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ABSTRACT

Recently, significant breakthroughs have been made in all-in-one image restora-
tion (AiOIR), which can handle multiple restoration tasks with a single model.
However, existing methods typically focus on a specific image domain, such as
natural scene, medical imaging, or remote sensing. In this work, we aim to extend
AiOIR to multiple domains and propose the first multi-domain all-in-one image
restoration method, DATPRL-IR, based on our proposed Domain-Aware Task
Prompt Representation Learning. Specifically, we first construct a task prompt
pool containing multiple task prompts, in which task-related knowledge is implic-
itly encoded. For each input image, the model adaptively selects the most relevant
task prompts and composes them into an instance-level task representation via a
prompt composition mechanism (PCM). Furthermore, to endow the model with
domain awareness, we introduce another domain prompt pool and distill domain
priors from multimodal large language models into the domain prompts. PCM
is utilized to combine the adaptively selected domain prompts into a domain rep-
resentation for each input image. Finally, the two representations are fused to
form a domain-aware task prompt representation which can make full use of both
specific and shared knowledge across tasks and domains to guide the subsequent
restoration process. Extensive experiments demonstrate that our DATRL-IR sig-
nificantly outperforms existing SOTA image restoration methods, while exhibit-
ing strong generalization capabilities. We believe that this work provides a new
research paradigm and represents a step towards more unified image restoration.

1 INTRODUCTION

RSI Cloud Removal

RSI Dehazing

RSI SR CT Denoising

 PET Synthesis

Natural Deraining

Natural Image SR

Natural Deblurring

 MRI SR

Figure 1: This paper makes a preliminary exploration of multi-domain all-in-one image restoration
(MD-AiOIR), aiming at further extending the restoration capability of a single model to a broader
range of tasks and image domains, including natural scene, medical imaging, and remote sensing.
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Image restoration (Guo et al., 2024; Chen et al., 2022; Zamir et al., 2022; Liang et al., 2021; Zamir
et al., 2021) has long been a fundamental research in computer vision, aiming to recover high-quality
images from their degraded versions. With the advancement of deep learning, image restoration has
found widespread applications across multiple image domains, including natural scene, medical
imaging, and remote sensing. Early explorations mainly focused on designing independent models
for different tasks within each domain, such as natural image super-resolution (SR) (Dong et al.,
2014), natural image deraining (Dong et al., 2025b), natural image deblurring (Chakrabarti, 2016),
CT denoising (Chen et al., 2017), MRI SR (Chen et al., 2018), PET synthesis (Luo et al., 2022),
remote sensing image (RSI) SR (Lei et al., 2017), RSI cloud removal (Liu et al., 2025), RSI dehaz-
ing (Shen et al., 2020), etc.. However, training separate models is undoubtedly time-consuming and
resource-intensive, and this greatly limits their applicability in complex real-world scenarios.
To address the above challenge, all-in-one image restoration (AiOIR) (Li et al., 2022; Cui et al.,
2024; Potlapalli et al., 2023; Zamfir et al., 2025; Conde et al., 2024; Zhang et al., 2025) has gained
increasing attention in recent years, as it seeks to provide a unified solution for handling multiple
restoration tasks with a single model. AiOIR first emerge in natural scene, by leveraging implicit or
explicit prompts (Potlapalli et al., 2023; Conde et al., 2024), contrastive learning (Li et al., 2022),
degradation classification (Hu et al., 2025), prior information (He et al., 2024), or mixture-of-experts
(MoE) architecture (Zamfir et al., 2025) to enable the restoration networks to better distinguish
between different tasks. Meanwhile, inspired by the progress in natural scene, AiOIR methods have
also gained popularity in medical imaging (Chen et al., 2025; Yang et al., 2025; 2024a). Though
existing methods have achieved remarkable success, they only focus on a single domain and tend to
overlook the commonalities shared among tasks. When faced with more restoration tasks and image
domains, methods that emphasize task differences will face increased potential learning difficulty.
In this work, we make the first exploration of multi-domain all-in-one image restoration (MD-
AiOIR), aiming to unify diverse restoration tasks across multiple domains within a single model.
Inspired by the concept of prompt pool in L2P (Wang et al., 2022c), we propose domain-aware
task prompt representation learning (DATPRL), which adopts a dual-prompt-pool design to learn
prompt representations that carry both task-relevant and domain-relevant knowledge. Based on
DATPRL, we introduce the first MD-AiOIR method, DATPRL-IR. Specifically, we first construct
a task prompt pool with numerous task prompts. For each input image, our DATPRL-IR can adap-
tively select the most relevant task prompts through a similarity based query mechanism. To express
more diverse instance-level information, we propose a prompt composition mechanism (PCM) to
combine the selected task prompts into a task prompt representation. The task prompts are opti-
mized jointly with the restoration objectives, ensuring the learning of task-specific knowledge while
allowing knowledge sharing across tasks. Additionally, to endow the model with domain aware-
ness, we build a separate domain prompt pool to store domain-related knowledge. We leverage the
powerful image understanding ability of multimodal large language models (MLLMs) and employ
a cross-modal alignment to distill domain priors from MLLMs (e.g., LLaVA (Liu et al., 2024)) into
the domain prompts. Similarly, our DATPRL-IR will adaptively select the most relevant domain
prompts for each input image, and then apply PCM to combine them into an instance-level domain
prompt representation. The two prompt representations are then fused into the final domain-aware
task representation to guide the subsequent restoration process. Our method effectively exploits the
shared knowledge across different tasks and domains, significantly reducing the learning difficulty
and facilitating performance improvement across tasks. As illustrated in Figure 1, under the guid-
ance of domain-aware task prompt representations, our DATPRL-IR significantly surpasses existing
methods, demonstrating strong generalization capability.
Our main contributions can be summarized as follows: (1) To the best of our knowledge, we propose
the first multi-domain all-in-one image restoration method, DATPRL-IR, which can handle diverse
restoration tasks across multiple domains. (2) Through the proposed domain-aware task prompt
representation learning, our DATPRL-IR effectively leverages both specific and shared knowledge
across tasks and domains to guide the restoration process. (3) Extensive experiments demonstrate
that our method outperforms existing SOTA image restoration approaches on MD-AiOIR tasks,
while also exhibiting strong generalization and zero-shot capabilities.

