MEMORY-AUGMENTED TRANSFORMERS CAN IMPLE-MENT LINEAR FIRST-ORDER OPTIMIZATION METHODS

Anonymous authors

003 004

010 011

012

013

014

015

016

017

018

019

021

023

025

Paper under double-blind review

ABSTRACT

We show that memory-augmented Transformers (**Memformers**) can implement linear first-order optimization methods such as conjugate gradient descent, momentum methods, and more generally, methods that linearly combine past gradients. Building on prior work that demonstrates how Transformers can simulate preconditioned gradient descent, we provide theoretical and empirical evidence that Memformers can learn more advanced optimization algorithms. Specifically, we analyze how memory registers in Memformers store suitable intermediate attention values allowing them to implement algorithms such as conjugate gradient. Our results show that Memformers can efficiently learn these methods by training on random linear regression tasks, even learning methods that outperform conjugate gradient. This work extends our knowledge about the algorithmic capabilities of Transformers, showing how they can learn complex optimization methods.

1 INTRODUCTION

In-context learning (ICL) allows large language models (LLMs) to generate contextually appropriate 026 outputs based solely on examples and queries provided in a prompt, without requiring any parameter 027 adjustments (Brown, 2020; Liu et al., 2021; Lu et al., 2021; Wei et al., 2022; Wu et al., 2022). This remarkable ability has spurred research into understanding how Transformers can implement 029 algorithms (Achiam et al., 2023; Touvron et al., 2023), with recent studies focusing on their capability to simulate optimization algorithms (Dai et al., 2022; Von Oswald et al., 2023a; Garg et al., 2022; 031 Akyürek et al., 2022). Transformers have been shown to implement gradient-based optimization 032 during their forward pass, such as preconditioned gradient descent for linear regression tasks (Dai 033 et al., 2022; Mahankali et al., 2023; Ahn et al., 2024). 034

More recently, studies have demonstrated that Transformers can learn even more advanced optimization methods. For instance, Fu et al. (2023) showed that Transformers exhibit convergence rates comparable to Iterative Newton's Method, a higher-order optimization technique that converges exponentially faster than gradient descent for in-context linear regression. Additionally, Vladymyrov et al. (2024) proved that Transformers can, in fact, learn a variant of gradient descent that approximates second-order methods, such as GD⁺⁺, achieving convergence rates similar to Newton's method. These findings lead to the central question of our paper:

041 042

043

051

Can Transformers efficiently "learn" more advanced gradient-based optimization methods?

We aim to address this question by revealing some of the representational power of Transformers as "algorithm learners," further motivating the use of machine learning for discovering new optimization algorithms. To make our investigation more precise, we focus on learning the class of gradient-based algorithms obtained by linearly combining past gradients, known as *Linear First-Order Methods* (*LFOMs*) (Goh, 2017), where the (k + 1)st iterate is

$$w^{k+1} = w^0 + \sum_{i=0}^k \Gamma_i^k \nabla f(w^i),$$
(1)

and where $\{\Gamma_i^k\}_{i=0}^k$ are diagonal matrices. Model (1) is quite general, as it includes, as special cases, standard methods such as gradient descent (GD), momentum GD, Nesterov's accelerated gradient, conjugate gradient, and in a stochastic setting, AdaGrad, ADAM, among others.

ı

⁰⁵⁴ By **"learning" an algorithm like CGD or LFOM**, we mean two key things:

1. The Memformer, in its forward pass, under certain internal parameter settings, can perform iterations of CGD and/or LFOM. This means that its architecture and parameterization are sufficiently expressive to execute these optimization methods as part of its computation.

2. The Memformer's learnable parameters can be trained on linear regression tasks. When
using these learned parameters, which are shared across all in-context data samples in a batch,
the Memformer can execute "CGD-like" and "LFOM-like" iterations during a forward pass.
The surprising aspect lies in the Memformer's ability to achieve competitive—and in some cases
even superior—performance compared to CGD, despite using a relatively small number of learned
parameters shared across all test samples drawn independently of the training data.

Our key insight for efficiently learning LFOMs is to leverage memory-augmented Transformers, known as *Memformers* (Wu et al., 2020; Xu et al., 2021), which retain intermediate attention values across layers. This memory enables Memformers to store past gradients, facilitating the execution of advanced first-order methods such as conjugate gradient descent and momentum methods. The same mechanism allows Memformers to implement more general LFOMs.

While unconditional learning of gradient methods remains out of reach, we build on related work demonstrating that Transformers can learn gradient descent in the context of linear regression tasks (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2024; Zhang et al., 2024). Inspired by these findings, and extending the work of Ahn et al. (2024), we conduct a theoretical analysis of the loss landscape for memory-augmented linear Transformers that omit softmax activation (Schlag et al., 2021; Von Oswald et al., 2023a; Ahn et al., 2024).

In the Appendix, we also include our experiments that Memformers can outperform NesterovAccelerated Gradient (NAG) and momentum GD. In summary, our main contributions are as follows:

079 MADY CO

078

081

082

084

085

090

092

093

094

095

096

098

099

- MAIN CONTRIBUTIONS
 - (1) Theoretical justification that Memformers can implement LFOM iterations, including CGD. We provide a rigorous theoretical framework showing that Memformers, when trained on linear regression tasks, can be configured to perform iterations of LFOMs in their forward pass, encompassing advanced algorithms like CGD. By leveraging their memory mechanisms, Memformers can store and effectively combine past gradients, enabling them to implement these sophisticated optimization methods within their architecture.
 - (2) **Empirical evidence of Memformers "learning" optimization algorithms.** Through extensive experiments, we demonstrate that Memformers can <u>learn LFOMs</u>, in a general sense, by training on random linear regression tasks. *Remarkably, a Memformer utilizing a shared set of learned parameters is able to process batches of in-context data samples and perform competitively with, and in some cases even outperform, the CGD (and NAG) algorithm that is individually optimized for and run separately on each data sample in the test batch.*

This finding is particularly **surprising and significant** because CGD tailors its optimization individually for each data sample, whereas the Memformer applies a general optimization strategy learned from the training data across all samples. The ability of Memformers to generalize optimization strategies across data samples using shared parameters highlights their generalization capabilities, which have not been fully recognized in prior research.

- (3) **Enhanced performance through multi-headed attention with theoretical insights.** We show empirically that multi-headed attention improves Memformers' test performance and offer a heuristic explanation for why increasing attention heads enhances loss performance on test data.
- 101

Our main objective in this paper is to investigate the potential of memory-augmented Transformers to learn advanced optimization algorithms in a general sense. We are not advocating for Transformers as replacements for established optimization methods in practical applications. Instead, we aim to shed light on the algorithmic capabilities of Transformers, inspiring further exploration into how these architectures can learn and generalize complex algorithms. We believe our results contribute to a deeper understanding of how augmented Transformers can facilitate optimization, which may ultimately lead to the discovery of new and practical gradient-based algorithms.

108 1.1 RELATED WORK

Research on Transformers is extremely active, and we cannot hope to fully capture the breadth of the related literature. Below, we summarize the most immediately relevant topics.

In-Context Learning. The ability of Transformer models to perform in-context learning (ICL) has
been extensively studied since its introduction by Brown (2020). Subsequent works have explored how
these models adapt to new tasks without requiring parameter updates (Xie et al., 2021; Von Oswald
et al., 2023b; Hahn and Goyal, 2023; Liu et al., 2021; Lu et al., 2021; Wei et al., 2022; Wu et al.,
2022). This foundational research has paved the way for studies investigating how Transformers can
implement specific algorithms, such as gradient-based methods.

118 Gradient-Based Methods in Transformers. Garg et al. (2022) analyze the learning of gradient 119 descent within Transformers, particularly in the context of ICL for linear functions. Empirical studies 120 (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023a) have shown that Transformers 121 can learn gradient descent after being trained on random linear regression tasks. Expanding on these 122 results, Von Oswald et al. (2023a); Ahn et al. (2024) demonstrate that Transformers can implement 123 preconditioned gradient descent for solving linear regression problems presented in input prompts. Notably, these works—as well as ours—utilize Linear Transformers as discussed in (Schlag et al., 124 2021; Von Oswald et al., 2023a; Ahn et al., 2023). 125

Higher-Order Optimization Methods in Transformers. Transformers have also been shown to
 learn higher-order optimization techniques, such as Newton's method, expanding their capabilities
 beyond first-order methods (Fu et al., 2023; Giannou et al., 2024; Vladymyrov et al., 2024).

