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ABSTRACT

Pan-sharpening is essentially a panchromatic (PAN) image-guided

low-spatial resolution MS image super-resolution problem. The

commonly challenging issue of pan-sharpening is how to correctly

select consistent features and propagate them, and properly han-

dle inconsistent ones between PAN and MS modalities. To solve

this issue, we propose a Normalization-based Feature Selection

and Restitution mechanism, which is capable of filtering out the

inconsistent features and promoting to learn the consistent ones.

Specifically, we first modulate the PAN feature as the MS style in

feature space by AdaIN operation [21]. However, such operation

inevitably removes the favorable features. We thus propose to distill

the effective information from the removed part and restitute it back

to themodulated part. To better distillation, we enforce a contrastive

learning constraint to close the distance between the restituted fea-

ture and the ground truth, and push the removed part away from

the ground truth. In this way, the consistent features of PAN images

are correctly selected and the inconsistent ones are filtered out, thus

relieving the over-transferred artifacts in the process of PAN-guided

MS super-resolution. Extensive experiments validate the effective-

ness of the proposed network and demonstrate its favorable perfor-

mance against other state-of-the-art methods. The source code will

be released at https://github.com/manman1995/pansharpening.
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1 INTRODUCTION

With the rapid development of satellite sensors, the satellite images

have been used in a wide range of applications like military system,

environmental monitoring, and mapping services. However, due

to the technological and physical limitation of imaging devices,

satellites are usually equipped with both multi-spectral (MS) and

panchromatic (PAN) sensors to simultaneously measure the com-

plementary images, MS images with low spatial resolution and high

spectral resolution and PAN images with low spectral resolution

and high spatial resolution. To obtain the images with both high

spectral and high spatial resolutions, pan-sharpening technique

that fuses the low resolution MS images and high spatial PAN im-

ages to break the technological limits for generating the expected

high-resolution (HR) MS images, has drawn much attention from

either image processing and remote sensing communities.

Treated as a fusion task, considerable Pan-sharpening methods

have been developed with two main fusion strategies: 1) image-

level fusion and 2) feature-level fusion. As shown in Figure 1 (a),

the first category directly concatenates the MS and PAN images

along the channel dimension before feeding them into the networks.

Without conducting explicitly cross-modal fusion, the łinput fu-

sionž strategy is therefore limited in studying the complementary
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Figure 1: The categorization of existing Pan-sharpening

methods.

information, leading to unsatisfactory performance. The second

category attempts to extract the modality-aware features from PAN

and MS images independently, and then performs the information

fusion in feature space, as shown in Figure 1 (b). Although en-

couraging improvement has been achieved, it still suffers from the

following issue. Since PAN and MS images captured in the same

scene share the consistent information, they also have the modality-

aware unique information. It is natural to transfer the effective part

of the PAN modality-aware unique information to guide the MS

modality super-resolution and reduce the wrong influence of the

PAN guidance to predict the expected MS reconstruction properly.

The key is how to correctly select the effective part of PANmodality

and transfer it into MS modality. However, existing state-of-the-art

Pan-sharpening methods don’t explicitly enforce the consistent

information learning and filtering out the inconsistent information

between two modalities of PAN and MS images, resulting in the

modality discrepancy and further the over-transformed artifacts.

Considering the limitation of the current methods, in this paper,

we make our efforts to enforce the consistent feature learning and

reduce the modality discrepancy for improving the Pan-sharpening

performance, as shown in Figure 1 (c).

To solve this issue, we propose a Normalization-based Feature

Selection and Restitution mechanism, which is capable of filtering

out the inconsistent features and promoting to learn the consis-

tent ones. Specifically, we first modulate the PAN feature as the

MS style in feature space by AdaIN operation [21]. However, such

operation inevitably removes the favorable features. We thus pro-

pose distill the effective information from the removed part and

restitute it back to the modulated part. To better distillation, we

enforce a contrastive learning constraint to close the distance of the

restituted feature and the ground truth, and push the removed part

away from the ground truth. In this way, the consistent features

of PAN images are correctly selected and the inconsistent ones

are filtered out, thus relieving the over-transferred artifacts in the

process of PAN-guided MS super-resolution. We conduct extensive

experiments to analyze the effectiveness of the proposed network

and demonstrate the favorable performance against state-of-the-art

methods qualitatively and quantitatively while generalizing well to

real-world scenes.

