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Abstract

There have been growing concerns regarding the fabrication of contents through
generative models. This paper investigates the feasibility of decentralized attribu-
tion of such models. Given a group of models derived from the same dataset and
published by different users, attributability is achieved when a public verification
service associated with each model (a linear classifier) returns positive only for
outputs of that model. Attribution allows tracing of machine-generated contents
back to its source model, thus facilitating IP-protection and content regulation.
Decentralized attribution prevents forgery of source models by only allowing users
to have access to their own classifiers, which are parameterized by keys distributed
by a registry. Our major contribution is the development of design rules for the
keys, which are derived from first-order sufficient conditions for decentralized
attribution. Through validation on MNIST, CelebA and Cityscapes, we show that
keys need to be (1) orthogonal or opposite to each other and (2) belonging to a
subspace dependent on the data distribution and the architecture of the generative
model. We also empirically examine the trade-off between generation quality and
robust attributability against adversarial post-processes of model outputs.

1 Introduction
Recent advances in generative models [1] have enabled the creation of synthetic contents that are
indistinguishable even by naked eyes [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Such successes raised serious
concerns [13, 14] regarding adversarial applications of generative models, e.g., for the fabrication of
user profiles [15], articles [16], images [17], audios [18], and videos [19, 20, 21]. Necessary measures
have been called for the filtering, analysis, tracking, and prevention of malicious applications of
generative models before they create catastrophic sociotechnical damages [14].

Existing studies primarily focused on the detection of machine-generated contents. Marra et al. [22]
showed empirical evidence that generative adversarial networks (GANs) may come with data-
specific fingerprints in the form of averaged residual over the generated distribution, yet suggested
that generative models trained on similar datasets may not be uniquely distinguishable through
fingerprints. Yu et al. [23] showed on the other hand that it is empirically feasible to attribute a finite
and fixed set of GAN models derived from the same dataset, i.e., correctly classifying model outputs
by their associated GANs. While encouraging, their study did not prove that attribution can be
achieved when the model set continues to grow (e.g., when GAN models are distributed to end users
in the form of mobile apps). In fact, Wang et al. [24] showed that detectors trained on one generative
model are transferable to other models trained on the same dataset, indicating that individually trained
detectors may perform incorrect attribution, e.g., by attributing images from one model belonging
to user A to another model belonging to user B. It should be highlighted that most of the existing
detection mechanisms are centralized, i.e., the detection relies on a registry that collects all models
and/or model outputs and empirically look for collection-wise features that facilitate detection. This
fundamentally limits the scalability of detection tools in real-world scenarios where an ever growing
number of models are being developed even for the same dataset.

Problem formulation We are thus motivated to investigate the feasibility of a decentralized ap-
proach to ensuring the correct attribution of generative models. Specifically, we assume that for a
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(a) protocol (b) orthogonal keys (c) acute keys

Figure 1: (a) Protocol of decentralized attribution: Keys are distributed by the registry and used to
produce key-dependent generators for individual users. (b) Orthogonal keys (φ1 and φ2) achieve
distinguishability and attributability. (c) Acute keys achieve distinguishability but not attributability.

given dataset D, the registry only distributes keys, Φ := {φ1, φ2, ...}, to users of generative models
without collecting information from the users’ models. Each key is held privately by a user, whose
key-dependent model is denoted by Gφ(·; θ) : Rdz → Rdx where z and x are the latent and output
variables, respectively, and dz and dx the corresponding dimensionalities. θ are the model parameters.
When necessary, we will suppress θ and φ to reduce notational burden. The distribution of each key
is accompanied by that of a public verification service, which tells whether a query belongs to Gφ
(labeled as 1) or not (labeled as −1). We call the underlying binary classifier a verifier and denote it
by fφ : Rdx → {−1, 1}. In this paper we focus on linear classifiers: fφ(x) = sign(φTx). Example:
The registry (a company) developes a new GAN model for photo post-processing. Individuals down-
load the app that consists of a GAN model and a key. The installation modifies the GAN according to
the keys so that the resulting model can be verified. The keys are then deleted from the users’ end.
All outputs from the user-end models can now be traced back to the users (Fig. 1).

The following quantities are central to our investigation: The distinguishability of Gφ is defined as

D(Gφ) := Ex∼PGφ ,x′∼PD

[
1

2
1(fφ(x) = 1) +

1

2
1(fφ(x′) = −1)

]
, (1)

where PD is the authentic data distribution, and PGφ the model distribution induced by Gφ. The
attributability of a collection of generative models G := {G1, ..., GN} is defined as

A(G) :=

N∑
i=1

1

2N

Ex∼PGφi [1(fφi(x) = 1)] +
1

N − 1

∑
j∈{1,...,N}\i

Ex′∼PGφj
[1(fφi(x

′) = −1)]

 .

(2)
Distinguishability of G (attributability of G) is achieved when D(G) = 1 (A(G) = 1). Lastly, We
denote by G(·; θ0) (or shortened as G0) the root model sent to all users along the key, and assume
PG0 = PD. We measure the (lack of) generation quality of Gφ through both the FID score [25] and
the l2 norm of the mean output perturbation

∆x(φ) = Ez∼Pz [Gφ(z; θ)−G(z; θ0)], (3)

where Pz is the latent distribution.

This paper answers the following question: What are the rules for designing keys, so that the resultant
generative models can achieve distinguishability individually and attributability collectively?

Contributions We claim the following contributions:

1. We develop first-order sufficient conditions for distinguishability and attributability, to
connect these metrics with the geometry of the data distribution, the sensitivity of the
generative model, the angles between keys, and the generation quality.

2. The sufficient conditions yield simple design rules for the keys, which should be (1) data
compliant, i.e., fφ(x) = −1 for x ∼ PD, (2) orthogonal or opposite to each other, and (3)
within a model- and data-dependent subspace to maintain generation quality.
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3. We empirically validate the design rules and study the capacity of keys using DCGAN [26],
PGAN [5], and CycleGAN [3] on MNIST [27], CelebA [28], and the Cityscape [29] datasets.

4. We empirically test tradeoffs between generation quality and robust attributability under post-
processes including image blurring, cropping, noising, JPEG conversion, and a combination
of all, and show that robust attributability can be achieved, with degraded yet acceptable
generation quality.

Notations Throughout the paper, we denote by a(i) the ith element of vector a, and A(i,j) the
(i, j)th element of matrix A. ||a||2H = aTHa for vector a and matrix H . ∇xy|x0

is the gradient of y
with respect to x, evaluated at x = x0. We use supp(P ) to denote the support of distribution P .

