 ± 0.016∗∗

5 Conclusion
To the best of our knowledge, this is the first research effort towards establishing a theoretically
grounded framework to analyze GNN transferability, which we also demonstrate to be practically
useful for guiding the design and conduct of transfer learning with GNNs. For future work, it is
intriguing to further strengthen the bound with relaxed assumptions, rigorously extend it to the more
complicated and less restricted settings regarding node features and downstream tasks, as well as
analyze and improve the proposed framework over more transfer learning scenarios and datasets. It is
also important to protect the privacy of pre-training data to avoid potential negative societal impacts.

Acknowledgments and Disclosure of Funding

Research was supported in part by US DARPA KAIROS Program No. FA8750-19-2-1004, SocialSim
Program No. W911NF-17-C-0099, and INCAS Program No. HR001121C0165, National Science
Foundation IIS-19-56151, IIS-17-41317, and IIS 17-04532, and the Molecule Maker Lab Institute:
An AI Research Institutes program supported by NSF under Award No. 2019897. Chao Zhang is
supported NSF IIS-2008334, IIS-2106961, and ONR MURI N00014-17-1-2656. We would like to
thank AWS Machine Learning Research Awards program for providing computational resources for
the experiments in this paper. This work is also partially supported by the internal funding and GPU
servers provided by the Computer Science Department of Emory University. Any opinions, findings,
and conclusions or recommendations expressed herein are those of the authors and do not necessarily
represent the views, either expressed or implied, of DARPA or the U.S. Government.

10



References
[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews

of modern physics, 74(1):47, 2002.
[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate semidefinite

programming using the multiplicative weights update method. In FOCS, pages 339–348, 2005.
[3] Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge:

Transductive few-shot out-of-graph link prediction. Advances in Neural Information Processing
Systems, 33, 2020.

[4] Lu Bai and Edwin R Hancock. Fast depth-based subgraph kernels for unattributed graphs.
Pattern Recognition, 50:233–245, 2016.

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[6] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In NIPS, pages 585–591, 2002.

[7] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In NIPS, pages 137–144, 2007.

[8] Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian Rieck.
Graph kernels: State-of-the-art and future challenges. arXiv preprint arXiv:2011.03854, 2020.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

[10] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. In ICLR, 2018.

[11] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NIPS, pages 3844–3852, 2016.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In ACL, pages 4171–4186, 2019.

[14] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD,
pages 855–864, 2016.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1024–1034, 2017.

[16] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. ACHA, 30(2):129–150, 2011.

[17] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[19] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman
Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. Rolx: structural role extraction & mining
in large graphs. In KDD, pages 1231–1239, 2012.

[20] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019.

[21] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2019.

[22] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In KDD, pages 1857–1867, 2020.

[23] Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Pre-training graph
neural networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728,
2019.

11



[24] Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The
American Mathematical Monthly, 111(2):157–159, 2004.

[25] Xuan Kan, Hejie Cui, and Carl Yang. Zero-shot scene graph relation prediction through
commonsense knowledge integration. In ECML-PKDD, 2021.

[26] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
In NIPS, pages 7090–7099, 2019.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[28] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[30] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020.

[31] Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong Guan. Node
classification on graphs with few-shot novel labels via meta transformed network embedding.
Advances in Neural Information Processing Systems, 33, 2020.

[32] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pages 177–187, 2005.

[33] Ron Levie, Wei Huang, Lorenzo Bucci, Michael M Bronstein, and Gitta Kutyniok. Trans-
ferability of spectral graph convolutional neural networks. arXiv preprint arXiv:1907.12972,
2019.

[34] Ron Levie, Elvin Isufi, and Gitta Kutyniok. On the transferability of spectral graph filters. In
2019 13th International conference on Sampling Theory and Applications (SampTA), pages 1–5.
IEEE, 2019.

[35] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. In Advances in Neural Information Processing Systems, pages 13556–13566, 2019.

[36] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546,
2013.

[38] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey.
arXiv preprint arXiv:1904.12218, 2019.

[39] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In ICLR, 2020.

[40] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[41] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In WWW,
pages 259–270, 2020.

[42] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, pages 701–710, 2014.

[43] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
KDD, pages 1150–1160, 2020.

[44] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR,
2017.

[45] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In KDD, pages 385–394, 2017.

12



[46] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[47] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. Advances in Neural Information Processing Systems, 33,
2020.

[48] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. Easing embedding learning by
comprehensive transcription of heterogeneous information networks. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2190–2199, 2018.

[49] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowl-
edge. In WWW, pages 697–706, 2007.

[50] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2019.

[51] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In WWW, pages 1067–1077, 2015.

[52] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[53] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[54] Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

[55] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In KDD, 2019.

[56] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NIPS, pages 3630–3638, 2016.

[57] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[58] Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

[59] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW, pages 1457–1467, 2020.

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[61] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

[62] Carl Yang, Yichen Feng, Pan Li, Yu Shi, and Jiawei Han. Meta-graph based hin spectral
embedding: Methods, analyses, and insights. In ICDM, 2018.

[63] Carl Yang, Aditya Pal, Andrew Zhai, Nikil Pancha, Jiawei Han, Chuck Rosenberg, and Jure
Leskovec. Multisage: Empowering graphsage with contextualized multi-embedding on web-
scale multipartite networks. In KDD, 2020.

[64] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. In TKDE, 2020.

[65] Carl Yang, Chao Zhang, Xuewen Chen, Jieping Ye, and Jiawei Han. Did you enjoy the ride?
understanding passenger experience via heterogeneous network embedding. In ICDE, 2018.

[66] Carl Yang, Jieyu Zhang, and Jiawei Han. Co-embedding network nodes and hierarchical labels
with taxonomy based generative adversarial nets. In ICDM, 2020.

[67] Carl Yang, Jieyu Zhang, Haonan Wang, Sha Li, Myungwan Kim, Matt Walker, Yiou Xiao, and
Jiawei Han. Relation learning on social networks with multi-modal graph edge variational
autoencoders. In WSDM, 2020.

[68] Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. In NIPS, pages 1338–1349, 2019.

13



[69] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NIPS, 2018.

[70] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN:
Generating realistic graphs with deep auto-regressive models. In Proceedings of the 35th
International Conference on Machine Learning, pages 5708–5717. PMLR, 2018.

14


