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ABSTRACT

We introduce a framework for protein sequence representation learning that
decomposes the task between manifold learning and distributional modelling.
Specifically we present a Latent Space Diffusion architecture which combines a
protein sequence autoencoder with a denoising diffusion model operating on its
latent space. We obtain a one-parameter family of learned representations from
the diffusion model, in addition to the autoencoder’s latent representation. To ad-
dress the challenge of identifying an appropriate latent space for diffusion, we
propose and evaluate two autoencoder architectures: a homogeneous model forc-
ing amino acids of the same type to be identically distributed in the latent space,
and an inhomogeneous model employing a noise-based variant of masking.

1 INTRODUCTION

Proteins are an important class of biomolecules whose function, interaction, and evolutionary re-
lationships are central to understanding cellular mechanisms and the complexity of life. While the
underlying principles governing proteins and their behaviour admit explicit formulations in quantum
chemistry, these are in practice too complex to model directly. The quest for simplifying represen-
tations and approximations which strike a balance between generality, accuracy and computational
efficiency is a core challenge of computational biology.

Machine learning provides a powerful suite of tools for representation learning. A prominent method
is an autoencoder employing an information bottleneck to learn a compressed latent representation
Tishby et al. (2000). For proteins this is less applicable however, as a protein’s primary sequence
already provides an incredibly compact representation (each amino acid, being a categorical variable
of size 20, can be represented with just 5 bits). Indeed the primary sequence completely determines
a protein, and the key challenge is how to decode from this. Applications of machine learning
to protein representation learning from sequence data can be roughly organised around two main
threads: those such as AlphaFold which leverage multiple sequence alignments (MSAs) capturing
co-evolutionary information Jumper et al. (2021); Rao et al. (2021); Truong Jr & Bepler (2023),
and those such as ESM Rives et al. (2021); Lin et al. (2023); Hayes et al. (2024) utilising masked
language modelling (MLM) Devlin et al. (2019); Elnaggar et al. (2021); Brandes et al. (2022).

Generative modelling is closely tied to representation learning Kingma & Welling (2014); Goodfel-
low et al. (2014). Indeed masked language modelling is a form of reconstructive learning, where
a model is trained to restore partially corrupted input, which underlies its ability to learn rich con-
textually aware representations Devlin et al. (2019). For continuous spaces, Gaussian diffusion has
emerged as a leading generative method due to its ability to produce diverse high-quality samples
from complex distributions Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020). By
learning how Gaussian noise diffuses through a data space, a diffusion model learns to approximate
the score function of the data distribution, s(x) = ∇x log pdata(x). From a statistical physics per-
spective, expressing the distribution in Boltzmann form pdata(x) ∼ exp(−E(x)), the score function
admits a natural interpretation as a distributional force: F (x) ≡ −∇xE(x) = s(x), which underlies
a diffusion model’s ability to both navigate the distribution efficiently as well as to learn a meaning-
ful representation of the data Song et al. (2020); Vincent et al. (2008).

Studies of generative modelling on protein sequence data have primarily focused on discrete diffu-
sion methods Gruver et al. (2024); Alamdari et al. (2023); Wang et al. (2024). These are counterparts
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to Gaussian diffusion that place emphasis on the categorical nature of amino acids. Unlike the con-
tinuous case however, there is not yet an established discrete diffusion method, in part due to the
challenges that categorical variables lack a natural order, and absence of continuity which means
that a single change can have an abrupt effect (e.g. a single-point mutation). A notable work how-
ever is DPLM Wang et al. (2024), whose discrete diffusion method is a generalised form of masked
language modelling. Indeed the authors highlight the representation learning capabilities of their
generative model and demonstrate that it achieves competitive performance with ESM.

Let us question however whether a masking-based approach is the best route towards modelling
protein sequence data. From a reconstructive learning perspective, it is unclear whether masking
is an optimal way to represent a corrupted sequence. For instance, the unmasked amino acids
are fully specified with no ambiguity, while for the masked amino acids only their ambiguity is
conveyed. One can imagine instead an alternative corruption process where partial information is
retained/erased, for example expected physiochemical properties or aspects of long-range dependen-
cies. Similarly from a generative perspective, one may question the task of performing distributional
modelling directly in the discrete domain, as at the level of sequence the protein landscape is far from
smooth: single mutations can have abrupt consequences while compound mutations may be strongly
correlated.