2 Key Design for Distinguishability, Attributability, and Generation Quality
2.1 A toy case

The connections among distinguishability, attributability, and generation quality are illustrated
through a toy case with the following settings: (1) One-hot orthogonal keys: Let φi ∈ Φ be one-hot
and φTφ′ = 0 for all φ 6= φ′. (2) Data compliance: Let x ∼ PD have negative elements so that
fφ(x) = −1 for all x, i.e., the authentic data is correctly attributed by all verifiers as not belonging
to their associated generators. (3) Distinguishability through output perturbation: A key-dependent
generative model Gφ achieves distinguishable output distribution PGφ by adding a fixed and bounded
perturbation δ to the output of the root model G0:

min
||δ||≤ε

Ex∼PD

[
max{1− (x+ δ)Tφ, 0}

]
, (4)

where ε > 0. The solution to Eq. (4) is δ∗(φ) = εsign(φ) = εφ, which yields ||∆x|| = ||δ∗|| = ε.
With these settings, we have the following proposition (proof in Appendix A):
Proposition 1. (Toy case) If ||∆x|| > maxx∼PD{||x||∞}, D(Gφ) = 1 ∀ φ ∈ Φ and A(G) = 1.

While simplistic, Proposition 1 reveals that (1) the lower bound on the degradation of generation
quality to suffice distinguishability is dependent on the data geometry, and (2) orthogonality of the
keys ensures attributability. These properties are preserved for a more realistic case discussed below.

2.2 A more realistic case

A few modifications are made to the toy case: (1) Normalized keys: We consider data-compliant keys
φ ∈ Rdx in a convex cone, and constrain ||φ|| = 1 for identifiability. (2) Distinguishability through
model parameter perturbation: The output perturbation in the toy case can be reverse engineered
and removed when generative models are white-box to end users. Therefore, we propose to perturb
model parameters instead through the following problem:

min
||θ−θ0||≤ε

Ez∼Pz
[
max{1− φTGφ(z; θ), 0}

]
. (5)

Distinguishability We start by a first-order analysis, where we assume that for a small ε, Eq. (5)
is solved by a gradient descent step: ∆θ = γEx∼PG0

[
∇θxT |θ0

]
φ with γ > 0, and a linear

approximation can capture the perturbation from x0 = G(z; θ0) to x = G(z; θ) for latent z: x =
x0 +∇θx0|θ0∆θ. Here we used the data-compliance condition: 1− φTx > 0 for x ∼ PG0

for the
approximation of ∆θ. To reduce notational burden, we denote by J(x) := ∇θxT |θ0 the Jacobian
of G0 with respect to its parameters, and let M = Ex∼PG0

[J(x)]Ex∼PG0
[J(x)]T ∈ Rdx×dx . The

following conjectures about J(x) and M are empirically tested (Appendices C and D):
Conjecture 1. Let the (i, j)th element of Σ(x) = J(x)Ex∼PG0

[J(x)]T −M be Σ(i,j) with variance
σ2
ij . Then Σ(i,j) is approximately drawn independently from N (0, σ2

ij).

Conjecture 2. Denote by Λ = {λ1, ..., λdx} the eigenvalues of M . For existing deep generative
models, there exists a large subset of similarly small eigenvalues.

Remarks. {σ2
ij} reflects the difficulty of controlling generative models: Let Ji(x)T be the ith row

of J(x) and J̄i = Ex∼PG0
[Ji(x)]. Ji(x) represents the sensitivity of the ith element of x ∼ PG0
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(a) (b)
Figure 2: (a) Eigenvectors for the two largest and two smallest eigenvalues of M for DCGANs
on MNIST (top) and CelebA (bottom) (b) Left to right: Samples from G0 and subtraction of
G0 −Geigenvectors

with respect to θ0. Let ∆Ji = Ji − J̄i, then Hi = Ex∼PG0
[∆Ji∆J

T
i ] is the variance-covariance

matrix of Ji(x). Let ∆i(x) = JTi (x)∆θ be the perturbation along the ith element of x due to ∆θ,
and ∆̄i = J̄Ti ∆θ the expected perturbation. Lastly, let V ar(∆i) = ||∆θ||2Hi be the variance of the
perturbation. For ∆θ with unit norm, we can show that V ar(∆i) = σ2

ij/||J̄j ||2 when ∆θ is chosen
to maximize ∆̄j (∆θ = J̄j/||J̄j ||). Therefore, σ2

ij reflects the difficulty of controlling supp(PGφ)

through ∆θ. {σ2
ij} concentrates at zero for DCGANs on MNIST and CelebA (Appendix C).

The first-order sufficient conditions for model distinguishability is as follows (proof in Appendix E):

Theorem 1. (Realistic case) Let dmax(φ) = maxx∼PD |φTx|, σ2(φ) =
∑
i,j σ

2
ijφ

2
(i)φ

2
(j), and δd be

a positive number greater than exp

(
− 1

2

(
φTMφ
σ(φ)

)2
)

for a data-compliant key φ ∈ Φ. If

||∆x(φ)|| ≥ dmax(φ)
√
φTM2φ

φTMφ− σ(φ)

√
log
(

1
δ2d

) , (6)

then D(Gφ) ≥ 1− δd/2.

Remarks. Theorem 1 reveals the connection between distinguishability and generation quality:
In addition to the data geometry (dmax) as in the toy case, the lower bound of the generation
quality also depends on model-related properties (M and σ). It should be noted that the lower
bound is over approximated when φTMφ is small: Specifically, Appendix E shows empirically that
distinguishability can be achieved even when φTMφ is small. We hypothesize that this is due to the
nonlinear change of σ(φ) along the gradient descent process.

Generation quality Note that the mean perturbation following the first-order analysis is ∆x =
Ex0∼PG0

[x− x0] = Ex∼PG0
[γJ(x)Ex∼PG0

[J(x)]φ] = γMφ. We verify through experiments that
for φ that are eigenvectors of M , ∆x ∝ φ (Fig. 2b). These together with Theorem 1 lead to the
following conjecture consistent with intuition, again tested through experiments (Appendix F):

Conjecture 3. ||∆x|| ≤ τdmax, where τ is finite and dependent on the condition number of M .

There are two aspects of generation quality that we care about: First, for ||∆x|| to be small, Conjecture
3 suggests that we should pick φ with small dmax. Second, Spectral analysis of M for MNIST and
CelebA shows that φs corresponding to large eigenvalues have more structured patterns, while
those for small eigenvalues resemble white noise. As a result, keys in the eigenspace of small
eigenvalues of M achieve better FID scores and are preferred for maintaining the salient contents of
the authentic data. Fig. 2a shows the eigenvectors of the largest and smallest eigenvalues of M for
DCGANs on MNIST and CelebA. Fig. 2b are the outputs of the corresponding models that achieve
distinguishability.

Attributability The first-order sufficient conditions for attributability are as follows (proof in
Appendix H):
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Theorem 2. Let d∗min = minφ∈Φ,x∼PD |φTx|, σ̄2(φ) =
√
φTV TV φ− (φTV φ)2 where V(i,j) =

σ2
ij . If D(G) ≥ 1− δd for all Gφ ∈ G, φTφ′ ≤ 0 for all φ, φ′ ∈ Φ, and

||∆x(φ)|| ≤ d∗min

√
φTM2φ√

φTM2φ− (φTMφ)2 + σ̄(φ)

√
log
(

1
δ2a

) , (7)

for all φ ∈ Φ, then A(G) ≥ 1− (δd + δa)/2.

