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Abstract

Reinforcement learning provides an automated framework for learning behaviors
from high-level reward specifications, but in practice the choice of reward function
can be crucial for good results – while in principle the reward only needs to specify
what the task is, in reality practitioners often need to design more detailed rewards
that provide the agent with some hints about how the task should be completed.
The idea of this type of “reward-shaping” has been often discussed in the literature,
and is often a critical part of practical applications, but there is relatively little
formal characterization of how the choice of reward shaping can yield benefits
in sample complexity. In this work, we build on the framework of novelty-based
exploration to provide a simple scheme for incorporating shaped rewards into
RL along with an analysis tool to show that particular choices of reward shaping
provably improve sample efficiency. We characterize the class of problems where
these gains are expected to be significant and show how this can be connected to
practical algorithms in the literature. We confirm that these results hold in practice
in an experimental evaluation, providing an insight into the mechanisms through
which reward shaping can significantly improve the complexity of reinforcement
learning while retaining asymptotic performance.

1 Introduction
Reinforcement learning (RL) in its most general form presents a very difficult optimization problem:
when there are no constraints on the reward function or dynamics, a learning algorithm may need to
exhaustively explore the entire state space to discover high-reward regions. Naïve algorithms that
rely entirely on random exploration are known to be exponentially expensive [26, 3], and much of the
theoretical work on efficient RL algorithms has focused on smarter exploration strategies that aim
to more efficiently cover state space, typically in time polynomial in the state space cardinality [6,
8, 24, 55, 27, 32, 52]. Much of this work is based on upper confidence bound (UCB) principles
and prescribes some kind of exploration bonus to prioritize exploration of rarely visited regions.
Analogous strategies have also been employed in a number of practical RL algorithms [41, 40, 10,
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12, 22, 36, 43, 42, 37]. However, perhaps surprisingly, much of the empirical work on reinforcement
learning does not make use of explicit exploration bonuses or other dedicated exploration strategies,
despite numerous theoretical results showing them to be essential to attain tractable sample complexity.
Instead, practitioners often incorporate prior knowledge of each task into designing or shaping the
reward function [31, 38, 39, 44, 5, 11, 50, 54], preferring this heuristic approach over the more
principled exploration strategies. At this point, one may wonder why is reward shaping often
practically preferable to dedicated exploration?

A likely answer to this question lies in the fact that even the best general-purpose exploration
strategies still require visiting every state in the MDP at least once in the worst case. This is of course
unavoidable without further assumptions. However, in practice, sample complexity that is polynomial
in the size of the entire state space might still not be practical, and hence prior knowledge in the form
of reward shaping is required to render such tasks tractable. Surprisingly, despite the widespread
popularity of reward shaping in RL applications, the analysis of reward shaping has remained limited
to proving policy invariance [31] or largely empirical observations, often relegating reward shaping
to folk knowledge. In this work, we take a step towards studying the effect of reward shaping on the
efficiency of RL algorithms, by asking the following question:
Can we theoretically justify the sample complexity benefits that reward shaping from prior domain

knowledge can provide for reinforcement learning?
We aim to provide a set of tools that formally analyze how reward shaping can improve the complexity
of tabula-rasa RL and better direct exploration. To perform this analysis, we first propose a simple
modification to standard RL algorithms —“UCBVI-Shaped” that incorporates shaped rewards into
optimism based exploration. We use this algorithm instantiation to then provide a regret analysis
framework that studies how this introduction of shaped rewards can (in certain cases) provide much
more directed optimism than uninformed exploration, while maintaining asymptotic performance.

To approach our analysis, we specifically consider problems where the reward shaping is provided
through a term eV , a (potentially suboptimal) approximation of the optimal value function V ?. In
particular, we assume that the shaping eV is a multiplicatively bounded approximation of the optimal
value function V ?, i.e., eV (s)  V ?(s)  b eV (s),8s, for a finite multiplicative factor b . This type
of shaped reward function eV can be incorporated into a standard RL algorithm like UCBVI [8]
through two channels: (1) bonus scaling – simply reweighting a standard, decaying count-based
bonus 1p

Nh(s,a)
by the per-state reward shaping and (2) value projection – adaptively projecting

learned value functions into ranges of value functions derived from the reward shaping.

We show that this relatively simple algorithmic instantiation lends itself to an analysis that shows
significant sample complexity benefits with shaping. Intuitively, the key pieces in our complexity
analysis of UCBVI-Shaped are: (1) A multiplicative sandwich condition (via b ) between eV and V ?

allows for the bonus scaling to depend on b eV instead of a coarse approximation of V ? such as H. This
allows for a reduction of complexity from a horizon H dependent term to one scaling with b eV  bV ?

by allowing for a faster decay of the exploration bonuses while still providing enough optimism. (2)
A projection of the value function prevents “over optimism” by hastening the convergence of the
empirical bQ functions during value iteration, thus allowing for faster detection of sub-optimal actions.
This results in the ability to prune out large parts of the state space, as we also validate empirically.

To summarize, the key contribution of this work is to characterize how reward shaping can provably
improve sample efficiency by providing gains in both |S| and H dependent terms. We do so by
analyzing the gains from reward shaping in two different ways: bonus scaling and value projection.
We show that the “quality” (determined by b ) of the provided shaping can significantly improve
the sample efficiency of the resulting reinforcement learning algorithm, provide a set of analysis
techniques to understand improvements in sample complexity from shaping, and confirm our findings
with numerical experiments.

