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Abstract

Diffusion models are commonly interpreted as learning the score function, i.e., the gradient
of the log-density of noisy data. However, this learning target is a conservative vector
field (i.e., a vector field that is the gradient of some function), a property not enforced by
neural network architectures used in practice. We show numerically that trained diffusion
networks violate both the integral and differential constraints that conservative vector fields
must satisfy, indicating that the learned vector fields are not score functions of any density.
Despite this, the models perform remarkably well as generative mechanisms. To explain this
paradox, we propose a new theoretical perspective: diffusion training is better understood
as flow matching to the velocity field of a Wasserstein Gradient Flow (WGF), rather than
as score learning for a reverse-time stochastic differential equation. Under this view, the
“probability flow” arises naturally from the WGF framework, eliminating the need to invoke
reverse-time SDE theory and clarifying why generative sampling remains successful, even
when the neural vector field is not a true score. We further show that non-conservative
errors from neural approximation do not necessarily harm density transport. Our results
advocate adopting the WGF perspective as a principled, elegant, and theoretically grounded
framework for understanding diffusion generative models.

1 Introduction

Diffusion models are typically described as follows: Given D-dimensional samples x ∈ RD drawn from a
data distribution µ0, one defines a forward Itô process that gradually corrupts x into noise. Throughout this
paper, we use the continuous-time Ornstein–Uhlenbeck (OU) process for concreteness:1

dXt = −Xt dt +
√

2 dWt, X0 = x ∼ µ0, (1)
∗Work partially done during the Applied Machine Learning Summer School at LANL.
1Santos & Lin (2023) established the equivalence of the OU process with the discrete-time Denoising Diffusion Probabilistic

Model Ho et al. (2020) and the score-based formulation (Song et al., 2021). This setup is often called “variance-preserving”
(VP), though this term is misleading: for each sample, the variance is not constant over time (which, in most scientific contexts,
is the definition of “preserving”), but grows as

√
1 − e−2t. Our analysis extends naturally to the standard Brownian motion

process dXt = dWt, termed “variance-exploding” (VE) by Song et al. (2021).
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where each component of Wt is a standard D-dimensional Wiener process. The process Eq. (1) converges to
the limiting distribution µ∞ as t → ∞, which is an isotropic Gaussian in RD. Due to the diagonal form of
the drift and diffusion terms, each component of Xt follows the canonical one-dimensional OU process.

Equivalently, the forward dynamics can be described in terms of densities. The transition kernel2 ρ(ξ, t|ζ, s)
satisfies the Fokker–Planck Equation (FPE):

∂tρ(ξ, t|ζ, s) = ∇ξ[ξ ρ(ξ, t|ζ, s)] + ∇2
ξρ(ξ, t|ζ, s), (2)

with the initial condition ρ(ξ, 0) = δ(ξ − x) for each of the drawn samples x ∼ µ0, where δ(·) denotes the
Dirac delta distribution.

The modern understanding of diffusion models is grounded in Anderson’s theory (Anderson, 1982), which
guarantees the existence of a reverse-time Itô process that transforms samples from the simple, D-dimensional
isotropic Gaussian, distribution µ∞ back into data-like samples as t : ∞ → 0:

dXτ = [Xτ + 2s (Xτ , −τ)] dτ +
√

2 dWτ , X−∞ ∼ µ∞. (3)

Here, we define τ := −t, τ : −∞ → 0, ρ(x, t) denotes the forward density with initial distribution µ0,
s(ξ, t) := ∇ξ log ρ(ξ, t) ∈ RD is the score function of the corrupted (forward) distribution given the initial
distribution µ0, and dWτ is again a D-dimensional Wiener process. The central training objective of diffusion
models is thus framed as learning the score function s(x, t) (Song et al., 2021). In practice, a neural network
RD × R → RD is used to approximate s(x, t), which is then plugged into Eq. (3) during sampling.

A key point is that the score function has a distinct mathematical structure: it is a conservative field, the
gradient of a scalar field log ρ. Neural networks used in practice are not constrained to produce conservative
vector fields and, therefore, do not necessarily preserve this structure. This raises the central question of
this study:

Does a trained neural network actually learn a valid score function, or merely a useful vector
field for generative sampling?