In summary, the contributions of this work are as follows:

• To the best of our knowledge, this is the first attempt to

introduce the normalizationmechanism into pan-sharpening

to explicitly address the modality discrepancy.

• The Normalization-based Feature Selection and Restitution

mechanism is proposed to explicitly filter out the inconsis-

tent features and promote to learn the consistent ones in

PAN and MS modality.

• Extensive experiments over different satellite datasets demon-

strate that our proposed method performs the best qualita-

tive and quantitative while generalizing well to real-world

full-resolution scenes.

2 RELATEDWORK

2.1 Traditional pan-sharpening methods

Traditional pan-sharpening methods are classified into three types:

Component Substitution (CS), Multi-resolution Analysis(MRA), and

Variational Optimization (VO) [44, 45]. The most common methods

of CS are intensity hue-saturation (IHS) fusion [11], the principal

component analysis (PCA) methods [32, 43], Brovey transforms

[16], and Gram-Schmidt (GS) orthogonalization method [34]. There

are also some improvements based on the above methods proposed

by researchers, such as the nonlinear IHS (NIHS) method [15] to

reduce the spectrum distortion of IHS and the GSA method [1]

with adaptive capability for the GS method. These CS methods

are very fast to calculate, but the generated images are easy to

contain artifacts. Compared with the CS methods, MRA methods

bring less spectral distortion while sharpening MS images. Typical

MRA methods include decimated wavelet transform (DWT) [39],

high-pass filter fusion (HPF) [42], indusion method [31], Lapla-

cian pyramid (LP) [47] and atrous wavelet transform (ATWT) [41].

P+XS pan-sharpening approach [3], the first variational method,

assumes that PAN image is derived from the linear combination

of various bands of HRMS, whereas the upsampled low resolution

multi-spectral (LRMS) image is from the blurred HRMS image. Sub-

sequently, various constraints are introduced into pan-sharpening

task, such as dynamic gradient sparsity property (SIRF) [12], local

gradient constraint (LGC) [13], group low-rank constraint for tex-

ture similarity (ADMM) [45] and so on. These various priors and

constraints requiring the manual setting of parameters can only

inadequately reflect the limited structural relations of the images,

which can also result in degradation.

2.2 CNN-based pan-sharpening methods

Owing to the rapid development of convolutional neural networks

(CNN) in computer vision, CNN that has powerful learning capabil-

ities has been widely used in hyperspectral images [10, 14, 18, 24ś

28, 49] and remote sensing images [5, 7ś9, 23, 29, 30, 37, 54, 55, 60ś

64]. Recently, Various CNN-based methods [38, 52, 59] have been

put forward to promote the fusion quality of pan-sharpening. For

example, Masi et al. [40] are the first to use CNN to deal with the

issue of pan-sharpening. Although the structure is simple, the effect
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Figure 2: The pipeline of our proposed pan-sharpening framework and the core Normalization-based feature selection and

restitution module. It is capable of correctly selecting consistent features and propagating them and properly filtering out

inconsistent ones between PAN and MS modalities.

is much better than the traditional methods. Then, Yang et al. [56]

designed a deeper convolutional network by relying on resblock

in [20]. Meanwhile, Yuan et al. [57] introduced multi-scale module

into the basic CNN architecture. Later, Cai et al. [4] and Wu et al.

[50] have the similar idea, that is, continuously introduce images

of different scales into the backbone network. The difference be-

tween the two approaches is that one uses PAN images and the

other uses MS images. Recently, some model-driven CNN models

with clear physical meaning emerged. The basic idea is to use prior

knowledge to formulate optimization problems for computer vision

tasks, then unfold the optimization algorithms into deep neural net-

works. For example, Xu et al. [53] developed two separate priors of

PAN and MS to design the unfolding structure for pan-sharpening.

The model-driven methods have interpretability and clear physical

meaning. Cao et al. [6] unfolded an alternate optimization algorithm

into CNN. Tian et al. [46] and Wu et al. [51] combined variational

optimization and deep residual CNN.