Remarks. (1) Conflict exists between distinguishability and attributability: The degradation of
generation quality is lower bounded for distinguishability yet upper bounded for attributability. This
is because the former requires model distributions to be away from D, while the latter requires Gφ to
stay away from the half spaces {x ∈ Rdx |φ′Tx > 0} of all other keys φ′ 6= φ (see Fig. 1b).

(2) Attributability is inherently limited by the model architecture: There are two reasons for Gφ
to enter {x ∈ Rdx |φ′Tx > 0} by moving away from D: (i) PGφ diverges as we perturb θ due to
non-zero σ̄2(φ); (ii) the center of support(PGφ) moves along Mφ rather than φ. In the special case
where σ̄2(φ) = 0 and Mφ ∝ φ (when M has a condition number of 1), the upper bound on ||∆x||
becomes +∞.

(3) Keys need to be strictly data compliance: When d∗min = 0, support(D) is tangent to one of the
keys. Attributability cannot be achieved unless σ̄2(φ) = 0 and Mφ ∝ φ.

(4) φTφ′ ≤ 0 implies orthogonal and opposite keys: φTφ′ ≤ 0 requires φ and φ′ to have an orthogonal
or obtuse angle. Note that for a given vector space, the capacity of keys to satisfy φTφ′ ≤ 0 for all
φ 6= φ′ is achieved when all keys are orthogonal or opposite to each other. Therefore, we can focus
on computing orthogonal keys (and flipping their signs to get the other half).

3 Implementation
The above analysis suggests the following rules for designing keys: (R1) strict data compliance, (R2)
orthogonality, (R3) small dmax, and (R4) belonging to the eigenspace of M associated with small
eigenvalues.

Key generation. The registry computes a sequence of keys to satisfy (R1) and (R2) for decentralized
attribution:

φi = arg min
||φ||=1

Ex∼PD,G0
[max{1 + fφ(x), 0}] +

i−1∑
j=1

|φTj φ|. (8)

The orthogonality penalty is omitted for the first key. Some remarks: (1) For fast computation of keys,
we convexify Eq. (8) by removing the unit norm constraint. Each key is normalized right after solving
the relaxed problem. (2) PD and PG0

do not perfectly match in practice, and therefore expectations
are taken over both distributions. (3) We use a hinge loss to promote strict data compliance. (4)
Computation of dmax requires minimax, and M is not always available for deep generative models
due to their large parameter space. Therefore, we do not explicitly enforce (R3) or (R4), but will use
them for generation quality control (see Sec. 4).

Generative models. To train key-dependent models, Eq. (5) is relaxed by introducing a penalty on
the generation quality:

min
θi

Ez∼Pz
[
max{1− fφi(Gi(z; θi)), 0}+ C||G0(z)−Gi(z; θi)||2/dx

]
. (9)

The hyperparameter C is tuned through a parametric study (see Appendicies K).

Robust training. Lastly, we consider the scenario where outputs are post-processed before being
verified. We train a robust version of the generative models against a distribution of post-processes
T : Rdx → Rdx ∼ PT through

min
θi

Ez∼Pz,T∈PT
[
max{1− fφi(T (Gi(z; θi))), 0}+ C||G0(z)−Gi(z; θi)||2/dx

]
. (10)
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Table 1: Empirical averaged distinguishability (D̄), attributability (A(G)), ∆x and FID scores from
20 generative models for each dataset. Standard deviations reported when applicable, or omitted if
≤ 0.05. FID of G0 (FID0) is the baseline. FID is not applicable to CycleGAN.

GANs Angle Dataset D̄ A(G) ||∆x|| FID0 FID

DCGAN Orthogonal MNIST 0.99 0.99 5.20(0.31) 4.98(0.15) 5.68(0.23)
DCGAN 45 degree MNIST 0.99 0.64 5.63(0.39) - 5.85(0.32)
DCGAN Orthogonal CelebA 0.99 0.99 4.19(0.18) 33.95(0.13) 52.09(2.20)
DCGAN 45 degree CelebA 0.99 0.59 4.75(0.20) - 59.57(2.56)
PGAN Orthogonal CelebA 0.99 0.99 9.29(0.95) 13.31(0.07) 21.62(1.73)
PGAN 45 degree CelebA 0.99 0.71 12.03(1.56) - 28.84(3.37)
CycleGAN Orthogonal Cityscapes 0.99 0.99 55.85(3.67) - -
CycleGAN 45 degree Cityscapes 0.99 0.69 54.94(5.20) - -

4 Experiments
Settings. We test three widely adopted generative models, DCGAN [26], PGAN [5], and Cycle-
GAN [3]), and three datasets: MNIST [27], CelebA [28] and Cityscape [29]. See Appendix I for
details on GAN settings and dataset descriptions. For the root models, we train DCGANs from
scratch on MNIST and CelebA, and use pre-trained PGAN [5] and CycleGAN [3].

We answer the following questions empirically through experiments.

Can decentralized attributability be achieved through orthogonal keys? For each dataset, we
compute twenty keys (Eq. (8)) and their corresponding generative models (Eq. (9)). Table 1 reports
the empirical averaged distinguishability and attributability for the collections. For comparison, we
randomly sample 20 data-compliant keys by solving an alternative to Eq. (8) where the angle between
keys is constrained to 45 deg. The results are presented in the same table. Generation quality metrics
(||∆x|| and FID) are reported in the same table.

Is there a limited capacity of keys? For real-world applications, we would need the capacity
of keys to achieve decentralized attribution to be large. From the analysis, the capacity is lim-
ited by the availability of orthogonal keys, which is required by attribution, and the generation
quality. In Fig. 3a, we report the quantities for 1500 keys generated for MNIST: Orthogonality
oi =

∑i−1
j=1 |φTj φi|/(i − 1) (o1 = 0), key-perturbation correlation ci = φTi Mφi, dmax(φi), distin-

guishability D(Gφi), attributability A({Gφj}ij=1), and generation quality for i = 1, ..., 1500. Some
remarks: (1) Nearly orthogonal keys abound due to the high-dimensionality of the output space, for
which decentralized attribution is achieved. (2) Larger ci indicates more involvement of the key in
the eigenspace of M with large eigenvalues. There is a positive correlation (0.63) between c and the
FID scores, as expected. (3) dmax is bounded and so is ||∆x||. Samples from the generator with the
largest ||∆x|| are illustrated in Fig. 3a. The results suggest that the registry can use c and dmax to
monitor the generation quality.

Approximation of M : Since the computation of M (thus c) is expensive for deep generative models
with high-dimensional outputs, we seek an empirical approximation of M . Our hypothesis is that the
structured patterns associated with eigenvectors of large eigenvalues are mostly associated with in the
sensitivities with respect to parameters from the later layers of the generators, and therefore we can
approximate M using part of the Jacobian with respect to only those layers. To test the hypothesis,
we train relatively shallow DCGANs for MNIST and CelebA, and compute the cosine similarities
between the eigenvectors of M with the largest eigenvalue and those from the approximations of M
using the last two layers. Results are presented in Fig. 3b, and suggest that it is viable to approximate
the largest eigenvectors using the last layers.

