LEARNING DOMAIN-AWARE TASK PROMPT REPRESENTATIONS FOR MULTI-DOMAIN ALL-IN-ONE IMAGE RESTORATION

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

034

038

047

048

050

052

Paper under double-blind review

ABSTRACT

Recently, significant breakthroughs have been made in all-in-one image restoration (AiOIR), which can handle multiple restoration tasks with a single model. However, existing methods typically focus on a specific image domain, such as natural scene, medical imaging, or remote sensing. In this work, we aim to extend AiOIR to multiple domains and propose the first multi-domain all-in-one image restoration method, DATPRL-IR, based on our proposed Domain-Aware Task **Prompt Representation Learning.** Specifically, we first construct a task prompt pool containing multiple task prompts, in which task-related knowledge is implicitly encoded. For each input image, the model adaptively selects the most relevant task prompts and composes them into an instance-level task representation via a prompt composition mechanism (PCM). Furthermore, to endow the model with domain awareness, we introduce another domain prompt pool and distill domain priors from multimodal large language models into the domain prompts. PCM is utilized to combine the adaptively selected domain prompts into a domain representation for each input image. Finally, the two representations are fused to form a domain-aware task prompt representation which can make full use of both specific and shared knowledge across tasks and domains to guide the subsequent restoration process. Extensive experiments demonstrate that our DATRL-IR significantly outperforms existing SOTA image restoration methods, while exhibiting strong generalization capabilities. We believe that this work provides a new research paradigm and represents a step towards more unified image restoration.

1 Introduction

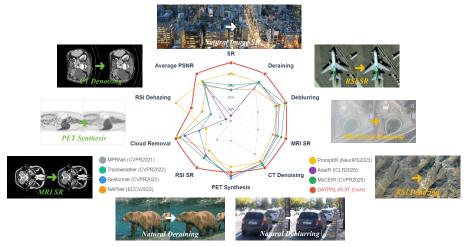


Figure 1: This paper makes a preliminary exploration of multi-domain all-in-one image restoration (MD-AiOIR), aiming at further extending the restoration capability of a single model to a broader range of tasks and image domains, including natural scene, medical imaging, and remote sensing.

Image restoration (Guo et al., 2024; Chen et al., 2022; Zamir et al., 2022; Liang et al., 2021; Zamir et al., 2021) has long been a fundamental research in computer vision, aiming to recover high-quality images from their degraded versions. With the advancement of deep learning, image restoration has found widespread applications across multiple image domains, including natural scene, medical imaging, and remote sensing. Early explorations mainly focused on designing independent models for different tasks within each domain, such as natural image super-resolution (SR) (Dong et al., 2014), natural image deraining (Dong et al., 2025b), natural image deblurring (Chakrabarti, 2016), CT denoising (Chen et al., 2017), MRI SR (Chen et al., 2018), PET synthesis (Luo et al., 2022), remote sensing image (RSI) SR (Lei et al., 2017), RSI cloud removal (Liu et al., 2025), RSI dehazing (Shen et al., 2020), etc.. However, training separate models is undoubtedly time-consuming and resource-intensive, and this greatly limits their applicability in complex real-world scenarios.

To address the above challenge, all-in-one image restoration (AiOIR) (Li et al., 2022; Cui et al., 2024; Potlapalli et al., 2023; Zamfir et al., 2025; Conde et al., 2024; Zhang et al., 2025) has gained increasing attention in recent years, as it seeks to provide a unified solution for handling multiple restoration tasks with a single model. AiOIR first emerge in natural scene, by leveraging implicit or explicit prompts (Potlapalli et al., 2023; Conde et al., 2024), contrastive learning (Li et al., 2022), degradation classification (Hu et al., 2025), prior information (He et al., 2024), or mixture-of-experts (MoE) architecture (Zamfir et al., 2025) to enable the restoration networks to better distinguish between different tasks. Meanwhile, inspired by the progress in natural scene, AiOIR methods have also gained popularity in medical imaging (Chen et al., 2025; Yang et al., 2025; 2024a). Though existing methods have achieved remarkable success, they only focus on a single domain and tend to overlook the commonalities shared among tasks. When faced with more restoration tasks and image domains, methods that emphasize task differences will face increased potential learning difficulty.

In this work, we make the first exploration of multi-domain all-in-one image restoration (MD-AiOIR), aiming to unify diverse restoration tasks across multiple domains within a single model. Inspired by the concept of prompt pool in L2P (Wang et al., 2022c), we propose domain-aware task prompt representation learning (DATPRL), which adopts a dual-prompt-pool design to learn prompt representations that carry both task-relevant and domain-relevant knowledge. Based on DATPRL, we introduce the first MD-AiOIR method, DATPRL-IR. Specifically, we first construct a task prompt pool with numerous task prompts. For each input image, our DATPRL-IR can adaptively select the most relevant task prompts through a similarity based query mechanism. To express more diverse instance-level information, we propose a prompt composition mechanism (PCM) to combine the selected task prompts into a task prompt representation. The task prompts are optimized jointly with the restoration objectives, ensuring the learning of task-specific knowledge while allowing knowledge sharing across tasks. Additionally, to endow the model with domain awareness, we build a separate domain prompt pool to store domain-related knowledge. We leverage the powerful image understanding ability of multimodal large language models (MLLMs) and employ a cross-modal alignment to distill domain priors from MLLMs (e.g., LLaVA (Liu et al., 2024)) into the domain prompts. Similarly, our DATPRL-IR will adaptively select the most relevant domain prompts for each input image, and then apply PCM to combine them into an instance-level domain prompt representation. The two prompt representations are then fused into the final domain-aware task representation to guide the subsequent restoration process. Our method effectively exploits the shared knowledge across different tasks and domains, significantly reducing the learning difficulty and facilitating performance improvement across tasks. As illustrated in Figure 1, under the guidance of domain-aware task prompt representations, our DATPRL-IR significantly surpasses existing methods, demonstrating strong generalization capability.

Our main contributions can be summarized as follows: (1) To the best of our knowledge, we propose the first multi-domain all-in-one image restoration method, DATPRL-IR, which can handle diverse restoration tasks across multiple domains. (2) Through the proposed domain-aware task prompt representation learning, our DATPRL-IR effectively leverages both specific and shared knowledge across tasks and domains to guide the restoration process. (3) Extensive experiments demonstrate that our method outperforms existing SOTA image restoration approaches on MD-AiOIR tasks, while also exhibiting strong generalization and zero-shot capabilities.

2 RELATED WORK

Single-Task Image Restoration. With the development of deep learning (LeCun et al., 2015), image restoration techniques have made continuous progress across multiple imaging domains, includ-

ing natural scene (Dong et al., 2014; Zhang et al., 2017; Dong et al., 2025b), medical imaging (Chen et al., 2018; 2017; Luo et al., 2022), and remote sensing (Lei et al., 2017; Wu et al., 2023; Liu et al., 2025). By leveraging specific designs for different domains and tasks, a wide variety of restoration sub-tasks have flourished. Recently, with the growing demand for multi-task image restoration and the continuous evolution of foundation backbones (e.g., CNNs (He et al., 2016; Ronneberger et al., 2015), Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020), and Mamba (Gu & Dao, 2023; Zhu et al., 2024)), a series of general image restoration baselines (Zamir et al., 2021; Liang et al., 2021; Zamir et al., 2022; Wang et al., 2022a; Chen et al., 2022; Guo et al., 2024; Li et al., 2025) have also emerged, which are capable of handling diverse types of degradations within a unified model architecture. However, these methods require training a separate model for each individual task, which is time-consuming and labor-intensive.