2 RELATED WORK

Single-Task Image Restoration. With the development of deep learning (LeCun et al., 2015), im-
age restoration techniques have made continuous progress across multiple imaging domains, includ-
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ing natural scene (Dong et al., 2014; Zhang et al., 2017; Dong et al., 2025b), medical imaging (Chen
et al., 2018; 2017; Luo et al., 2022), and remote sensing (Lei et al., 2017; Wu et al., 2023; Liu et al.,
2025). By leveraging specific designs for different domains and tasks, a wide variety of restoration
sub-tasks have flourished. Recently, with the growing demand for multi-task image restoration and
the continuous evolution of foundation backbones (e.g., CNNs (He et al., 2016; Ronneberger et al.,
2015), Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020), and Mamba (Gu & Dao, 2023;
Zhu et al., 2024)), a series of general image restoration baselines (Zamir et al., 2021; Liang et al.,
2021; Zamir et al., 2022; Wang et al., 2022a; Chen et al., 2022; Guo et al., 2024; Li et al., 2025)
have also emerged, which are capable of handling diverse types of degradations within a unified
model architecture. However, these methods require training a separate model for each individual
task, which is time-consuming and labor-intensive.

All-in-One Image Restoration. To overcome the limitations above, various all-in-one image
restoration (AiOIR) frameworks (Li et al., 2022; Cui et al., 2024; Conde et al., 2024; Potlapalli
et al., 2023; Zamfir et al., 2025) have continuously emerged and achieved sustained breakthroughs,
especially in the natural image domain. AirNet (Li et al., 2022) is the first to achieve AiOIR
through contrastive learning (Chen et al., 2020; He et al., 2020). IDR (Zhang et al., 2023) integrates
degradation-specific priors into the restoration process to enhance performance. PromptIR (Potla-
palli et al., 2023) uses learnable prompt components to encode different degradation information.
DA-CLIP (Luo et al., 2023) decouples degradation and content semantics based on CLIP (Rad-
ford et al., 2021), making the model more sensitive to various degradation knowledge. Instruc-
tIR (Conde et al., 2024) guides the image restoration model through human-written instructions.
MoCE-IR (Zamfir et al., 2025) introduces complexity experts within a mixture-of-experts (MoE)
architecture to efficiently allocate task-specific resources. DCPT (Hu et al., 2025) propose a degra-
dation classification pre-training strategy to classify the degradation type of input images. In addition
to the methods for natural domain, recent AiOIR techniques have also started to gain attention in the
field of medical imaging (Yang et al., 2024a; 2025; Chen et al., 2025). However, current research
mainly focuses on exploring a specific domain, with most approaches aiming to better distinguish
between different tasks while overlooking the commonalities between them.

Prompt Learning-based Image Restoration. Inspired by the success of prompt learning in natu-
ral language processing (Shin et al., 2020; Brown et al., 2020), high-level computer vision (Wang
et al., 2022c;b), and multi-modal models (Zhou et al., 2022; Yao et al., 2023), it has also been
widely applied in image restoration recently. PromptRestorer (Wang et al., 2023) takes the advan-
tage of prompt learning to perceive degradation, achieving progress on individual tasks such as
image deraining, deblurring, and dehazing. SFD (Dong et al., 2025a) trains learnable antonymous
prompt pairs in an adversarial manner to promote global discrimination for super-resolution images.
PromptIR (Potlapalli et al., 2023) is the first to explore the capability of prompt learning in all-in-one
image restoration, and it subsequently inspires a series of prompt-based all-in-one restoration meth-
ods (Gao et al., 2024; Kong et al., 2024; Wu et al., 2025; Ma et al., 2023; Ai et al., 2024; Conde et al.,
2024), which employ explicit or implicit prompts to guide restoration process. In this work, differ-
ent from existing methods, we propose a novel domain-aware task prompt representation learning
method, which effectively leverages both both the specific and shared knowledge across restoration
tasks and image domains to guide multi-domain all-in-one image restoration.