How do post-processes affect attributability and generation quality? We consider five types of
post-processes: blurring, cropping, noise, JPEG conversion and the combination of these four, and
assume that the post-processes are known by the model publishers who then improve the robustness of
decentralized attribution by incorporating these processes as differentiable layers and solving Eq. (10).
Examples of the post-processed images from non-robust and robust generators are compared in
Fig. 4. Implementation: Blurring uses Gaussian kernel width uniformly drawn from 1

3{1, 3, 5, 7, 9}.
Cropping crops images with uniformly picked ratio between 80% and 100% and scales the cropped
images back to the original size using bilinear interpolation. Noise adds iid white noise with
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Figure 3: (a) dmax is bounded by ||∆x|| and oi are close to 0. (b) Eigenvectors and the corresponding
samples from (top to bottom) the largest eigenvector of third layer and last layer of MMNIST , the
largest eigenvector of third layer and last layer of MCelebA.

(a) Non-robust (b) Blurring (c) Cropping

(d) Noise (e) JPEG (f) Combination

Figure 4: (a) 1st-2rd row: samples from G0 and non-robust generator (b-f) 1st-2rd rows: worst-case
post-process, samples from robust training against the specific post-processes (prior to the post-
processes). 3rd row for all: differences between 2nd row of (a) and 2nd row of each image. As a
result, we can reveal the changes in attributions.

standard deviation uniformly drawn in [0, 0.3]. JPEG applies JPEG compression. Combination
performs each attack with a 50% chance in the order of Blurring, Cropping, Noise and JPEG.
We use implementations for differentiable blurring [30] and JPEG [31]. For robust training against
each post-process, we apply the post-process to mini-batches with 50% probability. Results: We
report in Table 2 the attributability before and after robust training of distinguishability. Blurring,
Cropping and Combination are all effective before robust training. Defense against these random
post-processes can be achieved except for Combination. Table 3 reports ||∆x|| and FID scores of
the robust models, showing the trade-off between attributability and generation quality. Readers are
referred to Appendix J for more results of robust training.

5 Related Work
Fingerprints of GANs. Researches have shown that convolutional neural network based generator
leaves artifacts [32]. Marra et. al. [22] empirically showed that the artifact can be used as a fingerprint.

7



Table 2: Distinguishability (top), attributability (btm) before (Bfr) and after (Aft) robust training.
GANs Dataset Blurring Cropping Noise JPEG Combination
- - Bfr Aft Bfr Aft Bfr Aft Bfr Aft Bfr Aft

DCGAN MNIST 0.49 0.96 0.52 0.99 0.85 0.99 0.54 0.99 0.50 0.66
DCGAN CelebA 0.49 0.99 0.49 0.99 0.95 0.98 0.51 0.99 0.50 0.85
PGAN CelebA 0.50 0.98 0.51 0.99 0.97 0.99 0.96 0.99 0.50 0.76
CycleGAN Cityscapes 0.49 0.92 0.49 0.87 0.98 0.99 0.55 0.99 0.49 0.67

DCGAN MNIST 0.49 0.96 0.49 0.97 0.85 0.98 0.53 0.99 0.49 0.65
DCGAN CelebA 0.50 0.99 0.50 0.99 0.95 0.99 0.51 0.99 0.50 0.85
PGAN CelebA 0.50 0.97 0.50 0.99 0.96 0.98 0.96 0.99 0.50 0.76
CycleGAN Cityscapes 0.50 0.92 0.50 0.86 0.97 0.98 0.54 0.99 0.50 0.67

Table 3: ||∆x|| (top) and FID score (btm) w/ and w/o robust training. Standard deviations in
parenthesis. DCGAN-M: DCGAN for MNIST, DCGAN-C: DCGAN for CelebA. FID score not
applicable to CycleGAN. Lower is better.
GANs Non-robust Blurring Cropping Noise JPEG Combination

DCGAN-M 5.20(0.31) 15.96(2.18) 9.17(0.65) 5.93(0.34) 6.48(0.94) 17.08(1.86)
DCGAN-C 4.19(0.18) 11.83(0.65) 9.30(0.31) 4.75(0.17) 6.01(0.29) 13.69(0.59)
PGAN 9.29(0.95) 18.49(2.04) 21.27(0.81) 10.20(0.81) 10.08(1.03) 24.82(2.33)
CycleGAN 55.85(3.67) 68.03(3.62) 80.03(3.59) 55.47(1.60) 57.42(2.00) 83.94(4.66)

DCGAN-M 5.68(0.23) 41.11(20.43) 21.58(2.44) 5.79(0.19) 6.50(1.70) 68.16(24.67)
DCGAN-C 52.09(2.20) 73.62(6.70) 98.86(9.51) 59.51(1.60) 60.35(2.57) 87.29(9.29)
PGAN 21.62(1.73) 28.15(3.43) 47.94(5.71) 25.43(2.19) 22.86(2.06) 45.16(7.87)

However, their method depends on the dissimilarities of the target data. Yu et al. [23] trained
external classifier to identify the images from a finite and fixed set of generators, and showed that the
classifier can achieve robustness against post-processed images by fine-tuning the classifier using
post-processed images. But the result is not guaranteed to have the same performance when the set of
generators grows arbitrarily. Albright et al. [33] showed that they can find the origin of images by
solving the generator inversion problem. This method requires that the registry save all generators.
Furthermore, the registry needs to solve the optimization problem for all generators.

Digital watermarking. Digital watermarking has been used for identifying the ownership of digital
signals. Research on watermarking focused on the least significant bits in images [34, 35] and
frequency domain [36, 37, 38]. Zhu et al. [31] showed that GANs can be used for watermarking
by introducing various operation layers to the training step. Since watermarks are directly added
to the outputs, they are similar to the presented toy case. Along the same direction, Fan et al. [39]
imposed passport to classification networks. Without proper passport, the classification accuracy of
the network drops. Their approach, however, has not been extended to the decentralized attribution
setting.

6 Conclusion
This paper investigated the feasibility of decentralized attribution for generative models. We used a
protocol where a registry generates and distributes keys to users, and the user creates a key-dependent
generative model for which the outputs can be correctly attributed by the registry. Our investigation
led to simple design rules of the keys to achieve correct attribution while maintaining reasonable
generation quality. Specifically, correct attribution requires keys to be data compliant and orthogonal;
and generation quality can be monitored through data- and model-dependent metrics. With concerns
about adversarial post-processes, we empirically show that robust attribution can be achieved with
further loss of generation quality. This study defines the design requirements for future protocols for
the creation and distribution of attributable generative models.
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7 Broader Impact

With recent advances of generative models, researchers focus on the potential misuses and their
forensics [24, 40]. Current state-of-the-art models can generate realistic fake images [10, 11, 12],
voices [18] and videos [19, 20, 21]. Against these developments, studies of forensic have also been in
the spotlight [24, 40]. This paper takes a different perspective than this ongoing competition between
the two sides. We are motivated by the requirement of model attribution, i.e., the ability to tell which
exact models do the contents come from, in addition to whether the contents are machine generated
or not.