2 Related Work
Regret Analysis in Finite Horizon Episodic Tabular MDPs. Recent research on regret analysis
has studied both model-based and model-free RL methods. Model-based methods [23, 4, 8, 20, 17, 35]
first learn a model from previous experience and use the learned model for future decision making.
In contrast, model-free methods [24, 9, 55, 46, 30, 27] aim to learn the value function without the
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model estimation stage and use the learned value function for decision making. Our analysis lies in
the model-based framework and is similar to the setting of [8] but with additional assumptions on
knowing eV as a multiplicatively bounded approximation of V ?. The main difference between our
results and the aforementioned works is that we consider the reward shaping setting with a truncated
interval assumption. As a result, we reduce the state dependency |S| to the some smaller “effective
state space”. Our work is also closely related to [21]. We discuss this in Section 3.

Regret Analysis with Linear Function Approximation. A recent line of literature has investigated
the linear function approximation setting by assuming the transition kernels or the value functions
can be represented by d-dimensional linear features [25, 53, 7, 56, 13, 48, 47, 45] or even general
function classes [49]. With the aforementioned assumptions, the regret analysis will only depend
on the ambient dimension d (or other intrinsic complexity measure), instead of S,A in the tabular
setting [45, 48, 13, 56, 7, 52, 25], which could greatly decrease the complexity of learning. Instead of
posing structural assumptions on the function class representing the MDP’s values or dynamics, we
ask the question of whether having approximate knowledge of V ? can improve the speed of learning.

Practical Reward Design and Reward Shaping. Ng et al. [31] proposed a potential-based shaping
function F that ensures policy invariance under transformation. However, unbiased potential based
reward shaping is rarely used in practice. In most applications, heuristic reward design is carefully
performed with potentially biased reward functions. In some large-scale practical RL tasks [11,
50, 51], the reward functions are heavily handcrafted based on prior knowledge. Besides reward
engineering, a distinct line of work applies uninformed exploration algorithms like count-based reward
shaping or intrinsic rewards to encourage greater state visitation [41, 40, 10, 12, 22, 36, 43, 42, 37, 28].
Importantly, these methods optimize for the worst case, as they try to cover all states since the exact
location of the reward is unknown. In contrast, we look at the problem of incorporating domain
knowledge via reward shaping into the exploration process. Closely related to our work is that of
Cheng et al. [14], which studies how to incorporate shaping (heuristics) into the RL process via
reducing the effective horizon. This work provides gains by reducing the horizon factor while our
work provides gains by reducing the size of the effective state space that needs to be searched through.

3 Overview

We consider an episodic Markov Decision process M = (S,A,P?,r,H) where S corresponds to
the state space, A is the action space, P? is the transition operator, r : S⇥A! [0,1] is the reward
function and H is the problem horizon. We use |S|, |A| to denote the number of state and actions,
and we use P?(·|s,a) to denote the transition probability of state action pair (s,a). The value function
V p(s0) of a policy p starting at an initial state s0 is defined as V p(s0) := Ep

⇥
ÂH

h=0 r(sh,ah)
⇤
, where

Ep denote the transition dynamic of M under p . Similarly, V ?(s0) is the value function of the optimal
policy p?. We consider a sequential interaction between a learner and the MDP M occurring in
rounds indexed by t 2 N. At the start of round t the learner selects a policy pt that is used to gather a
sample trajectory from M. As is standard in the literature, we measure the learner’s performance up
to round T by Regret(T ) := ÂT

t=1 V ?(s0)�V pt (s0).

Figure 1: Reward shaping can allow for reduction of the “effective”
state space size. In the above maze environment, the initial state is in
the middle of the maze so finding the goal only requires solving half
of the maze (Left). While uninformed state covering exploration
(Middle) would go both directions since it has no knowledge of goal
location, effective shaping (Right) would allow for halving of the
effective state space. The green circle represents the starting point
and the red square represents the goal. Different colors represents
the landscape of the shaped value function (green indicates smaller
value and red indicates larger value).

Our goal is to show that knowing a
reward shaping term eV allows for sig-
nificantly more sample efficient learn-
ing, which with high probability has
a sublinear regret upper bound. This
bound has a leading term that depends
on an “effective state space” of M,
determined by the quality of a reward
shaping term eV and the nature of the
particular MDP being solved. This
pruned effective state space can be
much smaller than |S|. Additionally,
we will show an improved horizon de-
pendence as the shaping term eV al-
lows for the bonus terms to be smaller
and therefore decay faster thus replacing horizon factors of H with b eV ones.
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Intuitively, reward shaping allows for the consideration of a reduced effective state space. Consider
the maze environment in Fig. 1 with agent starting in the middle. Without knowing where the goal is,
an uninformed exploration algorithm needs to explore nearly the entire maze. However, an effectively
incorporated reward shaping term eV would allow the algorithm to prune out the entire left half of the
maze, effectively halving the effective state space size. This can happen in two ways: firstly, if the
shaping can directly indicate that certain actions are sub-optimal, then entire regions of the space can
be eliminated from search. Secondly, even if states are not eliminated, if their corresponding bonuses
are scaled according to their shaped value eV from the shaping rather than uniformly with H, it limits
unnecessary exploration of suboptimal states.