All-in-One Image Restoration. To overcome the limitations above, various all-in-one image restoration (AiOIR) frameworks (Li et al., 2022; Cui et al., 2024; Conde et al., 2024; Potlapalli et al., 2023; Zamfir et al., 2025) have continuously emerged and achieved sustained breakthroughs, especially in the natural image domain. AirNet (Li et al., 2022) is the first to achieve AiOIR through contrastive learning (Chen et al., 2020; He et al., 2020). IDR (Zhang et al., 2023) integrates degradation-specific priors into the restoration process to enhance performance. PromptIR (Potlapalli et al., 2023) uses learnable prompt components to encode different degradation information. DA-CLIP (Luo et al., 2023) decouples degradation and content semantics based on CLIP (Radford et al., 2021), making the model more sensitive to various degradation knowledge. InstructIR (Conde et al., 2024) guides the image restoration model through human-written instructions. MoCE-IR (Zamfir et al., 2025) introduces complexity experts within a mixture-of-experts (MoE) architecture to efficiently allocate task-specific resources. DCPT (Hu et al., 2025) propose a degradation classification pre-training strategy to classify the degradation type of input images. In addition to the methods for natural domain, recent AiOIR techniques have also started to gain attention in the field of medical imaging (Yang et al., 2024a; 2025; Chen et al., 2025). However, current research mainly focuses on exploring a specific domain, with most approaches aiming to better distinguish between different tasks while overlooking the commonalities between them.

Prompt Learning-based Image Restoration. Inspired by the success of prompt learning in natural language processing (Shin et al., 2020; Brown et al., 2020), high-level computer vision (Wang et al., 2022;b), and multi-modal models (Zhou et al., 2022; Yao et al., 2023), it has also been widely applied in image restoration recently. PromptRestorer (Wang et al., 2023) takes the advantage of prompt learning to perceive degradation, achieving progress on individual tasks such as image deraining, deblurring, and dehazing. SFD (Dong et al., 2025a) trains learnable antonymous prompt pairs in an adversarial manner to promote global discrimination for super-resolution images. PromptIR (Potlapalli et al., 2023) is the first to explore the capability of prompt learning in all-in-one image restoration, and it subsequently inspires a series of prompt-based all-in-one restoration methods (Gao et al., 2024; Kong et al., 2024; Wu et al., 2025; Ma et al., 2023; Ai et al., 2024; Conde et al., 2024), which employ explicit or implicit prompts to guide restoration process. In this work, different from existing methods, we propose a novel domain-aware task prompt representation learning method, which effectively leverages both both the specific and shared knowledge across restoration tasks and image domains to guide multi-domain all-in-one image restoration.

3 DATPRL-IR FOR MD-AIOIR

3.1 Domain-Aware Task Prompt Representation Learning

Motivation. In this work, we aim to take the first step towards Multi-Domain All-in-One Image Restoration (MD-AiOIR), extending AiOIR to more restoration tasks across multiple image domains. A key challenge is how to alleviate the learning difficulties introduced by the increasing number of restoration tasks and image domains. Prior studies (Chen et al., 2024; Zhang et al., 2023) have found that different image restoration tasks share certain inherent commonalities or similar latent representations and there is a certain mutual promotion effect between different restoration tasks (Conde et al., 2024), such as super-resolution and motion deblurring. Additionally, though images from different domains exhibit their own distinct visual characteristics, they share some common terms. Combining these specific and shared visual characteristics can facilitate the discrimination of the image domain. For instance, "grayscale + human organs" typically corresponds

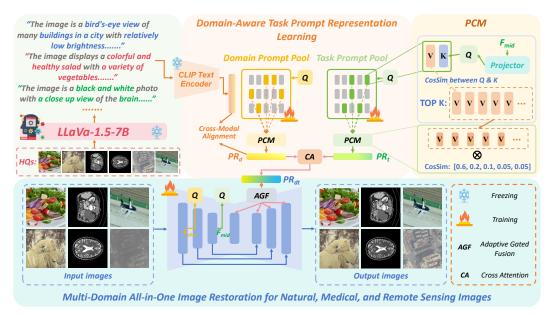


Figure 2: Framework of the proposed DATPRL-IR for multi-domain all-in-one image restoration.

to medical images, while "bird's-eye view + buildings" often indicates remote sensing scenarios. Therefore, we infer that effectively leveraging both the specific and shared knowledge across tasks and domains can help reduce the learning difficulty and further enhance the restoration performance. Inspired by L2P (Wang et al., 2022c), prompt pools offer an effective way to encode and organize both specific and shared knowledge. Building on this insight, we propose *Domain-Aware Task Prompt Representation Learning* and introduce the first MD-AiOIR method, DATPRL-IR.

Overall Framework. As illustrated in Figure 2, our DATPRL-IR mainly consists of an encoder–decoder based restoration backbone, a task prompt pool, a domain prompt pool, a CLIP (Radford et al., 2021) text encoder, and the LLaVA-1.5-7B (Liu et al., 2024) model. The task and domain prompt pools store N_t and N_d prompts, respectively. These prompts implicitly encapsulate knowledge related to restoration tasks and image domains. Given a degraded input image, our model adopts a query–retrieval–composition paradigm to adaptively query both prompt pools to retrieve the most relevant prompts for the task and domain, which are then composed into two representations: a task prompt representation \mathbf{PR}_t and a domain prompt representation \mathbf{PR}_d . Subsequently, these two representations are integrated through a cross-attention mechanism to produce a domain-aware task prompt representation \mathbf{PR}_{dt} , which can effectively guide the restoration process.

Task Prompt Pool. Task prompt (TP) pool is used to implicitly store both specific and shared knowledge across different tasks, and each prompt in TP pool is represented as a pair of a key $\mathbf{K}_j^{\text{task}} \in \mathbb{R}^d$ and value $\mathbf{V}_j^{\text{task}} \in \mathbb{R}^{T \times d}$. We use a learnable projector to map the middle feature F_{mid} of the input image extracted by the encoder of the restoration network into a query $\mathbf{Q}^{\text{task}} \in \mathbb{R}^d$ with the same dimension as $\mathbf{K}_j^{\text{task}}$. Based on the cosine similarities s_j^{task} between the \mathbf{Q}^{task} and each $\mathbf{K}_j^{\text{task}}$, the top k most relevant values $\mathbf{V}_k^{\text{task}}$ can be retrieved from the TP pool. To enable the limited set of prompts to provide more diverse instance-level prompt guidance, we design a prompt composition mechanism (PCM) to combine the selected $\mathbf{V}_k^{\text{task}}$ into an instance-level task prompt representation \mathbf{PR}_t according to the similarity scores s_k^{task} :

$$\alpha_j^{\text{task}} = \frac{\exp(s_j^{\text{task}}/T_{\text{task}})}{\sum\limits_{\ell \in k} \exp(s_\ell^{\text{task}}/T_{\text{task}})}, \quad \mathbf{PR_t} = \sum_{j \in k} \alpha_j^{\text{task}} \mathbf{V}_j^{\text{task}}. \tag{1}$$

where $\alpha_j^{\rm task}$ denotes the relative cosine similarity among the selected prompts, and $T_{\rm task}$ is the temperature parameter. During training, task prompts are optimized jointly with restoration objectives, ensuring the learning of task-related knowledge while allowing knowledge sharing across tasks.