To this end, the paper focused on a regulation approach in the setting where generative models are
white-box to end users, keys are black-box (withheld by the model publishers), and datasets are
proprietary. While we focus on the technical feasibility of decentralized attribution of generative
models, the applicability of the proposed method would require discussions beyond the scope of the
paper. We assume that the protocol, i.e., key distribution by the model publisher and key-dependent
training on the user end, can be embraced by all stakeholders involved (e.g., social media platforms
and news organizations). While this protocol does not eliminate risks from individual adversaries,
it will be a necessary constraint on publishers that have the computational, technological, and data
resources to create and distribute high-impact machine-generated contents.
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A Proof of Proposition 1

Proposition 1. For the toy case, if ε > maxx∼PD{||x||∞}, D(Gφ) = 1 for all φ ∈ Φ and A(G) = 1.

Proof. Let φ and φ′ be any pair of keys such that φTφ′ = 0, and let x, x′, and x0 be sampled from
PGφ , PGφ′ , and PD, respectively. When ε > maxx∼PD{||x||∞}, we have

φTx = φT (x0 + εφ)

= φTx0 + ε

> φTx0 + max
x∼PD

{||x||∞}

> φTx0 − φTx0 = 0.

(11)

Combined with the data-compliant assumption φTx0 < 0, we have D(Gφ) = 1. Further, since

φTx′ = φT (x0 + εφ′) = φTx0 < 0, (12)

we have A(G) = 1.

B Empirical test for the linear approximation

For first-order analyses, we approximate the key-dependent generative model to be updated from the
root model through θ = θ0 + ∆θ, where

∆θ = γEx∼PG0

[
∇θxT |θ0

]
φ, (13)

and
x = x0 +∇θx0|θ0∆θ. (14)

Let J(x) = ∇θx|θ0 and M = Ex∼PG0
[J(x)]Ex∼PG0

[J(x)T ]. We focus on testing the following
result of the linear approximation: For φ and Gφ with high distinguishability, we should observe that
with high probability,

φT x̃ = φT
(
x0 + γJ(x0)Ex∼PG0

[
J(x)T

]
φ
)
> 0, (15)

for x0 ∼ PG0 . To test this, we use a DCGAN trained on MNIST as G0. We train 20 keys and update
Gs correspondingly following the method detailed in the Experiments section. The resulting average
distinguishability from the 20 generative models is 0.99.

To compute Pr(φT x̃ > 0), we calculate J(x0) and Ex∼PG0
[J(x)] based on samples from G0.

From Eq. (13), ||∆θ|| = ||γEx∼PG0
[J(x)T ]φ|| = γ

√
φTMφ. Therefore γ = ||∆θ||/

√
φTMφ.

||∆θ|| can be directly computed by comparing θ and θ0; M can be computed through SVD on
Ex∼PG0

[J(x)] (the tested DCGAN has 1,065,984 parameters, and output dimension of 1024, thus
J ∈ R1024×1,065,984). Empirical test showsro 1

20

∑
φ∈Φ Pr(φT x̃ > 0) = 0%.

C Empirical test for Conjecture 1

Conjecture 1. Let the (i, j)th element of Σ(x) = J(x)Ex∼PG0
[J(x)]T −M be Σ(i,j) with variance

σ2
ij . Then Σ(i,j) is approximately drawn i.i.d. from N (0, σ2

ij).

Normality. We use a DCGAN trained on MNIST as G0 and collect 512 samples of Σ by sampling
x0 ∼ PG0

. We empirically pick the best distributions for Σ(i,j). To do that, we calculate the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for each Σ(i,j) (10242

calculations in total). Candidate distributions include beta, birnbaumsaunders, exponential, extreme
value, gamma, generalized extreme value, generalized pareto, inversegaussian, logistic, loglogistic,
lognormal, nakagami, normal, rician, tlocationscale, and weibull distributions. We only report AIC
and BIC of normal and extreme value distributions. Among all, the lowest mean AIC and BIC are
found from the normal distribution (AIC = −26.51 and BIC = −18.03). The second best comes
from the extreme value distribution (AIC = 161.42 and BIC = 169.90). From the reported results,
we argue that it is reasonable to assume normality for Σ(i,j).
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Figure 5: Scree Plots. Most of the eigenvalues are close to 0.

Independence. Due to normality, we test independence through correlations. In theory, this requires
a 10242-by-10242 covariance matrix for all Σ(i,j). Without overloading the computational resources,
we randomly pick one elements from Σ(i,j) and compute correlation coefficient with others (10242

calculation). We do such calculation for fifty times without duplication. The resulting average
absolute value of the correlations is smaller than 0.1, suggesting that the independence assumption is
reasonable. Multiple repetition of calculations did not show notable variations of correlations.

D Empirical test for Conjecture 2

Conjecture 2. Denote Λ = {λ1, ..., λdx} as the eigenvalues of M . For existing deep generative
models, there exists and only exists a subset of eigenvalues that are strictly positive.

We use the same DCGAN trained on MNIST and CelebA as the root models to compute Ex∼PG0
[J ].

SVD on the resulting matrix reveals the eigenvalues of M , which are reported in Fig. 5.

E Proof of Theorem 1

Theorem 1. Let dmax(φ) = maxx∼PD |φTx|, σ2(φ) =
∑
i,j σ

2
ijφ

2
(i)φ

2
(j), and δd be a positive number

greater than exp

(
− 1

2

(
φTMφ
σ(φ)

)2
)

. For the realistic case and for a given key φ ∈ Ω, if

||∆x(φ)|| ≥ dmax(φ)
√
φTM2φ

φTMφ− σ(φ)

√
log
(

1
δ2d

) , (16)

D(Gφ) ≥ 1− δd/2.

Proof. We first note that due to data compliance of keys, Ex∼PD

[
1(φTx < 0)

]
= 1. Therefore

D(Gφ) ≥ 1− δd/2 iff Ex∼PGφ
[
1(φTx > 0)

]
≥ 1− δd, i.e., Pr(φTx > 0) ≥ 1− δd for x ∼ PGφ .

We now seek a key-dependent lower bound on ε to satisfy this inequality. We first connect generation
quality to the step size (learning rate) γ following the linear approximation:

||∆x(φ)|| = ||γMφ|| = γ
√
φTM2φ. (17)

Next, given φ, we look for a sufficiently large γ, so that φTx > 0 with probability at least 1− δd. To
do so, let x and x0 be sampled from PGφ and PG0

, respectively. Then with first order approximations
we have

φTx = φT
(
x0 + γJ(x0)Ex∼PG0

[
J(x)T

]
φ
)

= φTx0 + γφTMφ+ γφTΣφ.
(18)
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For Pr(φTx > 0) ≥ 1− δd, γ should satisfy

Pr
(
φTΣφ > −φTx0/γ − φTMφ

)
≥ 1− δd. (19)

Since dmax(φ) ≥ −φTx0, it is sufficient to have

Pr
(
φTΣφ > dmax(φ)/γ − φTMφ

)
≥ 1− δd. (20)

From Conjecture 1, φTΣφ ∼ N (0, σ2(φ)). Due to the symmetry of p(φTΣφ), the sufficient
condition for γ in Eq. (20) can be rewritten as

Pr
(
φTΣφ ≤ φTMφ− dmax(φ)/γ

)
≥ 1− δd. (21)

Recall the following tail bound of x ∼ N (0, σ2) for y ≥ 0:

Pr(x ≤ σy) ≥ 1− exp(−y2/2). (22)

Compare Eq. (22) with Eq. (21), the sufficient condition becomes

φTMφ− dmax(φ)/γ ≥ σ(φ)

√
log

(
1

δ2
d

)
⇒ γ ≥ dmax(φ)

φTMφ− σ(φ)

√
log
(

1
δ2d

) . (23)

Using Eq. (17), we have

||∆x(φ)|| ≥ dmax(φ)
√
φTM2φ

φTMφ− σ(φ)

√
log
(

1
δ2d

) , (24)

provided that φTMφ− σ(φ)

√
log
(

1
δ2d

)
> 0 or

δd > exp

(
−1

2

(
φTMφ

σ(φ)

)2
)
. (25)

F Empirical test for Conjecture 3

Conjecture 3. ||∆x|| ≤ τdmax.