2 Literature Review

Our work attempts to connect the theory of Diffusion Models (DMs) and Wasserstein Gradient Flows
(WGFs). Diffusion-based generative modeling originated from the observation that adding noise to data
and then removing it can reveal its underlying structure, a principle first formalized in the denoising autoen-
coder by Bengio et al. (2013), which viewed training as learning to invert a stochastic corruption process.
This idea was later generalized by Sohl-Dickstein et al., establishing a forward–reverse Markov chain for-
mulation that defines data generation as a learned inversion of a diffusion process. The seminal Denoising
Diffusion Probabilistic Model (DDPM) proposed by Ho et al. (2020) greatly simplified and stabilized this
framework by adopting fixed Gaussian noise schedules and a mean-squared “denoising” objective, hinting
at a connection between diffusion model training and denoising score matching (Hyvärinen, 2005; Vincent,
2011). Subsequently, Song et al. (2021) generalized the approach in continuous time using Itô stochastic dif-
ferential equations (SDEs), showing that diffusion models can be viewed as learning the score function s(ξ, t)
of noisy data distributions and enabling sampling via reverse-time SDEs, established by Anderson (1982).
Ghimire et al. (2023) investigated the Riemannian structure underlying score-based generative models, offer-
ing valuable insights into their manifold geometry. However, their goal was the geometric analysis of existing
models, not a reinterpretation of the algorithm through our proposed WGF flow matching. Together, these
developments established the standard score-based generative modeling pipeline of modern DMs.

Recent research has extended the diffusion paradigm beyond Gaussian noise and continuous states. Camp-
bell et al. (2022) formulated a continuous-time limit for discrete-state denoising diffusion, while Santos et al.

2Since the OU process decomposes into D independent one-dimensional processes, the density factorizes across coordinates:
ρ(ξ, t | ζ, s) =

∏D

i=1 ρi(ξi, t | ζi, s)
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(2023) developed an exact theoretical framework for arbitrary discrete-state Markov processes without vari-
ational approximations, deriving the discrete-time analog of Anderson’s reverse-time SDE. We remark that
this study does not extend to these generalized DMs which leverage non-Gaussian noise.

Wasserstein Gradient Flow (WGF) originates from the theory of optimal transport (OT), but it has become
increasingly central to the theoretical understanding of modern generative models. Classic monographs such
as Ambrosio et al. (2008) and Figalli & Glaudo (2023) provide comprehensive foundations for this frame-
work. The connection between WGF and diffusion models lies in the forward evolution of the probability
density ρ(x, t), governed by the Fokker–Planck equation (FPE (2)). In their seminal work, Jordan et al.
(1998) demonstrated that an implicit Euler discretization of the FPE can be reinterpreted as a variational
problem: each timestep corresponds to minimizing a free-energy functional composed of a potential energy
term V (x) and a negative Shannon entropy of the evolving distribution, plus a Wasserstein-2 distance term
between successive densities (scaled by the time step). The entropy and the Wasserstein-2 distance can both
be viewed as regularizers of the optimization problem for the potential energy. Moreover, the sum of the po-
tential energy and the negative entropy is equivalent to the Kullback—Leibler divergence KL(ρt∥π) from the
evolving probability density ρt to the Gibbs measure π(x) ∝ exp(−V (x)). This insight—known as the JKO
scheme—established that the FPE can be viewed as a gradient flow in the space of probability measures.
Building on this foundation, Otto (2001) introduced a formal Riemannian calculus on the manifold of prob-
ability distributions, showing that the FPE describes the steepest descent of free energy under Wasserstein
geometry. This formulation, now widely known as Otto calculus, provides a rigorous mathematical language
for describing the evolution of probability densities as particles slide down an energy landscape shaped by
optimal transport. Furthermore, Otto introduced the generalized Liouville equation3 (GLE, Gerlich (1973))
and establishes the link between macroscopic density evolution and microscopic transport dynamics. To-
gether, the JKO scheme and Otto’s formulation provide the foundation for WGF, unifying PDE evolution,
entropy maximization, and optimal transport.

More recently, Wasserstein-gradient concepts have gained renewed attention across machine learning, partic-
ularly in sampling, variational inference, and generative modeling. Early work by Wibisono (2018) framed
Langevin dynamics as optimization in the space of probability measures, highlighting the close relationship
between stochastic sampling and gradient flow in Wasserstein geometry. Subsequent studies extended this
principle to practical optimization and inference algorithms in high dimensions, such as the Wasserstein prox-
imal gradient (Salim et al., 2020) and variational WGF formulations (Lambert et al., 2022; Fan et al., 2022).
These methods treat WGF primarily as a computational framework for density evolution or inference, rather
than as a reinterpretation of diffusion-based generative learning. Other lines of work have explored large-
scale and neural-network-based implementations of Wasserstein flows (Mokrov et al., 2021; Alvarez-Melis
et al., 2022), and recent efforts have proposed scalable or unbalanced formulations for generative modeling
(Choi et al., 2024). Despite these advances, the majority of these studies focus on constructing or optimizing
explicit Wasserstein flows rather than reinterpreting existing diffusion models within the WGF framework.

3 Numerical experiments

We first perform numerical experiments to verify the central question we have in score-based generative
modeling: Are we learning the score function?