3 DATPRL-IR FOR MD-AIOIR

3.1 DOMAIN-AWARE TASK PROMPT REPRESENTATION LEARNING

Motivation. In this work, we aim to take the first step towards Multi-Domain All-in-One Image
Restoration (MD-AiOIR), extending AiOIR to more restoration tasks across multiple image do-
mains. A key challenge is how to alleviate the learning difficulties introduced by the increasing
number of restoration tasks and image domains. Prior studies (Chen et al., 2024; Zhang et al., 2023)
have found that different image restoration tasks share certain inherent commonalities or similar
latent representations and there is a certain mutual promotion effect between different restoration
tasks (Conde et al., 2024), such as super-resolution and motion deblurring. Additionally, though
images from different domains exhibit their own distinct visual characteristics, they share some
common terms. Combining these specific and shared visual characteristics can facilitate the dis-
crimination of the image domain. For instance, “grayscale + human organs” typically corresponds
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Multi-Domain All-in-One Image Restoration for Natural, Medical, and Remote Sensing Images
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Figure 2: Framework of the proposed DATPRL-IR for multi-domain all-in-one image restoration.

to medical images, while “bird’s-eye view + buildings” often indicates remote sensing scenarios.
Therefore, we infer that effectively leveraging both the specific and shared knowledge across tasks
and domains can help reduce the learning difficulty and further enhance the restoration performance.
Inspired by L2P (Wang et al., 2022c), prompt pools offer an effective way to encode and organize
both specific and shared knowledge. Building on this insight, we propose Domain-Aware Task
Prompt Representation Learning and introduce the first MD-AiOIR method, DATPRL-IR.

Overall Framework. As illustrated in Figure 2, our DATPRL-IR mainly consists of an en-
coder–decoder based restoration backbone, a task prompt pool, a domain prompt pool, a CLIP (Rad-
ford et al., 2021) text encoder, and the LLaVA-1.5-7B (Liu et al., 2024) model. The task and domain
prompt pools store Nt and Nd prompts, respectively. These prompts implicitly encapsulate knowl-
edge related to restoration tasks and image domains. Given a degraded input image, our model
adopts a query–retrieval–composition paradigm to adaptively query both prompt pools to retrieve
the most relevant prompts for the task and domain, which are then composed into two representa-
tions: a task prompt representation PRt and a domain prompt representation PRd. Subsequently,
these two representations are integrated through a cross-attention mechanism to produce a domain-
aware task prompt representation PRdt, which can effectively guide the restoration process.

Task Prompt Pool. Task prompt (TP) pool is used to implicitly store both specific and shared
knowledge across different tasks, and each prompt in TP pool is represented as a pair of a key
Ktask

j ∈ Rd and value Vtask
j ∈ RT×d. We use a learnable projector to map the middle feature Fmid

of the input image extracted by the encoder of the restoration network into a query Qtask ∈ Rd with
the same dimension as Ktask

j . Based on the cosine similarities stask
j between the Qtask and each Ktask

j ,
the top k most relevant values Vtask

k can be retrieved from the TP pool. To enable the limited set of
prompts to provide more diverse instance-level prompt guidance, we design a prompt composition
mechanism (PCM) to combine the selected Vtask

k into an instance-level task prompt representation
PRt according to the similarity scores stask

k :

αtask
j =

exp(stask
j /Ttask)∑

ℓ∈k

exp(stask
ℓ /Ttask)

, PRt =
∑
j∈k

αtask
j Vtask

j . (1)

where αtask
j denotes the relative cosine similarity among the selected prompts, and Ttask is the tem-

perature parameter. During training, task prompts are optimized jointly with restoration objectives,
ensuring the learning of task-related knowledge while allowing knowledge sharing across tasks.
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Word Cloud of GoPro Word Cloud of CUHK Word Cloud of AAPM T-SNE of text featuresWord Cloud of DF2K Word Cloud of IXI MRI

Figure 3: A partial visualization of the word clouds generated from the text descriptions produced by
LLAVA, and the t-SNE clustering analysis of the text descriptions corresponding to the 9 datasets
from different domains and tasks. It can be observed that images from different domains exhibit
their own characteristics while also sharing certain overlapping features.