Based on this intuition, we propose modifications to a standard reinforcement algorithm that allows us
to perform this analysis effectively. To aid our analysis, we introduce UCBVI-Shaped, a modification
of the UCBVI algorithm [8] that uses an additional reward shaping term eV in two ways: (1) Bonus
scaling: eV is used to provide an exploration bonus that combines inverse state visitation counts with
reward shaping. This allows for the reduction of overoptimism and the dropping of the horizon
H dependence (2) Value projection: the shaping term is used to clip the empirical value function
bVh(s), which enables pruning unnecessary elements of the state space and allows for a bound that
depends only on the effective state space size. Informally, our main result for UCBVI-Shaped can be
summarized as follows:
Theorem 3.1 (Main Informal). With probability at least 1�d , the regret of UCBVI - Shaped satisfies2

Regret(T ) =O
⇣

B(eV ,M) log(T/d )+Regret�UCBVI(Sremain,A,T )
⌘
.

Here, Sremain corresponds to the set of states in M where the information contained in eV was not
enough to rule them out, and Regret�UCBVI(SremainA,T ) is a UCBVI regret upper bound function
evaluated on Sremain and A. B(eV ,M) is a time-agnostic complexity measure that depends solely on
the M and the quality of the shaping eV .

We will define Sremain and B(eV ,M) and describe their relationship to eV precisely in Section 5. If
Sremain ⌧ S , the regret of UCBVI - Shaped can be substantially smaller than Regret�UCBVI(S,A),
particularly since the first term of the regret grows logarithmically while the second scales with

p
T .

We state our assumptions next:
Assumption 1. The quality of the shaping term eV is described by a parameter b . We assume access
to a shaping “value function” estimators eVh : S !R such that V ?

h (s) b eVh(s), for all s 2 S , h 2 [H]
and for some b � 1.

Instead of absorbing b into the definition of eVh we allow eVh(s)<V ?
h (s) for some states s 2 S . We’ll

show that learning a value of b that turns this assumption true can be performed online. This
assumption is intimately related to the optimistic eQ assumptions of [21]. A thorough comparison
with this work can be found in Appendix B.2.
Assumption 2. We assume the reward functions satisfy r(s,a) 2 [0,1],8(s,a) 2 S⇥A.

Assumption 3. The states S are h�indexed, i.e., the states reachable at time h 2 [H] are disjoint
from the states reachable at time h0 2 [H] when h 6= h0.

Contributions. Our main conceptual innovation is to introduce the notions of pseudosuboptimal
and path-pseudosuboptimal states to quantify the “effective” size of the state space as a function
of the quality of the shaping term eV and use these notions to show how UCBVI-Shaped can attain
significantly improved regret rates. In contrast with for example [21], where the regret rates will
always scale at least with the number of states, our regret guarantees depend on an effective state size
that may be orders of magnitude smaller. We believe this captures the real complexity improvement
that reward shaping may yield, namely, avoid exploration of unnecessary areas of the state space.
Other approaches such as [21] may (in general) at most yield an improvement in the dependence on
the effective size of the action space. We further show that incorporating shaping into the exploration
bonus term improves the horizon-dependence in the bound when the shaping is good enough, allowing
us to replace a leading H term with maxs b eV (s).

2Our main result, Theorem 5.2, is slightly more complex than this statement. We have chosen this simplified
form to aid the reader to form the right intuition.
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4 The UCBVI-Shaped Algorithm
To perform analysis of reward shaping, we build on the framework of the UCBVI algorithm [8].
UCBVI is an exploration algorithm based on the upper confidence bound, described in detail in
Appendix D. This forms a convenient base algorithm for incorporating shaped rewards in a way that
admits faster learning while maintaining asymptotic performance (as we will discuss in Section 5).
Our algorithm, UCBVI-Shaped, is a combination of two changes to the upper confidence bound
algorithm. First, we modify the bonus scaling to depend on eV . Second, we introduce a projection
subroutine into value iteration, implemented as a standard clipping operation.

Algorithm 1 UCBVI - Shaped
1: Input reward function r (assumed to be known), confidence parameters
2: for t = 1, ...,T
3: Compute bPt using all previous empirical transition data as bPt(s0|s,a) := Nt

h(s,a,s
0)

Nt
h(s,a)

, 8h,s,a,s0.

4: Compute reward bonus bt
h(s,a) from Eqn. 1 (roughly of order eVp

N(s,a)
) . Bonus scaling

5: Run Value-Iteration with Projection (Algorithm 2).
6: Set pt as the returned policy of VI.
7: End for

As in standard UCBVI, we define Nt
h(s,a) to be the visitation count for the state-action pair (s,a)

at iteration t �1 for horizon h: Nt
h(s,a) := Ât�1

i=0 1
�
(si

h,a
i
h) = (s,a)

 
. Similarly to Nt

h(s,a), we use
Nt

h(s,a,s
0) := Ât�1

i=0 1
�
(si

h,a
i
h,s

i
h+1) = (s,a,s0)

 
as the visitation count of state-action pair (s,a) and

the subsequent state s0. We then use bPt(s0|s,a) := Nt
h(s,a,s

0)
Nt

h(s,a)
,3 8h,s,a,s0 to denote the empirical

transition kernels at iteration t. UCBVI uses value iteration with the empirical transition function
bPt and a reward function augmented with an exploration bonus, given by rh + bt

h. This is defined
as a dynamic programming procedure that starts at H and then proceeds backward in time to h = 0,
updating according to Algorithm 1 and 2. The key algorithmic changes between UCBVI and UCBVI-
Shaped are highlighted in blue: (1) scaling bonus bt

h by the shaping term eV and (2) projecting the
empirical value function bVt

h(s) by an upper bound based on the sandwiched shaping, b eV (s,a). As we
discuss in Section 6, we also show how the sandwich factor b does need to be provided beforehand
but instead can be inferred through a straightforward technique for online model selection. While
the approximate order of the bouns term is eVp

N(s,a)
, a more detailed description can be found in

Section 5.