Due to the definition of the score function, s(x, t) := ∇x log ρ(x, t), the fundamental theorem of calculus (or
generalized Stokes’ theorem in high dimensions) states that the line integral of the score function along a
closed path in the state space must be equal to zero:

∮
s⃗(x, t) · dx⃗ = 0. (4)

3We distinguish GLE from the “continuity equation”, a term more broadly used in the physics literature to describe conser-
vation of various quantities, such as mass, heat, etc. GLE is a special case of continuity equations that describes the evolution
of normalized probability density functions.
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We refer to Eq. (4) as the integral constraint. The second constraint, also following directly from the definition
of the score function, states:

∂

∂xj
si(x, t) = ∂

∂xi
sj(x, t), for any pair (i, j) ∈ {1 . . . D}2

. (5)

We refer to Eq. (5) as the differential constraint. Our goal is to numerically investigate whether either of
the constraints is met in trained diffusion models.

3.1 Models and datasets

To present a minimal working example, we trained an MNIST diffusion model using a lightweight U-Net
implementation. The model is composed of ShuffleNet-style residual bottlenecks and depthwise convolutions.
The time indices are embedded, passed through an MLP, and added to the feature maps in each block. It
employs simple encoder–decoder blocks with downsampling, upsampling, and skip connections, keeping the
model lightweight (around 4 MB)4. We used the cosine schedule (Nichol & Dhariwal, 2021) and a total
discrete time index T = 1000, which corresponds to observing time-homogeneous OU process (1) at discrete
times (Santos & Lin, 2023):

tk = −1
2 log f(k)

f(0) , f(k) := cos
(

k/T + 0.008
1 + 0.008

π

2

)
. (6)

We also performed the same test with latent diffusion, using a VAE with an 8×8 latent space5. The diffusion
process employs the same network as before but operates in the latent space of the VAE.

In addition to the MNIST dataset, we perform experiments on several other datasets and neural architectures,
including publicly available state-of-the-art Diffusion Models:

• CIFAR-10, using a latent DDPM.

• CelebA-HQ-256, using the pretrained variance-exploding model from Song et al. (2021).

• Neal’s funnel distribution (Neal, 2003), using the same lightweight neural architecture as in the
MNIST experiment.

Our motivation for carrying out a comprehensive numerical analysis is to demonstrate the validity of our
claims on popular high-dimensional datasets in simple settings where the data distribution is analytical,
using commonly used neural architectures. As we observed very similar behavior, we present the results of
the MNIST dataset in Fig. 2 in the main text and the rest in the Appendices 6.2 and 6.3.

3.2 Integral constraints

To numerically evaluate the integral constraint (Eq. (4)), we introduce three mechanisms for generating
closed paths over which the integral is computed:

• Brownian path. Starting from a corrupted sample xt ∈ RD generated by the forward diffusion, we
perform a random walk on RD using a Brownian bridge, which generates a path in RD starting and
ending at xt. The path of a Brownian bridge is XBB

u = Wu − uWU /U with a fictitious time u ∈ [0, U).
We choose U = 9, uniformly sample 1,000 discrete time steps in between, and add the resulting path to
a forward sample xt, i.e., yu;t = xt + XBB

u . This method does not guarantee that the path stays close to
the the typical region induced by the forward process, as illustrated in Fig. 1 (a). We include this path
as a way to study the behavior of out-of-distribution samples.
4The neural network implementation can be found at https://github.com/bot66/MNISTDiffusion.
5Implementation based on https://github.com/sksq96/pytorch-vae/blob/master/vae.py.
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Figure 1: Mechanisms for assessing integral constraints. Illustration of the three mechanisms we used
to construct closed paths for evaluating integral constraints within the high-density regions of the data
distribution.

• Rotation path. Following the typical application of image corruption process, the corrupted sample
xt = x0e−t +

√
1 − e−2tε, where ε ∼ N (0, I). We randomly pair each of the D components of ε, so (εi, εj)

forms a two-dimensional vector. Then, we rotate each of the D/2 two-dimensional vectors with respect to
the origin, i.e., ε′

i(u) = cos(2πu)εi + sin(2πu)εj and ε′
j(2πu) = − sin(2πu)εi + cos(2πu)εj . Note that we

rotate all D/2 pairs with the same “angular velocity”. The resulting vector is used to generate a closed
loop in the x-space, i.e., yu;t = x0e−t +

√
1 − e−2tε′(u), u : 0 → 1. With this construct, the probability

density of noise realization ε′(u) is identical to that of the original noise realization ε, ensuring the closed
path in the x-space sits in the region where most of the probability mass is.