3 METHODS

In this section, we will first present the overall flowchart of the

proposed pan-sharpening framework, illustrated in Figure 2. We

further provide the detail of our devised Normalization-based fea-

ture selection and restitution module. Finally, we deepen into the

newly-designed loss function.

3.1 Framework

Targeting at pan-sharpening, it aims to super-resolve the low-

resolution MS images, conditioning on the paired high-resolution

PAN images. Since PAN and MS images captured in the same scene

share the consistent information, they also have the modality-aware

unique information. It is natural to transfer the effective part of the

PAN modality-aware unique information to guide the MS modality

super-resolution. The key is how to correctly select the effective

part of PAN modality and transfer it into MS modality.

To this end, we first attempt to address this issue from the nor-

malization perspective and devise a Normalization-based feature

selection and restitution module, which is capable of filtering out

the inconsistent features and promoting to learn the consistent

ones. Equipped with the above module, our proposed method is

constructed, thus relieving the over-transferred artifacts in the

process of PAN-inserted MS super-resolution.

Figure 2 shows the overall flowchart of our framework. Re-

markably, given PAN image 𝑃 ∈ 𝑅𝐻×𝑊 ×1 and MS image 𝐿 ∈

𝑅𝐻/𝑟×𝑊 /𝑟×𝐶 , the network first applies the convolution layer to

project the 𝑟 -times 𝐿 by Bibubic upsampling into shallow feature

representations while 𝑃 is fed into the convolution block to extract

the informative features. Next, the obtained modality-aware feature

maps of MS and PAN are jointly passed through 𝐾 numbers of the

core Normalization-based feature selection and restitution module,

yielding the effective feature representation of the PAN modality.

In each core module, the PAN feature is normalized and then inte-

grated with the MS feature. Finally, we apply a convolution layer

to transform the corrected feature of the final core module back

to image space and then combine it with the Bibubic up-sampled

input 𝐿 as the output image.

3.2 Normalization-based feature selection and
restitution module

As shown in Figure 2, normalization-based feature selection and

restitution module consists of three phases: 1) consistent modality

modulation phase, 2) feature selection phase and 3) feature restitu-

tion phase. To be specific, the first is responsible for modulating the

input PAN features as the style of MS features by AdaIN operation,

thus relieving the modality discrepancy. Then, the second employs

3367



MM ’22, October 10–14, 2022, Lisboa, Portugal Man Zhou et al.

the attention mechanism to select the effective part from the dis-

carded features by the first stage while the third aims to restitute it

as a compensation back to the normalized features by AdaIN, thus

promoting to learn the consistent ones and further improving the

feature representation.

Consistent modality modulation phase. As well recognized,

since PAN and MS images captured in the same scene share the

consistent information, they also have the modality-aware incon-

sistent information. Most of the existing pan-sharpening methods

simply integrate the PAN and MS features together and then per-

form the next convolution operation, which is prone to result in

the modality-aware discrepancy. To address this problem, inspired

by style transformation [21], we employ the AdaIN operation to

modulate the PAN features as the style of the MS modality features,

thus enhancing the consistency of the matched PAN features with

the MS feature distribution.

Taking a module for example, we denote the input MS feature

and PAN feature by 𝐹𝑚𝑠 ∈ R
ℎ×𝑤×𝑐 and 𝐹𝑝 ∈ Rℎ×𝑤×𝑐 respectively,

and the output by 𝐹+ ∈ Rℎ×𝑤×𝑐 , where ℎ,𝑤, 𝑐 denote the height,

width, and number of channels, respectively. The PAN features

are considered as guidance information to complement the MS

features. To this end, we implement the modulation over the input

PAN feature 𝐹𝑝 . Specifically, we first try to reduce the modality

discrepancy by performing Adaptive Instance Normalization as

𝐹𝑡 = AdaIN(𝐹𝑝 ) = 𝛾 (
𝐹𝑝 − 𝜇 (𝐹𝑝 )

𝜎 (𝐹𝑝 )
) + 𝛽, (1)

where 𝜇 (·) and 𝜎 (·) denote the mean and standard deviation com-

puted across spatial dimensions independently for each channel

and each sample/instance as

𝜇𝑐 (𝐹𝑝 ) =
1

𝐻𝑊

𝐻∑︁

ℎ=1

𝑊∑︁

𝑤=1

(𝐹𝑝 )𝑐ℎ𝑤 ,

𝜎𝑐 (𝐹𝑝 ) =

√√√
1

𝐻𝑊

𝐻∑︁

ℎ=1

𝑊∑︁

𝑤=1

((𝐹𝑝 )𝑐ℎ𝑤 − 𝜇𝑐 (𝐹𝑝 ))2 + 𝜖,

(2)

where 𝜖 is the very small number in order to prevent the division

denominator from being 0.