Figure 3: A partial visualization of the word clouds generated from the text descriptions produced by LLAVA, and the t-SNE clustering analysis of the text descriptions corresponding to the 9 datasets from different domains and tasks. It can be observed that images from different domains exhibit their own characteristics while also sharing certain overlapping features.

Domain Prompt Pool. As shown in Figure 3, images from different domains exhibit their own characteristics while also sharing certain overlapping features. Integrating these characteristics will help the model to better determine the domain of an input image and to enrich its domain knowledge. To this end, we construct another domain prompt (DP) pool to store and organize such domain priors. The domain prompts in the DP Pool are also constructed as a set of key–value pairs. For each input image, we use another projector to map the shallow features extracted from the first layer of the restoration backbone into a domain query \mathbf{Q}^{dom} . Based on the cosine similarity between \mathbf{Q}^{dom} and the key $\mathbf{K}_j^{\text{dom}}$ of each domain prompt, we select the top k most relevant prompts. Similar to the TP pool, we also employ the PCM to combine the value $\mathbf{V}_j^{\text{dom}}$ of these candidates into an instance-level domain prompt representation \mathbf{PR}_d . To endow \mathbf{PR}_d with rich and interpretable domain knowledge, we employ LLaVA-1.5-7B to generate multi-perspective descriptions for the high-quality images (HQs) corresponding to each input, covering aspects such as image content, color richness, object category, brightness, and camera/viewpoint. During training, these textual descriptions are fed into the CLIP text encoder to obtain the corresponding text features \mathbf{F}_{text} , and the training of the DP Pool is constrained by the following cross-modal alignment loss:

$$\mathcal{L}_{\text{align}} = \frac{1}{B} \sum_{n=1}^{B} \left(1 - \cos(\mathbf{P} \mathbf{R}_{\text{dom}}^{n}, \mathbf{F}_{\text{text}}^{n} \right).$$
 (2)

where B denotes the batch size. During the joint training of our model, \mathcal{L}_{align} encourages the domain prompts to capture both specific and share domain knowledge that benefits the restoration objective, providing domain-related information to the network. It is worth noting that the LLaVA and CLIP will not be used during the inference stage without introducing any additional inference overhead.

Domain-Aware Task Prompt Representation. Finally, the task and domain prompt representations \mathbf{PR}_t and \mathbf{PR}_d will be fused through a cross-attention layer to learn a domain-aware task prompt representation \mathbf{PR}^{dt} , which will be used to guide the restoration process. Considering that different layers of the restoration backbone may have varying demands for prompt information, inspired by UniECS (Liang et al., 2025), we dynamically control the contribution ratio between backbone features and \mathbf{PR}_{dt} at each layer through an adaptive gated fusion (AGF):

$$\mathbf{F}_{l}^{e} = \operatorname{CrossAttn}(\alpha_{l} \, \mathbf{F}_{l}, \, (1 - \alpha_{l}) \, \mathbf{P} \mathbf{R}_{dt}), \,\, (3)$$

where \mathbf{F}_l^e and \mathbf{F}_l denote the enhanced feature map and the pre-fusion feature map at the l-th layer respectively, and $\alpha_l \in [0,1]$ is a learnable gating coefficient for the l-th layer. AGF allows each layer to independently learn the optimal fusion ratio, enabling a adaptive integration of \mathbf{PR}^{dt} and \mathbf{F}_l .

3.2 PROMPT POOL REGULARIZATION

We introduce a series of regularization terms to avoid the model degenerating into undesirable behaviors: e.g., over-relying on a small subset of prompts, or learning redundant or highly correlated prompt contents, especially during the early training phase. Firstly, we adopt a diversity regularization to encourage diversity of the learned prompts. Given a prompt pool with N prompts, we first compute the pairwise cosine similarity matrix of their values $\mathbf{V} \in \mathbb{R}^{T \times d}$:

$$\mathbf{S}_{ij} = \frac{\mathbf{V}_i \cdot \mathbf{V}_j^{\mathbf{T}}}{\|\mathbf{V}_i\|_2 \|\mathbf{V}_j\|_2},\tag{4}$$

where S_{ij} is the pairwise cosine similarity. To exclude self-similarity, we apply a mask $M = I - I_N$, where I_N is the $N \times N$ identity matrix. The diversity regularization loss is then formulated as:

$$\mathcal{L}_{\text{div}} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{M}_{ij} \cdot \max\left(0, \mathbf{S}_{ij} - \tau_{\text{div}}\right), \tag{5}$$

where $\tau_{\rm div}$ is a predefined similarity threshold. Minimizing $\mathcal{L}_{\rm div}$ encourages prompts to occupy distinct regions in the representation space, avoiding collapse to similar contents.

Furthermore, we adopt a prompt entropy regularization to encourage more balanced utilization across the prompts. Given a query $\mathbf{q} \in \mathbb{R}^d$ mapped from the input image and a pool of P prompt keys $\{\mathbf{k}_j\}_{j=1}^P$, we first compute the selection probability p_j of each prompt based on the cosine similarity score s_j between \mathbf{q} and \mathbf{k}_j . The selection probabilities of each prompt are obtained via a softmax and their entropy is computed as:

$$p_j = \frac{\exp(s_j)}{\sum_{m=1}^{P} \exp(s_m)}, \quad H(\mathbf{p}) = -\sum_{j=1}^{P} p_j \log p_j,$$
 (6)

where $H(\mathbf{p})$ denotes the entropy of the probability distribution. Then the balance loss is defined as:

$$\mathcal{L}_{\text{bal}} = \log P - H(\mathbf{p}). \tag{7}$$

 $\mathcal{L}_{\mathrm{bal}}$ encourages balanced prompt utilization during training. In addition, to enhance the sensitivity of instance-level prompt selection, we apply a contrastive regularization \mathcal{L}_{con} as detailed in the Appendix B. All regularization terms are applied to both the two prompt pools.