• Projection path. We first generate multiple corrupted samples xt from the same initial x0, then find
a way to connect these points such that the connections lie in the typical set of corrupted distribution.
To achieve this, we propose a simple mechanism: to connect two corrupted samples xt and x′

t, we first
generate points that linearly interpolate between the two samples, and then project the interpolated
points back to the corrupted distribution. Since Gaussian diffusion in high-dimensional space induces the
structure of a thin shell around the clean samples, the projection can be carried out by projecting the
samples radially back to the shell in RD, whose radius is estimated through Monte Carlo sampling (which
we also know would be ≈

√
D from asymptotic analysis). An illustrative schematic diagram is provided

in Fig. 1 (c).

Figures 2 (a) and (b) show the results of evaluating the integral constraint using these three methods of
generating closed paths on MNIST. Figure 3.(a-b) reports the same statistics for the funnel and CelebA-
HQ-256. Summary statistics of these distributions are provided in Fig. 5 & Fig. 12 in the Appendix.

Clearly, the integral condition is not satisfied in the trained neural network. One may argue whether the
magnitude matters for the reverse-time dynamics. To answer this, we notice that the score-induced drift
2s(x, t) is added to a linear term x(t) in Eq. (3); this provides us a non-dimensional quantity:

2
∮

s⃗(y⃗, t) · dy⃗∮
|y⃗| |dy⃗|

, (7)

where y⃗ is a dummy vector looping over the generated path. Results of this quantity are presented in Figs.
6 and 7 in the Appendix, showing a significant deviation from 0.

3.3 Differential constraints

Because computing the full Jacobian matrix is computationally intensive, we instead randomly sample 64
components of the predicted score s(x, t) and 64 components of the corrupted samples xt to compute a 64×64
sub-Jacobian matrix using torch.func.jvp functionality. The statistics for MNIST were collected from 256
samples for each time step and are presented in Fig. 2 (c) and (d), both showing non-zero contributions.
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Figure 2: (MNIST - Left: Pixel space, Right: Latent space) Results of integral and differential constraints,
as functions of discrete time index k: a) shows the absolute value of the integral condition

∮
s⃗θ ·dx⃗; b) presents

the same quantity but for the latent dynamics; c) reports the differential condition |∂xi
sj − ∂xj

si| in normal
diffusion; d) shows the corresponding differential condition in latent diffusion.

For CelebA-HQ-256, given the scale of the input and the presence of custom layers in the implementation
from Song et al. (2021), running torch.func.jvp was computationally infeasible. Consequently, we utilized
finite-difference methods to estimate the sub-Jacobian components for this setting. Results are presented in
Fig. 3 (d).

The observed behavior is strikingly consistent across all experiments and configurations. From analytically
tractable distributions such as the funnel distribution to increasingly complex real datasets including MNIST,
CIFAR-10, and CelebA, and across a wide range of neural architectures, our lightweight U-Net, the latent-
diffusion VAE, the DDPM baseline, and the publicly released variance-exploding (VE) model in (Song et al.,
2021) we consistently observe the same violations of both integral and differential score-function constraints.
This consistency persists under both variance-preserving (VP) and variance-exploding (VE) diffusion setups.
Together, these results rule out the possibility that our finding—that trained neural networks in diffusion
models do not learn truly conservative score fields—is an artifact of a particular dataset, model capacity, or
diffusion configuration. Instead, it points to a robust and universal characteristic of current diffusion-model
training practices.
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Figure 3: (Left: Funnel, Right: CelebA-HQ-256) Results of integral and differential constraints, as functions
of discrete time index k: a) shows the absolute value of the integral condition

∮
s⃗θ ·dx⃗ normalized by the path

length on data samples drawn from funnel distribution; b) presents the same quantity but for the CelebA-
HQ-256 dataset; c) and d) show the differential condition |∂xi

sj − ∂xj
si| for these datasets respectively.

We report the normalized integral here because the variance is not controlled (variance-exploding) in this
setting, so normalizing by path length makes the comparison fairer between each methods.

4 Connecting Diffusion Models with Wasserstein Gradient Flow Theory

The numerical evidence clearly suggests that the trained neural network does not learn the score function,
which is a conservative field. However, the trained network can definitely perform the generative task. The
observation raises an interesting question: what is the trained neural network actually learning in order to
perform the generative task?

We propose a bold hypothesis, leveraging the WGF theory, to understand what happens in the diffusion
modeling. Our assertion is:

Existing diffusion modeling is better understood as modeling a normalizing flow (Chen
et al., 2019), through performing flow matching (Lipman et al., 2022) to the WGF velocity
(Eq. (13)), rather than learning the reverse stochastic differential equation established by
Anderson (1982) and popularized by Song et al. (2021).