In terms of 𝛾 and 𝛽 , as shown in Figure 2, we obtain them by the

following two steps: 1) the input PAN feature 𝐹𝑝 and MS feature

𝐹𝑚𝑠 are firstly concatenated and fed into the convolution layer 𝐶1
to transform the channel of the concatenated feature back to the

same as that of 𝐹𝑝

𝐹𝑝𝑚 = 𝐶1 (𝐶𝑎𝑡 [𝐹𝑝 , 𝐹𝑚𝑠 ]) . (3)

Then, the above feature 𝐹𝑝𝑚 is passed through two independent

branches convolution layers𝐶3 and𝐶3 with 3 × 3 kernel to get two

parameters 𝛿𝛾 and 𝛿𝛽 as

𝛿𝛽 = 𝐶3 (𝐹𝑝𝑚),

𝛿𝛾 = 𝐶3 (𝐹𝑝𝑚) .
(4)

2) we figure out the mean and standard deviation computed across

spatial dimensions independently for each channel of the input MS

feature 𝐹𝑚𝑠 as

𝜇𝑐 (𝐹𝑚𝑠 ) =
1

𝐻𝑊

𝐻∑︁

ℎ=1

𝑊∑︁

𝑤=1

(𝐹𝑚𝑠 )𝑐ℎ𝑤 ,

𝜎𝑐 (𝐹𝑚𝑠 ) =

√√√
1

𝐻𝑊

𝐻∑︁

ℎ=1

𝑊∑︁

𝑤=1

((𝐹𝑚𝑠 )𝑐ℎ𝑤 − 𝜇𝑐 (𝐹𝑚𝑠 ))2 + 𝜖,

(5)

Followed by above calculation, we integrate them to obtain the 𝛾

and 𝛽 as
𝛽 = 𝜇𝑐 (𝐹𝑚𝑠 ) + 𝛿𝛽,

𝛾 = 𝜎𝑐 (𝐹𝑚𝑠 ) + 𝛿𝛾 .
(6)

In this modulation way, the modality discrepancy will be relieved.

Feature selection phase. As well recognized, normalization

operation will inevitably discard some useful information of PAN

features 𝐹𝑝 by AdaIN. Targeting at above operation, it can be ex-

pressed as

𝑅 = 𝐹𝑝 − 𝐹𝑡 , (7)

where 𝑅 denotes the difference between the original input feature

𝐹𝑝 and the normalized feature 𝐹𝑡 . Regrading the information loss,

we need to perform the feature selection over the discarded part

𝑅 to distinguish the useful part. We propose to distill the useful

part through masking the discarded 𝑅 with the learned channel

attention vector a = [𝑎1, 𝑎2, · · · , 𝑎𝑐 ] where the dimension 𝑐 is the

same as the 𝐹𝑝 . Given the attention 𝑎, the selected useful part and

the harmful part can be remarked as

𝑅+ (:, :, 𝑘) =𝑎𝑘𝑅(:, :, 𝑘),

𝑅− (:, :, 𝑘) =(1 − 𝑎𝑘 )𝑅(:, :, 𝑘),
(8)

where 𝑅(:, :, 𝑘) ∈ Rℎ×𝑤 denotes the 𝑘𝑡ℎ channel of feature map 𝑅,

𝑘 = 1, 2, · · · , 𝑐 . To implement the channel attention, we employ the

SE-like attention network to produce the channel attention vector

a: 1) we first concatenate the modulated 𝐹𝑡 and the input 𝐹𝑚𝑠 and

then pass them through several convolutions to halve the channel

dimension, 2) the channel-halved feature is pooled to the vector by

global average pooling and then predict the attention vector 𝑎 as

a = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶1 (𝐺𝐴𝑃 (𝐶3 (𝐶𝑎𝑡 [𝐹𝑡 , 𝐹𝑚𝑠 ])))), (9)

where GAP indicates the global average pooling layer and sigmoid

is the sigmoid activation function. Cat, 𝐶1 and 𝐶3 represent the

concatenation operation by channel dimension, the convolution

block with 1 × 1 kernel size and the convolution block with 3 × 3

kernel size respectively.