This motivates us to explore a switch in focus from a discrete representation of sequence space
to a continuous one. This can be framed as making a distinction between two aspects of protein
representation learning: manifold learning and distribution learning. The first addresses the question
of how to embed protein sequences in a continuous latent space, while the second concerns the
distribution of protein sequences over this latent space. Here Gaussian diffusion can be employed
for the distributional modelling, and so the question then is how to learn an appropriate latent space.

Previous works adopting a latent diffusion approach for protein sequence data examined the use
of the ESM embeddings Chen et al. (2024); Meshchaninov et al. (2024). These had limited suc-
cess however, which can be attributed to the embeddings retaining much of the discreteness of the
underlying sequence Li et al. (2023). In essence, amino acid embeddings are too robust to added
noise, which obstructs the learning ability of denoising. Indeed a parallel can be made here to high-
resolution images, for which latent diffusion models were originally introduced Rombach et al.
(2022).

In this work we attempt to address the challenge of how to construct a latent space which facilitates
the distributional modelling of proteins sequence data. To this end we propose two novel sequence
autoencoder architectures: a homogeneous model forcing amino acids of the same type to be identi-
cally distributed in the latent space, and an inhomogeneous model employing a noise-based variant
of masking. We train a diffusion model on their latent space, and identify how this gives rise to an ad-
ditional one-parameter family of learned representations. We focus on this discriminative capability
of the diffusion model, and evaluate it on a diverse set of representatation learning benchmarks.

2 RELATED WORK

The use of diffusion/denoising for protein representation learning was introduced for the structural
representation Zaidi et al. (2022); Liu et al. (2022), based on a connection between the learned
score function and molecular force fields. DSMBind employs SE(3) denoising score matching as
an unsupervised pre-training task for binding energy prediction Jin et al. (2023). From a generative
perspective, diffusion has also been mostly applied to structure Watson et al. (2023); Ingraham
et al. (2023); Yim et al. (2023); Lee et al. (2023), for which the Gaussian form of diffusion can
be employed. On protein structure prediction, AlphaFold 3 model Abramson et al. (2024) trains
a conditioned diffusion model for the generation of its structural predictions. Application to the
generation of conformational ensembles has also been explored Jing et al. (2024); Hassan et al.
(2024).

Discrete diffusion applied on protein sequence data has been explored in LaMBO-2 Gruver et al.
(2024), EvoDiff Alamdari et al. (2023), and DPLM Wang et al. (2024). DPLM stands out for eval-
uating the representation learning capabilities of their model, demonstrating it’s ability to perform
competitively across a range of prediction tasks. Two studies explored latent diffusion on pre-trained
ESM2 embeddings Chen et al. (2024); Meshchaninov et al. (2024).
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Figure 1: The LSD model is comprised of (a) a protein sequence autoencoder which learns a la-
tent space z, and (b) a diffusion model acting on this latent space. The autoencoder is trained
end-to-end by balancing a reconstruction loss, between input amino acid tokens and output token
logits, against a normalization loss on the distribution of latent space embeddings. We consider
two variants, LSD-TN with a non-trivial normalization loss and LSD-NM with a non-trivial recon-
struction loss, as described in Sec. 3. The diffusion model learns to map noised latent embeddings
zt = cos(πt/2)z + sin(πt/2)ε to their orthogonal complements vt = − sin(πt/2)z + cos(πt/2)ε,
which thereby provides an additional one-parameter family of sequence representation to that ob-
tained at the latent space.

More broadly, the link between discriminative and generative modelling underlies the auto-
regressive approach Ferruz et al. (2022); Madani et al. (2023), the masked language modelling
approach Rives et al. (2021); Lin et al. (2023); Hayes et al. (2024); Elnaggar et al. (2021); Brandes
et al. (2022), as well as variational autoencoder approaches Sinai et al. (2017); Sevgen et al. (2023),
to modelling protein sequence data.