3.3 OVERALL OPTIMIZATION OBJECTIVE

The final training objective combines the primary reconstruction loss with cross-modal alignment loss and prompt regularization terms, and the total loss can be formulated as follows:

$$\mathcal{L} = \underbrace{\lambda_{pix}\mathcal{L}_{pix} + \lambda_{fft}\mathcal{L}_{fft}}_{\text{Reconstruction Loss}} + \underbrace{\lambda_{align}\mathcal{L}_{align} + \lambda_{div}\mathcal{L}_{div} + \lambda_{bal}\mathcal{L}_{bal} + \lambda_{con}\mathcal{L}_{con}}_{\text{Cross-Modal Alignment and Prompt Regularization}}$$
(8)

where \mathcal{L}_{pix} and \mathcal{L}_{fft} are ℓ_1 loss in the RGB and Fourier domain respectively and λ_{pix} , λ_{fft} , λ_{align} , λ_{div} , λ_{bal} , and λ_{con} are hyperparameters controlling the relative importance of each loss component.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To demonstrate the effectiveness of our method, we conduct experiments mainly from the 2 aspects: (1) 6-task and 3-domain experiment, (2) 9-task and 3-domain experiment. We consider 3 image domains—natural, medical, and remote sensing images—with a diverse selection of image restoration tasks from each domain. For the 6-task setting, we include 2 tasks per domain: natural image 4× super-resolution (SR) and deraining, medical MRI SR and CT denoising, and remote sensing image 4× SR and cloud removal. For the 9-task setting, we introduce one additional task per domain: natural image motion deblurring, medical PET synthesis, and remote sensing image dehazing.

Datasets and Evaluation Metrics. The training datasets for each task are as follows: Natural image SR is trained on DF2K (Agustsson & Timofte, 2017; Timofte et al., 2017) with 4x bicubic down-sampling. Natural image deraining is trained using Rain100L (Yang et al., 2019). Natural image deblurring uses GoPro (Nah et al., 2017). As for medical tasks, following (Yang et al., 2024a;b), we adopt IXI MRI, AAPM-Mayo Clinic (McCollough et al., 2017), and PolarStar m660 for MRI SR, CT denoising, and PET synthesis, respectively. The remote sensing SR, cloud removal, and dehazing are respectively trained with the UCMerced Land Use (Yang & Newsam, 2010), CUHK CR1 (Sui et al., 2024), and RICE1 (Lin et al., 2019). Evaluation is performed on the corresponding test sets, using PSNR and SSIM (Wang et al., 2004) in RGB space as the primary metrics.

Implementation Details. We train our model under PyTorch (Paszke et al., 2019) framework using the Adam (Kingma, 2014) optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.99$. The learning rate is initialized

Table 1: Quantitative comparison between our method and other SOTA methods on 3 domains & 6 tasks experimental setting. The best and second-best metrics are highlighted in **bold** and underline.

Image	Image Domain		Natural Image			Medical Image				Remote Sensing Image				Average	
Task & Dataset									noising M-Mayo	RSI SR on UCMerced		Cloud Removal on CUHK CR1		Performance	
Method	Year	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑
Single-Ta															
MPRNet SwinIR Restormer	CVPR2021 ICCVW2021 CVPR2022	28.82 28.61 28.94	0.8115 0.8051 0.8158	38.07 36.07 38.34	0.9817 0.9736 0.9822	26.84 26.06 27.58	0.8891 0.8766 0.9017	33.60 33.51 33.69	0.9259 0.9243 0.9268	27.70 27.29 28.01	0.7730 0.7545 0.7844	25.35 24.36 25.96	0.7389 0.6552 0.7541	30.06 29.32 30.42	0.8534 0.8316 0.8608
NAFNet	ECCV2022	28.73	0.8146	37.06	0.9773	27.32	0.8980	33.68	0.9270	27.87	0.7808	25.99	0.7591	30.11	0.8595
All-in-O	ne Method	,													
Transweather PromptIR AMIR DFPIR AdaIR MoCEIR Muti-Domain	CVPR2022 NeurIPS2023 MICCAI2024 CVPR2025 ICLR2025 CVPR2025 All-in-One Metl	27.40 28.77 28.78 27.69 28.81 28.16	0.7643 0.8160 0.8139 0.7845 0.8157 0.8156	33.20 38.71 38.10 37.33 38.19 38.64	0.9495 0.9831 0.9820 0.9745 0.9816 0.9840	24.59 27.61 26.30 24.59 27.54 27.75	0.8181 0.9023 0.8793 0.8181 0.9009 <u>0.9027</u>	31.98 33.71 33.66 32.66 33.68 33.74	0.9040 0.9270 0.9262 0.9137 0.9266 0.9278	25.97 28.05 27.87 25.97 27.99 28.06	0.6933 0.7860 0.7797 0.6933 0.7840 0.7843	22.95 25.81 25.75 26.02 26.03 <u>26.06</u>	0.5732 0.7518 0.7474 0.7072 0.7578 0.7615	27.68 30.44 30.15 29.38 30.04 30.40	0.7837 0.8610 0.8548 0.8152 0.8578 0.8620
DATPRL-IR-6T (Ours)		28.98	0.8191	39.56	0.9865	27.88	0.9053	33.80	0.9278	28.29	0.7917	26.12	0.7612	30.77	0.8653
DATPRL-II DATPRL-II DATPRL-II	R-7T (Ours) R-8T (Ours)	29.03 28.99 29.05	0.8183 0.8188 0.8181	39.65 39.64 39.67	0.9866 0.9866 0.9867	27.78 27.82 27.86	0.9037 0.9047 0.9045	33.76 33.77 33.77	0.9269 0.9269 0.9273	28.28 28.31 28.31	0.7908 0.7920 0.7913	25.91 25.92 26.00	0.7594 0.7590 0.7592	30.90 30.91 30.94	0.8987 0.8985 0.8983

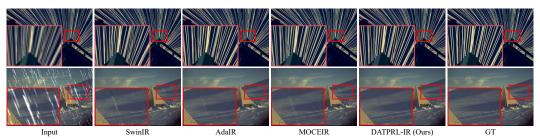


Figure 4: Comparison of our DATPRL-IR with other SOTA methods on 6-task and 3-domain setting.

at 4×10^{-4} with cosine annealing. Batch size is set to 12, and we train for 1000K iterations on NVIDIA RTX 5090 GPUs. We set the diversity threshold $\tau_{\rm div}=0.1$. The loss weights are set to $\lambda_{\rm align}=1.0$, $\lambda_{\rm div}=0.1$, $\lambda_{\rm con}=0.1$, and $\lambda_{\rm bal}=0.1$. To ensure a fair comparison, all competing methods are trained using the loss functions and specific training strategies adopted in their original papers, while all other training setting are kept the same as those used in training our model. For more description on datasets and implementation details, please refer to Appendix B.

4.2 MULTI-DOMAIN ALL-IN-ONE IMAGE RESTORATION

Results on 6-task and 3-domain all-in-one image restoration. To validate the effectiveness of our approach, we compare it with several SOTA AiOIR methods (Zamfir et al., 2025; Cui et al., 2024; Tian et al., 2025; Yang et al., 2024a; Potlapalli et al., 2023; Valanarasu et al., 2022) and classic image restoration baselines (Chen et al., 2022; Zamir et al., 2022; Liang et al., 2021; Zamir et al., 2021). As shown in Table 1, our DATPRL-IR achieves almost comprehensive superiority across all six tasks, with an average PSNR improvement of 0.37 dB over the SOTA MoCEIR, and nearly 1 dB gain on the natural image deraining task. Furthermore, as illustrated in Figure 4, our method is able to more thoroughly remove degradations and reconstruct clearer image details compared to other methods. These results convincingly demonstrate the effectiveness of our proposed domain-aware task prompt representation learning in guiding image restoration.