7
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We emphasize that this interpretation does not invalidate the reverse-time SDE framework, which remains
mathematically correct when the true score function is available. Rather, the WGF formulation provides a
complementary and unifying perspective that explains why diffusion models remain empirically robust, even
when the learned vector field deviates from a perfectly conservative score. In this view, standard diffusion
training can be regarded as performing approximate flow matching to the WGF velocity field, ensuring
correct marginal density transport despite imperfections in the neural approximation. This complementary
interpretation highlights the consistency between the WGF and SDE descriptions: when the score is exact,
both yield identical dynamics; when it is approximate, the WGF view naturally accounts for the observed
robustness of diffusion-based generative models.

We now shift our focus to establishing a direct theoretical correspondence between the learned vector field in
diffusion training and the velocity field of a Wasserstein Gradient Flow. This reinterpretation explains why
modern diffusion networks remain empirically successful even when the learned field is not guaranteed to be
conservative, and it situates diffusion modeling within a principled continuum of variational and geometric
formalisms. One powerful result of WGF theory is:

While the sample paths of the diffusion process that FPE describes are fundamentally
stochastic, the marginal distribution6 of the paths at a specific time, ρ(·, t), is identical to
the marginal distribution of the trajectories driven by a deterministic WGF.

In the context of diffusion modeling with Ornstein–Uhlenbeck forward process, let us consider setting the
energy functional as the sum of a quadratic potential and the negative Shannon entropy

E {ρ (·, t)} :=
∫

x2

2 ρ (x, t) dx +
∫

ρ (x, t) log ρ (x, t) dx. (8)

Here, the first term accounts for the drift/advection and the second for the diffusion in the FPE (2). The goal
is to identify the steepest descent direction that minimizes the energy the most in the space of probability
density functions induced by a deterministic velocity field v(x, t). Applying d/dt to the energy functional:

d
dt

E {ρ (·, t)} =
∫

δE {ρ (·, t)}
δρ(x, t)

∂ρ (x, t)
∂t

dx, (9)

where the functional variation of E with respect to the density function ρ can be explicitly computed:

δE {ρ (·, t)}
δρ(x, t) := 1

δρ(x, t)

[∫
x2

2 δρ (x, t) + (ρ + δρ) log (ρ + δρ) dx −
∫

ρ (x, t) log ρ (x, t) dx

]
∼ 1

δρ(x, t)

∫ [
x2

2 + log ρ(x, t) + 1
]

δρ (x, t) dx = x2

2 + log ρ(x, t). (10)

In the last two equations, we neglected higher-order O(δρ(x, t)) terms (using the asymptotic symbol ∼) and
applied the normalization condition that the functional perturbation

∫
δρ(x, t) dx = 0 because

∫
ρ(x, t) dx =

1 =
∫

(ρ + δρ) (x, t) dx. Next, inserting GLE (see footnote 3):

∂tρ (x, t) = −∇x · [v(x, t)ρ(x, t)] , (11)

and the functional variation Eq. (10) into Eq. (9) leads to

d
dt

E {ρ (·, t)} = −
∫ [

x2

2 + log ρ (x, t)
]

∇x · [v(x, t)ρ(x, t)] dx

=
∫

v(x, t) · [x + ∇x log ρ (x, t)] ρ(x, t) dx, (12)

where we used integration by parts and assumed vanishing boundary terms. The above equation can be
interpreted as an inner product of the functions v(·, t) and ∇x log ρ(·, t) under the measure ρ(·, t). Clearly,

6ρ(·, t) is referred to as the marginal distribution because it is only the distribution of Xt at time t. It is a marginal
distribution of the joint distribution specified the stochastic process, ρ (xt1 , . . . xtN ).
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the velocity field that corresponds to the steepest descent of the energy functional should align with the
opposite direction of ∇x log(·, t) (up to a global multiplicative constant):

vWGF(x, t) := −x − ∇x log ρ(x, t) = −x − s(x, t). (13)

The probability distribution of the resulting flow system with the above velocity field evolves under the GLE:

∂

∂t
ρ (x, t) = −∇x · [vWGF(x, t)ρ(x, t)] = ∇x [(x + ∇x log ρ(x, t)) ρ (x, t)] , (14)

which is exactly the FPE (2) describing the OU.

We remark that Song et al. (2021) rediscovered the WGF velocity field (Eq. (13)) through manipulating the
reverse-time FPE and noticing ∇xρ(x, t) = ρ(x, t) ∇x log ρ(x, t). They did not recognize the fundamental
WGF structure of the forward process, as we illustrated above. They used the term “probability flow”,
without referencing the JKO scheme, Otto calculus, and WGF. We believe it is beneficial to point out the
origin of this theoretical framework, given its deeper connection to OT and the variational nature of the
diffusion process. We also remark that in a recent pre-print by Ghimire et al. (2023), the equivalence between
diffusion models and WGF was also reported.

