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Abstract
Large Language Models (LLMs) have demon-001
strated remarkable capabilities across diverse002
natural language processing tasks. However,003
their extensive memory requirements stemming004
from KV cache growth, especially during long-005
text understanding and generation, pose signif-006
icant challenges for real-world deployment in007
resource-constrained environments. Quantiza-008
tion, as a promising approach that preserves009
historical information while reducing memory010
consumption, has garnered significant atten-011
tion and expectations. We present XQuant,012
a training-free and plug-and-play framework013
that pushes KV cache quantization to ultra-low014
equivalent bit-width. XQuant introduces two015
key improvements over existing quantization016
methods: a computationally negligible data-017
free calibration approach and cross-layer KV018
cache compression, enabling ultra-low equiv-019
alent bit-width. Extensive experiments on020
TruthfulQA and LongBench demonstrate that021
XQuant achieves lower equivalent bit-width (<022
1.4 bits) across various large language mod-023
els compared to KIVI-2bit and AsymKV-1.5bit024
baselines, while attaining superior performance025
metrics, establishing a better trade-off between026
model performance and compression ratio.027

1 Introduction028

The rapid advancement of Large Language Models029

(LLMs) has propelled significant progress in a wide030

array of natural language processing (NLP) appli-031

cations, including code generation, search systems,032

and many others (Ouyang et al., 2023; Sharma033

et al., 2024; Ma et al., 2024). The exceptional034

performance of LLMs is primarily driven by their035

immense parameter scales, which enable them to036

excel across diverse tasks. However, this remark-037

able success comes with substantial costs: the com-038

putational and memory demands associated with039

deploying LLMs have increased exponentially due040

to increasong models parameters and growing in-041

put and output, posing a formidable bottleneck for042

practical deployment. In particular, GPU memory 043

consumption has surged to levels that frequently 044

surpass the capacities of current hardware infras- 045

tructures, making large-scale deployment increas- 046

ingly challenging (Shi et al., 2024). 047

To mitigate this challenge, the Key-Value (KV) 048

cache mechanism has been widely adopted (Yao 049

et al., 2024; Yang et al., 2024d; Ainslie et al., 2023; 050

Kwon et al., 2023). The KV cache optimizes mem- 051

ory efficiency by storing and reusing previously 052

computed keys and values in the attention mech- 053

anism, thereby reducing redundant computations 054

and GPU memory usage. Despite its advantages, as 055

model sizes and the input/output sequence lengths 056

continue to grow, the storage overhead of the KV 057

cache itself becomes increasingly significant (Shi 058

et al., 2024). For instance, a 30-billion-parameter 059

language model with a batch size of 128 and a 060

sequence length of 1024 may require up to 180 061

GB of memory solely for storing the KV cache 062

(Zhang et al., 2023). Although the computational 063

and memory requirements are reduced compared 064

to not using it, such escalating demands still pose 065

substantial challenges for deploying LLMs with 066

constrained hardware resources. 067

To address this problem, prior works have ex- 068

plored various strategies from different perspec- 069

tives. Some studies (Sheng et al., 2023; Hooper 070

et al., 2024; Liu et al., 2024b; Tao et al., 2024) fo- 071

cus on quantizing the floating-point KV cache (and, 072

in some cases, model weights) to lower precision. 073

However, these approaches often experience per- 074

formance degradation under extreme compression 075

ratios, particularly around 2-bit precision. Alter- 076

natively, other methods (Xiao et al., 2023; Zhang 077

et al., 2023; Li et al., 2024; Cai et al., 2024) aim 078

to alleviate the storage burden by evicting unim- 079

portant tokens. These methods dynamically or stat- 080

ically identify and discard less critical tokens to 081

reduce memory usage. Nevertheless, these meth- 082

ods inherently introduce information loss, resulting 083
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in reduced memory retention and severe forgetting084