Feature restitution phase. After selecting out the useful part

feature𝑅+, we can obtain the output feature 𝐹+ of theNormalization-

based module by resistuting it to the style normalized feature 𝐹𝑡
as

𝐹+ = 𝐹𝑡 + 𝑅
+ . (10)

3.3 Contrastive learning strategy.

In order to facilitate the feature distillation, we enforce a contrastive

learning constraint to close the distance between the restituted

feature and the ground truth, and push the removed part away

from the ground truth. In this way, the consistent features of PAN

images are correctly selected and the inconsistent ones are filtered

out, thus relieving the over-transferred artifacts in the process of
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PAN-guided MS super-resolution. Given the restituted feature 𝐹+

with the useful part, the feature 𝐹− = 𝐹𝑡 + 𝑅
− with the selected

harmful part 𝑅− and the feature of ground truth 𝐹𝐻 , the contrastive

learning strategy can be written as

𝐿𝑡 =
| |Pool(𝐹+), Pool(𝐹𝐻 ) | |1

| |Pool(𝐹−), Pool(𝐹𝐻 ) | |1
, (11)

where Pool(.) denotes the average pooling operation to avoid the

distraction caused by spatial misalignment. In addition, to ensure

the generated 𝐹𝑡 being the consistent part of MS modality, we

enforce a supervision loss between the output of 𝐹𝑡 and the ground

truth being passed through instance normalization (IN) layer as

𝐿𝑐 = | |IN(𝐹𝑡 ), IN(𝐹𝐻 ) | |1, (12)

where 𝐹𝐻 denotes the output feature of the ground truth being

passed through the convolution block as PAN image.

3.4 Joint Training

As shown in Figure 2, we train the entire network in an end-to-end

manner and the overall loss function consists of two parts: one for

reconstructing the ground-truth MS image 𝐿𝑔 = ∥ 𝑓 (𝐿, 𝑃) − 𝑔𝑡 ∥1 by

𝐿1 loss where 𝑓 (.) denotes themapping function of our method, and

the other for better distilling the consistent part and the inconsistent

part between two modalities in the Normalization-based feature

selection and restitution module, written as:

𝐿 = 𝐿𝑔 + 𝜆

𝐾∑︁

𝑏=1

𝐿𝑏𝑡 + 𝐿𝑏𝑐 , (13)

where 𝐿𝑏𝑡 indicates the proposed Contrastive learning strategy for

the 𝑏𝑡ℎ Normalization-based feature selection and restitution mod-

ule (NSR) and 𝐾 is the number of NSR modules. 𝐻 is the ground

truth MS image, and 𝜆 is the parameters to balance the two terms

in the loss function. In our setting, 𝜆 is set as 0.1.

4 EXPERIMENTS AND RESULTS

4.1 Baseline methods

To show our proposed technique’s efficacy, we compare it to the

performance of several representative pan-sharpening algorithms:

1) five state-of-the-art deep-learning based methods, including PNN

[40], PANNET [56], MSDCNN [58], SRPPNN [4], GPPNN [53] and

BAM [65]; 2) five promising traditional methods, namely SFIM [36],

Brovey [17], GS [33], IHS [19], and GFPCA [35].

4.2 Datasets and benchmark

Reduced resolution scene. Due to the unavailability of ground-

truthMS images, we follow the previous works to generate the train-

ing set by employing the Wald protocol tool [48]. Specifically, given

the MS image 𝐻 ∈ 𝑅𝑀×𝑁×𝐶 and the PAN image 𝑃 ∈ 𝑅𝑟𝑀×𝑟𝑁×𝑏 ,

both of them are downsampled with ratio 𝑟 , and then are denoted

by 𝐿 ∈ 𝑅𝑀/𝑟×𝑁 /𝑟×𝐶 and 𝑃 ∈ 𝑅𝑀×𝑁×𝑏 respectively. In the training

set, 𝐿 and 𝑃 are regarded as the inputs, while 𝐻 is the ground truth.

