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Abstract. While Neural Radiance Fields (NeRFs) have demonstrated
exceptional quality, their protracted training duration remains a limita-
tion. Generalizable and MVS-based NeRFs, although capable of mitigat-
ing training time, often incur tradeoffs in quality. This paper presents
a novel approach called BoostMVSNeRFs to enhance the rendering
quality of MVS-based NeRFs in large-scale scenes. We first identify lim-
itations in MVS-based NeRF methods, such as restricted viewport cov-
erage and artifacts due to limited input views. Then, we address these
limitations by proposing a new method that selects and combines multi-
ple cost volumes during volume rendering. Our method does not require
training and can adapt to any MVS-based NeRF methods in a feed-
forward fashion to improve rendering quality. Furthermore, our approach
is also end-to-end trainable, allowing fine-tuning on specific scenes. We
demonstrate the effectiveness of our method through experiments on
large-scale datasets, showing significant rendering quality improvements
in large-scale scenes and unbounded outdoor scenarios.

Keywords: Novel view synthesis · Neural radiance fields · 3D synthesis
· Neural rendering

1 Introduction

In computer vision, 3D reconstruction and novel view synthesis are crucial, with
widespread applications from photogrammetry to AR/VR. Traditional methods
relied on photo-geometry for 3D scene reconstruction using meshes. Recently, the
task of novel view synthesis has advanced drastically since the emergence of the
Neural Radiance Field (NeRF) and its variants [2–4,12,39,41,60]. NeRF encodes
3D information into a Multi-layer Perceptron (MLP) network to represent a
scene. Despite such methods providing photorealistic rendering quality, these
models have a huge downside as they require per-scene training with a long
training time.
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Recent advances in Generalizable NeRFs [6, 9, 70, 78, 84, 86] improve scene
adaptation by extracting input image features via 2D CNNs and utilizing large
datasets for training, allowing for rapid scene adaptation and enhanced rendering
through fine-tuning. MVS-based methods such as MVSNeRF [9] and ENeRF
[32] synthesize high-quality novel views by constructing cost volumes from a
few input images, leveraging 3D CNNs and volume rendering in a feed-forward
fashion. However, they are constrained by using a fixed number of input views
and often struggle to reconstruct large-scale and unbounded scenes, resulting
in padding artifacts at image boundaries (Fig. 1(a)) and wrongly reconstructed
geometry in disocclusion regions (Fig. 1(b)). Furthermore, these issues could
hardly be resolved by per-scene fine-tuning (Fig. 1(c)).

To address the problems, we propose BoostMVSNeRFs, a pipeline that is
compatible with any MVS-based NeRFs to improve their rendering quality in
large-scale and unbounded scenes. We first present 3D visibility scores for each
sampled 3D point to indicate the proportion of contributions from individual
input views. We then volume render the 3D visibility scores into 2D visibility
masks to determine the contribution of each cost volume to the target novel
view. Next, we combine multiple cost volumes during volume rendering to ef-
fectively expand the coverage of the novel view viewport and reduce artifacts
by constructing more consistent geometry and thus alleviate the aforementioned
MVS-based NeRFs’ issues. Additionally, to optimize the novel view visibility
coverage, we further propose a greedy algorithm to approximate the optimal
support cost volume set selection for the multiple-cost volume combined render-
ing. Our proposed pipeline is compatible with any MVS-based NeRFs to improve
their rendering quality (Fig. 1(d, e)) and is end-to-end trainable. Therefore, our
method also inherits this property from MVS-based NeRFs and can be fine-tuned
to a specific scene to further improve the rendering quality (Fig. 1(f)).

We conduct experiments on two large-scale datasets, Free [69] and Scan-
Net [14] datasets, which contain unbounded scenes with free camera trajecto-
ries and large-scale indoor scenes with complex structures, respectively. Experi-
ments demonstrate that our proposed method performs favorably against other
per-scene training or generalizable NeRFs in different dataset scenarios. Most
importantly, our method is able to improve any MVS-based NeRF rendering
quality through our extensive experiments, especially in free camera trajecto-
ries and unbounded outdoor scenes, which are the most common use cases in
real-world applications.