issues, which can undermine the model’s ability085

to maintain consistent performance on longer se-086

quences. Existing KV cache quantization meth-087

ods, due to inherent architectural constraints, fail to088

mitigate the severe performance degradation when089

operating under ultra-low-bit settings.090

To address these limitations, this paper focuses091

on training-free KV cache quantization scenarios092

under extreme compression ratios and introduces093

XQuant, a plug-and-play framework for ultra-094

low-bit KV cache quantization. XQuant delivers095

two key improvements over existing quantization096

methods: (1) Data-Free Calibration: Traditional097

quantization methods often face significant limi-098

tations when mapping values to low-bit precision.099

Specifically, they tend to use the two endpoint val-100

ues (e.g., 0 and 1 in 1-bit quantization) as represen-101

tative values, which can result in substantial quan-102

tization errors, particularly under low bit-width set-103

tings. To address this issue, XQuant introduces a104

parameterized calibration scheme that allows for105

more fine-grained mapping of values. By adjust-106

ing the representative values to better reflect the107

actual data distribution, this method significantly108

reduces quantization errors and minimizes perfor-109

mance loss without the need for additional data.110

(2) Cross-Layer KV Cache Compression: We111

observe enhanced KV cache similarity between112

adjacent layers after quantization - a previously113

overlooked phenomenon. This enables effective114

cross-layer compression, where the quantized KV115

cache of one layer is shared across subsequent lay-116

ers, significantly reducing computational and mem-117

ory costs. Meanwhile, a subset of layer-specific118

parameters is preserved to retain the unique char-119

acteristics of each layer, ensuring minimal loss of120

model performance.121

To evaluate the effectiveness of XQuant, we con-122

duct extensive experiments on a consumer-grade123

NVIDIA GeForce RTX 3090 GPU (24GB) across124

diverse datasets, including TruthfulQA (Lin et al.,125

2022) and subsets of LongBench (Bai et al., 2024).126

Experimental results demonstrate that XQuant127

achieves an equivalent bit-width of less than 1.4-128

bit across various LLMs, outperforming existing129

methods such as KIVI-2bit (Liu et al., 2024b)130

and AsymKV-1.5bit (Tao et al., 2024). Notably,131

XQuant achieves comparable performance to full-132

precision baselines while offering a significantly133

improved trade-off between model performance134

and compression ratio.135

2 Related Work 136

Two mainstream approaches for addressing KV 137

cache challenges are Quantization and Eviction 138

methods (Shi et al., 2024). 139

Quantization has emerged as a prominent tech- 140

nique for compressing large-scale models by map- 141

ping high-precision data to lower-precision formats 142

(e.g., 16-bit, 8-bit, or even 4-bit integers). This sig- 143

nificantly reduces memory footprints while main- 144

taining acceptable levels of model performance. 145

A substantial body of work focuses on quantizing 146

model weights. AWQ (Lin et al., 2024) optimizes 147

neural network weight quantization by dynamically 148

adapting the bit-width based on the weights’ sig- 149

nificance. By retaining higher precision for more 150

impactful weights and reducing precision for less 151

critical ones, AWQ minimizes performance loss 152

while achieving compression. 153

Another line of research concentrates on the 154

quantization of the KV cache. KVQuant, in- 155

troduced by Hooper et al. (2024), employs dis- 156

tinct quantization strategies for keys and val- 157

ues. It applies per-channel quantization to the 158

keys—particularly before Rotary Positional Em- 159

beddings (RoPE)—and per-token quantization to 160

the values, effectively managing outliers and min- 161

imizing RoPE-induced distortions. Similarly, 162

MiKV (Yang et al., 2024c) introduces a mixed- 163

precision KV-cache strategy that retains important 164

KV pairs in high precision. Concurrently, KIVI 165

(Liu et al., 2024b) develops a tuning-free 2-bit KV 166

cache quantization scheme, where the key cache 167

is quantized per-channel, and the value cache is 168

quantized per-token. Building on this, AsymKV 169

(Tao et al., 2024) further combines 1-bit and 2-bit 170

representations through an asymmetric and layer- 171

wise quantization configuration, achieving a better 172

trade-off between precision and compression ratio. 173

In contrast, some works simultaneously quantize 174

both the model weights and the attention cache. For 175

example, FlexGen (Sheng et al., 2023) introduces a 176

high-throughput inference framework that applies 177

group-wise 4-bit quantization to compress both the 178

model weights and KV cache. FlexGen divides ten- 179

sors into small groups, computes the minimum and 180

maximum values within each group, and performs 181

asymmetric quantization. The resulting tensors 182

are stored in 4-bit format and later dequantized 183

to FP16 during computation, achieving a reduc- 184

tion in memory usage and I/O costs with minimal 185

accuracy degradation. Despite the advancements 186
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of these methods, significant performance degra-187

