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Abstract

Cervical cancer is the fourth most common cancer in women worldwide. Treatment of
the disease includes radiation therapy treatment, requiring precise organ delineation for
treatment planning. Improvement of the segmentation process for the tumour site and
nearby organs could limit treatment side effects and improve treatment planning efficiency.
Compared with segmentation for other anatomical locations, Magnetic Resonance Imaging
(MRI) for cervical cancer is challenging based on the limited amount of training data and
large inter-patient shape variation for organs close to the tumour (organs-at-risk). The
proposed approach included transfer learning with male pelvis data with similar field of
view (FOV), with the addition of dilated layers within the 3D U-Net structure to improve
segmentation performances. The approaches were compared to the 3D U-Net which was
widely used in recent studies in image segmentation for cervical cancer MRI or computed
tomography (CT). The data used consisted of 42 images obtained from 20 patients with
stage IB to IVB cervical cancer across a maximum of 7 weeks of radiation therapy with
manually contoured labels including the bladder, cervix, gross tumour volume (GTV),
uterus and rectum. The studied approaches accounted for the small dataset and large range
of tumour size. Outcomes were evaluated based on the Dice Similarity Coefficients (DSC),
the Hausdorff Distance (HD) and the Mean Surface Distance (MSD). The approaches
evaluated were shown to have improved segmentation outcomes and required a significantly
lower number of model parameters, reducing computer cost and memory.
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1. Introduction

Cervical cancer is a common disease causing over 300,000 deaths worldwide each year.
Computed Tomography (CT) scans and Magnetic Resonance Imaging (MRI) are used for
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radiotherapy treatment planning, and accurate target and organ-at-risk delineation is es-
sential. Cervical cancer can extend to the pelvic side wall or invade adjacent organs such
as the bladder or rectum. CT scans are useful for staging and follow-up in patients, how-
ever, CT provides poor soft-tissue contrast, limiting its use for local staging. MRI provides
improved soft tissue contrast and is useful for defining the extent of tumour involvement in
terms of contour and volume (Veera et al., 2019). External beam radiation therapy planning
contains some uncertainty caused by organ movements and volume changes, in addition to
patient geometry differences. A margin for the planning dose target volume is generally
expanded around the tumour area to ensure it receives adequate radiation dose, resulting
in dose being delivered to normal tissues as a side effect (Jadon et al., 2014).

Precise delineation of organ boundaries from medical imaging is essential for accurate
treatment application, reducing side effects. Conventionally, manual segmentation is used,
which has limitations including inconsistency caused by inter-observer differences, and time
inefficiency (the contouring for a single cervical cancer patient takes 90 to 120 minutes to
be completed (Liu et al., 2020)). The process also require specialised staff with a high
level of expertise. For cervical cancer, image based automatic segmentation is particularly
challenging due to the large inter-patient shape variation and the limited data sources. In
this paper, convolutional neural network (CNN) based 3D networks were investigated for
the application of cervical cancer segmentation. Contribution of this paper included:

1. A new clinical 3D MRI dataset for the female pelvis organs from the study in Veera
et al. (2019) was investigated for full 3D automatic segmentation.

2. A modified version of CAN3D (Dai et al., 2021) was introduced. The proposed model
achieved same level or better results with respect to the standard 3D U-Net with
significantly less training time computer power required.

3. Transfer learning from male pelvis region MRI scans with a similar field of view
(FOV) from a previous prostate cancer study (Dowling and Greer, 2021) was applied
in this paper. It improved model performance, suggesting an alternative approach for
increasing training data for cervical cancer MRI segmentation with small dataset in
addition to data augmentation.

2. Related work

2.1. Cervical Cancer MRI

There are few studies which have been explored on pelvic organ segmentation for cervical
cancer treatment planning.

One of these studies reported the development of a registration framework for the appli-
cation of bladder and clinical target volume (CTV) segmentation in pelvic MRI. A statistical
shape model was used as a constraint during optimization (Berendsen et al., 2013) with a
resulting Dice Similarity Coefficient (DSC) of 0.67/0.73 and 0.55/0.57 (mean/ median) for
the bladder and CTV respectively. Considering the large shape variation of the cervix-
uterus shape and position, another study proposed a patient specific predictive model for
it based on the relationship between bladder filling and the motion of cervix-uterus using
deformation registration (Bondar et al., 2011). Individual CT scans was needed for each
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patient (with full and empty bladder) to generate the model and its approach significantly
reduced the margin required to account for motion uncertainties. These approaches all
required prior development of a constraint model which were not an efficient solution with
the low accessibility of cervical cancer MRI data.