Algorithm 2 Value Iteration with Projection

1: Input
n
bPt ,r+bt

h

oH�1

h=0
.

2: bVt
H(s) = 0, 8s, bQt

h(s,a)
3: While not converged
4: bQt

h(s,a) = min
n

rh(s,a)+bt
h(s,a)+ bPt(·|s,a) · bVt

h+1,H
o

5: bVt
h(s) = min

⇣
maxa bQt

h(s,a),b eV (s)
⌘

. Value projection

6: p t
h(s) = argmaxa bQt

h(s,a), 8h,s,a.

5 Analyzing UCBVI-Shaped
In this section, we will derive our main result on the sample complexity of the UCBVI-Shaped
algorithm, and along the way introduce pseudosuboptimal and path-pseudosuboptimal states as a tool
for deriving bounds that depend only on the “effective” state space as determined by the provided

3The bPt here is dependent on the horizon h, but since we have assumed (Assumption 3) the states s are
h-indexed, we will use bPt for notation simplicity.
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reward shaping. We will first introduce some notation to use in our analysis. As described in the
previous section, UCBVI-Shaped proceeds in rounds. At the beginning of round t, the learner has
access to an empirical model bPt built from the data collected up to iteration t �1. The bonus terms
we consider are built by taking the empirical second moment of eV . This is related to the definition of
bonus2 in Azar et al. [8]. Importantly, the empirical value functions bVt

h are clipped above by b eVh:

bt
h(s,a) = min

0

B@16b

vuutbEs0⇠bPt (·|s,a)[
eV 2

h+1(s0)|s,a] ln
2|S||A|

d

Nt
h(s,a)

+
12b eV max

Nt
h(s,a)

ln
2|S||A|t

d
,2b eV max

1

CA , (1)

where eV max
h = maxs0 eVh(s0) and eV max = maxs0,h0 eVh0(s0).

Despite clipping and a modified bonus term, the bQ and bV values of UCBVI-Shaped are optimistic:
Lemma 5.1. With probability at least 1�d we have

bVt
0(s0)�V ?

0 (s0), 8s0 2 S; and bQt
h(s,a)� Q?

h(s,a), 8(s,a) 2 S⇥A, (2)

for all t,h 2 N⇥ [H], where bVt
h is computed via Algorithm 2.

The proof of Lemma 5.1 can be found in Appendix A.1. Optimism (Lemma 5.1) and the simulation
Lemma [2] imply that:

V ?(s0)�V pt (s0) bVt
1(s0)�V pt (s0) = Et⇠pt

"
H

Â
h=1

bt
h(sh,ah)+

⇣
bPt

h(·|sh,ah)�P?(·|sh,ah)
⌘
· bV pt

h+1

#
.

(3)
We now turn our attention to characterize the information contained in eV .

5.1 Pruning of the State Space

Figure 2: PathPseudoSubD⇥A is
split from Support(dp⇤

(s,a)) by
BoundaryPseudoSubD. UCBVI-
Shaped can avoid exploring over
PathPseudoSubD ⇥A.

Consider the following “surrogate” Q functions, eQu
h : S⇥A! R

induced by eV via:
eQu

h(s,a) = Es0⇠P(·|s,a)
⇥
r(s,a)+bṼh+1(s0)

⇤
.

By Assumption 1, we can bound Q? via Q?
h(s,a)  eQu

h(s,a). The
basis of our main results is the following observation. If an action
a satisfies eQu

h(s,a)<V ?
h (s) for state s, then a is a suboptimal action

for state s. The projection (Step 5 of Algorithm 2) ensures the ‘em-
pirical’ Q�functions bQt

h(s,a) of Algorithm 1 will quickly converge
to values upper bounded by eQu

h(s,a). Since optimism guarantees that
bQt

h(s,p⇤(s)) � V ?(s), and the policy executed by UCBVI-Shaped
is greedy w.r.t bQt

h, actions belonging to state-action pairs such that
eQu

h(s,a)<V ?
h (s) will quickly stopped being played by the algorithm.

Moreover, all states that are only accessible through state-action
pairs of this kind will also stop being visited by the algorithm after
only a few iterations. In the subsequent discussion we will call
PseudoSub to the set of state action pairs that are quickly ‘prunned out’ by UCBVI-Shaped, the set
of states only accessible through these state action pairs as PathPseudoSub and the set of state-action
pairs in PseudoSub that are not in PathPseudoSub⇥A as BoundaryPseudoSub. Once all states in
BoundaryPseudoSub have been visited enough, no states in PathPseudoSub will be visited again.
Provided this happens sufficiently fast, we can show a regret bound that is independent on the size
of PathPseudoSub. The subsequent discussion is aimed at formalizing this and culminates with our
main result (Theorem 5.2).

Given a parameter D > 0, we say that an action a is D�pseudosuboptimal4 for state s if V ?
h (s) �

D+ eQu
h(s,a). We denote the set of D�pseudosuboptimal state action pairs as:

PseudoSubD = {(s,a) 2 S⇥A s.t. V ?
h (s)� D+ eQu

h(s,a)}.
4We add the qualifier pseudo to our name to distinguish between suboptimality as captured by our surrogate

Q values and true suboptimality between the true values of Q?
h.
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The intuition we want to capture is that all states s̃ that can be accessed only through traversing a
state action pair in PseudoSubD, can be safely ignored because we can determine their suboptimality
as soon as the state action pairs in PseudoSubD that lead to s̃ are visited enough.