dation remains a challenge when quantizing KV188

cache activations to extremely low-precision levels,189

particularly below 2-bit.190

Eviction methods aim to discard unnecessary191

tokens during inference to reduce memory usage.192

StreamingLLM (Xiao et al., 2023) identifies the193

phenomenon of attention sinks, where initial to-194

kens are retained to stabilize attention computa-195

tions. StreamingLLM combines these attention196

sinks with a sliding window of recent tokens to197

introduce a rolling KV cache, effectively balancing198

memory efficiency and model performance. Build-199

ing on this, SirLLM (Yao et al., 2024) uses token200

entropy to preserve critical tokens’ KV cache and201

incorporates a memory decay mechanism to en-202

hance LLMs’ long-term memory while maintain-203

ing short-term reasoning abilities.204

Other methods, such as H2O (Zhang et al., 2023)205

and SnapKV (Li et al., 2024), dynamically iden-206

tify and evict non-important tokens based on atten-207

tion scores. PyramidKV (Cai et al., 2024; Yang208

et al., 2024a) observes that attention scores are209

more sparse in higher layers and accordingly allo-210

cates different memory budgets across layers. How-211

ever, most existing KV eviction methods depend on212

attention scores to identify non-important tokens,213

which limits their compatibility with common opti-214

mizations like FlashAttention (Dao, 2023), reduc-215

ing their practical usability.216

Inter-layer redundancy. Beyond the above217

intra-layer redundancy in KV caches, some stud-218

ies have also explored the inter-layer redundancy.219

Some prior works (Wu and Tu, 2024; Sun et al.,220

2024; Brandon et al., 2024) investigate the poten-221

tial of caching only partial layers of the KV cache,222

but all of them cannot be applied without additional223

training. We further clarify the key differences and224

highlight our contributions in Appendix D.225

Compared to existing methods, we introduce226

XQuant with two key innovations: (1) A novel,227

simple yet effective data-free calibration method228

that achieves superior compression performance229

even under ultra-low-bit settings, eliminating the230

need for additional calibration data. (2) cross-layer231

KV cache compression that leverages previously232

overlooked quantization-enhanced layer similari-233

ties to achieve significant memory and computa-234

tional savings. While prior work has studied layer235

representation similarities, our approach uniquely236

exploits the quantization-enhanced similarities to237

enable effective ultra-low-bit compression.238

3 XQuant 239

In this section, we present XQuant, a novel quan- 240

tization framework for efficient KV cache com- 241

pression. As illustrated in Figure 1, our frame- 242

work introduces two key innovations: a data-free 243

calibration technique that asymmetrically adjusts 244

quantization parameters without additional calibra- 245

tion data, and a cross-layer KV cache compression 246

mechanism that leverages the similarity of quan- 247

tized caches between adjacent layers to effectively 248

reduce both computational and memory overhead. 249

3.1 Background 250

To formalize KV cache quantization, we consider 251

a group of floating-point keys or values X. The 252

quantization process transforms X into three 253

components: a B-bit quantized cache XQ, a 254

zero-point z, and a scaling factor s (Liu et al., 255

2024b): 256

257

Quantization Phase: 258

z = min(X), s =
max(X)−min(X)

(2B − 1)
(1) 259

260
XT = (X− z)/s,XQ = ⌈XT⌋ (2) 261

Dequantization Phase: 262

X̂ = XQ ∗ s+ z (3) 263

where X∗ is the dequantized counterpart and ⌈·⌋ 264

is the rounding function. XT, the transformed 265

matrix, is not explicitly cached but is introduced 266

as an intermediate variable to facilitate subsequent 267

mathematical derivations. 268

Building upon this framework, prior works in- 269

troduce various configurations to enhance perfor- 270

mance. For example, Liu et al. (2024b) focuses on 271

the element-wise distribution within the KV cache, 272

adopting per-channel quantization for the key cache 273

and per-token quantization for the value cache. 274

Similarly, Tao et al. (2024) introduces layer-wise 275

quantization configurations, employing asymmet- 276

ric bit-widths for the key and value caches across 277

different layers. While effective, these approaches 278

often suffer from significant performance degra- 279

dation under low-bit quantization settings, partic- 280

ularly around 2-bit precision. This limitation mo- 281

tivates the need for further advancements in KV 282

cache compression techniques. 283
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Figure 1: The illustration of XQuant workflow. XQuant partitions the KV cache into layer-wise pairs. For every
higher layer in a pair, XQuant only computes and stores the scaling factors and zero-points during quantization
phase, and then fetchs the quantized cache from the lower layer during dequantization phase.

3.2 Data-free Calibration284

Since existing quantization methods often experi-285

ence significant performance degradation at 2-bit286

precision, achieving ultra-low-bit compression first287

requires bridging this performance gap. In this sec-288

tion, we propose a data-free calibration method that289

effectively preserves model performance, enabling290

more aggressive compression ratios.291

To analyze extreme quantization scenarios, we292

focus on 1-bit quantization where each parameter is293

constrained to a binary state. Formally, the round-294

to-nearest operation ⌈·⌋ is defined as:295

⌈e⌋ =

{
0 if e ∈ [0, 0.5],

1 if e ∈ (0.5, 1].
(4)296

where e denotes an element of the transformed ma-297

trix. For any bit-width B, this rounding operation298

maps values to a discrete set within [0, 2B − 1],299

where each original value is assigned to its nearest300

representative in the quantized space. For 1-bit301

quantization, fixed representative values at end-302

points (0 and 1) yield substantial quantization error.303

We therefore introduce a flexible mapping function304

that adaptively determines the quantization levels,305

formulated as:306

f(e) =

{
η if e ∈ [0, 0.5],

1− η if e ∈ (0.5, 1].
(5)307

where η ∈ [0, 0.5] serves as a calibration parameter308

for determining quantization tendencies.309

We relax the constraint that quantized values310

must be integers and apply fake quantization as311

a preliminary experiment. Table 8 shows that us-312

ing this flexible mapping function improves model313

performance, validating our proposed insight.314

However, storing floating-point numbers as so- 315

called quantized caches is impractical. To address 316

the aforementioned problem, we establish an equiv- 317

alent implementation, with the mathematical proof 318

provided below. We formalize the final data-free 319

calibration approach as: 320

Consider a group of floating-point keys or values 321

X ∈ Rgs, where gs stands for the group size. Note 322

that X ∈ [min(X),max(X)]gs = [z, s ∗ (2B − 323

1) + z]gs, we can deduce: 324

XQ ∈ [0, 2B − 1]gs (6) 325

from Equation 1 and Equation 2. If we choose 326

η ∗ (2B − 1) and (1 − η) ∗ (2B − 1) generalized 327

from Equation 5 as two endpoints, it is equivalent 328

to calibrate the zero-point and scaling factor to ẑ 329

and ŝ, and then dequantize with them. Note that 330

the dequantized matrix 331

X̂ = XQ∗ŝ+ẑ ∈ [ŝ∗0+ẑ, ŝ∗(2B−1)+ẑ]gs (7) 332

and the corresponding interval given by two end- 333

points: 334

[z + ηs(2B − 1), z + s(2B − 1)(1− η)] (8) 335

By calculation we get the final operations for cali- 336

bration: 337

ẑ = z + ηs(2B − 1), ŝ = (1− 2η)s (9) 338

We propose the improved quantization scheme 339

with this data-free calibration as follows: 340

341

Quantization Phase with Calibration: 342

z = min(X), s =
max(X)−min(X)

(2B − 1)
(10) 343
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Figure 2: Layer-wise analysis of absolute differences
between adjacent layers in quantized KV Cache matri-
ces. Here, delta represents the absolute difference of
quantized values between consecutive layers.

