
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMORY-AUGMENTED TRANSFORMERS CAN IMPLE-
MENT LINEAR FIRST-ORDER OPTIMIZATION METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that memory-augmented Transformers (Memformers) can implement
linear first-order optimization methods such as conjugate gradient descent, momen-
tum methods, and more generally, methods that linearly combine past gradients.
Building on prior work that demonstrates how Transformers can simulate pre-
conditioned gradient descent, we provide theoretical and empirical evidence that
Memformers can learn more advanced optimization algorithms. Specifically, we
analyze how memory registers in Memformers store suitable intermediate attention
values allowing them to implement algorithms such as conjugate gradient. Our
results show that Memformers can efficiently learn these methods by training on
random linear regression tasks, even learning methods that outperform conjugate
gradient. This work extends our knowledge about the algorithmic capabilities of
Transformers, showing how they can learn complex optimization methods.

1 INTRODUCTION

In-context learning (ICL) allows large language models (LLMs) to generate contextually appropriate
outputs based solely on examples and queries provided in a prompt, without requiring any parameter
adjustments (Brown, 2020; Liu et al., 2021; Lu et al., 2021; Wei et al., 2022; Wu et al., 2022).
This remarkable ability has spurred research into understanding how Transformers can implement
algorithms (Achiam et al., 2023; Touvron et al., 2023), with recent studies focusing on their capability
to simulate optimization algorithms (Dai et al., 2022; Von Oswald et al., 2023a; Garg et al., 2022;
Akyürek et al., 2022). Transformers have been shown to implement gradient-based optimization
during their forward pass, such as preconditioned gradient descent for linear regression tasks (Dai
et al., 2022; Mahankali et al., 2023; Ahn et al., 2024).

More recently, studies have demonstrated that Transformers can learn even more advanced optimiza-
tion methods. For instance, Fu et al. (2023) showed that Transformers exhibit convergence rates
comparable to Iterative Newton’s Method, a higher-order optimization technique that converges expo-
nentially faster than gradient descent for in-context linear regression. Additionally, Vladymyrov et al.
(2024) proved that Transformers can, in fact, learn a variant of gradient descent that approximates
second-order methods, such as GD++, achieving convergence rates similar to Newton’s method.
These findings lead to the central question of our paper:

Can Transformers efficiently “learn” more advanced gradient-based optimization methods?

We aim to address this question by revealing some of the representational power of Transformers as
“algorithm learners,” further motivating the use of machine learning for discovering new optimization
algorithms. To make our investigation more precise, we focus on learning the class of gradient-based
algorithms obtained by linearly combining past gradients, known as Linear First-Order Methods
(LFOMs) (Goh, 2017), where the (k + 1)st iterate is

wk+1 = w0 +

k∑
i=0

Γk
i∇f(wi), (1)

and where {Γk
i }ki=0 are diagonal matrices. Model (1) is quite general, as it includes, as special cases,

standard methods such as gradient descent (GD), momentum GD, Nesterov’s accelerated gradient,
conjugate gradient, and in a stochastic setting, AdaGrad, ADAM, among others.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

By “learning” an algorithm like CGD or LFOM, we mean two key things:

1. The Memformer, in its forward pass, under certain internal parameter settings, can perform
iterations of CGD and/or LFOM. This means that its architecture and parameterization are sufficiently
expressive to execute these optimization methods as part of its computation.

2. The Memformer’s learnable parameters can be trained on linear regression tasks. When
using these learned parameters, which are shared across all in-context data samples in a batch,
the Memformer can execute “CGD-like” and “LFOM-like” iterations during a forward pass.
The surprising aspect lies in the Memformer’s ability to achieve competitive—and in some cases
even superior—performance compared to CGD, despite using a relatively small number of learned
parameters shared across all test samples drawn independently of the training data.