Now that the structure of the forward WGF is established, we turn our attention to how we can use Flow
Matching (Lipman et al., 2022) to learn the WGF. Contrary to typical flow-based models (Chen et al., 2019),
which learn the velocity field by maximizing the end-to-end likelihood, the flow-matching method (Lipman
et al., 2022) matches the neural velocity field to a target velocity field at all times in a continuous time
domain, connecting the initial and final distributions. The target velocity field is often analytically derived
for a prescribed transport from the data distribution to an easy-to-sample distribution (often an isotropic
Gaussian distribution in high dimension), and evaluated on sampled training data. Here, we use the WGF
induced by the energy functional (Eq. (8)) as the prescribed transport, and match its velocity field (Eq. (13).
More precisely, we only match the flow induced by the entropic term in Eq. (8).

There are several advantages to understanding the diffusion model as the flow-matching WGF. First, the
“probability flow” is trivially included in the WGF framework. Secondly, we can formally bypass the necessity
to invoke the reverse-time Itô process, which can be confusing and counterintuitive. As will be seen below,
within the WGF and Otto calculus framework, the deterministic probability flow ODE arises trivially:
it is just the time-reversal of the forward WGF velocity Eq. (13). Consequently, the theory of learning
and inference is elegantly simple, without the need to explicitly route through Anderson’s reverse-time
SDE. Finally, flow-matching WGF naturally explains why the trained neural flow, which fails to obey the
differential and integral score conditions, can still perform well in generative modeling.

Let us now introduce a self-consistent narrative of a flow-matching problem:

1. Training. Our goal is to learn the WGF Eq. (13) through flow-matching. We minimize the L2 error
between the neural velocity field vθ and the entropy-induced velocity field s (·, t) in Eq. (13):

min
θ

Et∼Unif(0,T )Ex∼ρ(·,t) ∥vθ(·, t) − s (·, t)∥2
2 . (15)

Here, we remark that the target time for performing the “matching” is drawn from a priori selected
distribution (here, Unif(0, T )) between the initial (0) and final (T ) times. In practice, we would choose
T ≫ 1 such that the distribution ρ(·, T ) can be reasonably approximated by an isotropic Gaussian
distribution, which is the limiting distribution, formally correct only at T → ∞. For discrete-time
algorithms such as in DDPM, discrete times {tk}T

k=1 are often selected uniformly, but discrete times tk’s
are often non-uniformly distributed in the time domain due to various noise scheduling functions (Santos
& Lin, 2023).

(a) Data generation. Samples to perform Monte Carlo approximation of the above L2-norm will be
drawn from the distribution at time t, induced by the energy function (Eq. (8)). Instead of using the
WGF in the forward dynamics, which requires knowing s(x, t)—the object we attempt to learn in high

9



Published in Transactions on Machine Learning Research (12/2025)

dimension—we use the equivalent OU process (Eq. (1)) to generate samples. Due to the stochastic
nature of the OU process, we can formally generate infinitely many samples at any arbitrary time for
parametrizing vθ. Also, due to the existence of an analytical expression of the OU process (Santos
& Lin, 2023), samples can be generated efficiently.

(b) Parametrizing vθ in practice. In general, we do not have the training labels s(x, t) := ∇x log ρ(x, t)
for the randomly generated samples x at time t. The difficulty can be solved by denoising score-
matching proposed by Vincent (2011) which transforms learning vθ using the instantaneous distri-
bution ρ(xt) to another learning problem using the joint (two-time) distribution ρ(xt, x0),

min
θ

Et∼Unif(0,T )Ext,x0∼ρ(xt,x0) ∥vθ(·, t) − s (xt|x0)∥2
2 , (16)

whereas the “labels” for training becomes the conditional score function s (xt|x0) := ∇x log ρ(xt|x0),
which is analytical for this OU process, evaluated at a randomly sampled time t. We remark that
the choice of L2 cost function is necessary to ensure that the minimizer of the problem Eq. (16) is
the same as that of the problem Eq. (15).

2. Sampling/Inference. To perform the generative task, terminal samples drawn from the isotropic Gaus-
sian are transported from t → ∞ to t = 0 by integrating the ordinary differential equation backward in
time. That is, dx(τ)/dτ = −vWGF(x(τ)) = x(τ) + NN(x(τ), −τ), where τ ≡ −t, so signs flip relative to
forward time. x(∞) ∼ N (0, I) and τ : −∞ → 0. The corresponding GLE (Gerlich, 1973) is:

∂

∂τ
ρ (x, τ) = −∇x [(x + vθ∗ (x, −τ)) ρ (x, τ)] , (17)

where θ∗ stands for the trained neural weights.