Method Bit-width # Key Layers in 1-bit MFQA-Zh
Full Cache 16 / 48.26
KIVI (32/32) 2 0 42.27
AsymKV-24/32 1.875 8 37.10
AsymKV-16/32 1.75 16 21.36
AsymKV-8/32 1.625 24 13.16
AsymKV-0/32 1.5 32 7.66

Table 1: Evaluation on LongBench based on AsymKV
shows that the key cache is nearly impossible to quan-
tized under 1-bit.

344
XT = (X− z)/s,XQ = ⌈XT⌋ (11)345

346
ẑ = z + ηs(2B − 1), ŝ = (1− 2η)s (12)347

Dequantization Phase with Calibration:348

X̂ = XQ ∗ ŝ+ ẑ (13)349

3.3 Cross-Layer Compression350

3.3.1 Motivation351

Building upon Tao et al. (2024)’s investigation of352

ultra-low-bit KV cache asymmetric quantization,353

our reproduction experiments on LongBench (Bai354

et al., 2023) with Mistral (Jiang et al., 2023) demon-355

strate severe limitations of existing approaches, as356

shown in Table 1. We found that 1-bit asymmet-357

ric quantization of the key cache is practically in-358

feasible, and even restricting 1-bit quantization to359

only the top 8 layers (AsymKV-24/32) leads to sig-360

nificant performance degradation. These findings361

suggest that AsymKV primarily exploits the quan-362

tization potential of the value cache alone. This363

limitation motivates our development of a novel364

approach that simultaneously compresses both key365

and value caches, achieving an effective bit-width366

lower than previous methods. Given the impracti- 367

cality of individual key cache quantization, we ex- 368

plore cross-layer compression methods to achieve 369

equivalent ultra-low-bit quantization. 370

3.3.2 Analysis on Quantized KV Cache 371

To enable cross-layer compression, we first analyze 372

the characteristics of quantized KV caches by ex- 373

amining inter-layer similarities. We hypothesize 374

that significant redundancy between adjacent lay- 375

ers could create opportunities for more aggressive 376

compression. Using the KIVI-2 framework (Liu 377

et al., 2024b), we conduct preliminary experiments 378

on the Mistral-7B-Instruct-v0.2 model (Jiang et al., 379

2023) with random samples from LongBench (Bai 380

et al., 2023). 381

Under the 2-bit quantization scheme in KIVI-2, 382

quantized cache values are restricted to {0, 1, 2, 383

3}, naturally constraining element-wise absolute 384

differences to the same range. Our analysis, illus- 385

trated in Figure 2, reveals a striking pattern: over 386

80% of positions between adjacent layers exhibit 387

minimal differences (0 or 1), while extreme differ- 388

ences (3) occur in less than 5% of positions. This 389

pattern becomes even more pronounced in the 1-bit 390

scenario, where mapping {0,1} to 0 and {2,3} to 1 391

maintains identical values in over 80% of positions 392

between adjacent layers. These empirical findings 393

demonstrate substantial redundancy in quantized 394

KV caches between adjacent layers, suggesting 395

significant potential for further compression. 396

3.3.3 Compression Algorithm 397

Leveraging these insights into inter-layer similar- 398

ities, we propose a novel cross-layer compres- 399

sion method that decomposes KV caches into two 400

components: shared quantized caches and layer- 401

specific parameters. Specifically, adjacent layers 402

share a common set of quantized value caches 403

(XQ), while maintaining their individual scaling 404

factors and zero-points for dequantization. This 405

decomposition enables efficient compression by al- 406

lowing each layer to reuse the merged cache from 407

its group, while preserving the layer-specific char- 408

acteristic through its unique quantization parame- 409

ters, namely zero-points and scaling factors. 410

In the implementation, for a model with L lay- 411

ers, we organize the layers into groups of size G. 412

Within each group, KV caches are compressed us- 413

ing weighted averaging, where each layer l (0 ≤ 414

l ≤ L) is assigned a weight γl, subject to the con- 415

straint
∑

γl = 1 416
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Formally, for every layer l in a group G, the417

quantization workflow with cross-layer compres-418

sion and calibration is utilized as follows:419

Quantization Phase with Cross-Layer Com-420

pression and Calibration:421

∀l ∈ G,422
423

zl = min(Xl), sl =
max(Xl)−min(Xl)

(2B − 1)
424

425
ẑl = zl + ηsl(2

B − 1), ŝl = (1− 2η)sl426

XQ =
∑
l∈G

γl

⌈
Xl − zl

sl

⌋
427

Dequantization Phase with Cross-Layer Com-428

pression and Calibration:429

X̂l = XQ ∗ ŝl + ẑl430

We present the pseudo code for the whole work-431

flow as shown in Appendix F.432

3.3.4 Speedup through Cross-layer433

Compression434

While our previous discussion introduced weighted435

averaging with the weight γ for compressing XQ436

within a group, we can further optimize the com-437

putation by setting γk = 1 for a chosen dominant438

layer k, which consequently forces all other γ val-439

ues within the group to zero. In this accelerated440

configuration, each subordinate layer only needs441

to compute and store its own scaling factors and442

zero-points, significantly reducing computational443

overhead. Specifically,444

XQ =

⌈
Xk − zk

sk

⌋
445

As illustrated in Figure 1, this optimization elim-446

inates the computations shown in the dashed line,447

effectively streamlining the process. Experimen-448

tal results show that selecting the first layer within449

the group as the dominant layer yields optimal per-450

formance, as demonstrated in Table 5 and Table451

6.452

4 Evaluation453

4.1 Experimental Setup454

Models. We evaluate our XQuant on Llama-2-455

7b / Llama-2-7b-chat (Touvron et al., 2023) and456

Mistral-7B-v0.3 / Mistral-7B-instruct-v0.2 (Jiang457

et al., 2023).458

Model Method Bit-width TruthfulQA

Mistral-7b

Full Cache 16 32.09
KIVI 2 32.17
AsymKV 1.5 32.80
XQuant 1.38 34.93

Llama2-7b

Full Cache 16 30.77
KIVI 2 33.92
AsymKV 1.5 33.84
XQuant 1.4 34.22

Table 2: Evaluation on TruthfulQA task with normal
context length.