Now we define the set of D-path-pseudosuboptimal states as the states that can be reached only by
traversing a D�pseudosuboptimal state action pair:

PathPseudoSubD = {s 2 S s.t. all feasible paths from initial states to s intersect PseudoSubD}.

Notice that there may be state action pairs in PathPseudoSubD ⇥A that may not be in PseudoSubD.
In fact, there may exist states s in PathPseudoSubD such that no (s,a) is in PseudoSubD for all
a 2 A. We will show that states in PathPseudoSubD will not be explored by UCBVI-Shaped af-
ter a few iterations. Intuitively, this happens because the support of the state visitation distribu-
tion of the optimal policy does not contain any state in PathPseudoSubD,8D > 0 (or equivalently,
Support(dp?

(s,a))\PathPseudoSubD = /0,8D > 0). Hence, once the UCBVI-shaped identifies some
sub-optimal state action pairs, the algorithm will not visit these state-action pairs again.

For any state action pair (s,a), define its set of neighboring states Neighbor(s,a) as the set
of states with nonzero probability in P?(·|s,a). By definition of PathPseudoSubD, for all
(s,a) 2 (S⇥A)\((PathPseudoSubD ⇥A)[PseudoSubD), we have:

Neighbor(s,a)✓ S\PathPseudoSubD. (4)

In other words, the neighborhood of any state action pair (s,a) whose state is not in PathPseudoSubD
and such that (s,a) is not D�pseudo-suboptimal, are not in PathPseudoSubD. We also introduce the
notion of “boundary pseudosuboptimal” state action pairs to capture the set of state action pairs that
are D�suboptimal but whose states are not in PathPseudoSubD.

BoundaryPseudoSubD = {(s,a) 2 PseudoSubD and s 62 PathPseudoSubD}.
Naturally, one of these states has to be traversed by any trajectory that contains any state in
PathPseudoSubD.

Although we only use eQu in the definition of PseudoSubD, PathPseudoSubD, and
BoundaryPseudoSubD, the size of these sets is modulated by the scale of b and the width of
the intervals

h
eQl(s,a), eQu(s,a)

i
. We will show that (in the notation of Theorem 3.1) Spruned ⇡

S\PathPseudoSubD. With this notation, the formal version of our main results is stated as follows.
Theorem 5.2. With probability at least 1�6d , the regret of UCBVI-Shaped is upper bounded by

T

Â
t=1

V ?(s0)�V pt (s0) =O

 
min

D

 
Hb eV max

s

|S\PathPseudoSubD||A|T ln
eV max|S||A|T

d
+

b 2
⇣
eV max

⌘2
H1/2|BoundaryPseudoSubD|1/2 ln

eV max|S||A|T
d

⇥min(A(D),B(D))

!!
.

for all T 2 N. Where A(D) = |S|1/2|A|1/2

D and B(D) = b eV maxH1/2|BoundaryPseudoSubD|1/2

D2 .

Theorem 5.2 instantiates the desiderata of Theorem 3.1. Although this regret upper bound cannot
be decomposed into a sum of two term as in Theorem 3.1. For any fixed D, the regret upper bound
has two components, one where Sremain can be identified with |S\PathPseudoSubD| and a second
one that scales logarithmically in T . In the next section we flesh out the steps in the proof of this
result. The full argument can be found in Appendix A. The bonus scaling also allows us to ameliorate
the horizon dependence of the upper bound. Instead of obtaining a H2 dependence as the bound of
theorem 7.1 in [2], the first term depends on Hb eV max. Notice that the state dependence in the second
term may be only be of order log(|S|) if there is a D such that |BoundaryPseudoSubD|⌧ |S| (albeit
at the cost of a quadratic dependence on 1/D2). Moreover notice that |BoundaryPseudoSubD| could
be much smaller than |PathPseudoSubD| (the set of states that are reachable only by visiting states in
|PseudoSubD| ) thus showing that in some cases we can guarantee that even in the low order terms,
the regret of UCBVI-Shaped that has polynomial dependence on an effective state space size that may
be orders of magnitude smaller than the original one. The full version of this bound, with all the low
order terms we have omitted for the sake of readability can be found in Appendix B.1, Theorem B.11.
Note that Theorem 5.2 is a strict generalization to the UCBVI regret upper bounds, as setting D to a
value that is smaller than the minimum gap recovers the exact result (Theorem 7.6in [2]).
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5.2 Proof Intuitions and Sketch for Theorem 5.2
Improved Horizon Dependence. An empirical Bernstein bound shows that adding a bonus scaling

(up to low order terms) with O
✓r

cVars0⇠bPt
h(·|s,a)

(V ?
h+1(s0)|s,a) ln 2|S||A|t

d /Nt
h(s,a)

◆
is sufficient to

ensure optimism. Since V ? is not known, this variance term can be substituted by the empirical second
moment of b eVh+1. Finally, the scaling of these terms can be upper bounded by b eV max. Without
knowledge of eV , achieving this scaling would be challenging, since the only proxy for V ?

h+1 available
is bVt

h+1 or H both of which may vastly overestimate it.