Results on 9-task and 3-domain all-in-one image restoration. To further evaluate scalability of our DATPRL-IR, we sequentially add three tasks—natural image deblurring, PET synthesis, and remote sensing image dehazing—to train our 9-task (9T) model, while also obtaining intermediate 7-task (7T) and 8-task (8T) models. As shown in Table 1, it can be clearly observed that when the task number grows from 6 to 9, our method does not exhibit significant performance degradation on the original tasks, it even achieves a certain degree of performance improvement. This provides strong evidence for our claim that different tasks indeed share transferable knowledge that can complement each other, and our method can effectively exploit both the shared and specific knowledge to enhance

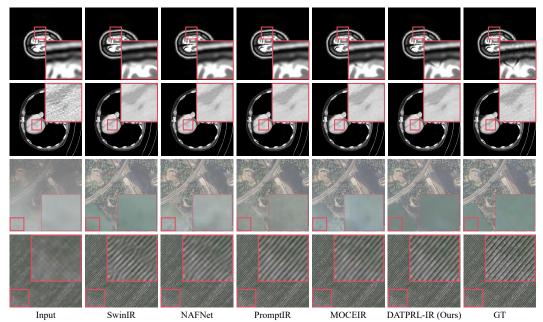


Figure 5: Comparison of our DATPRL-IR with other SOTA methods on 9-task and 3-domain setting.

model robustness when facing a larger number of tasks. As illustrated in Figure 5, images restored by our method exhibit clearer textures and fewer artifacts.

Due to the limited space, additional quantitative and qualitative results and analysis are provided in Appendix C.

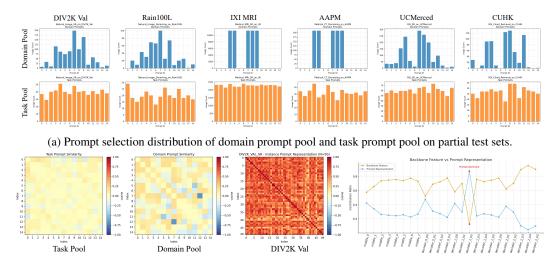
4.3 ABLATION STUDIES

The effects of task prompt pool and domain prompt pool. Table 2 investigates the impact of task prompt (TP) and domain prompt (DP) pools under 6-task and 3-domain experiment setting. Using any one type of prompt pool can provide clear improvements over the baseline, indicating that both task-aware and domain-aware representations contribute useful prior knowledge. Importantly, combining both the two pools leads to the best performance, the PSNR on the three datasets is respectively increased by 1.21dB, 0.09dB, and 0.27dB across the three tasks. The above ablation results highlights the effectiveness of our dual-prompt design in enhancing generalization and robustness for scenarios with diverse tasks and domains.

Table 2: Effect of task prompt (TP) pool and domain prompt Table 3: Effect of prompt numbers (DP) pool on DATPRL-IR. and top-k selection.

TP Pool	DP Pool	Deraining on Rain100L		CT Denoising on AAPM		RSI SR on UCMerced		TP	TP Pool		DP Pool		6-Task Aver. Performance	
11 1 001		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	Nums	Top K	Nums	Top K	PSNR	SSIM	
		 I				· ·		10	1	10	1	30.44	0.8607	
^	^	38.34	0.9823	33.70	0.9269	28.02	0.7844	10	3	10	5	30.53	0.8612	
✓	×	39.32	0.9855	33.76	0.9282	28.16	0.7901	15	1	15	1	30.48	0.8607	
X	./	38.88	0.9850	33.74	0.9268	28.12	0.7897	15	3	15	5	30.77	0.8653	
,	•							20	3	20	5	30.73	0.8635	
✓	✓	39.56	0.9865	33.80	0.9278	28.29	0.7917	20	5	20	5	30.70	0.8638	

The effects of prompt numbers and top-k selection. As shown in Table 3, we present the average performance over six tasks under different configurations of prompt numbers and top-k selection. The results reveal two trends. First, enlarging the prompt pool to a moderate size improves performance by offering richer choices, while excessively large pools lead to diminishing or even negative returns, as redundant prompts may dilute useful signals. Second, for top-k selection, using too few prompts limits expressiveness, while selecting too many reduces specificity. A balanced configuration not only preserves specificity but also better leverages the shared knowledge across tasks and domains. Overall, these results indicate that a moderate prompt capacity with carefully chosen retrieval breadth are key to achieving robust and generalized image restoration performance.



(b) Diversity of the prompts in the 2 prompt pool and instance-level (c) Contribution ratio of prompt repreprompt representations on DIV2K-Val. sentations and backbone features.

Figure 6: In-depth analysis of our method. Zoom in for better visualization.

4.4 IN-DEPTH ANALYSIS AND DISCUSSION.

Prompt selection distribution. As shown in Figure 6a, we visualize the selection distribution of prompts from both the domain and task prompt pools across six datasets. For the domain prompt pool, different datasets exhibit distinct distributions. Notably, medical datasets present highly uniform selections due to their relatively homogeneous image content and color patterns. In contrast, the task prompt pool shows larger overlaps across datasets, suggesting that a considerable number of task prompts are shared. This observation confirms that our method can effectively leverage shared knowledge across tasks to enhance network performance.

Prompt diversity. Figure 6b presents pairwise similarity heatmaps of prompt values in the two prompt pools. It is evident that each prompt has learned distinct content with little redundancy, thereby providing the model with diverse options. Furthermore, to examine instance-level behavior, we visualize the similarities between final prompt representations generated for different input images from the DIV2K validation set. For the same task, our method produces prompt representations with similar overall directions, while retaining instance-specific variations, indicating that our method enhances the instance-level diversity of learned prompt representations.

The contribution ratio of prompt representations and backbone features. We further analyze the learnable gating coefficient $\alpha_l \in [0,1]$ between prompt representations and backbone features at each block from the middle layers to the decoder, which is mentioned in Sec. 3.1. As shown in Figure 6c, most blocks exhibit a dominant reliance on backbone features, indicating that the network is still primarily driven by the restoration backbone while prompt representations serve as auxiliary guidance. Furthermore, earlier blocks at each scale rely more heavily on prompt representations compared to deeper blocks, and the large variations in contribution ratios across different layers further highlight the importance of adopting adaptive fusion ratios.

5 CONCLUSION

In this work, we proposed the first multi-domain all-in-one image restoration (MD-AiOIR) method, DATPRL-IR, which covers multiple restoration tasks across various image domains. By introducing domain-aware task representation learning, DATPRL-IR can fully utilize both specific and shared knowledge across tasks and domains, effectively reducing the learning difficulty of the model and improving its performance. Extensive experiments show that DATPRL-IR outperforms existing SOTA methods and demonstrates excellent generalization abilities. We believe that this work lays the foundation for future research towards a more unified restoration framework.