2 Related Work

Novel View Synthesis. Novel view synthesis is a core challenge in computer
vision, addressed through various techniques like image-based rendering [7, 19,
27,48,51] or multiplane image (MPI) [18,30,40,58,63,93], and explicit 3D repre-
sentations, including meshs [15,61,66,74], voxels [37,38,56], point clouds [1,78],
depth maps [17, 21, 23, 55, 64]. Recently, neural representations [25, 34, 37, 55,
56, 73, 93], particularly Neural Radiance Fields (NeRF) [2–4, 39, 41, 47, 60, 89],
have achieved photorealistic rendering by representing scenes with continuous
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Fig. 1: Our BoostMVSNeRFs enhances the novel view synthesis quality of
MVS-based NeRFs in large-scale scenes. MVS-based NeRF methods often suffer
from (a) limited viewport coverage from novel views or (b) artifacts due to limited
input views for constructing cost volumes. (c) These drawbacks cannot be resolved
even by per-scene fine-tuning. Our approach selects those cost volumes that contribute
the most to the novel view and combines multiple selected cost volumes with volume
rendering. (d, e) Our method does not require any training and is compatible with
existing MVS-based NeRFs in a feed-forward fashion to improve the rendering quality.
(f) The scene can be further fine-tuned as our method supports end-to-end fine-tuning.

fields. Despite the advancements in areas like relighting [5, 43,85,86,88,92], dy-
namic scenes [29, 35, 47, 50, 77], and multi-view reconstruction [46, 68, 82, 83],
these methods although speed up training using hash grid [42] or voxel [8, 59]
as representations, still require intensive per-scene optimization, thus limiting
their generalizability. In contrast, our generalizable approach balances rendering
quality and speed through feed-forward inference efficiently.

Multi-View Stereo and Generalizable Radiance Fields. Neural Radi-
ance Fields (NeRF) offer photorealistic rendering but are limited by costly per-
scene optimization. Recently, generalizable NeRFs [6, 9, 70, 78, 84, 86] provide
efficient approaches to synthesize novel views without per-scene optimization.
Techniques like PixelNeRF [86] and IBRNet [70] merge features from adjacent
views for volume rendering, while PointNeRF [78] constructs point-based fields
for this purpose. Multi-view stereo (MVS) methods estimate depth using cost
volumes [46], with MVSNet [80] utilizing 3D CNNs for feature extraction and
cost volume construction, enabling end-to-end training and further novel view
synthesis. Despite amazing results from learning-based MVS, these methods are
memory-intensive, prompting innovations like plane sweep [81] and coarse-to-
fine strategies [10,22,87] for efficiency. Other works, such as MVSNeRF [9], EN-
eRF [32] and Im4D [31], further bridge MVS methods with NeRF, introducing
volumetric representations and depth-guided sampling for speed and dynamic
reconstruction. Although these works advance the performance of generalizable
NeRF, their rendering qualities are hindered by the limited visibility coverage
of a single cost volume, leading to poor synthesis quality and visible padding
artifacts near the image boundaries on large-scale or unbounded scenes. Addi-
tional research endeavors have been suggested to address these challenges. For
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instance, GeoNeRF [26]) introduces a novel approach to handle occlusions, while
Neural Rays [36] presents an occlusion-aware representation aimed at mitigating
this problem. Although these methods tackle occlusions issues, the view coverage
problem originated from MVS-based methods still exists. Our method overcomes
this issue by selecting and combining multiple cost volumes to improve coverage
and rendering confidence, enhancing the performance and robustness of MVS-
based NeRF methods without any cost compared with previous methods.

Few-Shot NeRFs. Prior work utilized mainly two different approaches to re-
construct scenes with sparse input views [28]: introducing regularization priors
and training generalized model. Regularization-based methods [16,24,45,52,53,
57,65,67,75,76,79,94] such as Vip-NeRF [57] attempt to tackle this problem by
obtaining visibility prior to regularize the scenes’ relative depth. Training gener-
alized models [9,11,13,26,33,54,62,70,86] on large datasets such as MVSNeRF [9]
constructs cost volume to gain cross-view insight to tackle this goal. Different
from this line of work, we present a novel visibility mask in a 3D fashion and
serve as a visibility score to blend features while performing volume rendering.