129 Memory-Augmented Transformers (Memformers). Memformers were introduced by Wu et al. 130 (2020); Xu et al. (2021). These models retain intermediate attention values across layers through 131 memory registers, enabling more complex computations and optimization methods to be learned. 132 While significant progress has been made in understanding how Transformers can learn gradient 133 descent, their potential for learning more sophisticated LFOMs remains largely unexplored. Our 134 work addresses this gap by showing how Memformers can efficiently implement a wide range of 135 advanced first-order and quasi-second-order optimization techniques, including CGD and momentum methods, thereby pushing the boundaries of Transformer-based architectures. 136

137 138

139

140

148 149 150

156 157

2 BACKGROUND AND PROBLEM SETUP

2.1 LINEAR TRANSFORMERS ON RANDOM LINEAR REGRESSION

We follow the setup of training Transformers on random instances of linear regression, following the prior works (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2024). We largely use the notation and formal setup of (Ahn et al., 2024), which we now proceed to recall.

Data Distribution. Let $\mathbf{x}(i) \in \mathbb{R}^d$ represent covariates drawn independently from a distribution $\mathcal{D}_{\mathbf{X}}$, and let $\mathbf{w}^* \in \mathbb{R}^d$ be drawn from $\mathcal{D}_{\mathbf{W}}$. The matrix of covariates $\mathbf{X} \in \mathbb{R}^{(n+1) \times d}$ contains rows $\mathbf{x}(i)$. The responses are $\mathbf{y} = [\langle \mathbf{x}(1), \mathbf{w}^* \rangle, \dots, \langle \mathbf{x}(n), \mathbf{w}^* \rangle] \in \mathbb{R}^n$. Define the input matrix \mathbf{Z}_0 as:

$$\mathbf{Z}_{0} = \begin{bmatrix} \mathbf{x}(1) & \mathbf{x}(2) & \cdots & \mathbf{x}(n) & \mathbf{x}(n+1) \\ \mathbf{y}(1) & \mathbf{y}(2) & \cdots & \mathbf{y}(n) & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (n+1)},$$
(2)

where the zero corresponds to the unknown response for $\mathbf{x}(n+1)$. The task is to predict $(\mathbf{w}^*)^\top \mathbf{x}(n+1)$ using \mathbf{Z}_0 . The training data consists of pairs $(\mathbf{Z}_0, (\mathbf{w}^*)^\top \mathbf{x}(n+1))$ for $\mathbf{x}(i) \sim \mathcal{D}_{\mathbf{X}}$ and $\mathbf{w}^* \sim \mathcal{D}_{\mathbf{W}}$.

Self-Attention Without Softmax. We focus on the linear self-attention layer, building on (Schlag et al., 2021; Von Oswald et al., 2023a). Let $\mathbf{Z} \in \mathbb{R}^{(d+1) \times (n+1)}$ be the input matrix of n + 1 tokens in \mathbb{R}^{d+1} . Standard self-attention layer is defined as

$$\operatorname{Attn}_{\operatorname{smax}}(\mathbf{Z}) := W_v \mathbf{Z} M \cdot \operatorname{smax}(\mathbf{Z}^\top W_k^\top W_q \mathbf{Z}), \tag{3}$$

where $W_v, W_k, W_q \in \mathbb{R}^{(d+1) \times (d+1)}$ are weight matrices, and smax(·) denotes the column-wise softmax. The masking matrix M ensures that the label for $\mathbf{x}(n+1)$ is excluded is given by

$$M = \begin{bmatrix} \mathbf{I}_n & 0\\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{(n+1) \times (n+1)}.$$
(4)

162 Omitting softmax, the attention mechanism becomes

$$\operatorname{Attn}_{P,Q}(\mathbf{Z}) := P\mathbf{Z}M(\mathbf{Z}^{\top}Q\mathbf{Z}), \tag{5}$$

where $P = W_v$ and $Q = W_k^{\top} W_q$. This simplified form, as shown in Ahn et al. (2024), can implement preconditioned gradient descent, and it is the one we also use.

Transformer Architecture. As in the related work, we also simplify the Transformer to consider only attention layers, using L layers of linear self-attention with a residual connection. Therefore, for each layer ℓ , the output is updated as

$$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \frac{1}{n} \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}), \quad \ell = 0, 1, \dots, L - 1.$$
(6)

Using updates (6), with the input \mathbf{Z}_0 , the final transformer output is \mathbf{T}_1^{73}

$$\mathbf{F}_{L}(\mathbf{Z}_{0}; \{P_{\ell}, Q_{\ell}\}_{\ell=0}^{L-1}) = -[\mathbf{Z}_{L}]_{(d+1),(n+1)}.$$
(7)

The set of parameters $\{P_{\ell}, Q_{\ell}\}_{\ell=0}^{L-1}$ is then learned by minimizing the following training objective:

$$f\left(\{P_{\ell}, Q_{\ell}\}_{\ell=0}^{L-1}\right) = \mathbb{E}_{(\mathbf{Z}_{0}, \mathbf{w}^{*})}\left[\left(\mathrm{TF}_{L}(\mathbf{Z}_{0}) + (\mathbf{w}^{*})^{\top}\mathbf{x}(n+1)\right)^{2}\right].$$
(8)

Here, the scaling factor $\frac{1}{n}$ is used only for ease of notation and does not influence the expressive power of the Transformer.

We will utilize the following lemma from Ahn et al. (2024), which demonstrates that multi-layer
 Transformers simulate preconditioned gradient descent under suitable parameterization. We have
 provided the full proof of this Lemma 1 in the Appendix for completeness.

$$P_{\ell} = \begin{bmatrix} \mathbf{B}_{\ell} = 0_{d \times d} & 0\\ 0 & 1 \end{bmatrix}, \quad Q_{\ell} = -\begin{bmatrix} \mathbf{A}_{\ell} & 0\\ 0 & 0 \end{bmatrix}, \quad \mathbf{A}_{\ell}, \mathbf{B}_{\ell} \in \mathbb{R}^{d \times d}.$$
 (9)

Lemma 1 (Lemma 1, Ahn et al. (2024)). Consider an L-layer linear transformer parameterized by $\mathbf{A}_0, \ldots, \mathbf{A}_{L-1}$, as in (9). Let $y_{\ell}^{(n+1)}$ be the (d+1, n+1)-th entry of the ℓ -th layer output, i.e., $y_{\ell}^{(n+1)} = [\mathbf{Z}_{\ell}]_{(d+1),(n+1)}$ for $\ell = 1, \ldots, L$.

$$y_{\ell}^{(n+1)} = -\langle \mathbf{x}^{(n+1)}, \mathbf{w}_{\ell}^{\mathrm{gd}} \rangle, \tag{10}$$

where the sequence $\{\mathbf{w}_{\ell}^{\mathrm{gd}}\}$ is defined as $\mathbf{w}_{0}^{\mathrm{gd}} = 0$ and for $\ell = 1, \ldots, L-1$:

$$\mathbf{w}_{\ell+1}^{\mathrm{gd}} = \mathbf{w}_{\ell}^{\mathrm{gd}} - \mathbf{A}_{\ell} \nabla R_{\mathbf{w}^*}(\mathbf{w}_{\ell}^{\mathrm{gd}}), \tag{11}$$

with the empirical least-squares loss (with $\mathbf{X} := [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}] \in \mathbb{R}^{d \times n}$):

$$R_{\mathbf{w}^*}(\mathbf{w}) := \frac{1}{2n} \|\mathbf{X}^\top \mathbf{w} - \mathbf{X}^\top \mathbf{w}^*\|^2 = \frac{1}{2n} (\mathbf{w} - \mathbf{w}^*)^\top \mathbf{X} \mathbf{X}^\top (\mathbf{w} - \mathbf{w}^*).$$
(12)

196 197

199

203

208 209

211 212

215

195

164

170

171

174

176 177

184 185

187

188 189 190

191 192 193

2.2 LINEAR FIRST-ORDER METHODS

Linear First-Order Methods (LFOMs) (Goh, 2017) are a class of optimization algorithms that
 lineary combine past gradients for minimizing smooth objective functions. They iteratively update a
 parameter vector w using the gradient of the objective function. The general update rule is

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \alpha_k \mathbf{d}^k,\tag{13}$$

where α_k is the step size and \mathbf{d}^k is the update direction, typically related to the gradient $\nabla f(\mathbf{w}^k)$. Algorithms within this family differ in how they compute \mathbf{d}^k and choose α_k .