Tasks. For the normal context length task, we 459

choose TruthfulQA (BLEU score) from LM-Eval 460

(Gao et al., 2021). We also select several sub- 461

sets from LongBench (Bai et al., 2023) for the 462

long context length tasks, including HotpotQA (F1 463

score), 2WikiMultihopQA (F1 score), MuSiQue 464

(F1 score), TREC (classification accuracy), Trivi- 465

aQA (F1 score), SAMSum (Rouge-L) and Passage- 466

Count (Exact match accuracy). MultiFieldQA-Zh 467

(F1 score) is selected for some ablation studies 468

as well. In XQuant, we quantize the lower kq, 469

vq layers of key and value cache into 2-bit, while 470

quantizing others into 1-bit. We apply cross-layer 471

compression from the kq th, vq th layer of key and 472

value cache. All the configurations are summarized 473

in Table 9. 474

Baselines and Implementations. We compare 475

our framework with previous works, including orig- 476

inal 16-bit floating implementation, KIVI-2 (Liu 477

et al., 2024b) and AsymKV (Tao et al., 2024). 478

All relevant configurations adhere as in KIVI, i.e., 479

quantizing key cache per-channel and value cache 480

per-token, and with a group size of 32 and a resid- 481

ual length of 128. We reproduce AsymKV based 482

on the official implementation of KIVI, with a typ- 483

ical configuration (AsymKV-32/0) selected from 484

the original paper, i.d., quantizing key cache into 485

2-bit and value cache into 1-bit, which is equiva- 486

lent to 1.5-bit. We also choose a token eviction 487

method (Yang et al., 2024b) for comparison on 488

LongBench tasks as well, with a 40% KV cache 489

setting. We set the maximum sequence length to 490

30000 for the Mistral model to conduct our experi- 491

ments with a single NVIDIA GeForce RTX 3090 492

GPU (24GB), and 8192 for the Llama model as 493

default. We do not consider SLERP (Shoemake, 494

1985; Liu et al., 2024a) because of the incompati- 495

bility between rescale-recover operations and quan- 496
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Model Method Bit-width HQA 2Wiki MSQ TREC TQA SAMS PC Avg

Mistral-7b-Ins

Full Cache 16 43.02 27.10 18.78 71.00 86.23 42.75 2.75 41.66
PyramidInfer / 35.08 23.92 16.90 62.00 85.06 41.45 1.04 32.55
KIVI 2 41.96 26.08 18.13 71.00 86.00 43.70 2.78 41.38
AsymKV 1.5 37.17 22.77 15.76 70.50 86.25 43.44 3.16 39.86
XQuant 1.38 42.90 26.65 17.44 71.50 84.50 45.18 5.71 41.98

Llama2-7b-chat

Full Cache 16 30.09 26.48 9.98 63.00 84.19 41.22 4.50 37.07
PyramidInfer / 29.14 24.53 7.49 54.00 81.79 40.71 4.00 34.52
KIVI 2 29.10 25.12 9.86 63.00 84.98 40.18 4.00 36.61
AsymKV 1.5 27.75 24.82 8.45 62.00 84.21 41.22 2.75 35.89
XQuant 1.4 29.21 25.56 9.69 62.50 84.57 40.01 4.00 36.51

Table 3: Evaluation of different KV cache compression methods on LongBench tasks.

tized cache.497

4.2 Performance Comparison498

LM-Eval Results. Table 2 presents the evalua-499

tion of different quantization methods on the Truth-500

fulQA task with a standard context length. XQuant501

not only achieves competitive performance but502

surpasses the full cache baseline, with a Truth-503

fulQA score of 34.93 on Mistral-7b and 34.22 on504

Llama2-7b, outperforming all other methods at sig-505

nificantly lower bit-widths. These results highlight506

that XQuant provides superior performance in con-507

ventional context length settings.508

LongBench Results. We evaluate XQuant on the509

LongBench benchmark using two widely adopted510

models: Mistral-7b-Instruct-v0.2 and Llama-2-7b-511

chat. As shown in Table 3, XQuant achieves sig-512

nificant improvements over other KV cache com-513

pression methods, particularly under ultra-low-bit514

settings.515

In all datasets of LongBench, XQuant achieves516

performance comparable to the full cache base-517

line while reducing bit-width by 31% compared518

to KIVI-2bit. Moreover, XQuant outperforms519

AsymKV on nearly all datasets while simulta-520

neously reducing bit-width by 8% relative to521

AsymKV. Additionally, compared to PyramidIn-522

fer, which sacrifices precision to reduce storage523

overhead, XQuant demonstrates clear advantages524

in maintaining high accuracy across tasks while525

achieving lower bit-width.526

4.3 Ablation and Analysis527

In this section, we conduct ablation studies in some528

randomly selected lightweight LongBench subsets.529

Calibration Parameter. Table 4 presents an abla-530

tion study on the impact of data-free calibration in531

XQuant on the MultiFieldQA-Zh benchmark. The532

Method Bit-width η1 η2 MFQA-Zh
Full Cache 16 / / 48.26
KIVI 2 / 0 42.27
AsymKV 1.5 0 0 36.30

XQuant 1.375

0 0 37.20
0 0.05 40.32

0.2 0 41.98
0.2 0.05 44.20

Table 4: Ablation study on the effect of data-free cali-
bration in XQuant on the MultiFieldQA-Zh benchmark
from LongBench.