Radiance Fields Fusion. Recently, several works propose to tackle scene fu-
sion and intend to achieve large-scale reconstruction. NeRFusion [91] performs
sequential data fusion on voxels with GRU on the image level. SurfelNeRF [20]
fuses scenes after converting them to surfels [49] representation. Our approach
seamlessly integrates cost volume without requiring training, thereby harnessing
the capabilities of all MVS-based pre-trained models. Instead of concentrating
solely on large-scale fusion, our method functions as a readily applicable tool to
enhance various cost volume-based MVS applications.

3 Method

Given multi-view images in an unbounded scene, the same as other MVS-based
NeRF methods (Sec. 3.1), our task is to synthesize novel view images without
per-scene training. In order to tackle limited viewport coverage from a single
cost volume created by a fixed number of few (e.g ., 3) input images, we propose
BoostMVSNeRFs, an algorithm to consider multiple cost volumes while render-
ing. We first introduce a 3D visibility score for each sampled 3D point, which
is used to render volume into 2D visibility masks (Sec. 3.2). Given a rendered
2D visibility mask for each cost volume, we combine multiple cost volumes in a
support set to render novel views (Sec. 3.3). Finally, we present a greedy algo-
rithm to iteratively select cost volumes and update the support set to maximize
the viewport coverage and confidence of novel views (Sec. 3.4). Our pipeline is
end-to-end trainable and thus can be fine-tuned on a new scene (Sec. 3.5). Our
method is model-agnostic and applicable to any MVS-based NeRFs to boost the
rendering quality.
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3.1 MVS-based NeRFs Preliminaries

Given multi-view images with camera parameters, MVS-based NeRFs [9,22,32]
use a shared 2D CNN to extract features for input images. Then, following
MVSNet [80], we construct a feature volume by warping the input features into
the target view. The warped features would be used to construct the encoding
volume by computing the variance of multi-view features. Next, we apply a 3D
CNN to regularize the encoding volume to build the cost volume CV to smooth
the noise in the feature volume. Given a novel viewpoint, we query the color 𝑐 and
density 𝜎 using an MLP with sampled 3D point coordinates 𝑥, viewing directions
𝑣, trilinear interpolated cost volume values at location 𝑝, and projected colors
from input views Cin as input:

(𝑐, 𝜎) = MLP𝜃 (𝑝, 𝑣,CV(𝑝),Cin), (1)

where 𝜃 denotes the parameter of the MLP. Finally, we can volume render along
rays to get the pixel colors in novel views.

The volume rendering equation in NeRF or MVSNeRF is evaluated by dif-
ferentiable ray marching for novel view synthesis. A pixel color is computed by
accumulating sample point values through ray marching. Here we consider a
given ray r from the camera center 𝑜 through a given pixel on the image plane
as r = 𝑜+𝑢 𝑗𝑑, where 𝑑 is the normalized viewing direction, and 𝑢 𝑗 is the quadra-
ture point constrained within the bounds of the near plane 𝑢𝑛 and the far plane
𝑢 𝑓 . The final color is given by:

𝐶 (r) =
𝐽∑︁
𝑗=1

𝑇 ( 𝑗)𝛼(𝜎𝑗𝛿 𝑗 )𝑐 𝑗 , (2)

where 𝑇 ( 𝑗) = exp(−∑ 𝑗−1
𝑠=1 𝜎𝑠𝛿𝑠) is the accumulated transmittance, 𝛼(𝑥) = 1 −

exp(−𝑥) is the opacity of the point, and 𝛿 𝑗 = 𝑢 𝑗+1 − 𝑢 𝑗 is the distance between
two quadrature points.

The existing MVS-based NeRFs only utilize a single cost volume from a few
viewpoints (e.g . 3 input views). As a result, these methods often fall into limited
viewport coverage, wrong geometry, and rendering artifacts (Fig. 1(a, b)). To
overcome these problems, a naive solution would be training another MVS-based
NeRF with more input views to construct the cost volume. Nevertheless, this
solution requires training a new model with larger memory consumption, but
even so, the input views could still be insufficient in inference time. Therefore,
we proposed a novel method considering multiple cost volumes while rendering
novel views.