LFOMs can be expressed in a cumulative form. For gradient descent, unrolling (13) we get

$$\mathbf{w}^{k+1} = \mathbf{w}^0 - \alpha \sum_{i=0}^k \nabla f(\mathbf{w}^i), \tag{14}$$

210 while common momentum methods need an additional term incorporating past gradients, yielding

$$\mathbf{v}^{k+1} = \mathbf{w}^0 + \sum_{i=0}^k \gamma_i^k \nabla f(\mathbf{w}^i), \tag{15}$$

where the coefficients γ_i^k weight previous gradients. More advanced methods, or general LFOMs, use diagonal matrices Γ_i^k to coordinate-wise scale each gradient component, i.e.,

$$\mathbf{w}^{k+1} = \mathbf{w}^0 + \sum_{i=0}^k \Gamma_i^k \nabla f(\mathbf{w}^i).$$
(16)

Momentum Methods and Conjugate Gradient Descent (CGD) Momentum methods accelerate convergence by incorporating a momentum term, modifying the gradient to account for past updates and achieving faster convergence in relevant directions. Conjugate Gradient Descent (CGD), on the other hand, is a first-order method optimized for quadratic minimization, serving as a benchmark for large-scale, sparse linear systems. After an initial steepest descent, CGD generates directions conjugate to previous ones, leading to faster convergence than standard gradient descent. Both are core methods within the LFOM class, summarized below:

Momentum Methods

223

224 225

226

227

228

229

230

231 232 233

234

235 236

237

238

239

241

242 243 244

245

246

247

248 249

250 251 1: Initialize $\mathbf{w}_0, \mathbf{v}_0 = 0$

2: for n = 1, 2, ... do 3: Compute the gradient:

Compute the gradien

 $\nabla f(\mathbf{w}_n)$

4: Update the velocity:

$$\mathbf{v}_n = \beta \mathbf{v}_{n-1} - \eta \nabla f(\mathbf{w}_n)$$

5: Update the iterate:

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \mathbf{v}_n$$

6: end for

- 7: β : Momentum coefficient (controls the influence of past gradients)
- 8: η: Learning rate (scales the gradient step size)

Conjugate Gradient Descent (CGD)

- 1: Initialize $\mathbf{w}_0, \mathbf{s}_0 = -\nabla f(\mathbf{w}_0)$
- 2: for n = 1, 2, ... do
- 3: Compute the steepest descent direction:

$$\Delta \mathbf{w}_n = -\nabla f(\mathbf{w}_n)$$

4: Compute the conjugacy coefficient:

$$\gamma_n = \frac{\|\nabla f(\mathbf{w}_n)\|^2}{\|\nabla f(\mathbf{w}_{n-1})\|^2}$$

5: Update the search direction:

$$\mathbf{s}_n = \Delta \mathbf{w}_n + \gamma_n \mathbf{s}_{n-1}$$

6: Perform a line search:

 $\alpha_n = \arg\min_{\alpha} f(\mathbf{w}_n + \alpha \mathbf{s}_n)$

7: Update the iterate:

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \alpha_n \mathbf{s}_n$$

8: end for

Momentum methods provide fast convergence by accumulating gradient history and are widely used in modern optimization. CGD converges in at most N iterations for quadratic functions, where N is the number of variables, and is effective for ill-conditioned problems.

3 MEMFORMERS CAN IMPLEMENT LFOMS IN-CONTEXT

Memformers can "learn" LFOMs in the specific sense discussed earlier in Section 1. Each layer ℓ of the Memformer has learnable parameters such as A_{ℓ} , B_{ℓ} (9), and α_{ℓ} , γ_{ℓ} (18) or Γ_{ℓ} (20).

Theoretically, in Propositions 1 and 2 below, we show that in their forward pass, under certain parameter configurations, Memformers can implement exact CGD and LFOM iterations. This is indicative of the algorithmic capacities of these architectures. In experiments, using a small number of learned parameters that are shared across a batch of in-context test data samples, the Memformer can then perform "CGD-like" (3.1) or "LFOM-like" (3.2) iterations that are competitive with, and in some cases even outperform, CGD.

As noted in (Ahn et al., 2024, Subsection C.1), the term $\operatorname{Attn}_{P_{\ell},Q_{\ell}}(\mathbf{Z}_{\ell})$ in the update for $\mathbf{Z}_{\ell+1}$ (6) corresponds to the preconditioned gradient $\mathbf{A}_{\ell} \nabla R_{\mathbf{w}^*}(\mathbf{w}_{\ell}^{\mathrm{gd}})$ of the in-context loss (12) in the update for $\mathbf{w}_{\ell+1}^{\mathrm{gd}}$.

We will henceforth call the class of algorithms that the following architecture (18) can implement as **"CGD-like"**, and the class of algorithms that architecture (20) can implement as **"LFOM-like"**.

266

268

267 3.1 Dynamic Memory for CGD-like Algorithms

Proposition 1. A memory-augmented Transformer can implement Conjugate Gradient Descent (CGD) in its forward pass through a dynamic memory mechanism that recursively refines search

directions, where the update rules are:

272 273

274 275

276

287

288

295 296

297 298

299

310 311

312

$$\mathbf{R}_{\ell} = \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}) + \gamma_{\ell} \mathbf{R}_{\ell-1}, \tag{17}$$

$$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \alpha_{\ell} \frac{1}{n} \mathbf{R}_{\ell}, \tag{18}$$

where γ_{ℓ} and α_{ℓ} control the influence of past updates and the step size, respectively.

277 *Proof Sketch.* Here \mathbf{R}_{ℓ} denotes the state of a *single* memory register \mathbf{R} at different layers ℓ during a 278 forward pass. CGD refines search directions using current gradients and previous directions. The 279 Transformer simulates this by using $\operatorname{Attn}_{P_{\ell},Q_{\ell}}(\mathbf{Z}_{\ell})$ as the current update, analogous to the gradient 280 in CGD, and $\gamma_{\ell}\mathbf{R}_{\ell-1}$ to refine the previous search direction, corresponding to the recursive update of 281 \mathbf{s}_n in CGD.

The recursive update for \mathbf{R}_{ℓ} thus mimics \mathbf{s}_n , the search direction in CGD. The update for $\mathbf{Z}_{\ell+1}$ uses **R**_{ℓ}, scaled by α_{ℓ} , similar to how CGD iterates are updated using \mathbf{s}_n . With $\mathbf{A}_{\ell} = \mathbf{I}$, this process matches CGD applied to the loss $R_{\mathbf{w}^*}(\mathbf{w})$ (12), using both current and previous gradients to refine the search direction. (A full proof of Proposition 1 is provided in Appendix A.)

3.2 IMPLEMENTING k STEPS OF LFOM WITH MEMORY REGISTERS

We extend our analysis to show how Transformers can simulate k steps of Linear First-Order Methods (LFOMs). This is achieved by maintaining a memory register at each layer, which stores accumulated updates from previous layers, simulating iterative optimization.

Proposition 2. A memory-augmented Transformer can implement k steps of LFOM in its forward
 pass by maintaining memory registers across layers, where the update rules are:

$$\mathbf{R}_{\ell} = \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}), \tag{19}$$

$$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \frac{1}{n} \sum_{j=0}^{\ell} \Gamma_j^{\ell} \odot \mathbf{R}_j,$$
(20)

where Γ_{ℓ}^{i} governs the contribution of previous layers, and \odot is the Hadamard product for scaling.

Proof Sketch. Here each \mathbf{R}_{ℓ} denotes a *separate* memory register for each layer ℓ . Memformers with this architecture simulate iterative optimization by refreshing the memory register \mathbf{R}_{ℓ} at each layer with $\operatorname{Attn}_{P_{\ell},Q_{\ell}}(\mathbf{Z}_{\ell})$, capturing the current update. The cumulative update to $\mathbf{Z}_{\ell+1}$ incorporates past layers through a weighted sum of previous memory registers \mathbf{R}_{j} , with weights $\Gamma_{j}^{\ell} \in \mathbb{R}^{(d+1)\times(n+1)}$, mimicking LFOM's cumulative iterative process. We will henceforth refer to this architecture (20) as "LFOM Memformer".

The Hadamard product \odot modulates the influence of \mathbf{R}_j , analogous to gradient preconditioning. This setup subsumes the case of diagonal preconditioners Λ_i^k acting on gradients $\nabla R_{\mathbf{w}^*}(\mathbf{w}_i^{\mathrm{gd}})$, which in the general form looks like:

$$\mathbf{w}_{k+1}^{\mathrm{gd}} = \mathbf{w}_0 + \sum_{i=0}^k \Lambda_i^k \nabla R_{\mathbf{w}^*}(\mathbf{w}_i^{\mathrm{gd}}).$$
(21)

The matrices $\Gamma_j^{\ell} \in \mathbb{R}^{(d+1)\times(n+1)}$ and $\Lambda_i^k \in \mathbb{R}^{d\times d}$ serve similar roles, but their dimensions differ. We expect this Hadamard product memory architecture to be able to perform richer algorithms than LFOMs, though a formal characterization of its full potential remains to be done.

The full proof follows from the cumulative memory structure and the connection between attention and preconditioned gradients, as discussed in the proof steps of Lemma 1. (A full proof of Proposition 2 is provided in Appendix A.)

Remark. The update (20) could be interpreted as a type of *gated memory*, related to gating in LSTMs
 and GRUs that also use the Hadamard product to modulate information flow through gates. This
 similarity suggests that principles from these architectures could help refine memory mechanisms in
 Transformers, potentially enhancing their ability to handle long-term dependencies in optimization
 tasks. However, further exploration is needed to fully understand this relationship.

324 3.3 EXPERIMENTAL RESULTS: MEMFORMER PERFORMANCE VS. CGD

In this section, we present our empirical results for Memformers "learning" conjugate gradient descent (CGD), general linear first-order methods (LFOMs), and general LFOMs with GD^{++} . The method GD⁺⁺ is a quasi-Newton method where the inverse Hessian in Newton's method is approximated by a truncated Neumann series; for more details on GD^{++} , refer to Section A.10 of Von Oswald et al. (2023a).