Method Bit-width γ0 MuSiQue
Full Cache 16 / 18.78
KIVI 2 / 18.13
Flooring 1.63 / 16.79
Ceiling 1.63 / 16.36

Weighted Average

1.63 [0,1/6) 12.20
1.63 (1/6,1/4) 14.05
1.63 (1/4,1/2) 16.84
1.63 (1/2,3/4) 17.32
1.63 (3/4,5/6) 17.60
1.63 (5/6,1] 17.32

Table 5: The comparison between different cross-layer
compression method with group size G = 2, where
γ0, γ1 stands for the coefficient in the weighted average
(γ1 + γ0 = 1).

results indicate that applying calibration (η ̸= 0) 533

significantly improves XQuant’s performance, re- 534

ducing the performance gap with the full cache 535

baseline. 536

Cross-Layer Compression Method. Rounding 537

operation, such as flooring or ceiling, is an critical 538

part when averaging quantized caches. We further 539

explore the weighted average with a group size 540

G = 2 and coefficients γ0, γ1 = 1− γ0, where γ0 541

falls into six intervals listed in Figure 2. Notably, 542

when γ0 ∈ [0, 1/6) or γ0 ∈ (5/6, 1], the opera- 543

tion is optimized to directly sharing the quantized 544

cache. 545
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Method Bit-width G k MSQ MFQA-Zh
Full Cache 16 / / 18.78 48.26
KIVI 2 / / 18.13 42.27

0 17.32 37.442
1 12.20 20.48
0 14.92 17.53
1 16.97 37.373
2 13.21 20.80
0 14.82 23.53
1 12.44 18.68
2 16.12 35.48

XQuant 1.63

4

3 15.39 20.32

Table 6: The comparison of different group sizes G and
selection indices k within each group, where XQuant
is employed without the calibration step for a clearer
analysis.

We evaluate KIVI-2 on Mistral-7B-Instruct-v0.2546

without the proposed calibration methods starting547

from the 8-th layer, using a group size of 2. As sum-548

marized in Table 5, the accelerated compression549

methods (γ0 ∈ [0, 1/6)∪ (5/6, 1]) avoid redundant550

unpacking and packing operations seen in the work-551

flow of Liu et al., 2024b, which rounds quantized552

integers into floating-point numbers. These meth-553

ods strike a better balance between efficiency and554

memory usage.555

As shown in Table 5, the accelerated compres-556

sion operation demonstrates its effectiveness in557

maintaining sufficient information for model per-558

formance, particularly when the coefficient γ0559

falls within the range (5/6, 1]. This configura-560

tion effectively allows odd-numbered layers to561

reuse the quantized cache from the preceding even-562

numbered layers without requiring additional quan-563

tization or storage overhead for the odd layers. We564

adopt this accelerated compression strategy across565

all experiments due to its favorable balance be-566

tween computational efficiency and information567

preservation.568

Group Size. After optimizing the cross-layer569

compression method, another factor is the group570

size. To investigate the effects of layer grouping,571

we partition the 32 layers into groups based on572

different grouping strategies. The parameter k indi-573

cates that we store and share the quantized cache574

only in the k-th layer of each group. We set all575

configurations under the same compression ratio,576

namely keep all layers in key cache and 20 layers577

in value cache based on KIVI-2bit framework, us-578

ing Mistral-7b-instruct-v0.2. As shown in Table 6,579

the model achieves the best performance with the580

configuration of G = 2 and k = 0.581

Method Bit-width TREC SAMS
Full Cache 16 71 42.75
KIVI 2 71 43.7
AsymKV 1.5 70.5 43.44
AsymKV 1.375 69.5 42.76
XQuant 1.375 71.5 45.18
AsymKV 1.28 58.5 37.41
XQuant 1.28 68.5 39.84
AsymKV 1.15625 41 23.47
XQuant 1.15625 68.5 39.47

Table 7: The comparison of different configurations
under extremely-low compression ratio.