Deep learning approach with a CNN has been widely explored in recent studies. The use
of a 2D and 3D U-Net was tested with segmentation for the gross tumour volume (GTV)
from 98 cervical cancer MRI images with stage IB to IVA. The resulting DSC ranged
from 0.13 to 0.93 with mean and median of 0.77 and 0.83 (Kano et al., 2021). A U-Net
was also tested for uterine segmentation with or without the presence of major uterine
disorders. The results were satisfying despite the presence of uterine disorders (Kurata
et al., 2019). In a study by Rigaud et al. (2021), the 2D DeepLabV3+ and 3D 2-steps
U-Net in RayStation 9B with RayLearner was used for the segmentation of 12 anatomic
structure from 408 cervical cancer CT scans where the segmentation results for the cervix-
uterus, parametrium, and 2-cm upper part of the vagina was used to define the primary
CTV. The 2D and 3D model had a mean DSC of 0.81 and 0.82 respectively regardless
of inter-observer variability. Another study proposed a segmentation model for organs
including the bladder, bone marrow, femoral heads, rectum, small intestine and spinal cord
from 105 CT images (Liu et al., 2020). The structure of the network was based on 2D U-
Net, segmenting CT images slice by slice. Apart from the typical U-Net, the convolutional
layers were replaced by context aggregation block with convolution followed by Squeeze
and Excitation to re-weight each organ mask (Liu et al., 2020). The context aggregation
block used dilated convolutions with varying dilation rate to collect the features in a larger
receptive field, along with normal convolution of different kernel size to reduce “gridding”
artefacts of dilated convolutions. The proposed network had an improved result compared
with the application of U-Net (Ronneberger et al., 2015).

For organ segmentation in cervical cancer MRI, U-Net based structured network has
been used for both 2D and 3D applications. Due to the large shape variability of the
cervix and GTV, most studies have focused on nearby organs that have a more predictable
structure including the bladder, rectum and bone structures. 2D models were used in most
studies (with 3D data requiring high computer cost and memory).

2.2. Medical Image Segmentation

For medical image segmentation, different network structures were explored. A 3D U-
Net was developed for the application of 3D volumetric segmentation (Cicek et al., 2016).
A modified 3D U-Net was developed in Isensee et al. (2018) with residual connections.
The proposed network included deep supervision in the localization pathway and achieved
promising results on the BraTS 2017 challenge. Dilated convolution was widely used to
collect contextual information without losing resolution (Hamaguchi et al., 2018; Li et al.,
2018). In the study of (Yu and Koltun, 2016), dilated convolution was used for context
aggregation and was proposed for the purpose of semantic segmentation. Semantic seg-
mentation generally involving the reduction of resolution to collect image information. The
study proposed an approach that could extract contextual information in combination with
the full-resolution output. Dilated convolution supports exponential expansion of the re-
ceptive field and eliminated the need of compressing the input (Yu and Koltun, 2016). In
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the study by (Dai et al., 2021), CAN3D was developed with the use of dilated convolution
layers (DCL) for 3D volumes, reserving image information. The network was applied for
prostate cancer MRI data and had shown improvement in results and efficiency compared
to state-of-art approaches including U-Net.

In this paper, 3D U-Net and a modified CAN3D were investigated with transfer learning
and applied to cervical cancer MRI data. The aim was to account for the limited source
of MRI data in this domain and to allow direct application on 3D images with reasonable
computational cost.

3. Material and Method

3.1. Data

Data used in this study was obtained from 22 adult patients with stage IB-IVB cervical
cancer with a macroscopic tumour. They were recruited from Liverpool and Macarthur
Cancer Therapy Centre in Sydney, Australia. Ethics approval and informed consent was
obtained from all patients. MRI scans were collected during primary radiation therapy
with a maximum of 7 scans per patients. Two patient results were of poor quality with
low visibility of the target volumes and were removed from this study, resulting in a total
of 42 labelled datasets. MRI scans were acquired on a 70cm bore MAGNETOM Skyra 3T
scanner. The MR sequence for each scan was a 2D axial T2-weighted turbo-spin echo with
2mm slices and a single concatenation (Veera et al., 2019). This dataset was obtained in
2013 to 2019 for the purpose of a clinical study and has been utilised in this work for the first
time for automatic segmentation. The dataset was selected to investigate the application of
deep learning techniques on a small medical imaging dataset with large structural variations.