Beyond the field of protein modelling, denoising autoencoders date back to the seminal work Vin-
cent et al. (2008). Diffusion-based representation learning was advanced in Abstreiter et al. (2021).
Latent diffusion models were introduced in the image domain Rombach et al. (2022), and the ap-
plication of latent diffusion to discrete data has been predominantly studied in the natural language
processing literature Li et al. (2022); Dieleman et al. (2022); Strudel et al. (2022); Gao et al. (2024);
Ye et al. (2024); Gulrajani & Hashimoto (2024).

3 LATENT SPACE DIFFUSION

We employ a Latent Space Diffusion (LSD) architecture, illustrated in Fig. 1, comprised of

• an autoencoder learning a latent manifold embedding of protein sequences,

• a diffusion model for the distributional modelling of protein sequence datasets over this
learned latent space.

We adopt a transformer-based architecture for each component as shown in Appendix A. The au-
toencoder is composed of an encoder-decoder pair, which we set to have an equal number of lay-
ers. The encoder takes as input tokenized protein sequences, and outputs latent embeddings za,i
of amino acids, with a indexing amino acid position and i the coordinate of the embedding space.
The decoder takes the latent embeddings za,i as input, and outputs corresponding token logits. The
diffusion model is a conditioned transformer and we describe its action on the latent space below in
the description of the diffusion loss. A more detailed description of the architecture is provided in
Appendix A.

We train the auto-encoder under competition between a reconstruction loss and a normalization loss
on the latent embeddings. For the reconstruction loss we employ the standard cross-entropy between
the input tokens and output token logits. The normalization loss is less straightforward. In contrast
to a variational auto-encoder Kingma & Welling (2014) which maps input to distributions over the
latent space for which it learns the mean and variance, we let the encoder map directly to the latent
space and guide the distribution of za,i over a to be normally distributed (this foregoes the generative
capability of the autoencoder, which is compensated for here by the diffusion model). Specifically,
given a batch of sequences we employ a univariate parametric form of the Kullback–Leibler diver-
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gence

LN =
1

2d

d∑
i=1

(µ2
i + σ2

i − log σ2
i − 1), (1)

expressed in terms of the empirical mean µi and variance σ2
i of the za,i, with d the embedding di-

mension. We considered also a multivariate parametric form but found this to degrade performance,
see ablation in Appendix C.

The simple combination of reconstruction loss and normalisation loss is not however sufficient to
drive meaningful learning in the latent space. To achieve this, we consider two variants as follows:

• Token Norm (LSD-TN): here we modify the normalization loss by applying it separately
to the embeddings of each amino acid type. Specifically, within each batch, we partition the
latent embeddings into 20 sets, each corresponding to one of the 20 canonical amino acids,
and employ a separate normalization loss for each set. While the default normalization
loss allows different amino acid types to occupy distinct regions under the same normal
distribution, this approach imposes a stricter constraint, creating an effective bottleneck for
representation learning.

• Noise Masking (LSD-NM): here we modify the reconstruction loss to a variant of MLM
designed for greater robustness to noise. Unlike standard MLM, where a fraction of amino
acid embeddings are fully masked while the rest remain unaltered, our approach applies
varying levels of corruption by inhomogeneously adding Gaussian noise to the latent em-
beddings. Specifically, we transform each amino acid embedding vector as

za → cos(πta/2)za + sin(πta/2)ε, (2)

where ta ∈ (0, 1) controls the noise level and ε is an embedding vector sampled from
N (0, 1). To reflect this corruption in the reconstruction loss, we weight each embedding’s
contribution by the noise amplitude sin2(πta/2), ensuring that highly corrupted embed-
dings dominate the training signal, while minimally corrupted ones contribute negligibly.
We explored two sampling strategies for ta: uniform sampling over (0,1) and sampling
proportional to the signal amplitude cos2(πta/2), as used for training the diffusion model
(see below). The latter approach, which results in most amino acids being weakly noised
while a few are strongly noised, performed better, and we adopt this choice in the models
we present. See ablation in Appendix C.