We consider the in-context loss function (12) for linear regression. The input dimension is set to d = 5, and the number of training observations in the prompt is n = 20. Both the inputs $\mathbf{x}^{(i)}$ and the target weight vector \mathbf{w}^* are sampled from Gaussian distributions: $\mathbf{x}^{(i)} \sim \mathcal{N}(0, \Sigma)$ and $\mathbf{w}^* \sim \mathcal{N}(0, \Sigma^{-1})$, where $\Sigma = \mathbf{U}^\top \mathbf{D} \mathbf{U}$. Here, \mathbf{U} is a uniformly random orthogonal matrix, and \mathbf{D} is a fixed diagonal matrix with entries diag(1, 1, 1/2, 1/4, 1).

We optimize the function f (8) for a three-layer linear transformer using the ADAM optimizer. The matrices A_0 , A_1 , and A_2 (as in (9)) are initialized with independent and identically distributed (i.i.d.) Gaussian entries. Each gradient step is computed using a batch of size 1000, and we resample the batch every 100 steps. We clip the gradient of each matrix to have a maximum norm of 0.01. All plots are averaged over five runs, each with a different randomly sampled U (and thus different Σ).

Figure 1 illustrates the implementation of a CGD-like algorithm under the architecture given by (18). In Figure 1a, the line-search parameters α_{ℓ} and deflection parameters γ_{ℓ} for each layer ℓ are obtained by training using ADAM. By "CGD-like," we mean that upon training the Memformer using ADAM, the Memformer layers learn general parameters α_{ℓ} and γ_{ℓ} which, while they may not match the exact CGD parameters for individual observations, perform well enough on each observation to be comparable to, if not competitive with, CGD. We further explain the important issue of learning general parameters in Section 4.

Figure 1b presents the same experiment as Figure 1a, using the architecture in (18), but with the parameters A_{ℓ} for each layer not restricted to scalars. Thus, past gradients are accounted for, similar to CGD, but with preconditioners A_{ℓ} . This is therefore not a "CGD-like" algorithm. We aim to demonstrate that once we allow preconditioned gradients, a Memformer implements a certain "LFOM-like" algorithm that distinctly outperforms CGD.

353 Figure 2 presents the performance of LFOM Memformer under the architecture in (20), where the 354 matrix parameters Γ_i for each layer j are obtained by training using ADAM. In our experiments, 355 we consider the special case of $\Gamma_i^{\ell} = \Gamma_j \ \forall \ell$, which is more natural, if we consider that each layer 356 j of the Memformer has an associated Γ_j . Figure 2a shows the results on non-isotropic data, and 357 Figure 2b shows the results on isotropic data. Note that this algorithm is quite similar in nature to the 358 previous case in Figure 1b. Here, the Γ_i 's essentially act as preconditioners of the gradients computed 359 in each layer. Consequently, the graphs of Figures 1b and 2a are nearly identical. In the isotropic 360 data experiment (Figure 2b), we observe that the Memformer does not perform better than a linear transformer. In quadratics with isotropic data, there is no significant variation in curvature across 361 directions; thus, incorporating past gradients via momentum offers little advantage. Momentum is 362 more beneficial in cases with non-isotropic data. 363

Figure 3 presents LFOM Memformer with GD^{++} under the architecture in (20), where the B_{ℓ} blocks in the P_{ℓ} matrices for each layer ℓ (9) are allowed to be non-zero. Once again, the matrix parameters for each layer ℓ are obtained by training using ADAM. In this case, the B_{ℓ} matrices resemble a heavily truncated Neumann series of the inverse XX^{\top} (Hessian of (12)), resulting in a quasi-Newton method. The experiments are conducted on both non-isotropic data (Figure 3a) and isotropic data (Figure 3b).

370 371

4 EXPERIMENTS: INFLUENCE OF BATCH SIZE ON PERFORMANCE

We emphasize here that the results presented in Section 3.3 compare the performance of Transformers and Memformers (which learn shared generic parameters upon training) against CGD that runs on fresh observations of batch size B = 1000, independently resampled from the same distribution. But unlike CGD that computes specific parameters for each observation, the Transformer and Memformer models learn shared parameters P_{ℓ} , Q_{ℓ} (and α_{ℓ} , γ_{ℓ} , or Γ_{ℓ}) for each layer ℓ , and these parameters are applied uniformly across all 1000 observations in the batch. In contrast, CGD is executed individually on each of the 1000 observations in the batch, and the average log-loss versus layers is plotted.

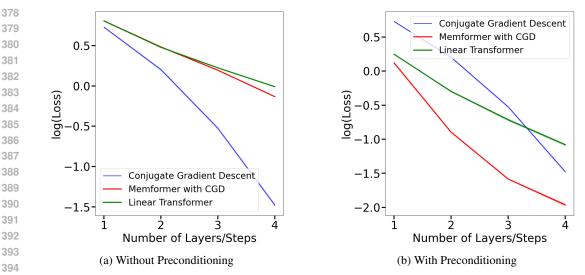


Figure 1: Comparison of Linear Transformer and CGD Memformer (18) with general CGD-like parameters to actual CGD running separately on each test observation.

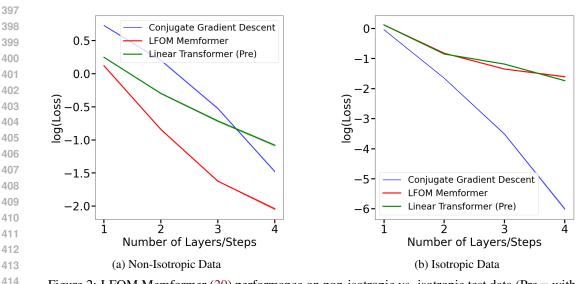


Figure 2: LFOM Memformer (20) performance on non-isotropic vs. isotropic test data (Pre = with 415 non-trivial preconditioners). Test data is independently sampled from the same distribution as the 416 training data.

418 The strength of LFOM Memformers (20) (with matrices Γ_{ℓ} restricted to scalar multiples of the identity) becomes even more pronounced when tested on training data with small batch sizes, such 419 as B = 1 and B = 10. In these scenarios, the Memformers learn parameters that significantly 420 outperform CGD running in parallel on each of the observations in those small batches. Figure 4 demonstrates this comparison. We further provide an experimental comparison of LFOM Memformer 422 performance vs. Nesterov Accelerated Gradient Method and Momentum GD in the Appendix.

423 424

421

417

395

396

425 426

EXPERIMENTS: IMPACT OF USING MULTI-HEADED ATTENTION 5

427 Our experiments show that increasing the number of attention heads improves test loss performance. 428 Multi-head attention enables Transformers to learn diverse preconditioning matrices, better adapting 429 to varying data covariance structures. In our architecture (17), attention values from each head are summed into the memory register \mathbf{R}_{ℓ} at each layer. Heuristically, each head captures different 430 aspects of the data, estimating gradients from multiple perspectives. This ensemble-like behavior 431 reduces variance in gradient updates by averaging out individual noise and biases, leading to faster

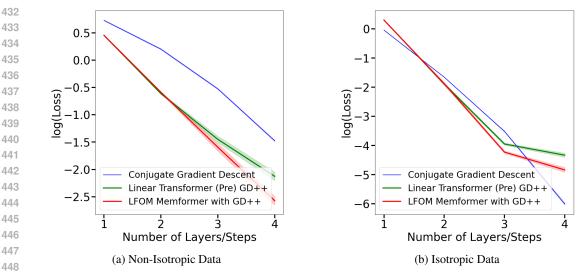


Figure 3: LFOM Memformer (20) GD++ performance on non-isotropic vs. isotropic test data (Pre = with non-trivial preconditioners). Test data is independently sampled from the same distribution as the training data.

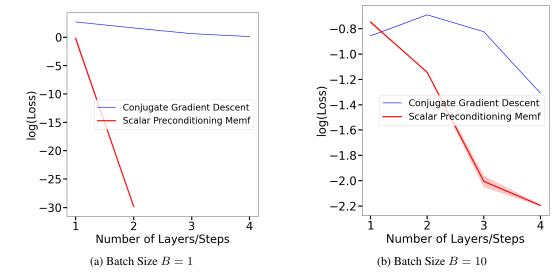


Figure 4: LFOM Memformer (20) with scalar preconditioners Γ_{ℓ} vs. CGD performance on small batch training data (B = 1 and B = 10). The Memformer demonstrates superior performance on the training data.

convergence and more stable optimization. Acting as implicit regularization, it prevents overfitting and enhances generalization on test data. This phenomenon is also supported by recent studies. Chen et al. (2024) showed that multi-head attention is essential for effective context preprocessing in sparse linear regression, aligning with our findings. Similarly, Cui et al. (2024) provided theoretical and empirical evidence that multi-head attention outperforms single-head attention in in-context learning.