The conjecture comes from the following approximations: First, from Conjecture 1, we observe that
{σij}2 are small. Using the proof of Theorem 1, a sufficient degradation of generation quality can be
approximated by

||∆x(φ)|| ≈ dmax(φ)
√
φTM2φ

φTMφ
=
dmax
√
cTΛ2c

cTΛc
, (26)

where c = PTφ and M = PΛPT . From Lemma 1,
√
cTΛ2c

cTΛc
∈

[
1,

1 + λmax/λmin

2
√
λmax/λmin

]
. (27)

Let

τ =
1 + λmax/λmin

2
√
λmax/λmin

, (28)

then ||∆x|| ≤ τdmax.
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G Useful lemmas

Lemma 1 is used for Conjecture 3 and Lemmas 2 for the proof of Theorem 2.
Lemma 1. Let c ∈ Rn and ||c|| = 1, Λ = diag(λ1, ..., λn) be positive definite. Then

√
cTΛ2c

cTΛc
∈

[
1,

1 + λmax/λmin

2
√
λmax/λmin

]
. (29)

Proof. Let x = [c21, ..., c
2
n], a = [λ2

1, ..., λ
2
n], and b = [λ1, ..., λn]. Then cTΛ2c = aTx and

cTΛc = bTx.

We now consider the following problem:

max
x

1

2
log aTx− log bTx

s.t. 1Tx = 1

xi ≥ 0, ∀i.

(30)

The KKT conditions for this problem are

− 1

2aTx
a+

1

bTx
b+ λ1− µ = 0,

1Tx = 1

xi ≥ 0, µi ≥ 0, ∀i
µTx = 0,

(31)

where λ and µ are the Lagrangian multipliers.

When b has unique elements, there exist two sets of KKT points: x is either one-hot, or x has zero
entries except for elements i and j where xi = bj/(bi + bj) and xj = bi/(bi + bj), for all (i, j)
combinations. If b has repeated elements, then we can combine these elements and reach the same
conclusion.

When x is one-hot, the objective is log ai/2− log bi = 0. For the second type of solutions and let
τij = λi/λj , we have

1

2
log aTx− log bTx =

1

2
log

aibj + ajbi
bi + bj

− log
2bibj
bi + bj

=
1

2
log λiλj − log

2λiλj
λi + λj

= log
1 + τij
2
√
τij
≥ 0,

(32)

where equality holds when τij = 1. Since the objective monotonically increases with respect to
τij > 1, the maximum is reached when τij = λmax/λmin.

Lemma 2. Let a, b ∈ Rn, ||a|| = 1, ||b|| = 1, and aT b ≤ 0. Let V ∈ Rn×n. Then maxa{aTV b} =√
bTV TV b− (bTV b)2.

Proof. Consider the following problem

min
a

− aTV b

s.t. aT b ≤ 0

aTa = 1,

(33)

with the following KKT conditions:

−V b+ µb+ 2λa = 0

aT b ≤ 0

aTa = 1.

(34)
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The solution is
λ = aTV b/2

µ = bTV b

a =
(V − bTV bI)b√

bTV TV b− (bTV b)2
.

(35)

Note that
||(V − bTV bI)b||2 = bT (V T − bTV bI)(V − bTV bI)b

= bTV TV b− (bTV b)2,
(36)

thus bTV TV b− (bTV b)2 ≥ 0.

Since the Hessian of the Lagrangian with respect to a is 2λI , and from the solution

λ = aTV b/2

=
√
bTV TV b− (bTV b)2/2 ≥ 0,

(37)

therefore the solution is the minimizer, i.e., maxa{aTV b} =
√
bTV TV b− (bTV b)2.

H Proof of Theorem 2

Theorem 2. Let d∗min = minφ∈Φ,x∼PD |φTx|, σ̄2(φ) =
√
φTV TV φ− (φTV φ)2, and V(i,j) = σ2

ij .
When D(G) ≥ 1− δd for all Gφ ∈ G, if the degradation of generation quality for all models in G
satisfies

||∆x(φ)|| ≤ d∗min

√
φTM2φ√

φTM2φ− (φTMφ)2 + σ̄(φ)

√
log
(

1
δ2a

) , (38)

and φTφ′ ≤ 0 for all φ, φ′ ∈ Ω, then A(G) ≥ 1− (δd + δa)/2.

Proof. Let φ and φ′ be any of the two orthogonal keys, and x′ and x0 be sampled from PGφ′ and
PG0

, respectively. A(G) ≥ 1− (δd + δa)/2 and D(G) ≥ 1− δd for all G ∈ G together imply that
Pr(φTx′ < 0) ≥ 1− δa. Now we focus on deriving the sufficient conditions for this inequality.

From first order approximations,

φTx′ = φT
(
x0 + γ(φ′)J(x0)Ex∼PG(θ0)

[
J(x)T

]
φ′
)

= φTx0 + γ(φ′)φTMφ′ + γ(φ′)φTΣφ′.
(39)

Therefore
Pr(φTx′ < 0) = Pr

(
φTΣφ′ < −φTx0/γ(φ′)− φTMφ′

)
≥ Pr

(
φTΣφ′ < dmin(φ)/γ(φ′)− φTMφ′

)
.

(40)

Note that the RHS of Eq. (40) suggests that γ(φ′) needs to be sufficiently small for Pr(φTx′ < 0)
to be large. To see where that upper bound is, we start by noting that φTΣφ′ has zero mean and is
normally distributed. To analyze its variance, we use Lemma 2 to show that

V ar(φTΣφ′) ≤ σ̄2(φ′) =
√
φ′TV TV φ′ − (φ′TV φ′)2, (41)

where V(i,j) = σ2
ij .