Operationally, the above descriptions are identical to applying the “score-matching” for training and per-
forming “probability flow” for inference (Song et al., 2021). However, due to the deterministic nature of the
WGF, we would not need to invoke the reverse-time stochastic process (Anderson, 1982) in the theory. The
simplicity is the primary benefit of recognizing the existing approach as a Wasserstein gradient flow-Matching
problem.

By framing the learning as a flow-matching problem, it is most natural to weight each time equally, which
is the de facto training procedure for both discrete-time (Ho et al., 2020) and continuous-time (Song et al.,
2021) diffusion models. The procedure would seem ad hoc if one aims to parameterize a neural network for
learning the reverse-time diffusion process by a more theoretically grounded log-likelihood (more precisely,
the bound of which) maximization as shown by Sohl-Dickstein et al. As Ho et al. (2020) pointed out, the log-
likelihood approach involved weights which are not uniform in time; by removing such non-uniform weights,
DDPM achieved a better performance by effectively solving a flow-matching problem.

Next, assuming that we learn the WGF perfectly, we can treat the reverse-time WGF as a dynamical system:

d
dτ

x(τ) = x(τ) + NN(x(τ), −τ) = x(τ) + ∇x log(x(τ), −τ). (18)

This system is identical to a Wasserstein Gradient Flow with the energy functional,

E {ρ (·, τ)} = −
∫

x2

2 ρ (x, τ) dx −
∫

ρ (x, τ) log ρ (x, τ) dx

= −
∫

x2

2 ρ (x, τ) dx − 2
∫

ρ (x, τ) log ρ (x, τ) dx︸ ︷︷ ︸
Reverse-time drift

+
∫

ρ (x, τ) log ρ (x, τ) dx︸ ︷︷ ︸
Reverse-time diffusion

(19)

which is equivalent to the reverse-time Itô process (Eq. (3)). This suggests that we would not need to
invoke Anderson (1982)’s seminal proof of the existence of the reverse diffusion for generative task. This
justifies the second advantage of the WGF framework. We remark, however, that to rigorously establish the
equivalence of the forward and reverse path measures, Anderson’s theory remains necessary. Nevertheless,

10
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because generative diffusion models only require consistency at the level of marginal densities, it is not
necessary to invoke path measures in practice. We emphasize that our results concern density transport
(marginals). We do not make claims about sample-path equivalence, which requires Anderson’s reverse-time
construction. However, the corresponding reverse-time Itô process can not only can be used as a stochastic
process for sampling, but also coincidentally the reverse-time process established by Anderson (1982).

Finally, as suggested by our numerical analysis, the neural network is not learning a gradient of a scalar
potential, i.e. NN(x, t) ̸= s(x, t) for all t, both globally (because it violates the integral conditions) or locally
(because it violates the differential conditions.) It is thus puzzling and challenging to analyze how the
violations affect the reverse-time diffusion, and consequently, the quality of the generated samples. The flow
representation can provide some insight here. Suppose we use the trained, yet imperfect neural velocity field
NN(x, t) ≈ ∇x log ρ(x, t). Denote the error by e(x, t) := s(x, t) − NN(x, t). Then, the GLE governing the
distribution driven by the neural velocity field is

∂

∂τ
ρ(x, τ) = − ∂

∂x
[(x + NN (x, −τ)) ρ (x, −τ)]

= − ∂

∂x
[(x + s (x, −τ)) ρ (x, −τ)] + ∂

∂x
[e(x, −τ)ρ (x, −τ)]

= − ∂

∂x
[(x + s (x, −τ)) ρ (x, −τ)]

+
[
∇x · e(x, −τ) + sT (x, −τ) · e (x, −τ)

]
ρ(x, −τ). (20)

Immediately, we can identify a condition that if the error field e(x, t) satisfies

0 = ∇x · e(x, t) + sT (x, t) · e (x, t) , (21)

the induced distribution is identical to the true distribution. In other words, if e(x, t) lives in the null kernel
of the operator ∇x + sT (x, t), the trained neural network can perfectly perform the generative task, even
if it is not perfectly capturing the score function. We remark that this vector operator is related to the
Stein operator (Liu & Wang, 2016) and is the key construct in several recent papers on sampling (Chen &
Ghattas, 2020; Fan et al., 2024; Tian et al., 2024). In Fig. 4, we computed the error field on a trained latent
diffusion model using forward generated samples, showing that indeed a significant e(x, t) is induced (which
is of order 102, significant compared to the order 100 of deterministic decaying flow, ẋ(t) = −x(t)), but the
error field is statistically confined7 in the null kernel. This analysis suggests that:

Even when NN(x, t) is not the score function ∇x log p(x, t), the trained neural network can
still be effective to perform generative modeling.