Figure 5 compares models with 1-head and 5-head attention, illustrating the benefits of multiple heads on convergence speed and test loss performance.

6 DISCUSSION AND FUTURE WORK

This work demonstrates the capability of memory-augmented Transformers (Memformers) to implement a broad range of first-order optimization methods, opening several research directions. We briefly comment on some of these aspects below.

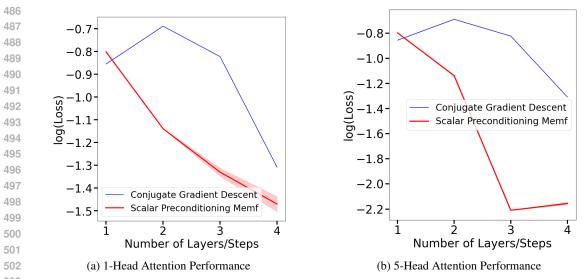


Figure 5: Comparison of LFOM Memformer (20) (with scalar preconditioners Γ_{ℓ}) performance using 1-head and 5-head attention, relative to CGD.

- (i) **Architectural Flexibility**: Small modifications, such as (gated) memory registers, significantly enhance Transformers' ability to learn and implement diverse optimization algorithms. Future research could explore further architectural innovations to unlock even greater capabilities.
- (ii) General Function Classes: While our approach successfully makes Transformers implement LFOMs on quadratic functions, future work should extend this to more general objective functions. Doing so may require novel training strategies, and possibly architectural adjustments to handle non-quadratic functions. The role of nonlinear attention and the MLP component of Transformers may also prove to be useful here.
- (iii) Efficiency vs. Generalization: Attention-based methods require more computation than directly implementing conjugate gradient descent or momentum GD. However, Transformers excel in learning general parameters, enabling LFOMs to generalize across new data without needing per-instance optimization. Exploring practical use of such "learned optimizers" to either warmstart a solver, or to potentially even bypass it, is a tantalizing research topic.
 - (iv) **Theoretical Foundations and Convergence Analysis**: Strengthening the theoretical basis of Transformers' optimization capabilities, including convergence analysis and their alignment with classical optimization theory, is another important direction for future research.
- (v) **Meta-learning and Transfer Learning**: The ability of Transformers to learn and generalize optimization algorithms offers exciting potential for meta-learning and transfer learning, providing new opportunities in areas where traditional optimization methods fall short.
- 526 527 528 529

530

504

505 506 507

509 510

511

512

513

514

515

516

517

518

519

521

522

523

524

6.1 LIMITATIONS

We briefly remark on some limitations of our current framework. For instance, while Memformers are quite versatile, our experiments (Figures 1, 2) indicate they do not radically outperform preconditioned GD on general quadratic problems as in (12), where the preconditioner matrix Γ_{ℓ} (and likewise, A_{ℓ}) for the current layer ℓ is the main contributor to loss performance at each update step ℓ (17). On the other hand, this behavior is likely due to the task being quadratic, and a future study that tackles more general ICL formulations will likely shed light here.

Transformers can implement second-order methods like Newton's method (Fu et al., 2023; Giannou et al., 2024), which typically outperform LFOMs in convergence speed and accuracy. However, we reiterate that the main focus of our paper is to explore the space of first-order optimization algorithms that augmented Transformers can learn, as opposed to looking for "the best" algorithm.

540	7 Reproducibility Statement
541	/ REFRODUCIDIEITI STATEMENT
542	We believe the following points provide a clear path for replicating our results:
543	we believe the following points provide a clear path for repretating our results.
544	• Code Availability: The code for our experiments, including Memformers and
545	LFOM implementations, is available at https://anonymous.4open.science/r/
546	ICLR-2025-Memformer_LFOM.
547	• Experiment Setup: Detailed descriptions of the training setup, model architecture, parame-
548	ter initialization, and optimization methods are included in Sections 2 and 3.3.
549	• Random Seeds: Random seeds were fixed across all experiments to ensure consistency, and
550 551	they are provided in the code repository for replication.
552	• Hardware Requirements: All experiments were conducted on NVIDIA T4 GPUs in
553	Google Colab.
554	
555	References
556	
557	Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
558 559	Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
560	arXiv preprint arXiv:2303.08774, 2023.
561	Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
562	ear attention is (maybe) all you need (to understand transformer optimization). <i>arXiv preprint arXiv:2310.01082</i> , 2023.
563	Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
564	preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
565	<i>Systems</i> , 36, 2024.
566	Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
567	rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
568	2022.
569	Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.
570 571	Xingwu Chen, Lei Zhao, and Difan Zou. How transformers utilize multi-head attention in in-context
572	learning? a case study on sparse linear regression. <i>arXiv preprint arXiv:2408.04532</i> , 2024.
573 574	Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention in in-context linear regression. <i>arXiv preprint arXiv:2401.17426</i> , 2024.
575	Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
576	learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
577	preprint arXiv:2212.10559, 2022.
578	Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
579	methods for in-context learning: A study with linear models. <i>arXiv preprint arXiv:2310.17086</i> , 2023.
580	
581	Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context? a case study of simple function classes. <i>Advances in Neural Information Processing</i>
582	Systems, 35:30583–30598, 2022.
583 584	Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D Lee. How well can transformers emulate in-context newton's method? <i>arXiv preprint arXiv:2403.03183</i> , 2024.
585	Gabriel Goh. Why momentum really works. <i>Distill</i> , 2017. doi: 10.23915/distill.00006. URL
586 587	http://distill.pub/2017/momentum.
588	Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure induction. <i>arXiv preprint arXiv:2303.07971</i> , 2023.
589	Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
590 501	makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786, 2021.

594	
595	Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
596	provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
	arXiv:2307.03576, 2023.
597	Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
598	programmers. In International Conference on Machine Learning, pages 9355–9366. PMLR, 2021.
599	Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
600	Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
601	efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.
602	Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
603	versatile in-context learners. <i>arXiv preprint arXiv:2402.14180</i> , 2024.
604	
605	Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
606	International Conference on Machine Learning, pages 35151–35174. PMLR, 2023a.
607	· · · · · ·
608	Johannes Von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
609	Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
610	mesa-optimization algorithms in transformers. <i>arXiv preprint arXiv:2309.05858</i> , 2023b.
611	Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
612	Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
613	neural information processing systems, 35:24824–24837, 2022.
614	Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer:
615	A memory-augmented transformer for sequence modeling. arXiv preprint arXiv:2010.06891,
616	2020.
	Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning:
617	An information compression perspective for in-context example selection and ordering. arXiv
618	preprint arXiv:2212.10375, 2022.
619	Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
620	learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.
621	Dongkuan Xu, Junjie Liang, Wei Cheng, Hua Wei, Haifeng Chen, and Xiang Zhang. Transformer-
622	style relational reasoning with dynamic memory updating for temporal network modeling. In
623	Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 4546–4554, 2021.
624	Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
625	Journal of Machine Learning Research, 25(49):1–55, 2024.
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	
641	
642	
643	
644	
645	
646	
647	

648 SUPPLEMENTARY MATERIAL

A PROOFS

A.1 PROOF OF LEMMA 1: EQUIVALENCE TO PRECONDITIONED GRADIENT DESCENT

This proof already exists in the literature, for instance, in Subsection C.1 of Ahn et al. (2024). However, we repeat it here, to make this paper as self-contained as possible.

Consider a set of fixed samples $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$, along with a fixed vector \mathbf{w}^* . Let $P = \{P_i\}_{i=0}^k$ and $Q = \{Q_i\}_{i=0}^k$ represent fixed weights, and let \mathbf{Z}_i evolve as per equation (6). Define \mathbf{X}_i as the first d rows of \mathbf{Z}_k (under equation (9), we have $\mathbf{X}_i = \mathbf{X}_0$ for all *i*), and let \mathbf{Y}_i be the (d+1)-th row of \mathbf{Z}_i . Now, let $g(\mathbf{x}, \mathbf{y}, k) : \mathbb{R}^d \times \mathbb{R} \times \mathbb{Z} \to \mathbb{R}$ be a function such that for $\mathbf{x}_{n+1} = \mathbf{x}$ and $\mathbf{y}_{n+1}^{(0)} = \mathbf{y}$, the function is defined as $g(\mathbf{x}, \mathbf{y}, k) := \mathbf{y}_{n+1}^{(k)}$. It's worth noting that $\mathbf{y}_{n+1}^{(k)} = [\mathbf{Y}_k]_{n+1}$.