Our key insight for efficiently learning LFOMs is to leverage memory-augmented Transformers,
known as Memformers (Wu et al., 2020; Xu et al., 2021), which retain intermediate attention values
across layers. This memory enables Memformers to store past gradients, facilitating the execution of
advanced first-order methods such as conjugate gradient descent and momentum methods. The same
mechanism allows Memformers to implement more general LFOMs.

While unconditional learning of gradient methods remains out of reach, we build on related work
demonstrating that Transformers can learn gradient descent in the context of linear regression
tasks (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2024; Zhang
et al., 2024). Inspired by these findings, and extending the work of Ahn et al. (2024), we conduct
a theoretical analysis of the loss landscape for memory-augmented linear Transformers that omit
softmax activation (Schlag et al., 2021; Von Oswald et al., 2023a; Ahn et al., 2024).

In the Appendix, we also include our experiments that Memformers can outperform Nesterov
Accelerated Gradient (NAG) and momentum GD. In summary, our main contributions are as follows:

MAIN CONTRIBUTIONS

(1) Theoretical justification that Memformers can implement LFOM iterations, including
CGD. We provide a rigorous theoretical framework showing that Memformers, when trained
on linear regression tasks, can be configured to perform iterations of LFOMs in their forward
pass, encompassing advanced algorithms like CGD. By leveraging their memory mechanisms,
Memformers can store and effectively combine past gradients, enabling them to implement
these sophisticated optimization methods within their architecture.

(2) Empirical evidence of Memformers “learning” optimization algorithms. Through ex-
tensive experiments, we demonstrate that Memformers can learn LFOMs, in a general sense,
by training on random linear regression tasks. Remarkably, a Memformer utilizing a shared
set of learned parameters is able to process batches of in-context data samples and perform
competitively with, and in some cases even outperform, the CGD (and NAG) algorithm that is
individually optimized for and run separately on each data sample in the test batch.
This finding is particularly surprising and significant because CGD tailors its optimization
individually for each data sample, whereas the Memformer applies a general optimization
strategy learned from the training data across all samples. The ability of Memformers to
generalize optimization strategies across data samples using shared parameters highlights
their generalization capabilities, which have not been fully recognized in prior research.

(3) Enhanced performance through multi-headed attention with theoretical insights. We
show empirically that multi-headed attention improves Memformers’ test performance and
offer a heuristic explanation for why increasing attention heads enhances loss performance on
test data.

Our main objective in this paper is to investigate the potential of memory-augmented Transformers
to learn advanced optimization algorithms in a general sense. We are not advocating for Trans-
formers as replacements for established optimization methods in practical applications. Instead,
we aim to shed light on the algorithmic capabilities of Transformers, inspiring further exploration
into how these architectures can learn and generalize complex algorithms. We believe our results
contribute to a deeper understanding of how augmented Transformers can facilitate optimization,
which may ultimately lead to the discovery of new and practical gradient-based algorithms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.1 RELATED WORK

Research on Transformers is extremely active, and we cannot hope to fully capture the breadth of the
related literature. Below, we summarize the most immediately relevant topics.

In-Context Learning. The ability of Transformer models to perform in-context learning (ICL) has
been extensively studied since its introduction by Brown (2020). Subsequent works have explored how
these models adapt to new tasks without requiring parameter updates (Xie et al., 2021; Von Oswald
et al., 2023b; Hahn and Goyal, 2023; Liu et al., 2021; Lu et al., 2021; Wei et al., 2022; Wu et al.,
2022). This foundational research has paved the way for studies investigating how Transformers can
implement specific algorithms, such as gradient-based methods.

Gradient-Based Methods in Transformers. Garg et al. (2022) analyze the learning of gradient
descent within Transformers, particularly in the context of ICL for linear functions. Empirical studies
(Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023a) have shown that Transformers
can learn gradient descent after being trained on random linear regression tasks. Expanding on these
results, Von Oswald et al. (2023a); Ahn et al. (2024) demonstrate that Transformers can implement
preconditioned gradient descent for solving linear regression problems presented in input prompts.
Notably, these works—as well as ours—utilize Linear Transformers as discussed in (Schlag et al.,
2021; Von Oswald et al., 2023a; Ahn et al., 2023).