ETHICS STATEMENT

The authors acknowledge that this work adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

The code, trained models and datasets to reproduce our experiments will be available after this paper is accepted.

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pp. 126–135, 2017.

Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, and Ran He. Multimodal prompt perceiver: Empower adaptiveness generalizability and fidelity for all-in-one image restoration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25432–25444, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

Ayan Chakrabarti. A neural approach to blind motion deblurring. In *European conference on computer vision*, pp. 221–235. Springer, 2016.

Hao-Wei Chen, Yu-Syuan Xu, Kelvin CK Chan, Hsien-Kai Kuo, Chun-Yi Lee, and Ming-Hsuan Yang. Adair: Exploiting underlying similarities of image restoration tasks with adapters. *arXiv* preprint arXiv:2404.11475, 2024.

Haowei Chen, Zhiwen Yang, Haotian Hou, Hui Zhang, Bingzheng Wei, Gang Zhou, and Yan Xu. All-in-one medical image restoration with latent diffusion-enhanced vector-quantized codebook prior. *arXiv* preprint arXiv:2507.19874, 2025.

Hu Chen, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose ct denoising with convolutional neural network. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp. 143–146. IEEE, 2017.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration. In *European conference on computer vision*, pp. 17–33. Springer, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PmLR, 2020.

Yuhua Chen, Feng Shi, Anthony G Christodoulou, Yibin Xie, Zhengwei Zhou, and Debiao Li. Efficient and accurate mri super-resolution using a generative adversarial network and 3d multi-level densely connected network. In *International conference on medical image computing and computer-assisted intervention*, pp. 91–99. Springer, 2018.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

Marcos V Conde, Gregor Geigle, and Radu Timofte. Instructir: High-quality image restoration following human instructions. In *European Conference on Computer Vision*, pp. 1–21. Springer, 2024.

- Yuning Cui, Syed Waqas Zamir, Salman Khan, Alois Knoll, Mubarak Shah, and Fahad Shahbaz
 Khan. Adair: Adaptive all-in-one image restoration via frequency mining and modulation. arXiv preprint arXiv:2403.14614, 2024.
 - Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super-resolution. In *European conference on computer vision*, pp. 184–199. Springer, 2014.
 - Guanglu Dong, Xiangyu Liao, Mingyang Li, Guihuan Guo, and Chao Ren. Exploring semantic feature discrimination for perceptual image super-resolution and opinion-unaware no-reference image quality assessment. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 28176–28187, 2025a.
 - Guanglu Dong, Tianheng Zheng, Yuanzhouhan Cao, Linbo Qing, and Chao Ren. Channel consistency prior and self-reconstruction strategy based unsupervised image deraining. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7469–7479, 2025b.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Hu Gao, Jing Yang, Ying Zhang, Ning Wang, Jingfan Yang, and Depeng Dang. Prompt-based ingredient-oriented all-in-one image restoration. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(10):9458–9471, 2024.
 - Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
 - Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple baseline for image restoration with state-space model. In *European conference on computer vision*, pp. 222–241. Springer, 2024.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9729–9738, 2020.
 - Xuanhua He, Lang Li, Yingying Wang, Hui Zheng, Ke Cao, Keyu Yan, Rui Li, Chengjun Xie, Jie Zhang, and Man Zhou. Training-free large model priors for multiple-in-one image restoration. *arXiv preprint arXiv:2407.13181*, 2024.
 - JiaKui Hu, Lujia Jin, Zhengjian Yao, and Yanye Lu. Universal image restoration pre-training via degradation classification. The Thirteenth International Conference on Learning Representations, 2025.
 - H Malcolm Hudson and Richard S Larkin. Accelerated image reconstruction using ordered subsets of projection data. *IEEE transactions on medical imaging*, 13(4):601–609, 1994.
 - Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Xiangtao Kong, Chao Dong, and Lei Zhang. Towards effective multiple-in-one image restoration:
 A sequential and prompt learning strategy. *arXiv preprint arXiv:2401.03379*, 2024.
 - Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444, 2015.
 - Sen Lei, Zhenwei Shi, and Zhengxia Zou. Super-resolution for remote sensing images via local—global combined network. *IEEE Geoscience and Remote Sensing Letters*, 14(8):1243–1247, 2017.

- Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restoration for unknown corruption. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 17452–17462, 2022.
 - Boyun Li, Haiyu Zhao, Wenxin Wang, Peng Hu, Yuanbiao Gou, and Xi Peng. Mair: A locality-and continuity-preserving mamba for image restoration. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7491–7501, 2025.
 - Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1833–1844, 2021.
 - Zihan Liang, Yufei Ma, ZhiPeng Qian, Huangyu Dai, Zihan Wang, Ben Chen, Chenyi Lei, Yuqing Ding, and Han Li. Uniecs: Unified multimodal e-commerce search framework with gated cross-modal fusion. *arXiv preprint arXiv:2508.13843*, 2025.
 - Daoyu Lin, Guangluan Xu, Xiaoke Wang, Yang Wang, Xian Sun, and Kun Fu. A remote sensing image dataset for cloud removal. *arXiv preprint arXiv:1901.00600*, 2019.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 26296–26306, June 2024.
 - Yi Liu, Wengen Li, Jihong Guan, Shuigeng Zhou, and Yichao Zhang. Effective cloud removal for remote sensing images by an improved mean-reverting denoising model with elucidated design space. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17851–17861, 2025.
 - Yanmei Luo, Luping Zhou, Bo Zhan, Yuchen Fei, Jiliu Zhou, Yan Wang, and Dinggang Shen. Adaptive rectification based adversarial network with spectrum constraint for high-quality pet image synthesis. *Medical image analysis*, 77:102335, 2022.
 - Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling vision-language models for universal image restoration. *arXiv preprint arXiv:2310.01018*, 3(8), 2023.
 - Jiaqi Ma, Tianheng Cheng, Guoli Wang, Qian Zhang, Xinggang Wang, and Lefei Zhang. Prores: Exploring degradation-aware visual prompt for universal image restoration. *arXiv* preprint *arXiv*:2306.13653, 2023.
 - Cynthia H McCollough, Adam C Bartley, Rickey E Carter, Baiyu Chen, Tammy A Drees, Phillip Edwards, David R Holmes III, Alice E Huang, Farhana Khan, Shuai Leng, et al. Low-dose ct for the detection and classification of metastatic liver lesions: results of the 2016 low dose ct grand challenge. *Medical physics*, 44(10):e339–e352, 2017.
 - Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3883–3891, 2017.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
 - Vaishnav Potlapalli, Syed Waqas Zamir, Salman H Khan, and Fahad Shahbaz Khan. Promptir: Prompting for all-in-one image restoration. *Advances in Neural Information Processing Systems*, 36, 2023.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139, pp. 8748–8763. PMLR, 18–24 Jul 2021.

- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015.
 - Huanfeng Shen, Chi Zhang, Huifang Li, Quan Yuan, and Liangpei Zhang. A spatial–spectral adaptive haze removal method for visible remote sensing images. *IEEE Transactions on Geoscience and Remote Sensing*, 58(9):6168–6180, 2020.
 - Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting knowledge from language models with automatically generated prompts. *arXiv* preprint arXiv:2010.15980, 2020.
 - Jialu Sui, Yiyang Ma, Wenhan Yang, Xiaokang Zhang, Man-On Pun, and Jiaying Liu. Diffusion enhancement for cloud removal in ultra-resolution remote sensing imagery. *IEEE Transactions on Geoscience and Remote Sensing*, 2024.
 - Xiangpeng Tian, Xiangyu Liao, Xiao Liu, Meng Li, and Chao Ren. Degradation-aware feature perturbation for all-in-one image restoration. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 28165–28175, 2025.
 - Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single image super-resolution: Methods and results. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, July 2017.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.
 - Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M Patel. Transweather: Transformer-based restoration of images degraded by adverse weather conditions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2353–2363, 2022.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Cong Wang, Jinshan Pan, Wei Wang, Jiangxin Dong, Mengzhu Wang, Yakun Ju, and Junyang Chen. Promptrestorer: A prompting image restoration method with degradation perception. Advances in Neural Information Processing Systems, 36:8898–8912, 2023.
 - Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general u-shaped transformer for image restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 17683–17693, 2022a.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
 - Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648. Springer, 2022b.
 - Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022c.
 - Hanlin Wu, Ning Ni, and Libao Zhang. Lightweight stepless super-resolution of remote sensing images via saliency-aware dynamic routing strategy. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–17, 2023.

- Zhijian Wu, Wenhui Liu, Jingchao Wang, Jun Li, and Dingjiang Huang. Freprompter: Frequency self-prompt for all-in-one image restoration. *Pattern Recognition*, 161:111223, 2025.
- Wenhan Yang, Robby T Tan, Jiashi Feng, Zongming Guo, Shuicheng Yan, and Jiaying Liu. Joint rain detection and removal from a single image with contextualized deep networks. *IEEE transactions on pattern analysis and machine intelligence*, 42(6):1377–1393, 2019.
- Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use classification. In *Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems*, pp. 270–279, 2010.
- Zhiwen Yang, Haowei Chen, Ziniu Qian, Yang Yi, Hui Zhang, Dan Zhao, Bingzheng Wei, and Yan Xu. All-in-one medical image restoration via task-adaptive routing. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 67–77. Springer, 2024a.
- Zhiwen Yang, Jiayin Li, Hui Zhang, Dan Zhao, Bingzheng Wei, and Yan Xu. Restore-rwkv: Efficient and effective medical image restoration with rwkv. *arXiv preprint arXiv:2407.11087*, 2024b.
- Zhiwen Yang, Jiayin Li, Hui Zhang, Dan Zhao, Bingzheng Wei, and Yan Xu. Restore-rwkv: Efficient and effective medical image restoration with rwkv. *IEEE Journal of Biomedical and Health Informatics*, 2025.
- Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledge-guided context optimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6757–6767, 2023.
- Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yuedong Tan, Danda Pani Paudel, Yulun Zhang, and Radu Timofte. Complexity experts are task-discriminative learners for any image restoration. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12753–12763, 2025.
- Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. Multi-stage progressive image restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14821–14831, 2021.
- Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5728–5739, 2022.
- Jinghao Zhang, Jie Huang, Mingde Yao, Zizheng Yang, Hu Yu, Man Zhou, and Feng Zhao. Ingredient-oriented multi-degradation learning for image restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5825–5835, 2023.
- Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. *IEEE transactions on image processing*, 26 (7):3142–3155, 2017.
- Xu Zhang, Jiaqi Ma, Guoli Wang, Qian Zhang, Huan Zhang, and Lefei Zhang. Perceive-ir: Learning to perceive degradation better for all-in-one image restoration. *IEEE Transactions on Image Processing*, 2025. doi: 10.1109/TIP.2025.3566300.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.
- Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision mamba: Efficient visual representation learning with bidirectional state space model. *arXiv* preprint arXiv:2401.09417, 2024.

APPENDIX

A USE OF LARGE LANGUAGE MODELS

Large language models were used solely for light editing tasks including grammar correction, spelling checks, and minor phrasing improvements to enhance clarity and concision.

B DETAILED EXPERIMENTAL SETTING

Datasets. The training datasets for each task are as follows: Natural image SR is trained on the DF2K (Agustsson & Timofte, 2017; Timofte et al., 2017) dataset (DIV2K + Flickr2K) with 4× bicubic downsampling. Natural image deraining is trained using Rain100L (Yang et al., 2019). Natural image deblurring uses the GoPro (Nah et al., 2017) dataset. Following Yang et al. (2024a;b), medical MRI SR is trained on the IXI¹ MRI dataset. Medical CT denoising uses dataset from the 2016 NIH AAPM-Mayo Clinic Low-Dose CT Grand Challenge (McCollough et al., 2017). Medical PET synthesis is trained on the PolarStar m660 dataset, where both low-quality (LQ) and high-quality (HQ) PET images are reconstructed via the standard OSEM (Hudson & Larkin, 1994) method. Remote sensing image SR is trained on the UCMerced Land Use (Yang & Newsam, 2010) dataset with 4× bicubic downsampling. Remote sensing cloud removal is trained using CUHK CR1 (Sui et al., 2024) dataset. Remote sensing dehazing is trained on RICE1 (Lin et al., 2019), which provides hazy and clean image pairs. Table 4 presents the detailed numbers of training and testing images for each dataset. Data augmentation including random cropping, horizontal flipping, and rotation are applied to improve robustness.

Table 4: Detailed description of the datasets utilized.

Datasets	DF2K	Rain100L	GoPro	IXI MRI	AAPM-Mayo	PolarStar m660	UCMerced
Train Test Tasks	3450 100 Natural SR	200 100 Natural Deraining	2103 1111 Natural Deblurring	40500 11400 MRI SR	18351 211 CT Denoising	27837 2044 PET Synthesis	1800 300 RSI SR
Datasets	CUHK CR1	RICE1					
Train Test Tasks	534 134 Cloud Removal	400 100 RSI Dehazing					

Implementation Details. We train our model under PyTorch (Paszke et al., 2019) framework using the Adam (Kingma, 2014) optimizer with $\beta_1=0.9,\ \beta_2=0.99$. The learning rate is initialized at 4×10^{-4} with cosine annealing. Batch size is set to 12, and we train for 1000K iterations on NVIDIA RTX 5090 GPUs. We set the diversity threshold $\tau_{\rm div}=0.1$. The loss weights are set to $\lambda_{\rm align}=1.0,\ \lambda_{\rm div}=0.1,\ \lambda_{\rm con}=0.1,\ {\rm and}\ \lambda_{\rm bal}=0.1$. For each prompt, the key is defined as a 1×1024 vector, while the value is set to 2×1024. The numbers of prompts in both the task and domain prompt pools are set to 15, with top-k selection configured as k=3 for the task prompt pool and k=5 for the domain prompt pool. The used LLaVA-v1.5-7B is primarily built from CLIP's ViT-L/14 visual encoder (Radford et al., 2021) and Vicuna-7B (Chiang et al., 2023), a language model based on the LLaMA (Touvron et al., 2023) architecture. It is worth noting that the LLaVA-v1.5-7B and the CLIP text encoder are only used during the training phase. During inference, neither the LLaVA-v1.5-7B nor CLIP is required, thereby introducing no additional inference overhead.