We can verify that, under equation (9), the update rule for $\mathbf{y}_{n+1}^{(k)}$ is given by:

$$\mathbf{Y}_{k+1} = \mathbf{Y}_k - \frac{1}{n} \mathbf{Y}_k M \mathbf{X}_0^{\top} A_k \mathbf{X}_0, \qquad (22)$$

where M is a mask matrix of the form:

$$M = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix}.$$

The following points can be verified:

1. $g(\mathbf{x}, \mathbf{y}, k) = g(\mathbf{x}, 0, k) + \mathbf{y}$. To see this, note that for each $i \in \{1, \dots, n\}$, we have:

$$\mathbf{y}_{k+1}^{(i)} = \mathbf{y}_{k}^{(i)} - \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}^{(i)\top} A_k \mathbf{x}^{(j)} \mathbf{y}_{k}^{(j)}.$$

Thus, $\mathbf{y}_k^{(i)}$ does not depend on $\mathbf{y}_{n+1}^{(t)}$ for any t. For $\mathbf{y}_{n+1}^{(k)}$, the update becomes:

$$\mathbf{y}_{n+1}^{(k+1)} = \mathbf{y}_{n+1}^{(k)} - \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{n+1}^{\top} A_k \mathbf{x}^{(j)} \mathbf{y}_k^{(j)},$$

which clearly shows that the dependence on $\mathbf{y}_{n+1}^{(k)}$ is additive. Through a simple induction, we can establish:

$$g(\mathbf{x}, \mathbf{y}, k+1) - \mathbf{y} = g(\mathbf{x}, \mathbf{y}, k) - \mathbf{y}$$

2. The function $g(\mathbf{x}, 0, k)$ is linear in \mathbf{x} . To see this, note that for $j \neq n+1$, $\mathbf{y}_j^{(k)}$ does not depend on $\mathbf{x}_{n+1}^{(t)}$ for any t, j, or k. Therefore, the update for $\mathbf{y}_{n+1}^{(k+1)}$ depends linearly on \mathbf{x}_{n+1} and $\mathbf{y}_{n+1}^{(k)}$. Since $\mathbf{y}_{n+1}^{(0)} = 0$ is linear in \mathbf{x} , we conclude by induction that the result holds.

Considering these points, we can confirm that for each k, there exists a vector $\theta_k \in \mathbb{R}^d$ such that:

$$g(\mathbf{x}, \mathbf{y}, k) = g(\mathbf{x}, 0, k) + \mathbf{y} = \langle \theta_k, \mathbf{x} \rangle + \mathbf{y},$$

for all x and y. It follows that $g(\mathbf{x}, \mathbf{y}, 0) = \mathbf{y}$, so that $\langle \theta_0, \mathbf{x} \rangle = g(\mathbf{x}, \mathbf{y}, 0) - \mathbf{y} = 0$, implying $\theta_0 = 0$. We now focus on the third key fact: for each *i*, we have:

$$g(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, k) = \mathbf{y}_k^{(i)} = \langle \theta_k, \mathbf{x}^{(i)} \rangle + \mathbf{y}^{(i)}.$$

To prove this, let $\mathbf{x}_{n+1} := \mathbf{x}^{(i)}$ for some $i \in \{1, \dots, n\}$. Then:

700
701
$$\mathbf{y}_{k+1}^{(i)} = \mathbf{y}_{k}^{(i)} - \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}^{(i)\top} A_k \mathbf{x}^{(j)} \mathbf{y}_{k}^{(j)},$$

$$\mathbf{y}_{n+1}^{(k+1)} = \mathbf{y}_{n+1}^{(k)} - \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{n+1}^{\top} A_k \mathbf{x}^{(j)} \mathbf{y}_k^{(j)},$$

therefore, $\mathbf{y}_{k+1}^{(i)} = \mathbf{y}_{n+1}^{(k+1)}$ when $\mathbf{y}_{k}^{(i)} = \mathbf{y}_{n+1}^{(k)}$. This completes the induction, given that $\mathbf{y}_{0}^{(i)} = \mathbf{y}_{n+1}^{(0)}$ by definition.

Let $\bar{\mathbf{X}} \in \mathbb{R}^{d \times n}$ be the matrix whose columns are $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$, excluding \mathbf{x}_{n+1} , and let $\bar{\mathbf{Y}}_k \in \mathbb{R}^{1 \times n}$ be the vector of $\mathbf{y}_k^{(1)}, \dots, \mathbf{y}_k^{(n)}$. It follows that:

$$\bar{\mathbf{Y}}_k = \bar{\mathbf{Y}}_0 + \theta_k^\top \bar{\mathbf{X}}.$$

712 Using this, the update formula for $\mathbf{y}_{n+1}^{(k)}$ becomes:

$$\mathbf{y}_{n+1}^{(k+1)} = \mathbf{y}_{n+1}^{(k)} - \frac{1}{n} \langle A_k \bar{\mathbf{X}}^\top \bar{\mathbf{Y}}_k, \mathbf{x}_{n+1} \rangle,$$
(23)

715 leading to the update:

$$\langle \theta_{k+1}, \mathbf{x}_{n+1} \rangle = \langle \theta_k, \mathbf{x}_{n+1} \rangle - \frac{1}{n} \langle A_k \bar{\mathbf{X}} (\bar{\mathbf{X}}^\top \theta_k + \bar{\mathbf{Y}}_0), \mathbf{x}_{n+1} \rangle.$$
(24)

Since \mathbf{x}_{n+1} is arbitrary, we derive the general update formula:

$$\theta_{k+1} = \theta_k - \frac{1}{n} A_k \bar{\mathbf{X}} \bar{\mathbf{X}}^\top (\theta_k + \mathbf{w}^*).$$
(25)

Treating A_k as a preconditioner, and letting $f(\theta) := \frac{1}{2n} (\theta + \mathbf{w}^*)^\top \bar{\mathbf{X}} \bar{\mathbf{X}}^\top (\theta + \mathbf{w}^*)$, we can express the update as:

$$\theta_{k+1} = \theta_k - \frac{1}{n} A_k \nabla f(\theta).$$
(26)

Finally, let $\mathbf{w}_k^{\text{gd}} := -\theta_k$. We can verify that $f(-\mathbf{w}) = R_{\mathbf{w}^*}(\mathbf{w})$, implying that:

$$\mathbf{w}_{k+1}^{\text{gd}} = \mathbf{w}_{k}^{\text{gd}} - \frac{1}{n} A_k \nabla R_{\mathbf{w}^*}(\mathbf{w}_{k}^{\text{gd}}).$$
(27)

730 We also confirm that for any \mathbf{x}_{n+1} , the prediction of $\mathbf{y}_{n+1}^{(k)}$ is:

$$g(\mathbf{x}_{n+1}, \mathbf{y}_{n+1}, k) = \mathbf{y}_{n+1} - \langle \theta, \mathbf{x}_{n+1} \rangle = \mathbf{y}_{n+1} + \langle \mathbf{w}_k^{\text{gd}}, \mathbf{x}_{n+1} \rangle$$

This concludes the proof. We have simply followed the update rule (6) to its logical conclusion.

A.2 Full Proof of Proposition 1

A memory-augmented Transformer can implement Conjugate Gradient Descent (CGD) through a dynamic memory mechanism that recursively refines search directions, where the update rules are:

$$\mathbf{R}_{\ell} = \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}) + \gamma_{\ell} \mathbf{R}_{\ell-1}, \qquad (28)$$

$$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \alpha_{\ell} \frac{1}{n} \mathbf{R}_{\ell},\tag{29}$$

where γ_{ℓ} and α_{ℓ} control past update influence and step size.

744 PROOF

Our goal is to demonstrate that, under appropriate parameter configurations, the memory-augmented
 Transformer updates given by equations (28) and (29) correspond precisely to the Conjugate Gradient
 Descent (CGD) algorithm when applied to the quadratic loss function:

$$R_{\mathbf{w}^*}(\mathbf{w}) = \frac{1}{2n} (\mathbf{w} - \mathbf{w}^*)^\top \mathbf{X} \mathbf{X}^\top (\mathbf{w} - \mathbf{w}^*).$$
(30)

We will establish a mapping between the Transformer's operations and the steps of the CGD algorithm,
 demonstrating that the Transformer can implement CGD under certain parameter settings.