Higher-Order Optimization Methods in Transformers. Transformers have also been shown to
learn higher-order optimization techniques, such as Newton’s method, expanding their capabilities
beyond first-order methods (Fu et al., 2023; Giannou et al., 2024; Vladymyrov et al., 2024).

Memory-Augmented Transformers (Memformers). Memformers were introduced by Wu et al.
(2020); Xu et al. (2021). These models retain intermediate attention values across layers through
memory registers, enabling more complex computations and optimization methods to be learned.
While significant progress has been made in understanding how Transformers can learn gradient
descent, their potential for learning more sophisticated LFOMs remains largely unexplored. Our
work addresses this gap by showing how Memformers can efficiently implement a wide range of
advanced first-order and quasi-second-order optimization techniques, including CGD and momentum
methods, thereby pushing the boundaries of Transformer-based architectures.

2 BACKGROUND AND PROBLEM SETUP

2.1 LINEAR TRANSFORMERS ON RANDOM LINEAR REGRESSION

We follow the setup of training Transformers on random instances of linear regression, following the
prior works (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2024). We
largely use the notation and formal setup of (Ahn et al., 2024), which we now proceed to recall.

Data Distribution. Let x(i) ∈ Rd represent covariates drawn independently from a distribution DX,
and let w∗ ∈ Rd be drawn from DW. The matrix of covariates X ∈ R(n+1)×d contains rows x(i).
The responses are y = [⟨x(1),w∗⟩, . . . , ⟨x(n),w∗⟩] ∈ Rn. Define the input matrix Z0 as:

Z0 =

[
x(1) x(2) · · · x(n) x(n+ 1)
y(1) y(2) · · · y(n) 0

]
∈ R(d+1)×(n+1), (2)

where the zero corresponds to the unknown response for x(n+1). The task is to predict (w∗)⊤x(n+1)
using Z0. The training data consists of pairs (Z0, (w

∗)⊤x(n+ 1)) for x(i) ∼ DX and w∗ ∼ DW.

Self-Attention Without Softmax. We focus on the linear self-attention layer, building on (Schlag
et al., 2021; Von Oswald et al., 2023a). Let Z ∈ R(d+1)×(n+1) be the input matrix of n+ 1 tokens in
Rd+1. Standard self-attention layer is defined as

Attnsmax(Z) := WvZM · smax(Z⊤W⊤
k WqZ), (3)

where Wv,Wk,Wq ∈ R(d+1)×(d+1) are weight matrices, and smax(·) denotes the column-wise
softmax. The masking matrix M ensures that the label for x(n+ 1) is excluded is given by

M =

[
In 0
0 0

]
∈ R(n+1)×(n+1). (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Omitting softmax, the attention mechanism becomes

AttnP,Q(Z) := PZM(Z⊤QZ), (5)

where P = Wv and Q = W⊤
k Wq . This simplified form, as shown in Ahn et al. (2024), can implement

preconditioned gradient descent, and it is the one we also use.

Transformer Architecture. As in the related work, we also simplify the Transformer to consider
only attention layers, using L layers of linear self-attention with a residual connection. Therefore, for
each layer ℓ, the output is updated as

Zℓ+1 = Zℓ +
1

n
AttnPℓ,Qℓ

(Zℓ), ℓ = 0, 1, . . . , L− 1. (6)

Using updates (6), with the input Z0, the final transformer output is

TFL(Z0; {Pℓ, Qℓ}L−1
ℓ=0) = −[ZL](d+1),(n+1). (7)

The set of parameters {Pℓ, Qℓ}L−1
ℓ=0 is then learned by minimizing the following training objective:

f
(
{Pℓ, Qℓ}L−1

ℓ=0

)
= E(Z0,w∗)

[(
TFL(Z0) + (w∗)⊤x(n+ 1)

)2]
. (8)

Here, the scaling factor 1
n is used only for ease of notation and does not influence the expressive

power of the Transformer.