3.2. Network Structure

Different image segmentation approaches were applied on the cervical cancer MRI dataset.
Semantic segmentation of the target structures (bladder, cervix, GTV, uterus and rectum)
was performed from the 3D images and evaluated.

3.2.1. 3D U-Net

A U-Net consists of contraction layers to condense and extract pattern and information
from the input, and a decoder as the reconstruction process to obtain the final result
(Ronneberger et al., 2015). Skip connections are present to reserve information lost in
the encoder part and to be used for the reconstruction process. The 3D U-Net structure
introduced in Cicek et al. (2016) was applied in this paper with filter numbers reduced by
a factor of 2 due to computer memory limitations.

3.2.2. CAN3D+

A mixed version of CAN3D (Dai et al., 2021) (Figure 3) and 3D U-Net was also investigated.
The architecture of the network is provided in Figure 1. The standard convolution block
includes a 3D convolution layer, instance normalisation layer, and a ReLU activation layer.
A convolution layer with strides of 2 was used for down-sizing instead of a max-pooling
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layer to reduce computational cost during training with the large 3D data size (Milletari
et al., 2016).

Figure 1: Adjusted CAN3D architecture. Standard convolution block include a convolution
layer, instance normalisation and ReLU.

In contrast to 3D U-Net, the last down-sampling level was removed. Three dilated con-
volution layers (DCL) were present between the encoder and decoder. The application of
dilated convolution was introduced to increase receptive field of the convolution operation
for aggregating contextual information without resolution reduction (Yu and Koltun, 2016;
Li et al., 2018; Dai et al., 2021). Despite its advantages, it was proven to cause “gridding
artefacts” as network outputs were derived from separated input voxels (Yu et al., 2017;
Wang and Ji, 2018). In this model, DCLs were of the same dilation rates instead of the
progressive DCLs used in CAN3D. The decreasing filter numbers give the latter layers less
importance. With the layers applied consecutively, the receptive field was still increased
while limiting the gap between voxels in which the output convolution results were ob-
tained. The DCLs were followed by one normal convolution layer and 3 reconstruction
layers. Reconstruction layers consists of one up-convolution layer with strides of 2, followed
by 2 convolution layers. The up-sampled input of the layer was joined by the output of
the contraction layer with corresponding sizes to regain lost information during the encoder
part. A last convolution layer with kernel size of 1 and channel size of the number of
organ-at-risk for segmentation was included to obtain the final result. The last layer had
an activation function of softmax, which output the probability of each voxel to belong to
each output channel.

3.3. Transfer Learning

Cervical cancer MRI were hard to obtain with the number of organs involved and resources
required. In this paper, data from 20 patients was available for the development of an auto-
mated segmentation network. This dataset has a wide range of bladder, tumour and rectum
sizes with different patient conditions and stage of cancer at the time of scan acquisition.
With a similar acquisition protocol, prostate MRI data has been widely researched and the
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data is relatively more accessible. A set of prostate cancer MRI with a similar FOV was
used to train the model to learn the basic structure of the region before the model was
trained with the cervical cancer MRI data (Appendix B).

Prostate MRI data used for transfer learning consists of 211 3D images from 38 patients
diagnosed with localised prostate cancer (Dowling and Greer, 2021). The original data size
was 256x256x128 which was cropped to 256x256x64 to fit to our model. Manual contours
were provided for the bladder, body, bone, rectum and prostate. This dataset has used in
previous studies by Dai et al. (2021).