Performance-Compression Trade-offs. Table 582

7 evaluates the trade-offs between bit-width re- 583

duction and performance degradation across dif- 584

ferent quantization methods. As shown in Table 585

7, XQuant consistently outperforms other methods 586

at the same bit-width, achieving higher scores on 587

both TREC and SAMS benchmarks. Notably, even 588

at an extremely low bit-width of 1.15625, XQuant 589

preserves a significant portion of the model’s per- 590

formance, maintaining a TREC score of 68.5 com- 591

pared to the full-cache baseline of 71. These re- 592

sults demonstrate that XQuant effectively balances 593

performance retention and compression, achieving 594

state-of-the-art trade-offs in ultra-low-bit KV cache 595

quantization. 596

5 Conclusion 597

To alleviate the growing memory overhead in LLM 598

inference, we propose XQuant, a plug-and-play 599

framework that quantizes KV cache at an extreme 600

compression ratio. Based on our observations on 601

classical training-free quantization and the distribu- 602

tions of quantized integers, we propose a data-free 603

calibration method and a compute-efficient cross- 604

layer compression method. Extensive experiments 605

show that XQuant achieves state-of-the-art trade- 606

offs between performance degradation and com- 607

pression ratio, without sacrificing computational 608

efficiency. Integrating these two novel methods, 609

our XQuant achieves comparable performance with 610

full-precision baseline under 1.4-bit quantization, 611

and still maintains competitive performance for 612

some tasks under an extremely 1.16-bit quantiza- 613

tion. 614
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Limitation615

While XQuant enables efficient ultra-low-bit KV616

cache quantization, it faces challenges in parame-617

ter selection, which remains complex and highly618

task-dependent. Additionally, due to time and re-619

source constraints, our evaluation is limited to a few620

representative models and datasets, leaving the gen-621

eralizability of XQuant to broader architectures and622

tasks an open question. Future work should focus623

on automating parameter selection and expanding624

experimental coverage to ensure robustness across625

diverse scenarios.626
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A Compression Ratio Analysis793

Formally, let b, h, s, d be the batch size, the num-794

ber of heads in GQA (Ainslie et al., 2023), the795

sequence length and the dimension per head. The796

original l layers of KV cache occupies 2l ∗ bhsd ∗797

16 bit, which equals to 2l ∗ n ∗ 16 bit if we set798

n = bhsd for convenience.799

Consider a typical KV cache quantization800

scheme ((Liu et al., 2024b)). If we quantize all801

l layers of key cache and value cache into b-bit, the802

quantized KV cache memory usage is 2l ∗n ∗ b bit.803

(Tao et al., 2024) uses a asymmetrical configura-804

tions for key and value caches across different lay-805

ers. In their paper, Asym-lk/lv means quantizing806

the initial lk layers of key cache and lv of value807

cache into 2-bit, and quantizating 1-bit for oth-808

ers. So the quantized KV cache memory usage is809

(2 ∗ lk + (32 − lk) + 2 ∗ lv + (32 − lv)) ∗ n bit.810

For example, Asym-1.5bit stands for Asym-32/0 in811

our paper, which can be calculated to 3l ∗n bit and812

can be equivalently considered as a 1.5-bit symmet-813

rical quantization for better understanding of the814

compression ratio.815

The related parameters in XQuant are kq,816

vq, km, and vm. The equivalent bit-width817

B can be expressed as follows: B =818

((32 − max(kq, km))/2 + (max(kq, km) −819

min(kq, km))+(max(kq, km)+min(kq, km))∗820

2 + (32 − max(vq, vm))/2 + (max(vq, vm) +821

min(vq, vm))+(max(vq, vm)+min(vq, vm))∗822

2)/64.823

In the classical configuration in our paper, kq =824

30, vq = 2, km = 32, and vm = 16, in key825

cache we apply 2-bit quantization to the layers826

[0, kq) and 1-bit quantization to the layers [kq, 32),827

and cross-layer compression to the layers [km, 32).828

The value cache is processed in the same manner.829

Therefore, the equivalent bit-widths of the key and830

value caches are computed as follows:831

Bk =
(32− 30) + 30 ∗ 2

32
= 1.9375832

Bv =
(32− 16)/2 + (16− 2) + 2 ∗ 2

32
= 0.8125833

The average bit-width is therefore 1.375, which834

appears as 1.38 in most parts of this paper. More835

parameter sets used in our experiments are listed in836

Appendix E.837
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Figure 3: Comparison of Execution Time.

B Efficiency analysis 838

Using Mistral-7B as an example, we theoretically 839

analyze the computational cost of our two key im- 840

provements. During the calibration step, generat- 841

ing each token incurs only 64 additional floating- 842

point multiplications and 32 additions (Equation 843

12), which are negligible in practice. Moreover, as 844

described in Section 3.3.4, the cross-layer com- 845

pression step optimizes efficiency by skipping cer- 846

tain parts of the quantization process (Equation 2). 847

To evaluate inference efficiency, we adopt the 848

same experimental setup as implemented in KIVI’s 849

repository, using a batch size of 16, a prompt length 850

of 1024, and an output length of 128. As shown in 851

Figure 3, XQuant, by leveraging its unique speedup 852

mechanism, demonstrates competitive inference 853

efficiency. 854

C Preliminary Study on Flexible 855

Mapping 856

To provide empirical evidence supporting the effec- 857

tiveness of the flexible mapping in the proposed cal- 858

ibration method, we employ its generalized form 859

and conduct a preliminary study on the default 860

KIVI-2bit and AsymKV-32/0 configurations. We 861

extend this approach to a generalized B-bit quan- 862
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Method Bit-width η1 η2 MFQA-Zh
Full Cache 16 / / 48.26
KIVI 2 / 0 42.27
KIVI 2 / 0.05 44.34
AsymKV 1.5 0 0 36.30
AsymKV 1.5 0 0.05 41.28
AsymKV 1.5 0.2 0 42.78
AsymKV 1.5 0.2 0.05 43.81

Table 8: The comparison using different quantization
methods with and without our calibration method in
MultiFieldQA-Zh tasks from LongBench.