Domain Prompt Pool. As shown in Figure 3, images from different domains exhibit their own
characteristics while also sharing certain overlapping features. Integrating these characteristics will
help the model to better determine the domain of an input image and to enrich its domain knowledge.
To this end, we construct another domain prompt (DP) pool to store and organize such domain priors.
The domain prompts in the DP Pool are also constructed as a set of key–value pairs. For each input
image, we use another projector to map the shallow features extracted from the first layer of the
restoration backbone into a domain query Qdom. Based on the cosine similarity between Qdom and
the key Kdom

j of each domain prompt, we select the top k most relevant prompts. Similar to the TP
pool, we also employ the PCM to combine the value Vdom

j of these candidates into an instance-level
domain prompt representation PRd. To endow PRd with rich and interpretable domain knowledge,
we employ LLaVA-1.5-7B to generate multi-perspective descriptions for the high-quality images
(HQs) corresponding to each input, covering aspects such as image content, color richness, object
category, brightness, and camera/viewpoint. During training, these textual descriptions are fed into
the CLIP text encoder to obtain the corresponding text features Ftext, and the training of the DP Pool
is constrained by the following cross-modal alignment loss:

Lalign =
1

B

B∑
n=1

(
1− cos(PRn

dom,F
n
text

)
. (2)

where B denotes the batch size. During the joint training of our model, Lalign encourages the domain
prompts to capture both specific and share domain knowledge that benefits the restoration objective,
providing domain-related information to the network. It is worth noting that the LLaVA and CLIP
will not be used during the inference stage without introducing any additional inference overhead.

Domain-Aware Task Prompt Representation. Finally, the task and domain prompt representations
PRt and PRd will be fused through a cross-attention layer to learn a domain-aware task prompt
representation PRdt, which will be used to guide the restoration process. Considering that different
layers of the restoration backbone may have varying demands for prompt information, inspired
by UniECS (Liang et al., 2025), we dynamically control the contribution ratio between backbone
features and PRdt at each layer through an adaptive gated fusion (AGF):

Fe
l = CrossAttn(αl Fl, (1− αl)PRdt) , (3)

where Fe
l and Fl denote the enhanced feature map and the pre-fusion feature map at the l-th layer

respectively, and αl ∈ [0, 1] is a learnable gating coefficient for the l-th layer. AGF allows each layer
to independently learn the optimal fusion ratio, enabling a adaptive integration of PRdt and Fl.

3.2 PROMPT POOL REGULARIZATION

We introduce a series of regularization terms to avoid the model degenerating into undesirable be-
haviors: e.g., over-relying on a small subset of prompts, or learning redundant or highly correlated
prompt contents, especially during the early training phase. Firstly, we adopt a diversity regulariza-
tion to encourage diversity of the learned prompts. Given a prompt pool with N prompts, we first
compute the pairwise cosine similarity matrix of their values V ∈ RT×d:

Sij =
Vi ·VT

j

∥Vi∥2 ∥Vj∥2
, (4)
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where Sij is the pairwise cosine similarity. To exclude self-similarity, we apply a mask M = I−IN ,
where IN is the N ×N identity matrix. The diversity regularization loss is then formulated as:

Ldiv =
1

N(N − 1)

N∑
i=1

N∑
j=1

Mij ·max
(
0,Sij − τdiv

)
, (5)

where τdiv is a predefined similarity threshold. Minimizing Ldiv encourages prompts to occupy
distinct regions in the representation space, avoiding collapse to similar contents.

Furthermore, we adopt a prompt entropy regularization to encourage more balanced utilization
across the prompts. Given a query q ∈ Rd mapped from the input image and a pool of P prompt
keys {kj}Pj=1, we first compute the selection probability pj of each prompt based on the cosine
similarity score sj between q and kj . The selection probabilities of each prompt are obtained via a
softmax and their entropy is computed as:

pj =
exp(sj)∑P

m=1 exp(sm)
, H(p) = −

P∑
j=1

pj log pj , (6)

where H(p) denotes the entropy of the probability distribution. Then the balance loss is defined as:

Lbal = logP −H(p). (7)

Lbal encourages balanced prompt utilization during training. In addition, to enhance the sensitivity
of instance-level prompt selection, we apply a contrastive regularization Lcon as detailed in the
Appendix B. All regularization terms are applied to both the two prompt pools.

3.3 OVERALL OPTIMIZATION OBJECTIVE

The final training objective combines the primary reconstruction loss with cross-modal alignment
loss and prompt regularization terms, and the total loss can be formulated as follows:

L = λpixLpix + λfftLfft︸ ︷︷ ︸
Reconstruction Loss

+λalignLalign + λdivLdiv + λbalLbal + λconLcon,︸ ︷︷ ︸
Cross-Modal Alignment and Prompt Regularization

(8)

where Lpix and Lfft are ℓ1 loss in the RGB and Fourier domain respectively and λpix, λfft, λalign,
λdiv , λbal, and λcon are hyperparameters controlling the relative importance of each loss component.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To demonstrate the effectiveness of our method, we conduct experiments mainly from the 2 aspects:
(1) 6-task and 3-domain experiment, (2) 9-task and 3-domain experiment. We consider 3 image do-
mains—natural, medical, and remote sensing images—with a diverse selection of image restoration
tasks from each domain. For the 6-task setting, we include 2 tasks per domain: natural image 4×
super-resolution (SR) and deraining, medical MRI SR and CT denoising, and remote sensing im-
age 4× SR and cloud removal. For the 9-task setting, we introduce one additional task per domain:
natural image motion deblurring, medical PET synthesis, and remote sensing image dehazing.