3.2 3D Visibility Scores and 2D Visibility Masks

By taking 𝐼 reference views into account in constructing a single cost volume, the
maximum number of cost volumes we can refer to is 𝐶𝑁

𝐼
=

(𝑁
𝐼

)
=
𝑁 (𝑁−1) ·· · (𝑁−𝐼+1)

𝐼 (𝐼−1) ·· ·1
for each target view, where 𝑁 is the number of reference views. However, utilizing
all cost volumes results in high memory consumption and also leads to ineffi-
cient rendering. To tackle this challenge, we propose a method to select those
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Fig. 2: 3D visibility scores and 2D visibility masks. For a novel view, depth
distribution is estimated from three input views, from which 3D points are sampled and
projected onto each view to determine visibility. These projections yield 3D visibility
scores 𝑚 𝑗 , normalized across the views, and are subsequently volume rendered into a
2D visibility mask M2D. This mask highlights the contribution of each input view to
the cost volume and guides the rendering process, aiding in the selection of input views
that optimize rendering quality and field of view coverage.

cost volumes with the largest contribution to viewport coverage and potential
enhancement of rendering quality for novel views. To evaluate the contribution
of each cost volume, we present multi-view 3D visibility scores as a metric.

For each sample point in a cost volume, we calculate its corresponding 3D
visibility scores (the gray-shaded part in Fig. 2). These scores quantify the level
of observation from various cost volumes, serving as a measurement of visibility.
To calculate the 3D visibility scores of a single cost volume in a rendered view,
we sample rays from the rendered view and aggregate the visibility weight from
the reference views. Let 𝐼 represent the total number of reference views. We use
𝟙𝑖 (𝑝) to indicate whether a sample point 𝑝 is in the viewport of reference view
𝑖 (bottom part in Fig. 2). The 3D visibility scores 𝑚 𝑗 are calculated using the
formula:

𝑚 𝑗 =

∑𝐼
𝑖=1 𝟙𝑖 (𝑝)
𝐼

, (3)

where the subscript 𝑗 denotes the sampled 3D point index along the ray, and
the output 3D visibility scores range from 0 to 1. Each point on the mask in-
dicates its 3D visibility score, with larger values reflecting higher confidence in
the information at a specific sample point. The visibility score can be utilized as
the weight for the feature of a point on a specific cost volume. Therefore, with
the 3D visibility scores, we can combine the results from different cost volumes
when volume rendering.

After obtaining 3D visibility scores for each cost volume, we propose the
2D visibility mask. The 2D visibility is constructed by volume rendering the 3D
metrics scores to novel view, as shown in Fig. 2. Similar to Eq. 2, given ray r
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𝜎, 𝑐 !

Share weights

𝜎, 𝑐 "

⋮3D visibility
scores {𝑚#}
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Novel view
Combined rendering (Eq. 7)

Novel view’s 
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Fig. 3: Combined rendering from multiple cost volumes. Using a single cost
volume, as in traditional MVS-based NeRFs, often introduces padding artifacts or in-
correct geometry, as indicated by the red dashed circles. Our method warps selected
cost volumes to the novel view’s frustum and applies 3D visibility scores 𝑚 𝑗 as weights
to blend multiple cost volumes during volume rendering. Combined rendering provides
broader viewport coverage and combines information from multiple cost volumes, lead-
ing to improved image synthesis and alleviating artifacts.

from the camera center 𝑜 with direction 𝑑, the value of 2D visibility mask is
given by:

M2D (r) =
𝐽∑︁
𝑗=1

𝑇 ′ ( 𝑗)𝛼
(
𝑚 𝑗𝛿 𝑗

)
𝑚 𝑗 , (4)

where 𝑇 ′ ( 𝑗) = exp(−∑ 𝑗−1
𝑠=1 𝑚𝑠𝛿𝑠) is the transmitte considering 3D visibility scores.

The 2D visibility mask will be used in cost volume selection; we will thoroughly
discuss it in Sec. 3.4.