The diffusion model is trained on the autoencoder’s latent space. For this we employ a variance-
preserving cosine noise schedule Nichol & Dhariwal (2021), the v-target objective Salimans & Ho
(2022), and epsilon prediction loss Ho et al. (2020). Specifically, the latent embeddings z get (here
uniformly) noised to

zt = cos(πt/2)z + sin(πt/2)ε, (3)

for t ∈ (0, 1) and ε ∈ N (0, 1), and the diffusion model is trained to learn

vt = − sin(πt/2)z + cos(πt/2)ε. (4)

i.e. v̂t = Diffusion(zt, t). The epsilon prediction loss, expressed in terms of v, is weighted by the
signal amplitude

LD =
1

2
Et∼(0,1), ε∼N (0,1) cos

2(πt/2)∥v̂t − vt∥2, (5)

and we evaluate this with importance sampling. Indeed, from a representation learning perspective
the increased weight for sampling t closer to 0 is intuitive, as information gets washed out with
increasing t.

In this work we focus on the discriminative capability of the diffusion model. While an ultimate
objective of the LSD construction is to develop also the generative capability, we take the perspective
that the discriminative capability serves as a useful guide for identifying an appropriate autoencoder
architecture, and so defer the more challenging generative aspect until this is established.

Through its t-dependence, the diffusion model provides a one-parameter family of learned repre-
sentations. There are two subtleties to this however. The first arises from the fact that the input to
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Model Encoder / Decoder Diffusion

S 4.7M 7.3M
M 18.9M 29.0M

Table 1: Number of parameters for the S and M versions of the LSD model. The decoder is trivialised
for the MLM diffusion baseline.

the diffusion model, zt, depends on both t and sampled ε. As ε essentially amounts to Gaussian
broadening, we can treat this as regularization and employ the mean value, i.e. take

v̄t(z) = Diffusion(cos(πt/2)z, t). (6)

The second subtlety is that the diffusion model learns nothing for t ∼ 1 as the input there is noise.
This can be compensated for by switching to the score function, which from Tweedie’s formula
Robbins (1992) is expressed as

st(z) = − ε̂t(z)

sin(πt/2)
= − 2

sin(πt)

(
v̂t(z) + sin(πt/2)z

)
. (7)

Dropping the singular prefactor, we thus take the diffusion representations as

v̄t(z) + sin(πt/2)z. (8)

At t = 0, this reduces back to v̂t(z).

4 EVALUATION

We present here two trained models for both LSD-TN and LSD-NM variants. We call these S
and M, and provide their parameter counts in Table 1. Full model hyperparameters and training
details are given in Appendix A. To establish a baseline for their performance we additionally train
corresponding MLM models, along with a diffusion model on their learned embeddings, using an
identical setup. (In terms of Fig. 4 of Appendix A, the decoder’s transformer trunk is trivialized.
Masking is applied at the input to the encoder, as opposed the input of the decoder for LSD-NM.
We employ a 15% masking rate, and extract the latent embeddings after the layer norm following
the transformer layers to ensure they are appropriately normalised.) All models are trained on the
Uniref50 protein sequence dataset Suzek et al. (2015), with sequences of maximum length 254, and
omitting sequences with unknown or non-canonical amino acids (0.5% of the dataset).

We assess the discriminative capabilities of these models across a set of a property prediction tasks
assessing stability, interaction and functional characterization, which we adopt from SaProt Su et al.
(2023). We conduct zero-shot evaluation, freezing the backbone and training a simple predictor on
the mean of the embeddings across the sequence. We provide further information on the datasets
and predictor architecture in Appendix B.

We report the performance of the models in Table 2. For the LSD-NM and LSD-TN models and
the MLM diffusion baseline, we evaluate on both the latent space, at the output of the encoder,
and on the t = 0 output of the diffusion model applied on the latent space. To further benchmark
these results we additionally evaluate the predictor on two prominent protein representation learning
models, ESM2 Lin et al. (2023) and the discrete diffusion model DPLM Wang et al. (2024).