Contrastive Regularization. In addition to the diversity regularization and prompt entropy regularization described in the main text, we also introduce a contrastive regularization to enhance the sensitivity of instance-level prompt selection. Specifically, we adopt a contrastive objective to align the query with the keys of their most relevant prompts while pushing them away from the keys of unrelated prompts. The contrastive regularization is defined as:

$$\mathcal{L}_{con} = -\log \frac{\exp(\langle \mathbf{q}, \mathbf{k}^+ \rangle / \tau)}{\exp(\langle \mathbf{q}, \mathbf{k}^+ \rangle / \tau) + \sum_{\mathbf{k}^-} \exp(\langle \mathbf{q}, \mathbf{k}^- \rangle / \tau)},$$
(9)

¹https://brain-development.org/ixi-dataset/

Table 5: Quantitative comparison between our method and other SOTA methods on 3 domains & 9 tasks experimental setting. The best and second-best metrics are highlighted in **bold** and <u>underline</u>.

Image Domain		Natural Image			Medical Image	;	Remote Sensing Image			
Task &	SR	Deraining	Deblurring	MRI SR	CT Denoising	PET Synthesis	RSI SR	Cloud Removal	RSI Dehazing	
Dataset	on DIV2K-Val	on Rain100L	on GoPro	on IXI MRI	on AAPM-Mayo	on PolarStar m660	on UCMerced	on CUHK CR1	on RICE1	
Single-Task Method										
MPRNet	28.32 / 0.8067	37.55 / 0.9797	28.02 / 0.8570	26.69 / 0.8871	33.54 / 0.9253	36.72 / 0.9475	27.47 /0.7646	25.20 / 0.7334	25.66 / 0.9268	
SwinIR	28.80 / 0.8109	37.55 / 0.9802	28.17 / 0.8510	26.49 / 0.8844	33.63 /0.9251	36.78 / 0.9468	27.52 / 0.7670	25.39 / 0.7249	25.42 / 0.9244	
Restormer	28.63 / 0.8150	38.45 / 0.9833	29.06 / 0.8805	27.43 / 0.8992	33.70 / 0.9269	37.20 / 0.9509	27.94 / 0.7827	25.66 / 0.7451	26.07 / 0.9286	
NAFNet	28.64 / 0.8128	37.31 / 0.9783	29.20 / 0.8828	27.31 / 0.8977	33.66 / 0.9267	37.14 / 0.9505	27.80 / 0.7774	25.96 / 0.7591	26.45 / 0.9215	
All-in-One Method										
Transweather	28.16 / 0.7951	32.41 / 0.9392	26.53 / 0.8116	25.55 / 0.8638	32.98 / 0.9209	36.47 / 0.9440	26.90 / 0.7402	25.35 / 0.7193	25.18 / 0.9226	
PromptIR	28.86 / 0.8127	38.21 / 0.9811	28.79 / 0.8749	27.31 / 0.8964	33.66 / 0.9265	37.03 / 0.9495	27.91 / 0.7809	25.33 / 0.7360	26.86 / 0.9399	
AdaIR	28.24 / 0.8153	38.40 / 0.9834	29.21 / 0.8835	27.52 / 0.9013	33.70 / 0.9270	37.17 / 0.9508	27.96 / 0.7837	25.87 / 0.7528	25.40 / 0.9274	
MoCEIR	28.68 / 0.8152	38.26 / 0.9827	29.32 / 0.8855	27.62 / 0.9003	33.72 / 0.9278	37.16 / 0.9502	<u>28.00</u> / 0.7809	25.83 / 0.7586	26.31 / <u>0.9395</u>	
Muti-Domain All-in-On	Muti-Domain All-in-One Method									
DATPRL-IR-9T (Ours)	29.05 / 0.8181	39.67 / 0.9867	29.57 / 0.8881	27.86 / 0.9045	33.77 / 0.9273	37.12 / 0.9502	28.31 / 0.7913	26.00 / 0.7592	26.94 / 0.9347	

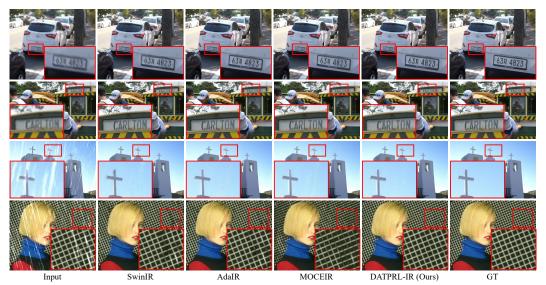


Figure 7: Comparison of our DATPRL-IR with other SOTA methods on Natural Images.

where ${\bf q}$ denotes the query and $\{{\bf k}^+\}$ and $\{{\bf k}^-\}$ denote the sets of positive (selected) and negative (non-selected) prompt keys.

C More Experiment Results

C.1 MULTI-DOMAIN ALL-IN-ONE IMAGE RESTORATION

We present detailed quantitative comparisons between our method and other approaches in Table 5. Our DATPRL-IR surpasses other SOTA methods across most tasks, demonstrating the superiority of our proposed domain-aware task prompt representation learning. Moreover, compared with the 6-task setting, it exhibits no performance drop on the original six tasks, but even achieves further improvements. We also provide additional qualitative visual comparisons in Figure 7, Figure 8, and Figure 9. Obviously, compared to other methods, our method is able to remove degradations clearer and reconstruct more image details. These results significant demonstrate the effectiveness of our method.

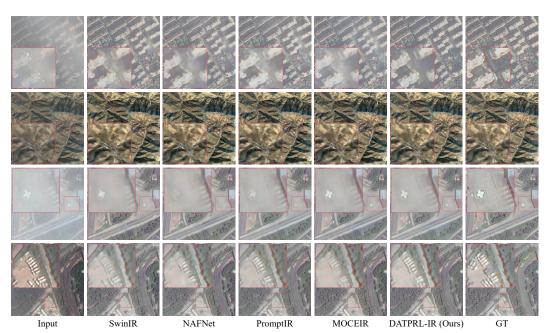


Figure 8: Comparison of our DATPRL-IR with other SOTA methods on Remote Sensing Images.

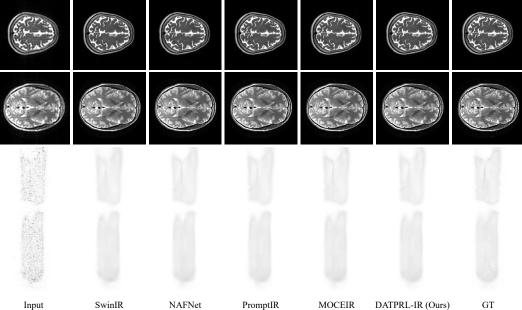


Figure 9: Comparison of our DATPRL-IR with other SOTA methods on Medical Images.