3.3 Rendering by Combining Multiple Cost Volumes

Our proposed rendering differs from the traditional one (Eq. 2) by considering
3D visibility scores and combining multiple cost volumes. Below, we explain
the modifications we make. First, let us only consider a single cost volume for
simplicity. The pixel color output by considering only a single cost volume is
given by:

𝐶single (r) =
𝐽∑︁
𝑗=1

𝑇single ( 𝑗)𝛼
(
𝜎𝑗𝛿 𝑗

)
𝑚 𝑗𝑐 𝑗 , (5)

𝑇single ( 𝑗) = exp

(
−
𝑗−1∑︁
𝑠=1

(𝜎𝑠𝛿𝑠 − ln𝑚𝑠)
)
. (6)
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To further consider multiple cost volumes and also utilize their corresponding
3D visibility scores, we modify Eq. 5 to combine the result across multiple cost
volumes. The final proposed volume rendering is given by:

𝐶 (r) =
𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1

𝑇combined ( 𝑗)𝛼
(
𝜎𝑘𝑗 𝛿 𝑗

)
𝑀 𝑘
𝑗 𝑐
𝑘
𝑗 , (7)

𝑇combined ( 𝑗) =
𝐾∑︁
𝑘=1

exp

(
−
𝑗−1∑︁
𝑠=1

(
𝜎𝑘𝑠 𝛿𝑠 − ln𝑀𝑘

𝑠

))
, (8)

where 𝐾 is the number of selected cost volumes, and 𝑀𝑘
𝑗
=

𝑚𝑘
𝑗∑𝐾

𝑘=1 𝑚
𝑘
𝑗

is the nor-

malized 3D visibility score so that the summation of 3D visibility scores over
selected cost volumes equals 1.

The illustration and effect of combining multiple cost volumes in rendering
is shown in Fig. 3. Existing MVS-based NeRFs use a single cost volume to ren-
der novel views that contain padding artifacts and wrong geometry. Combining
multiple cost volumes in rendering alleviates these artifacts and broadens the
viewport coverage of novel views, thus improving the rendering quality.

3.4 Support Cost Volume Set Selection

As mentioned in Sec. 3.3, we only select 𝐾 cost volumes for combined render-
ing to optimize rendering efficiency. Ideally, combining selected 𝐾 cost volumes
should provide maximum coverage for the rendered view. This problem can be
formulated as maximum coverage problem, which is NP-hard. Thus, to complete
view selection in polynomial time, we propose a greedy algorithm to construct
a support set S of 𝐾 cost volumes in Algorithm 1. Nemhauser et al. [44] also
proved that the greedy algorithm is the optimal algorithm in polynomial time.

We show an example of the proposed selection algorithm in Fig. 4. At the
beginning of the algorithm, our method selects the cost volume with the largest
coverage score of the corresponding 2D visibility mask. The rendered image
contains padding artifacts near the image boundaries as the viewport of this
single cost volume is limited. Later on, our selection algorithm gradually selects
the cost volumes that could maximize the visibility coverage and, therefore,
enlarge the valid region of the rendered view. As a result, the rendering quality of
novel views progressively grows as more cost volumes are selected and combined
in the volume rendering.

3.5 End-to-end Fine-tuning

Our method is compatible with any MVS-based NeRFs to boost the rendering
quality. Moreover, our approach is not optimized for a specific scene and could
be generalized to new scenes, allowing it to enhance any end-to-end fine-tunable
model. Fine-tuning refines geometry and color consistency within cost volumes
and eliminates padding artifacts through combined rendering from multiple cost
volumes. Thus, our method could augment the capabilities of advanced MVS-
based NeRFs beyond ENeRF and MVS-NeRF.
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Algorithm 1 Support cost volume set selection algorithm

Input: {CV𝑛}𝑁𝑛=1: 𝑁 candidate cost volumes
Input: {M2D

𝑛 }𝑁𝑛=1: 2D visibility masks
Output: S: a support set of 𝐾 cost volumes
1: S← ∅ ⊲ Initialize the support CV set as an empty set
2: P0 ← 2D Mask filled with ones ⊲ Initialize the view coverage
3: while |S| < 𝐾 do
4: best_idx← 0
5: max_ratio← 0
6: 𝑖 ← 1 ⊲ Initialize selection iteration
7: while 𝑖 ≤ 𝑁 do
8: if CV𝑖 ∉ S then ⊲ Consider remaining views only
9: ratio← ∑ (P𝑖−1 ·M2D