We first highlight the diffusion model results, which are the primary focus of this work. We see that
the LSD-TN and LSD-NM diffusion models consistently outperform the MLM diffusion models
across all evaluation metrics. Comparing the between the LSD-TN and LSD-NM variants, we see
that the LSD-NM performs better than LSD-TN on all but one task. The exception is the HumanPPI,
on which LSD-TN-M performs notably better. This may indicate a complementarity in how the two
different constructions organise correlations within their respective latent spaces.

Turning to the latent representations of the encoder we see that the situation is reversed, with
the MLM results here greatly outperforming their LSD counterparts. This aligns with the well-
established strength of masked language modelling for representation learning, in contrast to the
LSD autoencoders which were not designed to optimise for this. Indeed, the MLM encoder performs
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Models Thermostability ↑ HumanPPI ↑ Metal Ion Binding ↑ DeepLoc ↑
Subcellular Binary

Spearman’s ρ Acc (%) Acc (%) Acc (%) Acc (%)

ESM 8M 0.648 72.7 63.2 68.2 88.8
ESM 650M 0.690 81.3 66.8 77.6 91.0
DPLM 650M 0.693 76.7 69.1 78.5 90.8

MLM-S: Encoder 0.606 72.3 65.0 60.1 86.3
MLM-S: Diffusion (t = 0) 0.474 57.7 63.0 46.1 74.3
MLM-M: Encoder 0.613 72.3 63.5 62.4 87.3
MLM-M: Diffusion (t = 0) 0.543 60.6 61.7 52.2 76.2

LSD-TN-S: Encoder 0.560 58.6 64.6 53.0 76.6
LSD-TN-S: Diffusion (t = 0) 0.562 62.6 62.8 48.2 75.3
LSD-TN-M: Encoder 0.571 59.1 63.2 54.4 76.7
LSD-TN-M: Diffusion (t = 0) 0.571 65.9 62.6 52.7 76.5

LSD-NM-S: Encoder 0.553 62.6 64.1 54.6 77.6
LSD-NM-S: Diffusion (t = 0) 0.567 60.2 65.0 53.5 76.1
LSD-NM-M: Encoder 0.571 61.6 64.6 55.0 77.3
LSD-NM-M: Diffusion (t = 0) 0.581 61.1 64.7 54.2 76.8

Table 2: Zero-shot performance on protein property prediction tasks. The t = 0 diffusion represen-
tations are highlighted, green for the LSD models and gray for the MLM baseline. Reported scores
are computed as the mean of 5 randomly initialized predictors.

Figure 2: Evaluation of the t-dependence of the diffusion representation for the five protein property
prediction tasks: (a) LSD-TN-M, (b) LSD-NM-M. The error bars are computed from the results of
5 randomly initialized predictors.

best of all the evaluated MLM, LSD-TN and LSD-NM representations, and performs significantly
better than even the best LSD diffusion models. This trend is also exhibited by the ESM 8M model,
which has a smaller parameter count than all the LSD models.

We also compare between the encoder and diffusion representations. For the LSD-TN model we
observe a complementarity, with results consistently better for the encoder on Metal Ion Binding and
DeepLoc-Subcellular, on a par for Thermostability and DeepLoc-Binary, and better for the diffusion
model on HumanPPI. For LSD-NM the results are more similar between the two modules, while for
the MLM model the diffusion representations all significantly score lower than the encoder’s.

We now turn to the t-dependence of the diffusion representations. In Fig. 2 we evaluate the perfor-
mance of the regularised score function v̄t(z)+ sin(πt/2)z for all five tasks for the LSD-TN-M and
LSD-NM-M models. For the LSD-TN model we observe that the curves are notably flat, with the
exception of HumanPPI although that could reflect the greater uncertainty in that metric. For LSD-
NM on the other hand, there is some variation to the curves with different trends for the different
tasks. This may reflect the expectation that different correlations are captured at the different scales
parameterised by t, but a definitive conclusion cannot be made. Again the HumanPPI metric stands
out. We observe a consistent peak at t = 0.15 with value 0.807 ± 0.019, which (remarkably) is on
a par with the ESM2 and DPLM 650M models.
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Figure 3: UMAP projections of the latent space learned by LSD-NM-M Diffusion model. (a)
Coloured by amino acid. (b) Coloured by relative mutability Jones et al. (1992). (c) Coloured
by hydrophobicity nature. (d) Coloured by hydrophobicity index Argos et al. (1982). (e) Coloured
by average flexibility index Bhaskaran & Ponnuswamy (1988). (f) Coloured by residue accessible
surface area in folded protein Chothia (1976).