In our work, three satellite images of the WorldView II, GaoFen2

and WorldView III are adopted to construct image datasets. For

each database, PAN images are cropped into patches with the size

of 128 × 128 pixels while the corresponding MS patches are with

the size of 32 × 32 pixels.

Full resolution scenes.We construct an additional full-resolution

real-world dataset of 200 samples over the newly selected GaoFen2

satellite in order to conduct the model generalization comparison.

To be more specific, the additional dataset is generated using the

full-resolution mode, which creates PAN and MS images in the

manner described above without down-sampling, with PAN images

having a resolution of 32 × 32 and MS images having a resolution

of 128 × 128.

4.3 Implementation details and metrics

All our networks are built in PyTorch on NVIDIA GeForce GTX

2080Ti GPU on a PC. During the training phase, Adam tunes them

throughout 1000 epochs with a batch size of four. The initial learn-

ing rate is set at 8 × 10−4. The learning rate is decayed by multiply-

ing by 0.5 every 200 epochs. For reduced-resolution scene, several

widely-used image quality assessment (IQA) metrics are adapted

for performance measurement, including the PSNR, SSIM, SAM

[22], ERGAS [2]. In addition, because there are no ground-truth MS

images available for real-world full-resolution scenes, we utilize

three widely-used no-reference IQA metrics to assess the model’s

performance: the spectral distortion index 𝐷𝜆 , the spatial distortion

index 𝐷𝑆 , the quality without reference (QNR).

Table 1: The quantitative results on WorldView-II datasets.

The best values are highlighted by the red bold. The up or

down arrow indicates higher or lower metric corresponds to

better images.

Method
WorldView II

PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449

Brovey 35.8646 0.9216 0.0403 1.8238

GS 35.6376 0.9176 0.0423 1.8774

IHS 35.2926 0.9027 0.0461 2.0278

GFPCA 34.5581 0.9038 0.0488 2.1411

PNN 40.7550 0.9624 0.0259 1.0646

PANNET 40.8176 0.9626 0.0257 1.0557

MSDCNN 41.3355 0.9664 0.0242 0.9940

SRPPNN 41.4538 0.9679 0.0233 0.9899

GPPNN 41.1622 0.9684 0.0244 1.0315

BAM 41.3527 0.9671 0.0239 0.9932

Ours 41.7113 0.9705 0.0223 0.9513

4.4 Comparison with state-of-the-art methods

Evaluation on reduced-resolution scene. A summary of the

assessment measures for three datasets is shown in Table 1, Table

2 and Table 4, where the values highlighted in red reflect the best
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Ground TruthGPPNN OursSRPPNNMSDCNNPANNet

PAN PCA GS CNMFMS PNN

PCA GS CNMF PNN GPPNN OursSRPPNNMSDCNNPANNet

Figure 3: The visual comparisons between other pan-sharpening methods and our method on WorldView-II satellite.

Ground TruthGPPNN OursSRPPNNMSDCNNPANNet

PAN PCA GS CNMFMS PNN

PCA GS CNMF PNN GPPNN OursSRPPNNMSDCNNPANNet

Figure 4: The visual comparisons between other pan-sharpening methods and our method on GaoFen2 satellite.

values. On three satellite datasets, it is clearly shown that our tech-

nique outperforms all existing comparing algorithms in terms of all

assessment metrics. With regard to the WorldView-II, GaoFen2 and

WorldView-III datasets in particular, our strategy yields 0.26 dB,

0.25 dB and 0.10 dB improvements in PSNR compared to the second-

best results obtained by using other methods. Other measurements,

such as the PSNR, have shown comparable improvements to the

PSNR over the last year. In comparison to existing deep learning-

based approaches, we produce much superior outcomes, hence

demonstrating the usefulness of our suggested strategy.

In addition, we exhibit the comparison of the visual results to

testify the efficacy of our approach in Figure 3 and Figure 4 on

representative samples of the WorldView-II and GaoFen2 datasets,

respectively, in order to demonstrate the efficiency of our method.