𝑖
)

10: if ratio > max_ratio then
11: max_ratio← ratio
12: best_idx← 𝑖

13: end if
14: end if
15: 𝑖 ← 𝑖 + 1
16: end while
17: P𝑖 ← P𝑖−1 · (1 −M2D

best_idx) ⊲ Update the view coverage
18: S← S ∪ {CVbest_idx} ⊲ Add the best CV to the set
19: end while

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate two datasets: (1) the Free dataset collected by F2-
NeRF [69] and (2) the ScanNet [14] dataset. The Free dataset consists of seven
challenging scenes featuring narrow, long camera trajectories and focused fore-
ground objects. Our evaluations on the Free dataset follow the train/test split
in F2-NeRF [69] by using one-eighth of the images for testing and the rest for
training. As for the ScanNet dataset, we strictly follow the train/test splits as
defined in NeRFusion [91], NerfingMVS [72], and SurfelNeRF [20], with eight
large-scale indoor scenes. We assess the rendering quality with PSNR, SSIM [71],
and LPIPS [90] metrics.

Baselines. We compare BoostMVSNeRFs with various state-of-the-art NeRFs,
including fast per-scene optimization NeRFs such as F2-NeRF [69] and Zip-
NeRF [4] and generalizable NeRFs such as MVSNeRF [9], ENeRF [32] and Sur-
felNeRF [20].

In particular, F2-NeRF excels in outdoor scenes with free camera trajectories.
Our method employs cost volume representations similar to MVSNeRF and EN-
eRF but enlarges valid visible regions by fusing multiple cost volumes. Although
SurfelNeRF also proposes fusing multiple surfels as a type of 3D representation,
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Fig. 4: Support cost volume set selection. Initially, our greedy algorithm selects
a single cost volume, providing maximum coverage yet insufficient to prevent padding
artifacts (orange boxes). Subsequent iterations incorporate additional cost volumes,
progressively expanding view coverage, and improving image quality, as indicated by
the increasing PSNR values.

the fusion method and its scene representation differ from BoostMVSNeRFs. To
ensure fairness, we used the same experimental settings as in previous studies
and used official codes where possible. All the training, fine-tuning, and evalua-
tions are done on a single RTX 4090 GPU.

Our method is compatible with MVS-based techniques, allowing us to employ
pre-trained models such as MVSNeRF and ENeRF in our experiments. Unless
otherwise specified, we use ENeRF as our backbone MVS-based NeRF method
in all the experiments. We optimize the parameters, 𝑁 = 6, 𝐼 = 3, and 𝐾 = 4,
for efficient rendering and high quality. Our method achieves similar runtime
performance in rendering and fine-tuning as other generalizable NeRF methods
but renders significantly improved quality.

4.2 Comparison with State-of-the-art Methods

Free Dataset. On the Free dataset, BoostMVSNeRFs emerges as the best
among no per-scene and per-scene optimization NeRF methods as shown in
Table 1 and Fig. 5. Compared to F2-NeRF and SurfelNeRF, which produced
blurred images, BoostMVSNeRFs leverages multiple cost volume fusion and view
selection based on visibility maps for superior rendering quality. Our method
demonstrates compatibility with various camera trajectories and achieves results
comparable to those of existing methods.

Our method outperforms generalizable NeRF techniques like MVSNeRF and
ENeRF on the Free dataset (Table 1), enhancing rendering quality through our
view selection and multiple cost volume combined rendering approach. Inte-
grated with MVS-based NeRFs, our method achieves a PSNR improvement of
0.5-1.0 dB without requiring additional training. End-to-end fine-tuning on test
scenes further enhances rendering quality, particularly in regions where a sin-
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Table 1: Quantitative comparisons with state-of-the-art methods on the
Free [69] dataset.