State Pruning. The value function clipping mechanism ensures that Es0⇠bPt
h(·|s,a)

h
bVt

h+1(s
0)
i


bEs0⇠bPt
h(·|s,a)

h
eVh+1(s0)

i
and therefore the empirical gap between bQt

h(s,a) and V ?(s) is decreasing

at a rate of at most O
⇣

b eV max/
p

Nt
h(s,a)

⌘
. Since optimism ensures that bQt

h(s,p?(a)) � V ?(s),

once bQ(s,a) < V ?(s), action a will not be chosen anymore. Thus, for any D, the number of
times any state action pair in PseudoSubD may be visited by UCBVI-Shaped is upper bounded

by b 2
⇣
eV max

⌘2
/D2. Since any visit to a state action pair in PathPseudoSubD ⇥A[ PseudoSubD

requires a visit to a state in BoundaryPseudoSubD, which allows us to bound the total number of
visits to a state (or a trajectory containing such a state) in PathPseudoSubD ⇥A[PseudoSubD by

H|BoundaryPseudoSubD|b 2
⇣
eV max

⌘2
/D2.

Finally, we can split (a version of) the regret decomposition in Eqn. 3 into two sums, one over
state action pairs in Ubad = PathPseudoSubD ⇥A[PseudoSubD (or trajectories intersecting Ubad)
and a second one over state action pairs in Ugood = (S⇥A)\(PathPseudoSubD ⇥A[PseudoSubD)
(or trajectories without intersection with Ubad ). We can then apply the upper bound on the vis-
itation of state action pairs in PathPseudoSubD ⇥A[PseudoSubD to derive a regret upper bound
over these states scaling with 1/D. Using the bound on the number of trajectories that intersect
PathPseudoSubD ⇥A[PseudoSubD, the trajectory decomposition yields the term scaling with 1/D2

(but having only logarithmic state dependence) in Theorem 5.2. Recall that Eqn. 4 implies that
the transition operators over state action pairs in Ugood have support only over S\PathPseudoSubD.
Our proofs use this fact to prove a polynomial dependence on |S\PathPseudoSubD| and not |S|
in Theorem B.11 (see Appendix B.1), the full version of Theorem 5.2. Detailed proofs are in
Appendix A.

6 Practical Considerations: Online Model Selection

Now one may notice that UCBVI-Shaped requires knowledge of the scaling b is in order to actually
perform the value projection. While this can be pre-provided by a user or set conservatively, in this
section we discuss how this can be inferred by viewing this as an online model selection problem. In
particular, given a set of N different values of b — [b1,b2, . . . ,bN ], each of which parameterizes a
different setting of the learning algorithm UCBVI-Shaped(b ), an online model selection algorithm
such as Stochastic CORRAL [1, 34] or RegretBalancing [33, 15] jointly infers the value of b and
learns the appropriate value function online. In Appendix B.4 we show how these techniques can
yield meaningful regret guarantees and we provide pseudocode.

7 Numerical Simulations
To show the practical relevance of our analysis on reward shaping we perform some numerical
simulations on a family of maze environments with tabular state-action representations, as shown in
Fig. 3. These environments have deterministic dynamics and reward. The reward is 0 at all states
except a goal sink state, which has reward 1. These simulations are aimed at studying the following
questions: (1) Does reward shaping improve sample complexity in these types of maze environments
over uninformed UCBVI? (2) What is the relative importance of the bonus reweighting and the eV
projection? (3) How does the “suboptimality” of eV impact the resulting sample complexity? (4)
Does introducing decayed shaping actually allow for policy convergence? In these experiments,
eV is constructed by scaling the optimal value function V ? by per-state scaling factors sampled
independently within the range b .
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(a) Value function of Gridworld
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(b) Value function of Single Corridor
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(c) Value function of Double Corridor
Figure 3: Environments used for numerical simulations. (Left) Open Gridworld (Middle) Single corridor, agent
starts bottom right has to reach a goal in top left (Right) Double corridor, agent starts in the middle and has to
reach a goal on the left, with many irrelevant states on the right hand side

7.1 Does reward shaping help direct exploration over optimism under uncertainty?
We conducted numerical simulations on tabular environments to understand how reward shaping via
UCBVI-Shaped provides benefits over standard UCBVI. Fig. 4 shows cumulative regret accumulated
with different variants of UCBVI-Shaped (with both projection and bonus scaling), UCBVI-Shaped-P
(with only projection), UCBVI-Shaped-BS (with only bonus scaling), UCBVI (standard UCBVI
without shaping, as described in [8]). This is benchmarked across the three environments described
in Fig. 3, with various levels of imperfect shaping applied by varying b = {1.5,1.9}. As seen from
Fig. 4, across all environments UCBVI-shaped with projection and bonus scaling performs most
favorably, followed typically by UCBVI-Shaped-P, followed by UCBVI-Shaped-BS and UCBVI,
suggesting that reward shaping can significantly help with learning efficiency.

(a) Open Gridworld, b = 1.5 (b) Single Corridor, b = 1.5 (c) Double Corridor, b = 1.5

(d) Open Gridworld, b = 1.9 (e) Single Corridor, b = 1.9 (f) Double Corridor, b = 1.9

Figure 4: Cumulative regret for learning in various environments with varying amounts of shaping, as compared
with UCBVI, and ablations UCBVI-Shaped-BS (no projection) and UCBVI-Shaped-P (no bonus scaling).