754 CGD ALGORITHM FOR QUADRATIC FUNCTIONS

For minimizing a quadratic function, the CGD algorithm proceeds as follows:

Algorithm. Co	onjugate Gradient Descent (CGD)	
Initialize \mathbf{w}_{0}	$_{0} ext{ and } \mathbf{r}_{0} = - abla f(\mathbf{w}_{0}), \mathbf{s}_{0} = \mathbf{r}_{0}$	
$w_1 = w_0 + $		
for $n = 1, 2$	e the residual: $\mathbf{r}_n = -\nabla f(\mathbf{w}_n)$	
	e the conjugacy coefficient:	
	$\gamma_n = rac{\mathbf{r}_n^\top \mathbf{r}_n}{\mathbf{r}_n^\top \mathbf{r}_n \mathbf{r}_{n-1}}$	
	$\gamma_n = rac{\mathbf{r}_{n-1}^\top \mathbf{r}_{n-1}}{\mathbf{r}_{n-1}^\top \mathbf{r}_{n-1}}$	
Update t	the search direction:	
	$\mathbf{s}_n = \mathbf{r}_n + \gamma_n \mathbf{s}_{n-1}$	
Compute	e the step size: ∇^{\top}	
	$\alpha_n = \frac{\mathbf{r}_n^{\top} \mathbf{r}_n}{\mathbf{s}_n^{\top} \mathbf{H} \mathbf{s}_n}$	
Update t	the parameters:	
I	$\mathbf{w}_{n+1} = \mathbf{w}_n + \alpha_n \mathbf{s}_n$	
end for		
MAPPING CG	D UPDATES TO TRANSFORMER UPDATES	
We first recall	that in the proof of Lemma 1 (A.1), the $\mathbf{w}_{k+1}^{\text{gd}}$ update rule	
	$\mathbf{w}_{k+1}^{ ext{gd}} = \mathbf{w}_{k}^{ ext{gd}} - rac{1}{n} A_k abla R_{\mathbf{w}^*}(\mathbf{w}_{k}^{ ext{gd}}),$	(2
	10	(3
is a direct dow	Instream consequence of the $\mathbf{Z}_{\ell+1}$ update rule (6)	
	$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \frac{1}{n} \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}), \ell = 0, 1, \dots, L-1,$	(3
under the parar	meterization given in equation (9). Thus, the $Attn_{P_\ell,Q_\ell}$ term in the \mathbf{Z}_ℓ up	odate equati
	sense, paralleled by the $-\frac{1}{n}A_k\nabla R_{\mathbf{w}^*}(\mathbf{w}_k^{\mathrm{gd}})$ term in the $\mathbf{w}_{k+1}^{\mathrm{gd}}$ update eq	
Step 1: Initi	ALIZATION	
• CGD):	
	\mathbf{w}_0 given, $\mathbf{r}_0 = -\nabla f(\mathbf{w}_0)$, $\mathbf{s}_0 = \mathbf{r}_0$.	
• Trans	sformer:	
- 7	The initial state \mathbf{Z}_0 in (6) parallels \mathbf{w}_0 in (31).	
	The memory register \mathbf{R} is initialized to $\operatorname{Attn}_{P_0,Q_0}(\mathbf{Z}_0)$, i.e., $\mathbf{R}_0 = \operatorname{Attn}_{P_0,Q_0}(\mathbf{Z}_0)$	$\operatorname{ttn}_{P_0,Q_0}(\mathbf{Z})$
	corresponding to $\mathbf{s}_0 = \mathbf{r}_0$.	
- \	We set $\gamma_0 = 0$, consistent with CGD initialization.	
STEP 2: UPDA	ATE MEMORY REGISTER (SEARCH DIRECTION)	
• Trans	sformer Memory Update:	
	$\mathbf{R}_{\ell} = \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}) + \gamma_{\ell} \mathbf{R}_{\ell-1}.$	
• Corre	espondence with CGD:	
	$\mathbf{s}_n = \mathbf{r}_n + \gamma_n \mathbf{s}_{n-1}.$	
	ifying $\mathbf{R}_{\ell} \leftrightarrow \mathbf{s}_n$, $\gamma_{\ell} = \gamma_n$, and $\mathbf{R}_{\ell-1} \leftrightarrow \mathbf{s}_{n-1}$, the Transformer's method of \boldsymbol{c}	emory upda
match	hes CGD.	
STEP 3: UPDA	ate Parameters	
• Trans	sformer Parameter Update:	
	$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \alpha_{\ell} \frac{1}{n} \mathbf{R}_{\ell}.$	
	$-\epsilon_{\tau+1}$ $-\epsilon_{\tau}$ n	

	Correspondence with CGD:
	$\mathbf{w}_{n+1} = \mathbf{w}_n + \alpha_n \mathbf{s}_n.$
	The scaling factor $\frac{1}{n}$ accounts for the gradient's scaling, consistent with the CGD update when considering the Hessian $\mathbf{H} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$.
Stei	P 4: Conjugacy Coefficient γ_ℓ and Step Size α_ℓ
	• CGD Computations: Scalar values computed based on residuals and the Hessian.
	Transformer Implementation:
	 - γ_ℓ and α_ℓ are treated as parameters, ensuring structural correspondence. - The Transformer's architecture allows these as fixed or learnable parameters.
	efore, under suitable parameter configurations, the memory-augmented Transformer can impl CGD, demonstrating the feasibility of using the Transformer's architecture to perform CGD-lil tes.
A.3	Full Proof of Proposition 2
	mory-augmented Transformer can implement k steps of Linear First-Order Methods (LFOM aintaining memory registers across layers, where the update rules are:
	$\mathbf{R}_{\ell} = \operatorname{Attn}_{P_{\ell}, Q_{\ell}}(\mathbf{Z}_{\ell}), \tag{3}$
	$\mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \frac{1}{n} \sum_{j=0}^{\ell} \Gamma_j^{\ell} \odot \mathbf{R}_j, $ (3)
wher for so	e Γ_j^ℓ governs the contribution of previous layers, and \odot is the Hadamard (element-wise) producaling.
	goal is to show that the memory-augmented Transformer with updates given by equations (3 (34)) can implement k steps of an LFOM, whose general formulation is:
	$\mathbf{w}^{k+1} = \mathbf{w}^0 + \sum_{i=0}^k \Lambda_i^k abla f(\mathbf{w}^i),$
wher	e Λ_i^k are diagonal matrices that scale the gradients $\nabla f(\mathbf{w}^i)$.
augn	vill proceed by establishing a correspondence between the variables and updates in the memor nented Transformer and those in the LFOM, and by showing that, under appropriate paramet ngs, the Transformer updates replicate the LFOM updates.
is a c	first order of business is to realize that, in the proof of Lemma 1 (A.1), the $\mathbf{w}_{k+1}^{\text{gd}}$ update rule (3 lirect downstream consequence of the $\mathbf{Z}_{\ell+1}$ update rule (6), under the parameterization given tion (9).
upda Attn like `	$\mathbf{R}_{\ell} = \operatorname{Attn}_{P_{\ell},Q_{\ell}}(\mathbf{Z}_{\ell}) \text{ per (33). Then the consequence of the } \mathbf{Z}_{\ell+1} = \mathbf{Z}_{\ell} + \frac{1}{n} \sum_{j=0}^{\ell} \Gamma_{j}^{\ell} \odot \mathbf{R}_{\ell}$ te rule is that each $\operatorname{Attn}_{P_{j},Q_{j}}(\mathbf{Z}_{j})$ is coordinate-wise scaled by $\Gamma_{j}^{\ell} \in \mathbb{R}^{(d+1)\times(n+1)}$. But $P_{j,Q_{j}}(\mathbf{Z}_{j})$ is coordinate-wise scaled by Γ_{j}^{ℓ} , then the \mathbf{Y}_{k+1} update rule in (22) now instead loo $\mathbf{Y}_{k+1} = \mathbf{Y}_{k} - \frac{1}{n} \sum_{j=0}^{k} \Gamma_{j}^{k} \Big _{d+1} \odot (\mathbf{Y}_{k}M\mathbf{X}_{0}^{\top}A_{k}\mathbf{X}_{0})$, where $\Gamma_{j}^{k} \Big _{d+1}$ denotes the $(d+1)$ -th respectively. This is because, by definition, \mathbf{Y}_{i} is the $(d+1)$ -th row of \mathbf{Z}_{i} (A.1).
From Exce deno	the basic \mathbf{Y}_k update rule in (22), the update formula for $\mathbf{y}_{n+1}^{(k+1)}$ in (23) follows as a consequent pt that now, this update formula will include a coordinate-wise scaling as well, which we were by $\Lambda_j^k \in \mathbb{R}^d$:
	$\mathbf{y}_{n+1}^{(k+1)} = \mathbf{y}_{n+1}^{(k)} - \frac{1}{n} \sum_{j=0}^{k} \langle (A_j \bar{\mathbf{X}}^\top \bar{\mathbf{Y}}_j) \odot \Lambda_j^k, \mathbf{x}_{n+1} \rangle,$

which in turn leads to $\theta_{k+1} = \theta_k - \frac{1}{n} \sum_{j=0}^k (A_j \bar{\mathbf{X}} \bar{\mathbf{X}}^\top (\theta_j + \mathbf{w}^*)) \odot \Lambda_j^k$ in place of (25) and $\mathbf{w}_{k+1}^{gd} = \mathbf{w}_k^{gd} - \frac{1}{n} \sum_{j=0}^k A_j \nabla R_{\mathbf{w}^*} (\mathbf{w}_j^{gd}) \odot \Lambda_j^k$ in place of (26). The negative signs can, of course, be incorporated within the Λ_j^k s.

If we simply rewrite $\Lambda_j^k \in \mathbb{R}^d$ as a diagonal matrix in $\mathbb{R}^{d \times d}$, this setup then subsumes the case of diagonal preconditioners $\Lambda_j^k \in \mathbb{R}^{d \times d}$ acting on the gradients $\nabla R_{\mathbf{w}^*}(\mathbf{w}_j^{\mathrm{gd}})$, which in the general form looks like:

$$\mathbf{w}_{k+1}^{\mathrm{gd}} = \mathbf{w}_0 + \sum_{i=0}^k \Lambda_i^k \nabla R_{\mathbf{w}^*}(\mathbf{w}_i^{\mathrm{gd}}).$$
(35)

where Λ_i^k are diagonal matrices.