Method Setting PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑

MVSNeRF [9]
No per-scene
optimization

20.06 0.721 0.469 1.79
MVSNeRF + Ours 20.52 0.722 0.470 1.26
ENeRF [32] 23.24 0.844 0.225 9.90
ENeRF+Ours 24.21 0.862 0.218 5.51

F2-NeRF [69]

Per-scene
optimization

25.55 0.776 0.278 3.75
Zip-NeRF [4] 25.90 0.772 0.241 0.66
MVSNeRFft [9] 20.49 0.698 0.425 1.79
MVSNeRF + Oursft 21.59 0.759 0.265 1.26
ENeRFft [32] 25.19 0.880 0.180 9.90
ENeRF+Oursft 26.14 0.894 0.171 5.51

No per-scene optimization Per-scene optimization

Ground truth MVSNeRF Ours F2-NeRF Zip-NeRF MVSNeRF + ft Ours + ft
[9] [69] [4] [9]

Fig. 5: Qualitative comparisons of rendering quality on the Free [69] dataset.

gle cost volume falls short. This highlights the benefit of multiple-cost volume
fusion. For detailed visual comparisons, please refer to Fig. 6.

ScanNet Dataset. We conducted a comprehensive comparison of BoostMVS-
NeRFs with other state-of-the-art methods in no per-scene and per-scene opti-
mization settings on the ScanNet dataset in Table 2. BoostMVSNeRFs demon-
strates superior performance with a PSNR of 31.73 dB in no per-scene opti-
mization, outperforming SurfelNeRF due to its cost volume fusion and efficient
view selection strategy. In per-scene optimization, BoostMVSNeRFs excels again
with a PSNR of 32.87 dB, indicating its effectiveness in cost volume fusion
and per-scene adaptation. We also compare our method with two generalizable
NeRF methods, MVSNeRF and ENeRF, on the ScanNet dataset in Table 2.
Our method achieves better rendering quality over existing MVS-based NeRF
methods in SSIM without per-scene optimization and in PSNR and LPIPS with
per-scene fine-tuning.

Furthermore, our approach showed impressive results on large-scale scenes,
outperforming SurfelNeRF in both direct inference and per-scene fine-tuning.
Unlike SurfelNeRF, which suffered from artifacts due to its surfel-based rendering
approach, our model’s multiple cost volume fusion and efficient view information
selection and aggregation led to high-quality and consistent renderings, as shown
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Ground truth MVSNeRF [9] MVSNeRF + ft ENeRF [32] ENeRF + ft

MVSNeRF + ours MVSNeRF + ours + ft ENeRF + ours ENeRF + ours + ft

Fig. 6: Qualitative rendering quality improvements of integrating our
method into MVS-based NeRF methods on the Free dataset.

Table 2: Quantitative comparisons with state-of-the-art methods on the
ScanNet [14] dataset.

Method Setting PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑

SurfelNeRF [20]

No per-scene
optimization

19.28 0.623 0.528 1.25
MVSNeRF [9] 23.40 0.862 0.367 1.99
MVSNeRF + Ours 23.66 0.872 0.365 1.41
ENeRF [32] 31.73 0.955 0.206 11.03
ENeRF + Ours 31.01 0.957 0.219 6.14

F2-NeRF [69]

Per-scene
optimization

28.11 0.894 0.230 4.18
SurfelNeRFft [20] 20.04 0.653 0.504 1.25
Zip-NeRF [4] 32.24 0.917 0.214 0.74
MVSNeRFft [9] 24.69 0.872 0.316 1.99
MVSNeRF + Oursft 24.63 0.880 0.320 1.41
ENeRFft [32] 32.70 0.960 0.174 11.03
ENeRF + Oursft 32.87 0.955 0.173 6.14

in Fig. 5. This indicates our cost volume fusion’s effectiveness in reconstructing
large-scale scenes efficiently and accurately.

4.3 Ablation Study

Cost Volume Selection Scheme. In Sec. 3.4, we propose a greedy method to
select the cost volumes that will approximately maximize the view coverage. To
validate the effectiveness of our method, We conducted experiments comparing
two other cost volume selection methods. These two methods are: (a) selecting
𝐾 cost volumes that are closest to the render view pose, which is adopted by
ENeRF [32] and (b) selecting corresponding cost volumes directly with the high-
est contribution of 2D visibility mask. In particular, method (b) is a degenerate
version of method our proposed selection method (c), which is based on view
coverage. Table 3 shows that our greedy cost volume selection method performs
better than the other two methods.
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Table 3: Ablation of the cost volume selection. We compare three different
strategies for cost volume selection on all scenes of the Free [69] dataset: (a) ENeRF’s
method, which is based on pose distance, (b) direct selection of cost volumes with max-
imum visibility, and (c) Our proposed greedy method, which maximizes the visibility
coverage.