7.2 How does the effectiveness of reward shaping vary across environments?

(a) Single Corridor (b) Double Corridor

Figure 5: Effect of suboptimality of reward shaping on the performance of
UCBVI-Shaped. While b = 1.2,1.5 don’t make much of a difference, very
large b leads to performance degradation

We next conducted some
numerical simulations
across environments to
understand how the nature
of the environment itself
affects the sample complex-
ity of learning with shaping
via UCBVI-Shaped. As
shown in Fig. 6, we see
that UCBVI shaped can be
very effective in environ-
ments with many irrelevant
sub-optimal paths like the
double corridor environment in Fig. 3, but is relatively less effective in environments where all
exploration is directed the same way such as the single corridor. Even incorrect but optimistic
shaping will provide guidance towards the goal, making UCBVI relatively less dominant in the single
corridor environment as compared to the double corridor. This suggests that in environments where
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(a) Heatmap of intermediate visita-
tions of UCBVI on single corridor (no
shaping)

(b) Heatmap of intermediate visita-
tions of UCBVI-Shaped on single cor-
ridor

(c) Learning progress of UCBVI-
Shaped compared to UCBVI on sin-
gle corridor

(d) Heatmap of intermediate visita-
tions of UCBVI on double corridor
(no shaping)

(e) Heatmap of intermediate visita-
tions of UCBVI-Shaped on double
corridor

(f) Learning progress of UCBVI-
Shaped compared to UCBVI on dou-
ble corridor

Figure 6: Visualization of how different environments are affected by reward shaping differently. (Left)
intermediate visitations (Right) learning progress of UCBVI vs UCBVI-Shaped. The single corridor environment
on the top sees much smaller gains for UCBVI-Shaped compared to double corridor environment.

ruling out an entire part of the exploration space is easy from the shaping, we can expect to see larger
benefits.
7.3 How does the suboptimality of reward shaping affect learning?

We next compared how different levels of suboptimality of the b sandwich term in the reward
shaping affect cumulative regret across environments. As shown in Fig. 4 (a) and (d), we see that
for environments with open paths (like the open gridworld), the shaping degradation has minimal
negative effect until it gets very suboptimal. On the other hand, for corridor and double corridor
(Fig. 5 (b)), where there are only a few paths to the goal, suboptimal reward shaping along those
paths significantly hamper progress.

7.4 Is online UCBVI-Shaped able to infer b online without prior knowledge?

Figure 7: Understanding perfor-
mance of online model selection
in UCBVI-Shaped

As described in Section 6, UCBVI-shaped can be freed of the as-
sumption of b being known by performing online model selection
of b and learning values jointly. In particular, we use the Stochastic
CORRAL algorithm [34], a variant of the method introduced in [1]
to perform online model selection, with the episodic return being
the requisite criterion for updating the model selection distribution.
As we see in Fig 7, this scheme is able to show comparable results
to when the actual b is known beforehand, only degrading as the
value of b increases. This suggests that online UCBVI-shaped can
be practical in regimes with moderate levels of value corruption.

8 Discussion
In this work, we take a step towards formally analyzing the benefits of reward shaping, proving that
effective reward shaping can lead to more efficient learning than uninformed exploration strategies.
In our analysis, we study an algorithm that incorporates reward shaping into a modified version
of UCBVI, using it to modify bonuses and value function projection. Our analysis shows that
incorporating shaped rewards allows for pruning significant parts of the state space and sharpening of
optimism in a task directed way. This reduces the dependence of the regret bound on the state space
size and on the horizon, depending on the quality of the shaping term and parameters of the MDP.
This shows how reward shaping can direct exploration and provide significant sample complexity
benefits while retaining asymptotic performance. We hope that this work is a step towards moving
sample complexity analysis away from being reward agnostic to actually considering reward shaping
more formally in analysis.
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S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[12] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

[13] Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy optimization. In
International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

[14] C. Cheng, A. Kolobov, and A. Swaminathan. Heuristic-guided reinforcement learning.
In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 13550–13563, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
70d31b87bd021441e5e6bf23eb84a306-Abstract.html.

[15] A. Cutkosky, C. Dann, A. Das, C. Gentile, A. Pacchiano, and M. Purohit. Dynamic balancing
for model selection in bandits and rl. In International Conference on Machine Learning, pages
2276–2285. PMLR, 2021.

[16] C. Dann, T. V. Marinov, M. Mohri, and J. Zimmert. Beyond value-function gaps: Improved
instance-dependent regret bounds for episodic reinforcement learning. Advances in Neural
Information Processing Systems, 34:1–12, 2021.

[17] Y. Efroni, N. Merlis, M. Ghavamzadeh, and S. Mannor. Tight regret bounds for model-based
reinforcement learning with greedy policies. Advances in Neural Information Processing
Systems, 32, 2019.

11



[18] A. Faust, K. Oslund, O. Ramirez, A. G. Francis, L. Tapia, M. Fiser, and J. Davidson. PRM-RL:
long-range robotic navigation tasks by combining reinforcement learning and sampling-based
planning. In 2018 IEEE International Conference on Robotics and Automation, ICRA 2018,
Brisbane, Australia, May 21-25, 2018, pages 5113–5120. IEEE, 2018. doi: 10.1109/ICRA.
2018.8461096. URL https://doi.org/10.1109/ICRA.2018.8461096.

[19] D. A. Freedman. On tail probabilities for martingales. the Annals of Probability, pages 100–118,
1975.

[20] R. Fruit, M. Pirotta, A. Lazaric, and R. Ortner. Efficient bias-span-constrained exploration-
exploitation in reinforcement learning. In International Conference on Machine Learning, pages
1578–1586. PMLR, 2018.

[21] N. Golowich and A. Moitra. Can q-learning be improved with advice? In Conference on
Learning Theory, pages 4548–4619. PMLR, 2022.

[22] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational
information maximizing exploration. Advances in neural information processing systems, 29,
2016.

[23] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11:1563–1600, 2010.

[24] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? Advances
in neural information processing systems, 31, 2018.