3.4. Implementation

The data were divided into 5 sets with 7-9 images using a 5-fold cross validation. Each of
the 5 sets of data was used as the test set once (Appendix A Figure 4). 10% of the data
was used as the validation data and model parameters were chosen based on its validation
loss. The average and median of the evaluation metric results were obtained to determine
the performance of our model. The training set went through data augmentation 11 times
with random operations including elastic deformation, affine wrapping, uni-axial rotation
and shift, resulting in 420-444 set of 3D images used for model training. The dataset was
provided with manually contoured labels of the bladder, cervix, GTV, uterus and rectum.
Patient data included GTV structures covering different percentage of the cervix and/or
the uterus. To account for all cases in the study, the cervix, GTV and uterus structure were
merged for network training purpose. The combined structure assists radiation oncologists
in the identification of a region within MRI which will include the cancerous tumour. The
inclusion of organs-at-risk other than the tumour volume are important for generating the
treatment dose plan or to identify significant changes in anatomy where dose will need to be
re-planned. N4 bias field correction (Tustison et al., 2010) was performed for pre-processing
of data. Input images were all cropped and resized to the image size of 256x256x64 with a
voxel size of 1.64x1.64x3mm.

For network training, the Dice loss function was used for our model. An alternative
representation of the loss function was shown as Equation (1) with p as ground truth and q
as predicted results (Cha, 2007). Adam optimization algorithm with a learning rate of 0.001
was applied to the model with a batch size of 1 to limit computational cost while optimising
model features. The model was implemented on TensorFlow 2.7.0 and the training processes
were conducted on a NVIDIA SXM2 Tesla 32 GB V100 GPU.

Dloss =

∑
(p− q)2∑
p2 +

∑
q2

. (1)

3D U-Net and CAN3D+ were both investigated on this cervical cancer patient dataset.
The Dice Similarity Coefficient (DSC), Hausdorff Distance (HD) and Mean Surface Distance
(MSD) were used as evaluation metrics for the models against the manual contours provided.
As different organ structures of the model have varying volumes, the HD and MSD were
also used along with DSC for further evaluation (Prados et al., 2017).
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4. Results

To demonstrate improvement due to transfer learning (TL) with the prostate data, the
standard U-Net and the CAN3D+ was trained from scratch, and compared with the same
network first trained with the prostate data for 10 epochs. The trained model weights were
transferred into a new model for the cervix dataset. DSC results comparison was displayed
in Figure 2. Detailed results including the average and median value of DSC, HD and MSD
were displayed in Appendix B Table 1.

Figure 2: Boxplot of the DSC results for the bladder, combined cervix-GTV-uterus (CGU)
and rectum from the proposed methods.

All networks with and without TL were trained with the same cervix data, with the
networks with TL showing an improvement in model performance. The prostate dataset
included contours of the body, bone, bladder, rectum and prostate. It provided extra
training data for the model to learn the overall structure of the pelvic region. The model
weights trained from the prostate data were transferred into 5 new U-Net models from the
5-fold validation for cervix data training. This allowed a more efficient training process of
the model while preventing over-fitting of the available cervix data.

From Appendix B Table 1, the quantitative results of the CAN3D+ are also displayed.
The processing time and the number of model parameters for the models were 1.83s/step
and 22,713,508, and 1.01s/step and 4,899,942 for U-Net and CAN3D+ respectively. 55%
of the training time and 0.2157 of computer memory and power was required to train the
CAN3D+ compared to U-Net. CAN3D+ without TL demonstrated worse performance for
the bladder and CGU structure with the limited dataset, but had better results for the
prostate dataset (Appendix B Table 2), and the best overall results when TL was applied.
The CAN3D+ with TL demonstrated an improved output for the GTV structure from the
standard U-Net with similar result for the bladder and rectum. While the U-Net with TL
had a slightly better result than CAN3D+ with TL for the rectum, CAN3D+ results had
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a better distribution and was able to achieve a similar level of output as the U-Net with
significantly less resources.

Inter-observer contouring variability of this dataset was studied in Veera et al. (2019).
The mean DSC and average mean absolute surface distance MASD (mm) was 0.48/4.59,
0.81/3.11 and 0.82/2.23 for the cervix, GTV and uterus respectively. The result of the CGU
structure from the proposed model was within the range of the inter-observer variability.