The MSE residual between the pan-sharpened findings and the

ground truth is shown in the final row of the images. The spatial

and spectral aberrations in our model are minimal in comparison

to those of other competing techniques. It is simple to draw this

conclusion based on the observation of MSE maps. Regarding the

MSE residues, it has been observed that our suggested technique is

more accurate than other comparison methods when compared to

the ground truth. In this way, it can be concluded that our technique

outperforms all existing competing pan-sharpening algorithms in

terms of performance. In particular, we note that our suggested

technique has finer-grained textures and coarser-grained structures

when compared to previous methods, which is based on the ampli-

fied local areas we examined. For this reason, the closer the absolute
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Table 2: The quantitative results on GaoFen2 test datasets.

The best values are highlighted by the red bold.

Method
GaoFen2

PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 36.9060 0.8882 0.0318 1.7398

Brovey 37.7974 0.9026 0.0218 1.3720

GS 37.2260 0.9034 0.0309 1.6736

IHS 38.1754 0.9100 0.0243 1.5336

GFPCA 37.9443 0.9204 0.0314 1.5604

PNN 43.1208 0.9704 0.0172 0.8528

PANNET 43.0659 0.9685 0.0178 0.8577

MSDCNN 45.6874 0.9827 0.0135 0.6389

SRPPNN 47.1998 0.9877 0.0106 0.5586

GPPNN 44.2145 0.9815 0.0137 0.7361

BAM 45.7419 0.9836 0.0134 0.6267

Ours 47.3416 0.9893 0.0102 0.5476

Table 3: Comparisons of FLOPs (G) and parameters number

(M). łParamž denotes parameters number.

PNN PANNET MSDCNN SRPPNN GPPNN Ours

Param 0.0689 0.0688 0.2390 1.7114 0.1198 0.1229

FLOPs 1.1289 1.1275 3.9158 21.1059 1.3967 1.5375

error map is to a GT image, the more accurate the pan-sharpened

result is.

Evaluation on full-resolution scene A pre-trained model

built on GaoFen2 data is applied to some previously unseen full-

resolution GaoFen2 satellite datasets in order to assess the per-

formance of our network at full resolution and the generalization

capabilities of the model. A quantitative comparison between rep-

resentative CNN-based techniques and our solution is presented

in the following Table 5. The lower 𝐷𝜆 , 𝐷𝑠 and the higher QNR

correspond to the better image quality. As demonstrated in Table

5, our proposed strategy outperforms existing conventional and

deep learning-based methods on practically all indices, demonstrat-

ing that our method has better generalization ability than other

methods.

4.5 Parameter numbers vs model performance

Amore in-depth examination of the approaches is carried out by in-

vestigating their computational complexity, which is represented in

Table 3 by the number of floating-point operations (FLOPs) and the

number of parameters (in 10 M). Compared to other deep learning-

based approaches, it can be observed that our network is able to

create a decent trade-off and gets the greatest performance while

using much fewer parameters and storage. We use the tensor with

Table 4: The quantitative results on WorldView-III test

datasets. The best values are highlighted by the red bold.

Method
WorldView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 21.8212 0.5457 0.1208 8.9730

Brovey 22.5060 0.5466 0.1159 8.2331

GS 22.5608 0.5470 0.1217 8.2433

IHS 22.5579 0.5354 0.1266 8.3616

GFPCA 22.3344 0.4826 0.1294 8.3964

PNN 29.9418 0.9121 0.0824 3.3206

PANNET 29.6840 0.9072 0.0851 3.4263

MSDCNN 30.3038 0.9184 0.0782 3.1884

SRPPNN 30.4346 0.9202 0.0770 3.1553

GPPNN 30.1785 0.9175 0.0776 3.2593

BAM 30.3845 0.9188 0.0773 3.1679

Ours 30.5355 0.9225 0.0747 3.1123

1 × 4 × 32 × 32 and 1 × 1 × 128 × 128 to represent the MS and PAN

roles for evaluation.

4.6 Ablation experiments

To investigate the contribution of the devised components in our

proposed network, we have conducted comprehensive ablation

studies on the WorldView-II satellite dataset of the Pan-sharpening

task. To be specific, the Normalization-based feature selection and

restitution module and the contrastive learning loss in the optimiza-

tion function are the two core designs. All the experimental results

are measured by the widely-used IQA metrics, i.e., ERGAS [2],

PSNR, SSIM, and SAM.