We will utilize the following lemma from Ahn et al. (2024), which demonstrates that multi-layer
Transformers simulate preconditioned gradient descent under suitable parameterization. We have
provided the full proof of this Lemma 1 in the Appendix for completeness.

Pℓ =

[
Bℓ = 0d×d 0

0 1

]
, Qℓ = −

[
Aℓ 0
0 0

]
, Aℓ,Bℓ ∈ Rd×d. (9)

Lemma 1 (Lemma 1, Ahn et al. (2024)). Consider an L-layer linear transformer parameterized
by A0, . . . ,AL−1, as in (9). Let y(n+1)

ℓ be the (d+ 1, n+ 1)-th entry of the ℓ-th layer output, i.e.,
y
(n+1)
ℓ = [Zℓ](d+1),(n+1) for ℓ = 1, . . . , L.

y
(n+1)
ℓ = −⟨x(n+1),wgd

ℓ ⟩, (10)

where the sequence {wgd
ℓ } is defined as wgd

0 = 0 and for ℓ = 1, . . . , L− 1:

wgd
ℓ+1 = wgd

ℓ −Aℓ∇Rw∗(wgd
ℓ), (11)

with the empirical least-squares loss (with X := [x(1), . . . ,x(n)] ∈ Rd×n):

Rw∗(w) :=
1

2n
∥X⊤w −X⊤w∗∥2 =

1

2n
(w −w∗)⊤XX⊤(w −w∗). (12)

2.2 LINEAR FIRST-ORDER METHODS

Linear First-Order Methods (LFOMs) (Goh, 2017) are a class of optimization algorithms that
lineary combine past gradients for minimizing smooth objective functions. They iteratively update a
parameter vector w using the gradient of the objective function. The general update rule is

wk+1 = wk + αkd
k, (13)

where αk is the step size and dk is the update direction, typically related to the gradient ∇f(wk).
Algorithms within this family differ in how they compute dk and choose αk.

LFOMs can be expressed in a cumulative form. For gradient descent, unrolling (13) we get

wk+1 = w0 − α
∑k

i=0
∇f(wi), (14)

while common momentum methods need an additional term incorporating past gradients, yielding

wk+1 = w0 +
∑k

i=0
γk
i ∇f(wi), (15)

where the coefficients γk
i weight previous gradients. More advanced methods, or general LFOMs,

use diagonal matrices Γk
i to coordinate-wise scale each gradient component, i.e.,

wk+1 = w0 +
∑k

i=0
Γk
i∇f(wi). (16)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Momentum Methods and Conjugate Gradient Descent (CGD) Momentum methods accelerate
convergence by incorporating a momentum term, modifying the gradient to account for past updates
and achieving faster convergence in relevant directions. Conjugate Gradient Descent (CGD), on the
other hand, is a first-order method optimized for quadratic minimization, serving as a benchmark
for large-scale, sparse linear systems. After an initial steepest descent, CGD generates directions
conjugate to previous ones, leading to faster convergence than standard gradient descent. Both are
core methods within the LFOM class, summarized below:

Momentum Methods

1: Initialize w0, v0 = 0
2: for n = 1, 2, . . . do
3: Compute the gradient:

∇f(wn)

4: Update the velocity:

vn = βvn−1 − η∇f(wn)

5: Update the iterate:

wn+1 = wn + vn

6: end for
7: β: Momentum coefficient (controls the

influence of past gradients)
8: η: Learning rate (scales the gradient step

size)

Conjugate Gradient Descent (CGD)

1: Initialize w0, s0 = −∇f(w0)
2: for n = 1, 2, . . . do
3: Compute the steepest descent direc-

tion:
∆wn = −∇f(wn)

4: Compute the conjugacy coefficient:

γn =
∥∇f(wn)∥2

∥∇f(wn−1)∥2

5: Update the search direction:

sn = ∆wn + γnsn−1

6: Perform a line search:

αn = argmin
α

f(wn + αsn)

7: Update the iterate:

wn+1 = wn + αnsn

8: end for

Momentum methods provide fast convergence by accumulating gradient history and are widely used
in modern optimization. CGD converges in at most N iterations for quadratic functions, where N is
the number of variables, and is effective for ill-conditioned problems.