tization mechanism, where ηB serves as the cor-863

responding parameter. Notably, when ηB = 0,864

the B-bit quantization operates without the flexible865

mapping.866

The results in Table 8 demonstrate that incor-867

porating the flexible mapping function enhances868

model performance across different quantization869

settings.870

D Comparison with Other Cross-Layer871

Compression Methods872

Several prior works have explored inter-layer re-873

dundancy from different perspectives. To elimi-874

nate potential confusion, we clarify several key875

distinctions and highlight innovations as follows:876

(a) Most existing methods compute KV caches at877

a subset of layers. However, these approaches re-878

quire additional training steps and, in some cases,879

even full retraining, significantly limiting scala-880

bility. In contrast, XQuant is designed as a plug-881

and-play solution that leverages deeper insights882

to enable effective redundancy reduction without883

any additional training. (b) XQuant is the only884

method that explicitly considers inter-layer redun-885

dancy through the lens of quantization. After quan-886

tization, the KV cache is decomposed into three887

components: the quantized cache, zero-points, and888

scaling factors. We demonstrate that the quantized889

cache, consisting solely of integers, exhibits sub-890

stantial inter-layer similarity. Meanwhile, the zero-891

points and scaling factors, which require minimal892

storage, are retained individually to preserve per-893

layer characteristics without being compressed. (c)894

MiniCache (Liu et al., 2024a) is another training-895

free method that primarily introduces a retention-896

recovery mechanism for cache magnitudes and un-897

mergable tokens. However, such operations are not898

directly compatible in mainstream open-source KV899

quantization frameworks. Furthermore, its use of900

the SLERP function imposes several constraints, 901

making it inapplicable to quantized caches, which 902

fundamentally differs from XQuant. 903

E Configurations 904

The Configurations of XQuant in our main experi- 905

ments are summarized in Table 9 906

F XQuant Pseudo Code 907

The pseudo code for the whole workflow is pro- 908

vided in Algorithm 1 and 2. 909
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Model Dataset kq vq km vm eta1 eta2
Mistral-7b-v0.3 TruthfulQA 30 2 32 16 0 0

Mistral-7b-instruct-v0.2

HQA 30 2 32 16 1/6 0.045
2Wiki 32 0 32 16 0 0.09
MSQ 32 0 32 16 1/6 0
TREC 30 2 32 16 1/6 0
TQA 30 2 32 16 1/6 0.09
SAMS 30 2 32 16 0 0
PC 32 0 32 16 0 0.045

Llama2-7b TruthfulQA 28 0 32 28 1/3 0

Llama2-7b-chat

HQA 28 0 32 28 1/6 0.045
2Wiki 28 0 32 28 1/3 0.045
MSQ 28 0 32 28 1/3 0
TREC 32 0 32 20 1/6 0
TQA 32 0 32 20 1/6 0
SAMS 32 0 32 20 0 0
PC 32 0 32 20 1/3 0.045

Table 9: The configurations of our main experiments.
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Algorithm 1: XQuant Procedure
Input :kq, vq, km, vm, η[2]
Output :Optimized Quantized Cache

1 for l← 0 to 31 do
2 if l < vm or l mod 2 == 0 then
3 KeyCache[l]←

Quantize
(
X l

k, 2 if l < kq else 1
)

4 else
5 KeyCache[l]←

PseudoQuantize
(
X l

k, 2 if l <
kq else 1

)
6 if l < vq or l mod 2 == 0 then
7 ValueCache[l]←

Quantize
(
X l

v, 2 if l < vq else 1
)

8 else
9 ValueCache[l]←

PseudoQuantize
(
X l

v, 2 if l <
vq else 1

)
10 for l← 0 to 31 do
11 if l < km or l mod 2 == 0 then
12 DequantizedKey← Dequantize

(
13 KeyCache[l][0],
14 KeyCache[l][1],
15 KeyCache[l][2]

)
16 else
17 DequantizedKey← Dequantize

(
18 KeyCache[l − 1][0],
19 KeyCache[l − 1][1],
20 KeyCache[l][2]

)
21 if l < vm or l mod 2 == 0 then
22 DequantizedValue← Dequantize

(
23 ValueCache[l][0],
24 ValueCache[l][1],
25 ValueCache[l][2]

)
26 else
27 DequantizedValue← Dequantize

(
28 ValueCache[l − 1][0],
29 ValueCache[l − 1][1],
30 ValueCache[l][2]

)

Algorithm 2: Supporting Functions

1 Function PseudoQuantize(X , n_bits):
2 zero_point← min(X) // Find the

minimum value of X;
3 scaling_factor ← max(X)−min(X)

2n_bits−1

// Calculate scaling factor;
4 return
5 Calibrate(zero_point,

scaling_factor, n_bits),
6 None;

7 Function Quantize(X , n_bits):
8 zero_point← min(X);
9 scaling_factor ← max(X)−min(X)

2n_bits−1
;

10 quantized_cache←
round

(
X−zero_point
scaling_factor

)
// Round to

nearest quantized value;
11 return
12 Calibrate(zero_point,

scaling_factor, n_bits),
13 quantized_cache;

14 Function Dequantize(zero_point,
scaling_factor, quantized_cache):

15 return quantized_cache ·
scaling_factor + zero_point
// Reconstruct original value;

16 Function Calibrate(zero_point,
scaling_factor, n_bits):

17 zero_point_cali← zero_point+
scaling_factor · η[n_bits]
// Adjust zero point based on η;

18 scaling_factor_cali←
scaling_factor ·

(
1− 2 · η[n_bits]

)
// Adjust scaling factor based
on η;

19 return
20 zero_point_cali, scaling_factor_cali

// Return calibrated values;
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