The Normalization module. To explore the positive impact of

the proposed Normalization-based feature selection and restitution

module, we experiment it by observing the network performance

change through adding and removing it from the proposed method.

The corresponding quantitative comparison is reported in Table 6.

Observing the results from the first row of Table 6, it can be clearly

figured out that the model performance has obtained considerable

degradation when replacing the module from the network with the

widely-used ResNet block to maintain the parameter consistence. It

is because deleting it will result in the wrong influence of the PAN

guidance over-transferring into the MS super-resolution process,

thus leading to the modal discrepancy and further degrading the

pan-sharpening results.

The contrastive learning loss.The newly-designed contrastive

learning loss aims to better distill the useful information and the

harmful part from the discarded part by IN. In the second experi-

ment of Table 6, we delete it to examine its effectiveness. The results

in Table 6 demonstrate that removing it will degrade all metrics

dramatically, indicating its significant role in our network. This is
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Table 5: Evaluation on the real-world full-resolution scenes from GaoFen2 dataset. The best results are highlighted in bold.

Metrics SFIM GS Brovey IHS GFPCA PNN PANNET MSDCNN SRPPNN GPPNN BAM Ours

𝐷𝜆↓ 0.0822 0.0696 0.1378 0.0770 0.0914 0.0746 0.0737 0.0734 0.0767 0.0782 0.0755 0.0672

𝐷𝑠↓ 0.1087 0.2456 0.2605 0.2985 0.1635 0.1164 0.1224 0.1151 0.1162 0.1253 0.1159 0.1115

QNR↑ 0.8214 0.7025 0.6390 0.6485 0.7615 0.8191 0.8143 0.8251 0.8173 0.8073 0.8211 0.8288

Figure 5: The Visualization of the immediate output feature maps.

Table 6: The results of ablation experiments of Normalization

module "NSR" and the contrastive loss function "CL" over

WorldView-II datasets. The best values are highlighted by

the red bold.

Config NSR CL PSNR↑ SSIM↑ SAM↓ ERGAS↓

(I) # ! 41.3781 0.9665 0.0248 1.0190

(II) ! # 41.6884 0.9689 0.0226 0.9521

(III) ! ! 41.7113 0.9705 0.0223 0.9513

due to its powerful ability to enable the module to filter out the

inconsistent information and promote to learn the consistent ones.

In the last row of Table 6, we can clearly find that compared with

the above variants, the best results can be obtained by combining

all the above components. It further supports the claims above.

4.7 Visualization of the immediate output

To better understand how a Normalization-based feature selection

and restitution module works, we visualize the intermediate fea-

ture maps of the first module of our pipeline in Figure 5. To be

specific, we get each activation maps by averaging the feature maps

along channels. As illustrated above, it shows the activation maps

of input 𝐹𝑝 , 𝐹𝑚𝑠 , the normalized feature 𝐹𝑝𝑛𝑜𝑟𝑚 , the modulated

feature 𝐹𝑡 and the effective part 𝑅+, the discarded part 𝑅− as well

as the restituted feature 𝐹+, the fused feature 𝐹𝑓 𝑢𝑠𝑒 of 𝐹
+ and 𝐹𝑚𝑠 ,

respectively. We see that after adding the consistent feature 𝑅+, the

contaminated feature 𝐹+ has the more powerful and informative

capability while the discarded part 𝑅 is the inconsistent part that

contains the over-transferred PAN-modality unique information. It

demonstrates the powerful capability of the core module.

5 CONCLUSION

In this paper, we propose a Normalization-based Feature Selection

and Restitution mechanism, which is capable of filtering out the

inconsistent features and promoting to learn the consistent ones.

To the best of our knowledge, this is the first attempt to introduce

the normalization mechanism into pan-sharpening to explicitly

address the modality discrepancy. Extensive experiments validate

the effectiveness of the proposed network and the favorable gener-

alization ability to real-world full-resolution scenes against other

state-of-the-art methods.

In the future, we will investigate the feasibility of incorporating

our proposed NSR into other existing pan-sharpening algorithms

to enhance their performance.
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