Using the same tail bound of normal distribution as in Theorem 1, γ(φ′) is sufficiently small if

dmin(φ)/γ(φ′)− φTMφ′ ≥ σ̄(φ′)

√
log

(
1

δ2
a

)

⇒ γ(φ′) ≤


dmin(φ)

φTMφ′+σ̄(φ′)

√
log

(
1
δ2a

) if φTMφ′ + σ̄(φ′)

√
log
(

1
δ2a

)
> 0,

+∞ otherwise

(42)
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Since ||∆x(φ′)|| = γ(φ′)
√
φ′TM2φ′, we have

||∆x(φ′)|| ≤


dmin(φ)

√
φ′TM2φ′

φTMφ′+σ̄(φ′)

√
log

(
1
δ2a

) if φTMφ′ + σ̄(φ′)

√
log
(

1
δ2a

)
> 0,

+∞ otherwise

(43)

We would like to find a lower bound of the RHS of Eq. (43) that is independent of φ 6= φ′. To this
end, first denote d∗min = minφ dmin(φ). Now use Lemma 2 again to derive an upper bound of φTMφ′:

φTMφ′ ≤
√
φ′TM2φ′ − (φ′TMφ′)2. (44)

Replace φTMφ′ in Eq. (43) with its upper bound to reach a φ-indepdent sufficient condition for
||∆x(φ′)||:

||∆x(φ′)|| ≤ d∗min

√
φ′TM2φ′√

φ′TM2φ′ − (φ′TMφ′)2 + σ̄(φ′)

√
log
(

1
δ2a

) . (45)
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Figure 6: (a) dmax is bounded by ||∆x|| and oi is close to 0. (b) ci and FID show positive correlation
(0.63). Also, D(Gφi) and A({Gφj}ij=1) are close to 1.

I Limited capacity of keys

We generate 1500 keys for MNIST: orthogonality oi =
∑i−1
j=1 |φTj φi|/(i − 1) (o1 = 0),

key-perturbation correlation ci = φTi Mφi, dmax(φi), distinguishability D(Gφi), attributability
A({Gφj}ij=1), lack of generation quality ||∆x|| and FID for i = 1, ..., 1500. Some remarks: (1) dmax

is bounded and so is ||∆x|| (Fig. 6a). (2) Larger ci indicates more involvement of the key in the
eigenspace of M with large eigenvalues. There is a positive correlation (0.63) between c and the FID
scores, as expected (Fig. 6b). (3) Nearly orthogonal keys abound due to the high-dimensionality of
the output space, for which decentralized attribution is achieved (Fig. 6b). Thus, the results suggest
that the registry can use c and dmax to monitor the generation quality.

Approximation of M : The hypothesis is that the structured pattern of large eigenvectors is associated
with eigenvectors of the later layers of the generators. Therefore, M can be approximated using the
Jacobian of these layers. For empirical experiments, we train four-layer DCGANs for MNIST and
CelebA, and compute the cosine similarities between the largest eigenvector of M and the largest
eigenvecotrs of Jacobian of each of layers. Results are presented in Fig. 7 with visual examples. Also,
it is viable to approximate the largest eigenvectors with the last layers.
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(a) (b)

Figure 7: (a) Largest eigenvectors of the first layer to last layer (top to bottom) and corresponding
samples. Cosine similarities with largest eigenvector of M are -0.49, 0.20, -0.98, 0.49. (b) Largest
eigenvectors of the first layer to last layer (top to bottom) and corresponding samples. Cosine
similarities with largest eigenvector of M are 0, 0.01, -0.05, -0.5.

J Examples of GANs

In the paper, we show examples from PGAN with CelebA. Here, we illustrate other GANs examples.
For Fig. 8, 9, 10, (a) 1st-2rd row: authentic data, samples from the non-robust generator (b-f) 1st-2rd
rows: worst-case post-process, samples from robust training against the specific post-processes
(before the post-processes). 3rd row for all: numerical differences between 2nd row of (a) and 2nd
row of each case. Thus, the differences show the effect of robust training on attribution.

(a) Non-robust (b) Blurring (c) Cropping

(d) Noise (e) JPEG (f) Combination

Figure 8: DCGAN-MNIST
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(a) Non-robust (b) Blurring (c) Cropping

(d) Noise (e) JPEG (f) Combination

Figure 9: DCGAN-CelebA

(a) Non-robust (b) Blurring (c) Cropping

(d) Noise (e) JPEG (f) Combination

Figure 10: CycleGAN-Cityscapes

K Training Details

K.1 Parameters

We adopt Adam optimizer for gradient descent. We attach other parameters in Table 4. Note that we
fix the hyper-parameters when we optimize Eq.(Robust training) in Implementation.

K.2 Training Time

For experimental validations, we use V:100 Tesla GPUs. Exact number of GPUs are reported in
Table 5.
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Table 4: Hyper-parameters for training Eq.(Key generation) (top) and Eq.(Generative models) (btm).
Equations are in Implementation.

GANs Dataset Batch Size Learning Rate β1 β2 Epochs C

DCGAN MNIST 128 0.001 0.5 0.99 10 -
DCGAN CelebA 64 0.001 0.5 0.99 10 -
PGAN CelebA 32 0.001 0.5 0.99 10 -
CycleGAN Cityscapes 4 0.001 0.5 0.99 20 -

DCGAN MNIST 16 0.0005 0.5 0.99 10 10
DCGAN CelebA 64 0.0005 0.5 0.99 10 10
PGAN CelebA 16 0.0005 0.0 0.99 5 100
CycleGAN Cityscapes 1 0.0005 0.5 0.99 5 1000

Table 5: Training time (in minute) of one key (Eq.(Key generation)) and one generator (Eq.(Generative
models)). DCGAN-M: DCGAN for MNIST, DCGAN-C: DCGAN for CelebA. Equations are in
Implementation.

GANs GPUs Key Naive Blurring Cropping Noise JPEG Combination

DCGAN-M 1 1.77 8.52 4.12 3.96 4.19 5.71 5.12
DCGAN-C 1 5.31 9.12 10.33 9.56 10.35 10.25 10.76
PGAN 2 50.89 141.07 140.05 131.90 133.46 132.46 135.07
CycleGAN 1 20.88 16.04 16.26 15.43 15.71 15.98 16.41

L Ablation Study

We attach the table of ablation study of how C affects the result of distinguishability, attributability,
||∆x|| and FID scores in Table 6. C does not affect to the distinguishability and attributability. But
C improves ||∆x|| and FID for every generators. Furthermore, we investigate how C term affects
the robustness in Table 7 and Table 8. We can observe that, as C increases, robustness decreases but
generation quality increases.
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Table 6: Empirical averaged distinguishability (D̄), attributability (A(G)), ||∆x|| and FID scores.
Standard deviations reported when applicable, or omitted if ≤ 0.05. FID of G0 (FID0) is the baseline.
FID is not applicable to CycleGAN.