4.1 VISUALIZATION

To complement the above quantitative analysis, we provide a UMAP-based visual analysis of the
learned representations in Fig. 3. We focus on the best performing LSD-NM diffusion representa-
tion, and use colouring to highlight the learned biological features. For each plot, we sample 64
sequences of length 100 amino acids from UniRef50, process them through the encoder and diffu-
sion models, and employ UMAP to project the resulting embeddings to 2D.

We also conduct an attention map analysis for the LSD-NM-S and MLM-S models in appendix D
to better understand how contextual information is integrated in each of these models.

5 DISCUSSION

The results of our evaluation highlight the key challenge in applying latent space diffusion to protein
sequences: identifying an appropriate latent space. We observe that embeddings optimized for
representation learning, e.g. those from the MLM baseline, result in an underperforming diffusion
model. To address this, we proposed and analyzed alternative latent space learning methods designed
to prioritise well-distributed embeddings. While these achieved the goal of boosting the diffusion
model’s performance, they ultimately fell short of matching the overall performance of token-based
reconstructive learning methods like MLM, or the discrete diffusion method of DPLM.

Nevertheless the autoencoder architectures we present have interesting features that may warrant
further study. To our knowledge, the Token Norm bottleneck introduced here is novel. It is par-
ticularly suitable for protein sequence data, where the 20 amino acids provide a limited vocabulary
compared to the much larger token vocabularies commonly used in NLP sequence modelling. The
LSD-TN model is notable for its simplicity, achieving reasonable representation learning perfor-
mance despite possessing a homogeneous bottleneck. We remark also that the univariate parametric
form of the Kullback-Leibler divergence normalization loss is crude, and can perhaps be improved.

7
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Our noise masking strategy for the LSD-NM model is quite similar to the diffusion denoising. A
key difference however is that for the autoencoder the noise is applied inhomogeneously, while for
the diffusion model it is applied uniformly across the sequence. The former places more emphasis
on locality, while the latter learns the overall data distribution, underpining its generative capability.
It may be interesting to explore if the two can be effectively combined. One possibility is to let the
decoder and diffusion model share the same transformer trunk.

We comment also on the one-parameter representations offered by the t-dependence of the diffusion
model. As described in Sec. 3 these amount to a regularised form of the score function, st(z). We
recall from the Introduction that the score function admits an interpretation as a distributional force.
Given that our models are trained on the evolutionary-scale Uniref50 dataset, we can thus offer an
interpretation of st(z) as a representation of the forces governing proteins, with the parameter t
setting the scale of the latent space over which these forces are computed.

The DPLM representation included in Table 2 correspond to the t = 0 pass of their discrete diffusion
model. It is unclear whether these can be extended non-zero t, as in this case the self-averaging
property of Gaussian noise is lost, but this may be worthy of further investigation.

6 CONCLUSION AND OUTLOOK

We have presented a Latent Space Diffusion approach for modelling protein sequence data, with
an initial focus on discriminative modelling. We highlighted the key challenge in developing this
framework, which is to learn a sufficiently well-distributed latent space for the effective training of
the diffusion model. To this end we proposed two novel autoencoder architectures: LSD-TN and
LSD-NM. We evaluated their zero-shot predictive performance across a range of protein prediction
tasks and conducted an ablation study of key design choices. We found that while the diffusion
performed better than with an MLM baseline, ultimately our trained models underperformed relative
to token-based reconstructive learning approaches.