We remark that this analysis is only possible by recognizing the underlying flow structure.

5 Discussion and Concluding Remarks

We acknowledge that we are not the first to highlight conceptual link between diffusion and flow-based
generative models. Song et al. (2021) recognized the “probability flow” ODE formulation and discussed its
use for density and likelihood estimation, while Gao et al. (2025) recently analyzed the formal resemblance
between diffusion processes and Gaussian flow matching. In parallel, Ghimire et al. (2023) independently
examined the geometric foundations of diffusion models through the lens of Wasserstein geometry, focusing
on the Riemannian structure of score-based generative modeling. Their work is complementary to ours
but does not explicitly develop the Wasserstein Gradient Flow-Matching interpretation or the connection
to the Stein operator emphasized here. To our knowledge, no prior study has unified these perspectives by
formulating diffusion modeling as a normalizing flow parameterized through Wasserstein Gradient Flow and
Otto calculus. Establishing this link provides a theoretically grounded view that also suggests new avenues
for forward random sampling and regularization in flow-based generative learning.

7We averaged over 256 randomly generated forward samples xt. For each sample, the sufficient condition does not seem to
be met but the average seems to agree, noting the significant variance for small k.
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Figure 4: a) L2 norm of e(x, t) and b) Stein operator value of e(x, t).

To conclude, we advocate for this theoretical framework because first, it was developed over 20 years ago, and
yet its direct connection to modern diffusion generative models has received relatively little explicit attention
in the machine learning literature; and second, the framework is self-consistent, simple, concise, and elegant.
We dedicate this work to the pioneers of Wasserstein Gradient Flow theory—Jordan, Kinderlehrer, and
Otto—whose foundational insights continue to shape and inspire cutting-edge machine learning research
today.
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Figure 5: (MNIST) Summary statistics of
∮

s⃗θ · dx⃗ calculated by different path-generating mechanisms, in
normal and latent diffusions.

6 Appendix

We provide more statistics of the non-dimensionalized quantity |
∮

s⃗θdx⃗|/
∮

|x⃗t| · |dx⃗| (Eq. (7)), as well as
experiment results on the CIFAR-10 dataset.

6.1 Additional numerical results on MNIST

Refer to Figs. 5, 6, 7.
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Figure 6: (MNIST) Results of integral constraints, as functions of discrete time index k: a) shows the
absolute value of the integral condition

∮
s⃗θ · dx⃗ normalized by the path length and the strength of the

deterministic flow,
∮

|x⃗t||dx⃗|; b) presents the same quantity but for the latent dynamics.

6.2 Numerical results on CIFAR-10

For CIFAR-10, we utilized the models from Seong (2024), it implements the standard DDPM and VAE with
latent dimension of 3 × 16 × 16. We also tried training these models from scratch, which exhibits similar
behaviors to the pretrained ones. Results are presented in Figs. 8, 9, 10, 11.

6.3 Additional numerical results on Funnel & CelebA-HQ-256

Summary statistics shown in Fig. 12.
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Figure 7: (MNIST) Summary statistics of |
∮

s⃗θ · dx⃗|/
∮

|x⃗t||dx⃗| calculated by different path-generating mech-
anisms, in normal and latent diffusions.

17



Published in Transactions on Machine Learning Research (12/2025)

Figure 8: (CIFAR-10) Results of integral and differential constraints, as functions of discrete time index
k: a) shows the absolute value of the integral condition

∮
s⃗θ · dx⃗; b) presents the same quantity but for

the latent dynamics; c) reports the differential condition |∂xi
sj − ∂xj

si| in normal diffusion; d) shows the
corresponding differential condition in latent diffusion.
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Figure 9: (CIFAR-10) Summary statistics of
∮

s⃗θ · dx⃗ calculated by different path-generating mechanisms,
in normal and latent diffusions.
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Figure 10: (CIFAR-10) Results of integral constraints, as functions of discrete time index k: a) shows the
absolute value of the integral condition

∮
s⃗θ · dx⃗ normalized by the path length and the strength of the

deterministic flow,
∮

|x⃗t||dx⃗|; b) presents the same quantity but for the latent dynamics.
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Figure 11: (CIFAR-10) Summary statistics of |
∮

s⃗θ · dx⃗|
∮

|x⃗t||dx⃗| calculated by different path-generating
mechanisms, in normal and latent diffusions.
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Figure 12: (Left: Funnel, Right: CelebA-HQ-256) Summary statistics of |
∮

s⃗θ · dx⃗|/
∮

|dx⃗| calculated by
different path-generating mechanisms, for data samples drawn from funnel distribution (left) and CelebA-
HQ-256 (right). Note that for CelebA-HQ-256, we presented more data points at earlier time k.
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