Datasets and Evaluation Metrics. The training datasets for each task are as follows: Natural image
SR is trained on DF2K (Agustsson & Timofte, 2017; Timofte et al., 2017) with 4× bicubic down-
sampling. Natural image deraining is trained using Rain100L (Yang et al., 2019). Natural image
deblurring uses GoPro (Nah et al., 2017). As for medical tasks, following (Yang et al., 2024a;b),
we adopt IXI MRI, AAPM-Mayo Clinic (McCollough et al., 2017), and PolarStar m660 for MRI
SR, CT denoising, and PET synthesis, respectively. The remote sensing SR, cloud removal, and
dehazing are respectively trained with the UCMerced Land Use (Yang & Newsam, 2010), CUHK
CR1 (Sui et al., 2024), and RICE1 (Lin et al., 2019). Evaluation is performed on the corresponding
test sets, using PSNR and SSIM (Wang et al., 2004) in RGB space as the primary metrics.

Implementation Details. We train our model under PyTorch (Paszke et al., 2019) framework using
the Adam (Kingma, 2014) optimizer with β1 = 0.9, β2 = 0.99. The learning rate is initialized

6
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Table 1: Quantitative comparison between our method and other SOTA methods on 3 domains & 6
tasks experimental setting. The best and second-best metrics are highlighted in bold and underline.

Image Domain Natural Image Medical Image Remote Sensing Image Average
PerformanceTask & Dataset Super-Resolution Deraining MRI SR CT Denoising RSI SR Cloud Removal

on DIV2K-VAL on Rain100L on IXI MRI on AAPM-Mayo on UCMerced on CUHK CR1
Method Year PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Single-Task Method
MPRNet CVPR2021 28.82 0.8115 38.07 0.9817 26.84 0.8891 33.60 0.9259 27.70 0.7730 25.35 0.7389 30.06 0.8534
SwinIR ICCVW2021 28.61 0.8051 36.07 0.9736 26.06 0.8766 33.51 0.9243 27.29 0.7545 24.36 0.6552 29.32 0.8316

Restormer CVPR2022 28.94 0.8158 38.34 0.9822 27.58 0.9017 33.69 0.9268 28.01 0.7844 25.96 0.7541 30.42 0.8608
NAFNet ECCV2022 28.73 0.8146 37.06 0.9773 27.32 0.8980 33.68 0.9270 27.87 0.7808 25.99 0.7591 30.11 0.8595

All-in-One Method
Transweather CVPR2022 27.40 0.7643 33.20 0.9495 24.59 0.8181 31.98 0.9040 25.97 0.6933 22.95 0.5732 27.68 0.7837

PromptIR NeurIPS2023 28.77 0.8160 38.71 0.9831 27.61 0.9023 33.71 0.9270 28.05 0.7860 25.81 0.7518 30.44 0.8610
AMIR MICCAI2024 28.78 0.8139 38.10 0.9820 26.30 0.8793 33.66 0.9262 27.87 0.7797 25.75 0.7474 30.15 0.8548
DFPIR CVPR2025 27.69 0.7845 37.33 0.9745 24.59 0.8181 32.66 0.9137 25.97 0.6933 26.02 0.7072 29.38 0.8152
AdaIR ICLR2025 28.81 0.8157 38.19 0.9816 27.54 0.9009 33.68 0.9266 27.99 0.7840 26.03 0.7578 30.04 0.8578

MoCEIR CVPR2025 28.16 0.8156 38.64 0.9840 27.75 0.9027 33.74 0.9278 28.06 0.7843 26.06 0.7615 30.40 0.8620
Muti-Domain All-in-One Method

DATPRL-IR-6T (Ours) 28.98 0.8191 39.56 0.9865 27.88 0.9053 33.80 0.9278 28.29 0.7917 26.12 0.7612 30.77 0.8653
DATPRL-IR-7T (Ours) 29.03 0.8183 39.65 0.9866 27.78 0.9037 33.76 0.9269 28.28 0.7908 25.91 0.7594 30.90 0.8987
DATPRL-IR-8T (Ours) 28.99 0.8188 39.64 0.9866 27.82 0.9047 33.77 0.9269 28.31 0.7920 25.92 0.7590 30.91 0.8985
DATPRL-IR-9T (Ours) 29.05 0.8181 39.67 0.9867 27.86 0.9045 33.77 0.9273 28.31 0.7913 26.00 0.7592 30.94 0.8983

MOCEIR DATPRL-IR (Ours) GTInput SwinIR AdaIR

Figure 4: Comparison of our DATPRL-IR with other SOTA methods on 6-task and 3-domain setting.

at 4 × 10−4 with cosine annealing. Batch size is set to 12, and we train for 1000K iterations on
NVIDIA RTX 5090 GPUs. We set the diversity threshold τdiv = 0.1. The loss weights are set to
λalign = 1.0, λdiv = 0.1, λcon = 0.1, and λbal = 0.1. To ensure a fair comparison, all competing
methods are trained using the loss functions and specific training strategies adopted in their original
papers, while all other training setting are kept the same as those used in training our model. For
more description on datasets and implementation details, please refer to Appendix B.