Our study provides an initial exploration of the LSD approach and opens up several interesting di-
rections for future work. The architecture itself is not settled, and further research is needed to
refine the question of what constitutes a good latent space. Another aspect is the latent space’s di-
mensionality. It has been demonstrated that the learned embeddings of ESM(Fold) can be massively
compressed without significantly degrading their information content Lu et al. (2024). This mo-
tivates a compression of the latent space, which in turn can facilitate more effective distributional
modelling.

There is much to be learned about the richness of the information captured by the one-parameter
family of diffusion representations, and how this can be best employed for protein modelling. Look-
ing ahead, we also highlight that LSD could serve as a pre-trained model for fine-tuning on specific
tasks. In particular, freezing the autoencoder while fine-tuning the diffusion model offers a partic-
ularly natural route forward, and may help to bypass the catastrophic forgetting issues observed in
masked language models Wallat et al. (2021); Schmirler et al. (2024).

Another promising avenue is the incorporation of additional modalities, particularly protein struc-
tural data Mansoor et al. (2024). In this regard the continuous nature of the LSD formulation pro-
vides an advantage over discrete token-based approaches Hayes et al. (2024); Su et al. (2023).

Finally, it would be of great interest to scale up the model and explore its generative capabilities.

MEANINGFULNESS STATEMENT

Proteins are a fundamental class of biomolecules whose functions, interactions, and evolutionary
relationships are critical to understanding cellular mechanisms and the complexity of life. Recent
breakthroughs in deep learning and high-throughput sequencing have revolutionized protein repre-
sentation learning, opening new avenues for understanding biological systems. In this exploratory
study at the frontier of protein sequence modelling, we explore how manifold learning and distribu-
tional modelling can be integrated to capture complementary aspects of protein representations.
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A ADDITIONAL MODEL DETAILS

(a) (b) (c)

Figure 4: Detailed architecture: (a) encoder, (b) decoder (c) diffusion model.

All three components of the model, encoder-decoder-diffusion, are based on the transformer archi-
tecture as illustrated in Fig. 4. We employ RoPE positional encoding Su et al. (2024), Pre-LN Xiong
et al. (2020), SwiGLU activation functions Shazeer (2020). Sequences are padded to maximum
sequence length 256, and each component has internal BOS/EOS embeddings which are learned
independently and not output. For the decoder we employ a simple projection head onto the amino
acid logits. Time-conditioning for the diffusion model is implemented using the adaLN-zero pre-
scription described in DiT Peebles & Xie (2023).

The models are trained on Uniref50 with sequences limited to a maximum length of 254 (+2 for
BOS/EOS embeddings), with a batch size of 512, using the AdamW optimizer with weight decay
1e-3 and learning rate 2e-5, on one A100 80GB GPU. Model hyper-parameters are provided in
Table 3.

Table 3: Model details

Model name Module Model size Channels Heads Layers Steps

MLM-S Encoder 4.7M 256 16 6 200kDiffusion 7.3M

MLM-M Encoder 18.9M 512 16 6 100kDiffusion 29.0M

LSD-TN-S Encoder/Decoder 4.7M 256 16 6 200kDiffusion 7.3M

LSD-TN-M Encoder/Decoder 18.9M 512 16 6 100kDiffusion 29.0M

LSD-NM-S Encoder/Decoder 4.7M 256 16 6 200kDiffusion 7.3M

LSD-NM-M Encoder/Decoder 18.9M 512 16 6 100kDiffusion 29.0M

B EVALUATION DETAILS

In Section 4 we evaluate representation learning on a set of protein property prediction tasks which
we adopt from SaProt Su et al. (2023):

• Thermostability: protein melting temperature Tm data from the “Human-cell” splits of
the Thermostability task of the FLIP benchmark Dallago et al. (2021).
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• HumanPPI: binary classification whether two proteins interact from HumanPPI data Pan
et al. (2010) of the PEER benchmark Xu et al. (2022).

• Metal Ion Binding: binary classification of presence of metal ion–binding sites within a
protein Hu et al. (2022).

• DeepLoc: Predicts subcellular localization of proteins from the DeepLoc dataset Alma-
gro Armenteros et al. (2017).

– Subcellular: multi-class classification identifying one of 10 distinct subcellular com-
partments.