Within the dataset, GTV ranged from 11.42cm3 to 712.31cm3 (median 111.7cm3), which
caused some images to have poor prediction results and resulted in increased standard
deviation. The same situation applied to bladder and rectum where bladder volume ranged
from 30.08cm3 to 721.8cm3 (median 200cm3) and 19.3cm3 to 213.45cm3 (median 57.95cm3)
for rectum. The segmentation results were improved with an inflated bladder and rectum,
and in cases where the gross tumour was close to the median size. Output examples are
shown in Appendix B Figure 5. These examples were chosen to show results with full or
empty bladder and rectum, along with different gross tumour volumes. A good (top row)
and poor (bottom row) result was chosen as example to show the differences between the
approaches. CAN3D+ TL results were smoother and more concise compared to the other
approaches.

Overall results of the CAN3D+ have demonstrated a significant improvement in the
efficiency of the model while producing better or similar results compared to the U-Net
model with much less resources. However, model performance were limited by the shape
variability of the targeted structures. Shape variability was present between data due to
inter-patient differences, range of cancer stages, and patients’ condition at the time of data
retrieval. Future analysis on this issue is likely to help further improve model performances.

5. Conclusion

Several methods were investigated for 3D segmentation of cervical cancer MRI. In addition
to augmented images, transfer learning provided extra training data without the risk of
over-fitting. It was shown to be able to account for the limited dataset size that is typical
for clinical studies and which is generally an issue for cervical cancer image processing
studies. Compared to the standard 3D U-Net, the modified CAN3D required significantly
less training time and computer cost while achieving similar or better results. The results
were largely affected by the shape variability of the targeted structures and future analysis
focused on this issue would be beneficial.
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Appendix A. Experiment Implementation

Figure 3: CAN3D architecture. (Dai et al., 2021)

Figure 4: Data split for 5-fold cross-validation. Orange: testing/ Blue: validation/ Blank:
training
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Appendix B. Additional Results

Table 1: Evaluation of the proposed methods. The models were compared with average and
median of DSC, HD and MSD (mm) for the bladder, combined cervix-GTV-uterus
(CGU) and rectum ± standard deviation. The best values are in bold.

Structure Metric U-Net U-Net TL CAN3D+ CAN3D+ TL

Bladder DSC 0.794/0.870±0.210 0.829/0.898±0.206 0.761/0.837±0.217 0.830/0.880±0.154

HD 32.65/21.40±36.25 18.63/9.24±22.51 34.89/26.04±33.26 26.97/10.66±36.78

MSD 2.91/1.47±2.84 1.71/1.10±1.41 3.51/1.96±3.71 3.27/1.30±5.45

CGU DSC 0.676/0.678±0.128 0.727/0.740±0.126 0.610/0.649±0.168 0.734/0.756±0.132

HD 31.36/29.59±15.12 39.35/35.96±28.14 33.04/28.40±23.02 39.80/31.14±35.52

MSD 3.07/2.59±1.65 3.41/2.67±2.45 3.60/2.63±2.97 3.78/2.50±3.46

Rectum DSC 0.661/0.663±0.113 0.716/0.744±0.116 0.672/0.672±0.101 0.714/0.731±0.109

HD 45.93/46.40±27.82 28.23/18.90±30.37 45.23/26.84±39.15 31.77/19.61±38.04

MSD 3.02/2.27±1.62 2.25/1.62±1.53 2.77/2.16±1.90 2.31/1.75±1.54

Training speed 1.83s/step 1.01s/step

Model parameters 22,713,508 4,899,942

Table 2: Evaluation of the investigated model trained with prostate dataset. The models
were compared with average and median DSC. The best values are in bold.

Structure U-Net CAN3D+

Body 0.979/0.979±0.005 0.983/0.983±0.004

Bone 0.867/0.873±0.029 0.905/0.908±0.020

Bladder 0.914/0.936±0.076 0.928/0.950±0.066

Rectum 0.839/0.860±0.068 0.881/0.899±0.055

Prostate 0.824/0.842±0.090 0.851/0.866±0.050
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(a) Patient aged 48 with stage IIB cervical cancer.

(b) Patient aged 59 with stage IVA cervical cancer.
Ground Truth U-Net U-Net with TL CAN3D+ CAN3D+ with TL

Figure 5: Example output from the proposed methods on two patients. Light green: blad-
der/ dark blue: cervix-GTV-uterus/ light blue: rectum. (a) Example with in-
flated bladder and rectum, and average sized CGU. Overall DSC >0.66. (b)
Example with flat bladder and large tumour size. Bladder DSC ranged from 0 to
0.32 and CGU DSC ranged from 0.50 to 0.72.
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