4.2 MULTI-DOMAIN ALL-IN-ONE IMAGE RESTORATION

Results on 6-task and 3-domain all-in-one image restoration. To validate the effectiveness of our
approach, we compare it with several SOTA AiOIR methods (Zamfir et al., 2025; Cui et al., 2024;
Tian et al., 2025; Yang et al., 2024a; Potlapalli et al., 2023; Valanarasu et al., 2022) and classic
image restoration baselines (Chen et al., 2022; Zamir et al., 2022; Liang et al., 2021; Zamir et al.,
2021). As shown in Table 1, our DATPRL-IR achieves almost comprehensive superiority across all
six tasks, with an average PSNR improvement of 0.37 dB over the SOTA MoCEIR, and nearly 1 dB
gain on the natural image deraining task. Furthermore, as illustrated in Figure 4, our method is able
to more thoroughly remove degradations and reconstruct clearer image details compared to other
methods. These results convincingly demonstrate the effectiveness of our proposed domain-aware
task prompt representation learning in guiding image restoration.

Results on 9-task and 3-domain all-in-one image restoration. To further evaluate scalability
of our DATPRL-IR, we sequentially add three tasks—natural image deblurring, PET synthesis, and
remote sensing image dehazing—to train our 9-task (9T) model, while also obtaining intermediate 7-
task (7T) and 8-task (8T) models. As shown in Table 1, it can be clearly observed that when the task
number grows from 6 to 9, our method does not exhibit significant performance degradation on the
original tasks, it even achieves a certain degree of performance improvement. This provides strong
evidence for our claim that different tasks indeed share transferable knowledge that can complement
each other, and our method can effectively exploit both the shared and specific knowledge to enhance
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Figure 5: Comparison of our DATPRL-IR with other SOTA methods on 9-task and 3-domain setting.

model robustness when facing a larger number of tasks. As illustrated in Figure 5, images restored
by our method exhibit clearer textures and fewer artifacts.

Due to the limited space, additional quantitative and qualitative results and analysis are pro-
vided in Appendix C.

4.3 ABLATION STUDIES

The effects of task prompt pool and domain prompt pool. Table 2 investigates the impact of
task prompt (TP) and domain prompt (DP) pools under 6-task and 3-domain experiment setting.
Using any one type of prompt pool can provide clear improvements over the baseline, indicating
that both task-aware and domain-aware representations contribute useful prior knowledge. Impor-
tantly, combining both the two pools leads to the best performance, the PSNR on the three datasets
is respectively increased by 1.21dB, 0.09dB, and 0.27dB across the three tasks. The above abla-
tion results highlights the effectiveness of our dual-prompt design in enhancing generalization and
robustness for scenarios with diverse tasks and domains.
Table 2: Effect of task prompt (TP) pool and domain prompt
(DP) pool on DATPRL-IR.

TP Pool DP Pool
Deraining CT Denoising RSI SR

on Rain100L on AAPM on UCMerced
PSNR SSIM PSNR SSIM PSNR SSIM

% % 38.34 0.9823 33.70 0.9269 28.02 0.7844
! % 39.32 0.9855 33.76 0.9282 28.16 0.7901
% ! 38.88 0.9850 33.74 0.9268 28.12 0.7897
! ! 39.56 0.9865 33.80 0.9278 28.29 0.7917

Table 3: Effect of prompt numbers
and top-k selection.

TP Pool DP Pool 6-Task Aver.
Performance

Nums Top K Nums Top K PSNR SSIM

10 1 10 1 30.44 0.8607
10 3 10 5 30.53 0.8612
15 1 15 1 30.48 0.8607
15 3 15 5 30.77 0.8653
20 3 20 5 30.73 0.8635
20 5 20 5 30.70 0.8638

The effects of prompt numbers and top-k selection. As shown in Table 3, we present the average
performance over six tasks under different configurations of prompt numbers and top-k selection.
The results reveal two trends. First, enlarging the prompt pool to a moderate size improves perfor-
mance by offering richer choices, while excessively large pools lead to diminishing or even negative
returns, as redundant prompts may dilute useful signals. Second, for top-k selection, using too few
prompts limits expressiveness, while selecting too many reduces specificity. A balanced config-
uration not only preserves specificity but also better leverages the shared knowledge across tasks
and domains. Overall, these results indicate that a moderate prompt capacity with carefully chosen
retrieval breadth are key to achieving robust and generalized image restoration performance.
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(a) Prompt selection distribution of domain prompt pool and task prompt pool on partial test sets.
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(b) Diversity of the prompts in the 2 prompt pool and instance-level
prompt representations on DIV2K-Val.

(c) Contribution ratio of prompt repre-
sentations and backbone features.

Figure 6: In-depth analysis of our method. Zoom in for better visualization.

4.4 IN-DEPTH ANALYSIS AND DISCUSSION.

Prompt selection distribution. As shown in Figure 6a, we visualize the selection distribution of
prompts from both the domain and task prompt pools across six datasets. For the domain prompt
pool, different datasets exhibit distinct distributions. Notably, medical datasets present highly uni-
form selections due to their relatively homogeneous image content and color patterns. In contrast,
the task prompt pool shows larger overlaps across datasets, suggesting that a considerable number of
task prompts are shared. This observation confirms that our method can effectively leverage shared
knowledge across tasks to enhance network performance.