3 MEMFORMERS CAN IMPLEMENT LFOMS IN-CONTEXT

Memformers can “learn” LFOMs in the specific sense discussed earlier in Section 1. Each layer ℓ of
the Memformer has learnable parameters such as Aℓ,Bℓ (9), and αℓ, γℓ (18) or Γℓ (20).

Theoretically, in Propositions 1 and 2 below, we show that in their forward pass, under certain
parameter configurations, Memformers can implement exact CGD and LFOM iterations. This
is indicative of the algorithmic capacities of these architectures. In experiments, using a small
number of learned parameters that are shared across a batch of in-context test data samples,
the Memformer can then perform “CGD-like” (3.1) or “LFOM-like” (3.2) iterations that are
competitive with, and in some cases even outperform, CGD.

As noted in (Ahn et al., 2024, Subsection C.1), the term AttnPℓ,Qℓ
(Zℓ) in the update for Zℓ+1 (6)

corresponds to the preconditioned gradient Aℓ∇Rw∗(wgd
ℓ) of the in-context loss (12) in the update

for wgd
ℓ+1.

We will henceforth call the class of algorithms that the following architecture (18) can implement as
“CGD-like”, and the class of algorithms that architecture (20) can implement as “LFOM-like”.

3.1 DYNAMIC MEMORY FOR CGD-LIKE ALGORITHMS

Proposition 1. A memory-augmented Transformer can implement Conjugate Gradient Descent
(CGD) in its forward pass through a dynamic memory mechanism that recursively refines search

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

directions, where the update rules are:

Rℓ = AttnPℓ,Qℓ
(Zℓ) + γℓRℓ−1, (17)

Zℓ+1 = Zℓ + αℓ
1

n
Rℓ, (18)

where γℓ and αℓ control the influence of past updates and the step size, respectively.

Proof Sketch. Here Rℓ denotes the state of a single memory register R at different layers ℓ during a
forward pass. CGD refines search directions using current gradients and previous directions. The
Transformer simulates this by using AttnPℓ,Qℓ

(Zℓ) as the current update, analogous to the gradient
in CGD, and γℓRℓ−1 to refine the previous search direction, corresponding to the recursive update of
sn in CGD.

The recursive update for Rℓ thus mimics sn, the search direction in CGD. The update for Zℓ+1 uses
Rℓ, scaled by αℓ, similar to how CGD iterates are updated using sn. With Aℓ = I, this process
matches CGD applied to the loss Rw∗(w) (12), using both current and previous gradients to refine
the search direction. (A full proof of Proposition 1 is provided in Appendix A.) □

3.2 IMPLEMENTING k STEPS OF LFOM WITH MEMORY REGISTERS

We extend our analysis to show how Transformers can simulate k steps of Linear First-Order Methods
(LFOMs). This is achieved by maintaining a memory register at each layer, which stores accumulated
updates from previous layers, simulating iterative optimization.
Proposition 2. A memory-augmented Transformer can implement k steps of LFOM in its forward
pass by maintaining memory registers across layers, where the update rules are:

Rℓ = AttnPℓ,Qℓ
(Zℓ), (19)

Zℓ+1 = Zℓ +
1

n

ℓ∑
j=0

Γℓ
j ⊙Rj , (20)

where Γℓ
j governs the contribution of previous layers, and ⊙ is the Hadamard product for scaling.

Proof Sketch. Here each Rℓ denotes a separate memory register for each layer ℓ. Memformers with
this architecture simulate iterative optimization by refreshing the memory register Rℓ at each layer
with AttnPