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Abstract

Diffusion models are commonly interpreted as learning the score function, i.e., the gradient
of the log-density of noisy data. However, this assumption implies that the target of learning
is a conservative vector field, which is not enforced by the neural network architectures used
in practice. We present numerical evidence that trained diffusion networks violate both
integral and differential constraints required of true score functions, demonstrating that the
learned vector fields are not conservative. Despite this, the models perform remarkably well
as generative mechanisms. To explain this apparent paradox, we advocate a new theoretical
perspective: diffusion training is better understood as flow matching to the velocity field
of a Wasserstein Gradient Flow (WGF), rather than as score learning for a reverse-time
stochastic differential equation. Under this view, the “probability flow” arises naturally
from the WGF framework, eliminating the need to invoke reverse-time SDE theory and
clarifying why generative sampling remains successful even when the neural vector field is
not a true score. We further show that non-conservative errors from neural approximation
do not necessarily harm density transport. Our results advocate for adopting the WGF
perspective as a principled, elegant, and theoretically grounded framework for understanding
diffusion generative models.

1 Background

Diffusion models are typically described as follows: Given D-dimensional samples z € R” drawn from a
data distribution g, one defines a forward It6 process that gradually corrupts x into noise. Throughout this
paper, we use the continuous-time Ornstein—Uhlenbeck (OU) process for concretenessﬂ

dX, = — X, dt +V2dW,, Xo =z ~ o, (1)

where each component of W, is a standard Wiener process. The process equation [If converges to a limiting
distribution g, as t — oo, which is an isotropic Gaussian in R”. Because of the choice of diagonal matrices
in the drift and diffusion terms, each component of X; follows the well-studied one-dimensional OU process.

Equivalently, the forward dynamics can be described in terms of densities. The transition kerneﬂ p(&,t1¢, 8)
satisfies the Fokker—Planck Equation (FPE):

Bip(E,11C,s) = Vel€ p(&,1C, 8)] + V2p(E, [, 5), (2)

ISantos & Lin| (2023)) established the equivalence of the OU process with the discrete-time Denoising Diffusion Probabilistic
Model Ho et al.| and the score-based formulation (Song et al.). This setup is often called “variance-preserving” (VP), though
this term is misleading: for each sample, the variance is not constant over time (which, in most scientific contexts, is the
definition of “preserving”), but grows as v/'1 — e—2t. Our analysis extends naturally to the standard Brownian motion process
dX; = dW¢, commonly termed “variance-exploding” (VE).

2Since the OU process decomposes into D independent one-dimensional processes, the density factorizes across coordinates:

p(et1¢s) =TI, pil€irt | Givo)
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with the initial condition p(€,0) = 0(§ — x) for each of the drawn samples x ~ pg, where §(-) denotes the
Dirac delta distribution.

The modern understanding of diffusion models is grounded in Anderson’s reverse-time theory (Anderson,
1982), which guarantees the existence of a reverse-time Itd process that transforms samples from the simple
distribution pe back into data-like samples as ¢t : co — 0:

dX, = [X, + 25 (X,, —7)]dr + V2dW,, X o ~ foo- (3)

Here, we define 7 := —t, 7 : —o0 — 0, p(x,t) denotes the forward density with initial distribution g,
s(&,t) == Velogp(&,t) € RP is the score function of the corrupted (forward) distribution given initial
distribution pg, and dWjy is again a multi-dimensional Wiener process. The central training objective of
diffusion models is thus framed as learning the score function s(x,t)|Song et al.l In practice, a neural network
RP x R — RP is used to approximate s(x,t), which is then plugged into equation [3| during sampling.

A key point is that the score function has a special mathematical structure: it is a conservative field. Neural
networks used in practice are not constrained to produce conservative vector fields and, therefore, do not
necessarily preserve this structure. This raises the central question of this study:

Does a trained neural network actually learn a valid score function, or merely a useful vector
field for generative sampling?

1.1 Wasserstein Gradient Flow

Wasserstein Gradient Flow (WGF) originates from the theory of optimal transport (OT), but it has become
increasingly relevant for understanding modern generative models. Here, we provide a brief overview and
refer readers to the classic references (Ambrosio et al.l 2008; [Figalli & Glaudo, [2023) for comprehensive
materials.

Recall the forward evolution of the probability density p(x,t) under the FPE equation 2| In their seminal
work, Jordan, Kinderlehrer, and Otto observed that an implicit Euler discretization of the FPE can be
reinterpreted as a variational problem: each timestep corresponds to minimizing a free energy functional
that combines Shannon entropy with a Wasserstein-2 distance penalty (Jordan et al.| [1998]). This insight,
known as the JKO scheme, shows that the FPE can be understood as a gradient flow of entropy in the space
of probability measures.

Building on this idea, Otto introduced a formal Riemannian calculus on the space of probability distribu-
tions, demonstrating that the FPE defines a steepest descent in Wasserstein geometry (Otto, |2001)). This
framework—mnow widely known as Otto calculus—precisely formalizes the notion that probability densities
evolve like particles sliding down an energy landscape, but within the geometry induced by optimal trans-
port. In addition, Otto also introduced the generalized Liouville equation (G:LEE(Gerlich7 1973). Taken
together, the JKO scheme and Otto’s formulation provide the foundation for WGF, unifying PDE evolution,
entropy maximization, and optimal transport. One powerful result of WGF theory is:

While the sample paths of the diffusion process that FPE describes are fundamentally
stochastic, the marginal distributiorﬁ of the paths at a specific time, p(+,t), is identical to
the marginal distribution of the trajectories driven by a deterministic WGF.

To see this, let us consider setting the energy functional as the sum of a quadratic potential and the negative

Shannon entropy
2

E{p(.0) = [ Gotdot [ plait)logp(a,t) da. (4)

3We distinguish GLE from the “continuity equation”, a term commonly used in the field of OT. We make this distinction
because continuity equations in physics can describe arbitrary conserved quantities (mass, energy, etc.), but the GLE specifically
governs normalized probability density functions.

4p(-,t) is referred to as the marginal distribution because it is only the distribution of X; at time t. It is a marginal
distribution of the the joint distribution specified the stochastic process, p (zty,... Tty )-
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Here, the first term accounts for the drift/advection and the second for the diffusion in the FPE equation
The idea is to identify the steepest descent direction functions that decrease the energy the most in the space
of probability density functions induced by a deterministic velocity field v(z,t). Applying d/d¢ to the energy

functional: SE{p(-,t)} Op(z,1)
0¥ = / ot of O ?

where the functional variation of E with respect to the density function p can be explicitly computed:

SE{p(,t)} 1 2
Sp(z,t) " op(x,t) [/ ?5P (z,t) + (p+ dp) log (p + bp) dz — /,O(x,t) log p (z,t) dz
1 ,r2 $2
~ s | [ oot 1) o0 ao = 5 s omatenn, o

In the last two equations, we neglected higher-order O(dp(z,t)) terms (using the asymptotic symbol ~) and
applied the normalization condition that the functional perturbation [ dp(z,t) dz = 0 because [ p(x,t)dz =
1= [(p+dp) (z,t) dz. Next, inserting GLE (Gerlich, [1973) (see footnote [3):

Orp (x,t) = =V - [v(z,1)p(x, 1)], (7)
and the functional variation equation [6] into equation [5] leads to

d
SE{p (0}

- / [:;+1ogp(x,t)} Va - [o(z, t)p(z, )] dz
— [ vtant) o+ Valogp (e 0)] ol do (8)

where we used integration by parts and assumed vanishing boundary terms. The above equation can be
interpreted as an inner product of the functions v(-,t) and V, log p(-,t) under the measure p(-,t). Clearly,
the velocity field that corresponds to the steepest descent of the energy functional should align with the
opposite direction of V, log(+,t) (up to a global multiplicative constant):

vwar(x,t) := —x — Vylog p(x,t) = —z — s(x, t). (9)
The probability distribution of the resulting flow system with the above velocity field evolves under the GLE:

aat (#,t) = =V - [owar (2, 1)p(, 1)] = Va [(x + Ve log p(z, 1)) p (2,1)], (10)

which is exactly the FPE equation [2] describing the OU.

Song et al. rediscovered the WGF velocity field (equation E[) through manipulating the FPE and noticing
Vep(z,t) = p(x,t) Vylogp(x,t). They used the term “probability flow”, without referencing the JKO
scheme, Otto calculus, and WGF. We believe it is beneficial to point out the origin of this theoretical
framework, given its deeper connection to OT and the variational nature of the diffusion process.

2 Numerical experiments
We now shift our focus to numerical experiments to verify the central question we have in score-based
generative modeling: Are we learning the score function?

Due to the definition of the score function, s(z,t) := V, log p(z,t), the fundamental theorem of calculus (or
generalized Stokes’ theorem in high dimension) states that the line integral of the score function along a
closed path in the state space has to be equal to zero:

7{5(33,25) LdF =0, (11)
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Figure 1: Mechanisms for assessing integral constraints. Illustration of the three mechanisms we used
to construct closed paths for evaluating integral constraints within the high-density regions of the data
distribution.

We will refer to equation [L1] as the integral constraint. The second constraint, also following directly from
the definition of the score function, states:

isj(x,t), for any pair (i,7) € {1...D}>. (12)

Si(xat) = 1.

dz;
We refer to equation 12| as the differential constraint. Our goal is to numerically investigate wether either of
the constraints are met in trained diffusion models.

2.1 Models and datasets

To present a minimal working example, we trained a MNIST diffusion model using a lightweight U-Net
implementation. The model is composed of ShuffleNet-style residual bottlenecks and depthwise convolutions.
The time indices are embedded, passed through an MLP, and added to the feature maps in each block. It
employs simple encoder—-decoder blocks with downsampling and upsampling and skip connections, keeping
the model lightweight (around 4 MB)ﬂ We used the cosine schedule (Nichol & Dhariwal) and a total discrete
time index 7" = 1000, which corresponds to observing time-homogeneous OU process equation [I] at discrete
times (Santos & Lin), [2023)):

1 f(k)  (k/T+0.0087
tp = —3 log T0) f(k) := cos (1+00082) (13)

We also performed the same test with latent diffusion, using a VAE with an 8 x 8 latent spacdﬂ The diffusion
process employs the same network as before but acts in the latent space of the VAE.

The purpose of this experiment is to enable a comprehensive analysis with tractable computation, especially
for evaluating the differential constraints. The results are presented in the following sections. We also
observed a similar behavior for the CIFAR-10 dataset (Appendix [4.2)).

2.2 Integral constraints

To numerically check the integral constraint (equation [L1]), we introduce three different mechanisms for
generating closed paths on which the integral is evaluated:

« Brownian path. Starting from a corrupted sample z; € R” generated by the forward diffusion, we
perform a random walk on R” using a Brownian bridge, which generates a path in R” starting and

5The neural network implementation can be found at https://github.com/bot66/MNISTDiffusion.
6Implementation based on https://github.com/sksq96/pytorch-vae/blob/master/vae.py.


https://github.com/bot66/MNISTDiffusion
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ending at ;. The path of Brownian bridge is XEB =W, —uWy /U with a fictitious time u € [0,U). We
choose U = 9, uniformly sample 1,000 discrete time steps in between, and add the resulting path to a
forward sample x4, i.e., yu:t = ¢ + X2B. This method does not guarantee that the path stays close to
the the typical region induced by the forward process, as illustrated in Fig. 1| (a). We include this path
as a way to study the behavior of out-of-distribution samples.

¢ Rotation path. Following the typical application of image corruption process, the corrupted sample
xy = xoe” '+ V1 — e 2te, where e ~ N (0, ). We randomly pair each of the D components of €, so (g, ¢;)
forms a two-dimensional vector. Then, we rotate each of the D/2 two-dimensional vectors with respect to
the origin, i.e., €j(u) = cos(27mu)e; + sin(2ru)e; and €}(27u) = —sin(27u)e; + cos(2mu)e;. Note that we
rotate all D/2 pairs with the same “angular velocity”. The resulting vector is used to generate a closed
loop in the z-space, i.e., Yyt = zoe~ " + V1 —e~2t'(u), u : 0 — 1. With this construct, the probability
density of noise realization &’(u) is identical to that of the original noise realization ¢, ensuring the closed
path in the z-space sits in the region where most of the probability mass is.

¢ Projection path. We first generate multiple corrupted samples z; from the same initial xg, then find a
way to connect these points such that the connections lie in the typical set of corrupted distribution. In
order to achieve this, we propose a simple mechanism: to connect two corrupted samples z; and x}, we
first generate points that linearly interpolate between the two samples, and then project the interpolated
points back to the corrupted distribution. Since Gaussian diffusion in high-dimensional space induces the
structure of a thin shell around the clean samples, the projection can be carried out by projecting the
samples radially back to the shell in R”, whose radius is estimated either through Monte Carlo sampling
(which we also know would be ~ v/D from asymptotic analysis). An illustrative schematic diagram is
provided in Fig. (1] (c).

Figures [2| (a) and (b) show the results of evaluating the integral constraint using these three methods of
generating closed paths. Summary statistics of these distributions are provided in Fig. 4] in the Appendix.

Clearly, the integral condition is not satisfied in the trained neural network. One may argue whether the
magnitude matters to the reverse-time dynamics. To answer this, we notice that the score-induced drift
2s(x,t) is added to a linear term xz(¢) in equation |3} this provides us a non-dimensional quantity:

2¢5(y.t) - dy

$lylldgl 7

where ¢/ is a dummy vector looping over the generated path. Results of this quantity are presented in Figs.
[ and [6] in Appendix, showing a significant deviation from 0.

(14)

2.3 Differential constraints

Due to the intensive resources required to compute the full Jacobian matrix, we instead randomly sample
64 components of the predicted score s(z,t) and 64 components of the corrupted samples x; to compute a
64 x 64 sub-Jacobian matrix. The statistics were collected from 256 samples for each time step, and are
presented in Fig. [2[ (¢) and (d), both showing non-zero contributions.

3 Discussion

The numerical evidence clearly suggests that the trained neural network does not learn the score function,
which is a conservative field. However, the trained network can definitely perform the generative task. The
observation raises an interesting question: what is the trained neural network actually learning in order to
perform the generative task?

We here propose a bold hypothesis, leveraging the WGF theory, to understand what happens in the “score-
matching” generative modeling. Our assertion is:

Existing diffusion modeling is better understood as modeling a normalizing flow (Chen
et al., [2019), through performing flow matching (Lipman et all[2022)) to the WGF velocity
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Figure 2: Results of integral and differential constraints, as functions of discrete time index k: a) shows the
absolute value of the integral condition § 5 - dZ; b) presents the same quantity but for the latent dynamics;
c) reports the differential condition |9, s; — 0y, s;| in normal diffusion; d) shows the corresponding differential
condition in latent diffusion.

(equation E[)7 rather than learning the reverse stochastic differential equation established by

(1982)) and popularized by

Contrary to typical flow-based models (Chen et al., [2019) which learn the velocity field by maximizing the
end-to-end likelihood, the flow-matching method (Lipman et al.) 2022) matches the neural velocity field
to a target velocity field. The target velocity field is often analytically derived for a prescribed transport
from the data distribution to an easy-to-sample distribution (often isotropic Gaussian distribution in high
dimension), and evaluated on sampled training data. Here, we use the WGF induced by the energy functional
(equation [4) as the prescribed transport, and match the velocity field (equation E[) More precisely, we only
match the flow induced by the entropic term in equation [

There are several advantages to understand the diffusion model as the flow-matching WGF. First, the
“probability flow” is naturally included in the WGF framework. Secondly, we can formally bypass the
necessity to invoke the reverse-time Itd process, which can be confusing and counterintuitive—as will be
seen below, within the WGF and Otto calculus framework, the deterministic probability flow ODE arises
naturally, bypassing the need to explicitly route through Anderson’s reverse-time SDE. Finally, flow-matching
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WGF naturally explains why the trained neural flow, which fails to obey the differential and integral score
conditions, can still perform in generative modeling.

To see this, let us illustrate a self-consistent narrative of a flow-matching problem:

1. Optimization objective. Our goal is to learn (equation E[) through flow-matching. We choose to
minimize the L? error between the neural velocity and the entropy-induced velocity field in equation @

mgiﬂ Er~tnit((1,2...71) Bamp(6) 100 (5 k) — 5 (5 1) |l (15)

2. Data generation. Samples to perform Monte Carlo approximation of the above L?-norm will be drawn
from the distribution at time ¢, induced by the energy function (equation . Instead of using the WGF
in the forward dynamics, which involves estimating log p in high dimension, we use the equivalent OU
process (equation [1)) to generate sample and more importantly, to compute analytically exzact s(x,t) for
matching the neural velocity field.

3. Sampling/Inference. To perform the generative task, terminal samples drawn from the isotropic Gaus-
sian are transported from t — oo to t = 0 by integrating the ordinary differential equation backward in
time. That is, dz(7)/dT = —vwar(z(7)) = (1) + NN(z(7), —7), where 7 = —t, so signs flip relative to
forward time. x(00) ~ N (0,1) and 7: —oco — 0. The corresponding GLE (Gerlichl [1973)) is:

oo (,8) =~V (4 v (2, -7) p (2] (16)

where 6* stands for the trained neural weights.

Operationally, the above descriptions are identical to applying the “score-matching” for training and per-
forming “probability flow” for inference (Song et al.). However, because of the deterministic nature of the
WGF, we would not need to invoke the reverse-time stochastic process (Andersonl |1982). The simplicity is
the first benefit of recognizing the existing approach as a Wasserstein Gradient Flow-Matching problem.

By framing the learning as a flow-matching problem, it is most natural to weight each time equally, which is
the de facto training procedure for both discrete-time (Ho et al.) and continuous-time (Song et al.) diffusion
models. The procedure would seem ad hoc if one aims to parameterize a neural network for learning the
reverse-time diffusion process by a more theoretically grounded log-likelihood (more precisely, the bound of
which) maximization as shown by |Sohl-Dickstein et al.. As|Ho et al.| pointed out, the log-likelihood approach
involved weights which are not uniform in time; by removing such non-uniform weights, DDPM achieved a
better performance by effectively solving a flow-matching problem.

Next, assuming that we learn the WGF perfectly, we can treat the reverse-time WGF as a dynamical system:

%.’E(T) = 2(7) + NN(z(7),—7) = 2(7) + Vg log(z(7), —7). (17)

This system is identical to a Wasserstein Gradient Flow with the energy functional,

2

Elp(.n) == [ Fo@nde [ p(s)logplar) da

:—/x;p(a:,T)d:E—2/p(:1c77‘)10g,0(33,7') dx—&-/p(:vn‘)logp(azn‘) dz (18)

Reverse-time drift Reverse-time diffusion

which is equivalent to the reverse-time It6 process (equation . This suggests that we would not need to
invoke |Anderson| (1982)’s seminal proof of the existence of the reverse diffusion for generative task. This
justifies the second advantage of the WGF framework. We remark, however, that to rigorously establish the
equivalence of the forward and reverse path measures, Anderson’s theory remains necessary. Nevertheless,
because generative diffusion models only require consistency at the level of marginal densities, it is not
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necessary to invoke path measures in practice. We emphasize that our results concern density transport
(marginals). We do not make claims about sample-path equivalence, which requires Anderson’s reverse-time
construction. However, the corresponding reverse-time Itd process not only can be used as a stochastic
process for sampling, but also coincidentally the reverse-time process established by |[Anderson| (1982).

Finally, as suggested by our numerical analysis, the neural network is not learning a gradient of a scalar
potential, i.e. NN(z,t) # s(x,t) for all ¢, both globally (because it violates the integral conditions) or locally
(because it violates the differential conditions.) It is thus puzzling and challenging to analyze how the
violations affect the reverse-time diffusion, and consequently the quality of the generated samples. The flow
representation can bring some insight here. Suppose we use the trained, yet imperfect neural velocity field
NN(z,t) = V log p(x,t). Denote the error by e(z,t) := s(x,t) — NN(x,t). Then, the GLE governing the
distribution driven by the neural velocity field is

S, 7) = = o o+ NN 2, =) p 2, =)
= — @+ s () p @~ + 5 el ~Tp (7, ~7)]
= — @+ () p 7]
+ [V ez, —1) + 5" (z,—7) - e (2, —7)] p(z, —7). (19)