– Binary: binary classification between membrane-bound or soluble.

We perform zero-shot evaluation, training a predictor on the output of a frozen backbone. This
approach differs from the SaProt pipeline, which fine-tunes the backbone. As a result the values we
obtain for ESM2 are not identical to theirs; however they remain directly comparable. The same
applies to DPLM, which also uses the SaProt evaluation pipeline.

The predictor is a simple 2-layer regressor or classifier head. At input we take the mean of the
embeddings across the sequence, and for the HumanPPI task we concatenate the mean embeddings
of the two proteins. We take the hidden layer dimension of predictor equal to the dimension of the
input.

C ABLATIONS

Thermostability ↑ HumanPPI ↑ Metal Ion Binding ↑ DeepLoc ↑
Model Importance sampling Modules Subcellular Binary

LSD-NM-S

✓
Encoder 0.553 62.6 64.1 54.6 77.6
Diffusion 0.567 60.2 65.0 53.5 76.1

Off for noise masking Encoder 0.558 61.7 63.7 54.4 77.3
Diffusion 0.545 64.7 63.8 52.7 75.8

Off for decoder Encoder 0.543 60.6 62.8 55.2 77.2
Diffusion 0.540 68.0 59.2 52.2 76.5

Table 4: Importance sampling ablation.

Thermostability ↑ HumanPPI ↑ Metal Ion Binding ↑ DeepLoc ↑
Model Loss Modules Subcellular Binary

LSD-TN-S
Univariate Encoder 0.560 58.6 64.6 53.0 76.6

Diffusion 0.562 62.6 62.8 48.2 75.3

Multivariate Encoder 0.548 60.6 63.6 51.6 76.5
Diffusion 0.528 53.2 61.1 44.9 75.3

Table 5: Normalization loss ablation: we compare the univariate parametric form of the Kull-
back–Leibler divergence 1

2d

∑
i(µ

2
i + σ2

i − log σ2
i − 1) to its multivariate counterpart 1

2d (µ
⊤µ +

Σ− log detΣ− d), with Σ the covariance matrix.
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D CONTEXT LEARNING ANALYSIS

Figure 5: Attention Map Analysis for LSD-NM-S diffusion model. a) Average attention logits per
layer, aggregated over all heads and 128 protein sequences, each consisting of 100 amino acids. b)
Distribution of attention scores across different types: Context attention, Local attention, and edge-
token attention.

Figure 6: Attention Map Analysis for MLM-S model. a) Average attention logits per layer, aggre-
gated over all heads and 128 protein sequences, each consisting of 100 amino acids. b) Distribution
of attention scores across different types: Context attention, Local attention, and edge-token atten-
tion.

We can better understand which elements influence a given token’s representation and how contex-
tual information is integrated by analyzing the attention map of the transformer model and studying
its distributions across the layers

In figures 5 and 6, we define Context as the sum of the attention logits that connect each position
in the sequence to all other different positions. Local refers to the attention logits located along the
diagonal of the attention weight matrix, representing how much a position attends to itself. Lastly,
Edge corresponds to the attention logits assigned to the EOS and BOS tokens.

For the LSD-NM-S diffusion model, the early layers predominantly focus on contextual information,
with Context attention reaching 95% and Local attention remaining as low as 1%. This suggests that
initial layers are primarily responsible for embedding global context into each amino acid position.
As the layer index increases, attention shifts to be more Local focused, indicating that final layers
refine token embeddings based on the already incorporated contextual information. The model
exhibits minimal focus on edge tokens, with attention weight not exceeding 3% and dropping to 0%
in the final layer.

In contrast, the MLM-S model maintains a strong reliance on context across all layers, consistently
prioritizing Context attention. A key difference is that attention in the MLM-S model is more short-
range, with logits concentrated around nearby positions along the diagonal, whereas LSD-NM-S
diffusion model distributes attention more broadly. This distinction highlights the differing infor-
mation integration strategies between the two models, where LSD-NM-S diffusion model gradually
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transitions from global to local representation, while MLM-S persistently relies on short-range con-
text.
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