[25] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning Theory, pages 2137–2143. PMLR, 2020.

[26] S. M. Kakade et al. On the sample complexity of reinforcement learning. PhD thesis, University
College London, 2003.

[27] G. Li, L. Shi, Y. Chen, Y. Gu, and Y. Chi. Breaking the sample complexity barrier to regret-
optimal model-free reinforcement learning. Advances in Neural Information Processing Systems,
34, 2021.

[28] K. Li, A. Gupta, A. Reddy, V. H. Pong, A. Zhou, J. Yu, and S. Levine. Mural: Meta-learning
uncertainty-aware rewards for outcome-driven reinforcement learning. In International Confer-
ence on Machine Learning, pages 6346–6356. PMLR, 2021.

[29] A. Maurer and M. Pontil. Empirical bernstein bounds and sample variance penalization. arXiv
preprint arXiv:0907.3740, 2009.

[30] P. Ménard, O. D. Domingues, X. Shang, and M. Valko. Ucb momentum q-learning: Correcting
the bias without forgetting. In International Conference on Machine Learning, pages 7609–7618.
PMLR, 2021.

[31] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In ICML, volume 99, pages 278–287, 1999.

[32] A. Pacchiano, P. Ball, J. Parker-Holder, K. Choromanski, and S. Roberts. On optimism in
model-based reinforcement learning. arXiv preprint arXiv:2006.11911, 2020.

[33] A. Pacchiano, C. Dann, C. Gentile, and P. Bartlett. Regret bound balancing and elimination for
model selection in bandits and rl. arXiv preprint arXiv:2012.13045, 2020.

[34] A. Pacchiano, M. Phan, Y. Abbasi Yadkori, A. Rao, J. Zimmert, T. Lattimore, and C. Szepesvari.
Model selection in contextual stochastic bandit problems. Advances in Neural Information
Processing Systems, 33:10328–10337, 2020.

[35] A. Pacchiano, P. Ball, J. Parker-Holder, K. Choromanski, and S. Roberts. Towards tractable
optimism in model-based reinforcement learning. In Uncertainty in Artificial Intelligence, pages
1413–1423. PMLR, 2021.

12



[36] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 16–17, 2017.

[37] R. Raileanu and T. Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rkg-TJBFPB.

[38] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[39] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 550
(7676):354–359, 2017.

[40] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[41] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman, F. DeTurck, and
P. Abbeel. # exploration: A study of count-based exploration for deep reinforcement learning.
In Advances in neural information processing systems, pages 2753–2762, 2017.

[42] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J. Tsang. Hybrid reward
architecture for reinforcement learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.
cc/paper/2017/file/1264a061d82a2edae1574b07249800d6-Paper.pdf.

[43] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
Feudal networks for hierarchical reinforcement learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 3540–3549. JMLR. org, 2017.

[44] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[45] Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy. Optimism in reinforcement learning with
generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

[46] K. Yang, L. Yang, and S. Du. Q-learning with logarithmic regret. In International Conference
on Artificial Intelligence and Statistics, pages 1576–1584. PMLR, 2021.

[47] L. Yang and M. Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004. PMLR, 2019.

[48] L. Yang and M. Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pages 10746–10756. PMLR,
2020.

[49] Z. Yang, C. Jin, Z. Wang, M. Wang, and M. I. Jordan. On function approximation in reinforce-
ment learning: Optimism in the face of large state spaces. arXiv preprint arXiv:2011.04622,
2020.

[50] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu, F. Qiu, H. Yu, Y. Yin,
B. Shi, L. Wang, T. Shi, Q. Fu, W. Yang, L. Huang, and W. Liu. Towards playing full moba
games with deep reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 621–632. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/06d5ae105ea1bea4d800bc96491876e9-Paper.pdf.

13



[51] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In L. P. Kaelbling,
D. Kragic, and K. Sugiura, editors, 3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings of
Machine Learning Research, pages 1094–1100. PMLR, 2019. URL http://proceedings.
mlr.press/v100/yu20a.html.

[52] A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforcement learning
without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312. PMLR, 2019.

[53] A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequentist regret
bounds for randomized least-squares value iteration. In International Conference on Artificial
Intelligence and Statistics, pages 1954–1964. PMLR, 2020.

[54] Y. Zhai, C. Baek, Z. Zhou, J. Jiao, and Y. Ma. Computational benefits of intermediate rewards
for goal-reaching policy learning. Journal of Artificial Intelligence Research, 73:847–896, 2022.

[55] Z. Zhang, Y. Zhou, and X. Ji. Almost optimal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Information Processing Systems, 33:15198–
15207, 2020.

[56] D. Zhou, J. He, and Q. Gu. Provably efficient reinforcement learning for discounted mdps
with feature mapping. In International Conference on Machine Learning, pages 12793–12802.
PMLR, 2021.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 8
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 8
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] This work does not actually use human subjects, and is largely done in
simulation. But we have included a discussion in Section 8

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Math is used

as a theory/formalism, but we don’t make any provable claims about it.
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
A for link to URL and run instructions in the README in the github repo.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots were created with 3 random seeds with std error
bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Envs we used are

cited in section 7
(b) Did you mention the license of the assets? [Yes] This is in Appendix B

14



(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We published the code and included all environments and assets as a part of this

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We used three open source domains and collected our own data
on these domains.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] We did not include full text since we didn’t use an exact script, but
we summarized the instructions and included images of the environments used.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] Only human involvement was data
collection with our system.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Human testers were volunteers

15