Immediately, we can identify a condition that if the error field e(x,t) satisfies
0=V, e(x,t)+s" (2,t)-e(z,t), (20)

the induced distribution is identical to the true distribution. In other words, if e(z,t) lives in the null kernel
of the operator V, + s (z,t), the trained neural network can perfectly perform the generative task, even
if it is not perfectly capturing the score function. We remark that this vector operator is related to the
Stein operator (Liu & Wang}, 2016 and is the key construct in several recent papers on sampling (Chen &
Ghattas| [2020; [Fan et al., 2024} |Tian et al., 2024)). In Fig. |3| we computed the error field on a trained latent
diffusion model using forward generated samples, showing that indeed a significant e(x,t) is induced (which
is of order 102, significant compared to the order 10° of deterministic decaying flow, 4(t) = —z(t)), but the
error field is statistically conﬁnedm in the null kernel. This analysis suggests that:

Even when NN(z,t) is not the score function V, logp(z,t), the trained neural network can
still be effective to perform generative modeling.

We remark that this analysis is only possible by recognizing the underlying flow structure. We humbly
acknowledge that we are not the first to propose the equivalence between diffusion and flow models: [Song
et al.| recognized the “probability flow/ODE” and even suggested density and likelihood estimation, and
very recently, Gao et al. pointed out the resemblance between diffusion and flow models (Gao et al., |2025).
Nevertheless, to our best knowledge, there have been no studies connecting diffusion models and normalizing
flow parametrized by flow matching through the elegant theory of WGF and Otto calculus. The existing
theories neither connect the flow operator to the Stein operator (Liu & Wang, [2016). Furthermore, the
identification of a unified description between the diffusion models and WGF could inspire new forward
random sampling (“data generation”) for training and regularizing flow-based models.

To conclude, we advocate for this theoretical framework because, first, it was developed over 20 years ago,
and yet has been largely ignored in the machine learning literature, and second, the setup is self-consistent,
simple, concise, and elegant. We dedicate this work to the pioneers of WGF theory—Jordan, Kinderlehrer,
and Otto—whose foundational insights continue to shape and inspire cutting-edge machine learning research
today.

"We averaged over 256 randomly generated forward samples x;. For each sample, the sufficient condition does not seem to
be met but the average seems to agree, noting the significant variance for small k.
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Figure 3: a) L2 norm of e(z,t) and b) Stein operator value of e(x,t).
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Figure 4: (MNIST) Summary statistics of ¢ 8y - dZ calculated by different path-generating mechanisms, in
normal and latent diffusions.

4 Appendix

We provide more statistics of the non-dimensionalized quantity | § Spd@|/§ |Z| - |dZ] (equation , as well
as experiment results on the CIFAR-10 dataset.

4.1 More numerical results on MNIST

Refer to Figs. [ [} [6]
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Figure 5: (MNIST) Results of integral constraints, as functions of discrete time index k: a) shows the
absolute value of the integral condition § S - dZ normalized by the path length and the strength of the
deterministic flow, ¢ |7;||dZ]; b) presents the same quantity but for the latent dynamics.

4.2 Numerical results on CIFAR-10

For CIFAR-10, we utilized the models from (2024), it implements the standard DDPM and VAE with
latent dimension of 3 x 16 x 16. We also tried training these models from scratch, which exhibits similar

behaviors to the pretrained ones. Results are presented in Figs. [7 8} [9]
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Figure 6: (MNIST) Summary statistics of | § 5y - dZ|/§ |Z;||dZ| calculated by different path-generating mech-
anisms, in normal and latent diffusions.
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Figure 7: (CIFAR-10) Results of integral and differential constraints, as functions of discrete time index
k: a) shows the absolute value of the integral condition 5§ Sp - dZ; b) presents the same quantity but for
the latent dynamics; c) reports the differential condition |0,,s; — 0, 5;| in normal diffusion; d) shows the
corresponding differential condition in latent diffusion.
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Figure 8: (CIFAR-10) Summary statistics of § 5y - d7 calculated by different path-generating mechanisms,
in normal and latent diffusions.
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Figure 9: (CIFAR-10) Results of integral constraints, as functions of discrete time index k: a) shows the
absolute value of the integral condition § §y - dZ normalized by the path length and the strength of the
deterministic flow, § |Z;||dZ]; b) presents the same quantity but for the latent dynamics.
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