Note. The memory-augmented Transformer performs exactly these updates in the special case when the preconditioners A_j are scalar multiples of the identity. If the preconditioners A_j are non-trivial, then this architecture performs "LFOM-like" algorithms that lie in a class richer than LFOMs (3.2).

B COMPARISON TO NESTEROV ACCELERATED GRADIENT METHOD (NAG) AND MOMENTUM GRADIENT DESCENT (MGD)

B.1 NESTEROV ACCELERATED GRADIENT METHOD (NAG)

NAG is a commonly used optimization technique that builds on classical gradient descent by incorporating a momentum term that anticipates the next update. Specifically, the weights are updated using the following update rules:

$$\mathbf{v}_{k+1} = \mathbf{w}_k + \beta_k (\mathbf{w}_k - \mathbf{w}_{k-1})$$

$$\mathbf{w}_{k+1} = \mathbf{v}_{k+1} - \eta_k \nabla f(\mathbf{v}_{k+1})$$

Here, β_k controls the influence of previous updates (momentum), and η_k is the learning rate. In our experiments, we selected $\eta_k = 0.03$ and $\beta_k = 0.9$ after testing various values of these parameters on the given distribution, as in Section 3.3. These values provided the best performance. The momentum term allows NAG to "look ahead" in the optimization trajectory, which often leads to faster convergence than vanilla gradient descent.

B.2 MOMENTUM GRADIENT DESCENT (MGD)

Momentum Gradient Descent operates similarly to NAG but without the anticipation of future steps. The algorithm updates the weights based on a momentum term that accelerates convergence in directions with consistent gradients. The update rule for MGD is given by:

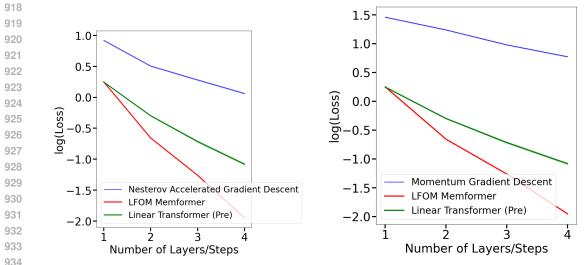
$$\mathbf{v}_{k+1} = \beta_k \mathbf{v}_k - \eta_k \nabla f(\mathbf{w}_k)$$

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \mathbf{v}_{k+1}$$

In our experiments, the learning rate $\eta_k = 0.005$ and momentum parameter $\beta_k = 0.9$ provided the best results on the given distribution, as in Section 3.3. Momentum helps to mitigate oscillations in directions with high curvature, stabilizing the optimization trajectory and leading to faster convergence compared to gradient descent.

913 B.3 MEMFORMERS VS. NAG AND MGD

In our experiments, we observed that Memformers (20) outperform both NAG and MGD on non-isotropic data. Figures 6a and 6b compare the performance of Memformer with NAG and MGD, respectively, on the same non-isotropic data. As shown, the Memformer achieves faster convergence and much better loss performance compared to both algorithms.



(a) Nesterov AGM vs. LFOM Memformer on nonisotropic data.

(b) Momentum GD vs. LFOM Memformer on non-isotropic data.

Figure 6: Comparison of Nesterov Accelerated Gradient Method (left) and Momentum Gradient Descent (right) vs. LFOM Memformer on non-isotropic data.

C MEMFORMER EXPERIMENTS WITH MORE THAN 4 LAYERS

In our experiments, we observed that Memformers with more than 4 layers continue to demonstrate impressive performance in learning optimization strategies. We conducted experiments with Memformers having up to 7 layers and dimension d = 10. Training beyond this point becomes impractical due to extensive iteration requirements and significant convergence times, which can span several hours. This limitation is a consequence of computational constraints (e.g., available GPUs) rather than any inherent deficiency of the Memformer architecture itself.

Here, *d* refers to the rank of the square matrix $\mathbf{X}\mathbf{X}^T$ in the empirical loss quadratic as described in Equation 12.

950 1. Experiment 7a (Dimension d = 5, Layers = 5): As expected, Conjugate Gradient Descent 951 (CGD) converges within d steps due to the dimensionality constraint. Remarkably, even though the 952 Memformer only learns general parameters A_{ℓ} (Equation 9) and Γ_{ℓ} (Equation 20), it manages to 953 keep up with CGD for up to 4 steps, showcasing its efficiency.

2. Experiment 7b (Dimension d = 10, Layers = 7): In this case, CGD does not converge until beyond 7 steps, which aligns with theoretical expectations. Nevertheless, the Memformer remains highly competitive, matching CGD's performance for 6 steps and even performing comparably at 7 steps. This demonstrates the Memformer's robust generalization capabilities, even under more complex conditions.

959 960

961

962 963

935

936

937

938 939

940 941

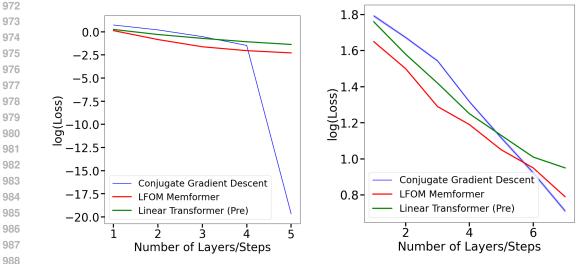
D EXPERIMENT ON CONVERGENCE VERIFICATION FOR MEMFORMER PARAMETER \mathbf{A}_{ℓ} to Σ

Our strategy to train the Memformer (20) was to first train the A_{ℓ} 's (9) in each layer ℓ on the training batch and then to "fine-tune" the Γ_{ℓ} 's on the training batch. Therefore, we present here an empirical verification of our results per **Theorem 3** in Ahn et al. (2024).

Theorem 3. (Ahn et al. (2024)) Assume that $x^{(i)} \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma)$ and $w_x \sim \mathcal{N}(0, \Sigma^{-1})$, for i = 1, ..., n, and for some $\Sigma \succ 0$. Consider the optimization of in-context loss (8) for a k-layer transformer with the parameter configuration in Eq. (9) given by:

971

$$\min_{\{A_\ell\}_{\ell=0}^{L-1}} f(A).$$



(a) Memformer performance for d = 5 with 5 layers.

Figure 7: Performance comparison of Memformers with CGD for various dimensions and layer configurations.

Let $S \subset \mathbb{R}^{L \times d \times d}$ be defined as follows: $A \in S$ if and only if for all i = 0, ..., L - 1, there exist scalars $a_i \in \mathbb{R}$ such that $A_i = a_i \Sigma^{-1}$. Then

$$\inf_{(A,B)\in S} \sum_{i=0}^{L-1} \|\nabla_{A_i} f(A,B)\|_F^2 = 0,$$

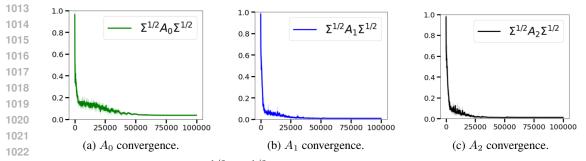
where $\nabla_{A_i} f$ denotes the derivative with respect to the Frobenius norm $||A_i||_F$.

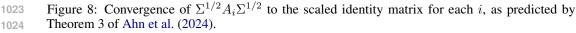
We evaluated the in-context learning (ICL) loss for linear regression with d = 5 and n = 20, where $x^{(i)} \sim \mathcal{N}(0, \Sigma)$ and $w_x \sim \mathcal{N}(0, \Sigma^{-1})$. The covariance Σ was generated as $\Sigma = U^T D U$, with Ubeing a random orthogonal matrix and D = diag(1, 1, 1/4, 1/16, 1). A three-layer linear transformer was trained using ADAM, with A_0, A_1, A_2 initialized as i.i.d. Gaussian matrices. Each gradient step used minibatches of size 20,000, resampled every 100 steps, and gradients were clipped to 0.01. Results were averaged over 5 runs with independent U and Σ samples.

1006 To measure convergence, we computed the normalized Frobenius norm distance:

$$\mathsf{Dist}(M, I) := \min_{\alpha} \frac{\|M - \alpha I\|_F}{\|M\|_F}, \quad \alpha := \frac{1}{d} \sum_{i=1}^d M[i, i],$$

which quantifies the deviation of $M/||M||_F$ from a scaled identity. The distance $\text{Dist}(\Sigma^{1/2}A_i\Sigma^{1/2}, I)$, averaged over 5 runs, is shown in Figures 8a, 8b, and 8c as a function of training iterations.





1025

989

990

991 992

993

994 995 996

997 998

999

1007 1008 1009