Prompt diversity. Figure 6b presents pairwise similarity heatmaps of prompt values in the two
prompt pools. It is evident that each prompt has learned distinct content with little redundancy,
thereby providing the model with diverse options. Furthermore, to examine instance-level behav-
ior, we visualize the similarities between final prompt representations generated for different input
images from the DIV2K validation set. For the same task, our method produces prompt representa-
tions with similar overall directions, while retaining instance-specific variations, indicating that our
method enhances the instance-level diversity of learned prompt representations.

The contribution ratio of prompt representations and backbone features. We further analyze
the learnable gating coefficient αl ∈ [0, 1] between prompt representations and backbone features
at each block from the middle layers to the decoder, which is mentioned in Sec. 3.1. As shown in
Figure 6c, most blocks exhibit a dominant reliance on backbone features, indicating that the network
is still primarily driven by the restoration backbone while prompt representations serve as auxiliary
guidance. Furthermore, earlier blocks at each scale rely more heavily on prompt representations
compared to deeper blocks, and the large variations in contribution ratios across different layers
further highlight the importance of adopting adaptive fusion ratios.

5 CONCLUSION

In this work, we proposed the first multi-domain all-in-one image restoration (MD-AiOIR) method,
DATPRL-IR, which covers multiple restoration tasks across various image domains. By introducing
domain-aware task representation learning, DATPRL-IR can fully utilize both specific and shared
knowledge across tasks and domains, effectively reducing the learning difficulty of the model and
improving its performance. Extensive experiments show that DATPRL-IR outperforms existing
SOTA methods and demonstrates excellent generalization abilities. We believe that this work lays
the foundation for future research towards a more unified restoration framework.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

Large language models were used solely for light editing tasks including grammar correction,
spelling checks, and minor phrasing improvements to enhance clarity and concision.

B DETAILED EXPERIMENTAL SETTING

Datasets. The training datasets for each task are as follows: Natural image SR is trained on the
DF2K (Agustsson & Timofte, 2017; Timofte et al., 2017) dataset (DIV2K + Flickr2K) with 4× bicu-
bic downsampling. Natural image deraining is trained using Rain100L (Yang et al., 2019). Natural
image deblurring uses the GoPro (Nah et al., 2017) dataset. Following Yang et al. (2024a;b), medi-
cal MRI SR is trained on the IXI1 MRI dataset. Medical CT denoising uses dataset from the 2016
NIH AAPM-Mayo Clinic Low-Dose CT Grand Challenge (McCollough et al., 2017). Medical PET
synthesis is trained on the PolarStar m660 dataset, where both low-quality (LQ) and high-quality
(HQ) PET images are reconstructed via the standard OSEM (Hudson & Larkin, 1994) method. Re-
mote sensing image SR is trained on the UCMerced Land Use (Yang & Newsam, 2010) dataset with
4× bicubic downsampling. Remote sensing cloud removal is trained using CUHK CR1 (Sui et al.,
2024) dataset. Remote sensing dehazing is trained on RICE1 (Lin et al., 2019), which provides hazy
and clean image pairs. Table 4 presents the detailed numbers of training and testing images for each
dataset. Data augmentation including random cropping, horizontal flipping, and rotation are applied
to improve robustness.

Table 4: Detailed description of the datasets utilized.

Datasets DF2K Rain100L GoPro IXI MRI AAPM-Mayo PolarStar m660 UCMerced

Train 3450 200 2103 40500 18351 27837 1800
Test 100 100 1111 11400 211 2044 300

Tasks Natural SR Natural Deraining Natural Deblurring MRI SR CT Denoising PET Synthesis RSI SR

Datasets CUHK CR1 RICE1

Train 534 400
Test 134 100

Tasks Cloud Removal RSI Dehazing

Implementation Details. We train our model under PyTorch (Paszke et al., 2019) framework using
the Adam (Kingma, 2014) optimizer with β1 = 0.9, β2 = 0.99. The learning rate is initialized
at 4 × 10−4 with cosine annealing. Batch size is set to 12, and we train for 1000K iterations on
NVIDIA RTX 5090 GPUs. We set the diversity threshold τdiv = 0.1. The loss weights are set
to λalign = 1.0, λdiv = 0.1, λcon = 0.1, and λbal = 0.1. For each prompt, the key is defined as
a 1×1024 vector, while the value is set to 2×1024. The numbers of prompts in both the task and
domain prompt pools are set to 15, with top-k selection configured as k=3 for the task prompt pool
and k=5 for the domain prompt pool. The used LLaVA-v1.5-7B is primarily built from CLIP’s ViT-
L/14 visual encoder (Radford et al., 2021) and Vicuna-7B (Chiang et al., 2023), a language model
based on the LLaMA (Touvron et al., 2023) architecture. It is worth noting that the LLaVA-v1.5-7B
and the CLIP text encoder are only used during the training phase. During inference, neither the
LLaVA-v1.5-7B nor CLIP is required, thereby introducing no additional inference overhead.

Contrastive Regularization. In addition to the diversity regularization and prompt entropy regu-
larization described in the main text, we also introduce a contrastive regularization to enhance the
sensitivity of instance-level prompt selection. Specifically, we adopt a contrastive objective to align
the query with the keys of their most relevant prompts while pushing them away from the keys of
unrelated prompts. The contrastive regularization is defined as:

Lcon = − log
exp(⟨q,k+⟩/τ)

exp(⟨q,k+⟩/τ) +
∑

k− exp(⟨q,k−⟩/τ)
, (9)

1https://brain-development.org/ixi-dataset/
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Table 5: Quantitative comparison between our method and other SOTA methods on 3 domains & 9
tasks experimental setting. The best and second-best metrics are highlighted in bold and underline.

Image Domain Natural Image Medical Image Remote Sensing Image
Task &
Dataset

SR Deraining Deblurring MRI SR CT Denoising PET Synthesis RSI SR Cloud Removal RSI Dehazing
on DIV2K-Val on Rain100L on GoPro on IXI MRI on AAPM-Mayo on PolarStar m660 on UCMerced on CUHK CR1 on RICE1

Single-Task Method
MPRNet 28.32 / 0.8067 37.55 / 0.9797 28.02 / 0.8570 26.69 / 0.8871 33.54 / 0.9253 36.72 / 0.9475 27.47 /0.7646 25.20 / 0.7334 25.66 / 0.9268
SwinIR 28.80 / 0.8109 37.55 / 0.9802 28.17 / 0.8510 26.49 / 0.8844 33.63 /0.9251 36.78 / 0.9468 27.52 / 0.7670 25.39 / 0.7249 25.42 / 0.9244

Restormer 28.63 / 0.8150 38.45 / 0.9833 29.06 / 0.8805 27.43 / 0.8992 33.70 / 0.9269 37.20 / 0.9509 27.94 / 0.7827 25.66 / 0.7451 26.07 / 0.9286
NAFNet 28.64 / 0.8128 37.31 / 0.9783 29.20 / 0.8828 27.31 / 0.8977 33.66 / 0.9267 37.14 / 0.9505 27.80 / 0.7774 25.96 / 0.7591 26.45 / 0.9215

All-in-One Method
Transweather 28.16 / 0.7951 32.41 / 0.9392 26.53 / 0.8116 25.55 / 0.8638 32.98 / 0.9209 36.47 / 0.9440 26.90 / 0.7402 25.35 / 0.7193 25.18 / 0.9226

PromptIR 28.86 / 0.8127 38.21 / 0.9811 28.79 / 0.8749 27.31 / 0.8964 33.66 / 0.9265 37.03 / 0.9495 27.91 / 0.7809 25.33 / 0.7360 26.86 / 0.9399
AdaIR 28.24 / 0.8153 38.40 / 0.9834 29.21 / 0.8835 27.52 / 0.9013 33.70 / 0.9270 37.17 / 0.9508 27.96 / 0.7837 25.87 / 0.7528 25.40 / 0.9274

MoCEIR 28.68 / 0.8152 38.26 / 0.9827 29.32 / 0.8855 27.62 / 0.9003 33.72 / 0.9278 37.16 / 0.9502 28.00 / 0.7809 25.83 / 0.7586 26.31 / 0.9395
Muti-Domain All-in-One Method
DATPRL-IR-9T (Ours) 29.05 / 0.8181 39.67 / 0.9867 29.57 / 0.8881 27.86 / 0.9045 33.77 / 0.9273 37.12 / 0.9502 28.31 / 0.7913 26.00 / 0.7592 26.94 / 0.9347

MOCEIR DATPRL-IR (Ours) GTInput SwinIR AdaIR

Figure 7: Comparison of our DATPRL-IR with other SOTA methods on Natural Images.

where q denotes the query and {k+} and {k−} denote the sets of positive (selected) and negative
(non-selected) prompt keys.

C MORE EXPERIMENT RESULTS

C.1 MULTI-DOMAIN ALL-IN-ONE IMAGE RESTORATION

We present detailed quantitative comparisons between our method and other approaches in Table 5.
Our DATPRL-IR surpasses other SOTA methods across most tasks, demonstrating the superiority
of our proposed domain-aware task prompt representation learning. Moreover, compared with the
6-task setting, it exhibits no performance drop on the original six tasks, but even achieves further
improvements. We also provide additional qualitative visual comparisons in Figure 7, Figure 8, and
Figure 9. Obviously, compared to other methods, our method is able to remove degradations clearer
and reconstruct more image details. These results significant demonstrate the effectiveness of our
method.
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MOCEIR DATPRL-IR (Ours) GTInput SwinIR NAFNet PromptIR

Figure 8: Comparison of our DATPRL-IR with other SOTA methods on Remote Sensing Images.

MOCEIR DATPRL-IR (Ours) GTInput SwinIR NAFNet PromptIR

Figure 9: Comparison of our DATPRL-IR with other SOTA methods on Medical Images.
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