GANs Dataset C D̄ A(G) ||∆x|| FID0 FID

DCGAN MNIST 10 0.99 0.99 5.20(0.31) 4.98(0.15) 5.68(0.23)
DCGAN MNIST 100 0.99 0.99 4.09(0.53) - 5.32(0.11)
DCGAN MNIST 1K 0.99 0.99 3.88(0.60) - 5.23(0.12)
DCGAN CelebA 10 0.99 0.99 4.19(0.18) 33.95(0.13) 52.09(2.20)
DCGAN CelebA 100 0.99 0.99 3.08(0.27) - 45.02(3.37)
DCGAN CelebA 1K 0.99 0.99 2.55(0.36) - 40.85(3.41)
PGAN CelebA 100 0.99 0.99 9.29(0.95) 13.31(0.07) 21.62(1.73)
PGAN CelebA 1K 0.99 0.99 6.51(1.85) - 19.05(3.14)
PGAN CelebA 10K 0.98 0.98 5.05(1.63) - 16.75(1.87)
CycleGAN Cityscapes 1K 0.99 0.99 55.85(3.67) - -
CycleGAN Cityscapes 10K 0.99 0.99 49.66(5.01) - -

Table 7: Distinguishabilit (top), attributability (btm) before (Bfr) and after (Aft) robust training.
DCGAN-M: DCGAN for MNIST, DCGAN-C: DCGAN for CelebA.

GANs C Blurring Cropping Noise JPEG Combination
- - Bfr Aft Bfr Aft Bfr Aft Bfr Aft Bfr Aft

DCGAN-M 10 0.49 0.96 0.52 0.99 0.85 0.99 0.54 0.99 0.50 0.66
DCGAN-M 100 0.49 0.61 0.51 0.98 0.76 0.98 0.53 0.99 0.50 0.52
DCGAN-M 1K 0.49 0.50 0.51 0.81 0.69 0.91 0.53 0.97 0.50 0.51
DCGAN-C 10 0.49 0.99 0.49 0.99 0.95 0.98 0.51 0.99 0.50 0.85
DCGAN-C 100 0.50 0.96 0.49 0.99 0.92 0.93 0.50 0.99 0.49 0.61
DCGAN-C 1K 0.50 0.62 0.49 0.97 0.88 0.91 0.50 0.99 0.49 0.51
PGAN 100 0.50 0.98 0.51 0.99 0.97 0.99 0.96 0.99 0.50 0.76
PGAN 1K 0.50 0.89 0.49 0.95 0.94 0.95 0.88 0.99 0.50 0.60
PGAN 10K 0.50 0.61 0.50 0.76 0.89 0.90 0.76 0.98 0.50 0.51
CycleGAN 1K 0.49 0.92 0.49 0.87 0.98 0.99 0.55 0.99 0.49 0.67
CycleGAN 10K 0.49 0.70 0.50 0.66 0.94 0.96 0.52 0.98 0.50 0.51

DCGAN-M 10 0.49 0.96 0.49 0.97 0.85 0.98 0.53 0.99 0.49 0.65
DCGAN-M 100 0.50 0.54 0.49 0.97 0.74 0.96 0.52 0.94 0.49 0.52
DCGAN-M 1K 0.50 0.50 0.49 0.80 0.68 0.89 0.52 0.89 0.49 0.50
DCGAN-C 10 0.50 0.99 0.50 0.99 0.95 0.99 0.51 0.99 0.50 0.85
DCGAN-C 100 0.50 0.96 0.49 0.99 0.92 0.93 0.50 0.99 0.49 0.61
DCGAN-C 1K 0.49 0.61 0.50 0.98 0.87 0.89 0.50 0.99 0.50 0.51
PGAN 100 0.50 0.97 0.50 0.99 0.96 0.98 0.96 0.99 0.50 0.76
PGAN 1K 0.50 0.87 0.50 0.95 0.93 0.94 0.86 0.99 0.49 0.59
PGAN 10K 0.50 0.60 0.50 0.77 0.88 0.89 0.76 0.97 0.50 0.51
CycleGAN 1K 0.50 0.92 0.50 0.86 0.97 0.98 0.54 0.99 0.50 0.67
CycleGAN 10K 0.50 0.70 0.50 0.66 0.92 0.94 0.52 0.98 0.49 0.51
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Table 8: ||∆x|| (top) and FID score (btm). Standard deviations in parenthesis. DCGAN-M: DCGAN
for MNIST, DCGAN-C: DCGAN for CelebA. FID score not applicable to CycleGAN. ||∆x|| and
FID score in Table 6 are baseline. Lower is better.
GANs C Baseline Blurring Cropping Noise JPEG Combination

DCGAN-M 10 5.20(0.31) 15.96(2.18) 9.17(0.65) 5.93(0.34) 6.48(0.94) 17.08(1.86)
DCGAN-M 100 4.09(0.53) 12.95(4.47) 7.62(1.55) 4.57(0.78) 4.70(1.02) 12.70(3.37)
DCGAN-M 1K 3.88(0.60) 7.17(2.10) 7.43(1.37) 4.22(0.77) 5.12(1.94) 7.56(1.41)
DCGAN-C 10 4.19(0.18) 11.83(0.65) 9.30(0.31) 4.75(0.17) 6.01(0.29) 13.69(0.59)
DCGAN-C 100 3.08(0.27) 10.00(1.61) 7.80(0.58) 3.20(0.45) 4.26(0.59) 11.65(1.48)
DCGAN-C 1K 2.55(0.36) 7.68(1.53) 7.13(0.47) 2.65(0.24) 3.39(0.58) 9.23(1.22)
PGAN 100 9.29(0.95) 18.49(2.04) 21.27(0.81) 10.20(0.81) 10.08(1.03) 24.82(2.33)
PGAN 1K 6.52(1.85) 14.79(4.15) 18.88(1.96) 6.40(1.48) 7.09(1.62) 22.09(2.12)
PGAN 10K 5.04(1.63) 10.19(2.87) 18.23(0.94) 5.13(1.14) 5.67(1.62) 17.26(1.39)
CycleGAN 1K 55.85(3.67) 68.03(3.62) 80.03(3.59) 55.47(1.60) 57.42(2.00) 83.94(4.66)
CycleGAN 10K 49.66(5.01) 58.64(3.70) 66.05(3.47) 53.14(0.44) 54.52(2.30) 66.24(5.29)
DCGAN-M 10 5.68(0.23) 41.11(20.43) 21.58(2.44) 5.79(0.19) 6.50(1.70) 68.16(24.67)
DCGAN-M 100 5.32(0.11) 23.83(14.29) 18.39(3.70) 5.41(0.18) 5.46(0.11) 36.05(16.20)
DCGAN-M 1K 5.23(0.12) 10.85(4.28) 18.08(1.77) 5.37(0.14) 5.30(0.96) 21.86(4.16)
DCGAN-C 10 52.09(2.20) 73.62(6.70) 98.86(9.51) 59.51(1.60) 60.35(2.57) 87.29(9.29)
DCGAN-C 100 45.02(3.37) 73.12(11.03) 85.50(12.25) 47.60(2.57) 50.48(4.58) 78.11(12.95)
DCGAN-C 1K 40.85(3.41) 55.63(7.97) 72.11(13.81) 40.87(3.03) 45.46(5.03) 57.13(7.20)
PGAN 100 21.62(1.73) 28.15(3.43) 47.94(5.71) 25.43(2.19) 22.86(2.06) 45.16(7.87)
PGAN 1K 19.05(3.14) 25.19(5.26) 43.48(12.24) 19.20(2.96) 19.05(2.82) 35.07(8.72)
PGAN 10K 16.75(1.87) 18.96(2.65) 37.01(8.74) 16.94(1.89) 17.39(2.33) 26.63(4.44)
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