Method PSNR ↑ SSIM ↑ LPIPS ↓

(a) ENeRF [32] 24.09 0.861 0.220
(b) Maximize 2D visibility M2D

𝑖
24.19 0.861 0.218

(c) Maximize view coverage P𝑖 24.21 0.862 0.218

Table 4: Different ways of combining more input views. We compare training
an MVS-based NeRF with a larger number of input views (6 input views here) and our
proposed cost volume selection and combined rendering on all scenes of the Free [69]
dataset.

Method Setting PSNR ↑ SSIM ↑ LPIPS ↓

ENeRF3-view [32] No per-scene
optimization

23.24 0.844 0.225
ENeRF6-view [32] 23.53 0.770 0.231
ENeRF3-view + Ours 24.21 0.862 0.218

ENeRF3-view
ft [32] Per-scene

optimization

25.19 0.880 0.180
ENeRF6-view

ft [32] 25.61 0.840 0.172
ENeRF3-view + Oursft 26.14 0.894 0.171

Single Cost Volume with More Input Views vs. Combining Multiple
Cost Volumes In our method, we select multiple cost volumes and combine
them in volume rendering, while ENeRF only forms one cost volume. To exam-
ine our method’s effectiveness, we train ENeRF (originally three input views)
with more input views (6 in this ablation, in order to evenly compare with our
proposed method). The results are shown in Table 4 and Fig. 7. We can see an
increase in the number of input views which requires time-consuming training to
construct a single cost volume. However, the rendering quality improvements are
subtle both with or without per-scene fine-tuning. In contrast, our cost volume
selection method and combined rendering scheme improve the rendering quality
by a large margin and could be further optimized with per-scene fine-tuning.

Robustness with Sparse Input Views. Our proposed combined rendering
from multiple cost volumes addresses the challenges of reconstructing large-scale
and unbounded scenes due to broader viewport coverage. Therefore, our method
could be more robust to sparse input views as more and farther cost volumes
are considered during rendering. We conduct an experiment comparing perfor-
mance across various degrees of sparse views to demonstrate the robustness of
our method with sparse input views. Specifically, we uniformly sub-sample the
training views and evaluate the rendering quality. The results show a more sig-
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ENeRF3-view ENeRF6-view ENeRF3-view + Ours

Ground truth ENeRF3-view
ft ENeRF6-view

ft ENeRF3-view + Oursft

Fig. 7: Visual effects of different ways of combining more input views. Ar-
tifacts in disocclusion regions cannot be resolved by including more input views for a
single cost volume. Our method could alleviate these artifacts by combining more cost
volumes in rendering.
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Fig. 8: Robustness with sparse input views. With more sparse input views, the
performance drop of our method is less severe than ENeRF, demonstrating the robust-
ness of our method against sparse input views by combining multiple cost volumes in
rendering.

nificant decline in both PSNR and SSIM for ENeRF compared to ours while
input views become sparse, as indicated by the curve in figure 8.

5 Conclusion

In summary, our BoostMVSNeRFs enhances MVS-based NeRFs, tackling large-
scale and unbounded scene rendering challenges. Utilizing 3D visibility scores for
multi-cost volume integration, BoostMVSNeRFs synthesizes significantly bet-
ter novel views, enhancing viewport coverage and minimizing typical single-
cost volume artifacts. Compatible with current MVS-based NeRFs, BoostMVS-
NeRFs supports end-to-end training for scene-specific enhancement. Experimen-
tal results validate the efficacy of our method in boosting advanced MVS-based
NeRFs, contributing to more scalable and high-quality view synthesis. Future
work will focus on reducing MVS dependency and optimizing memory usage,
furthering the field of neural rendering for virtual and augmented reality appli-
cations.
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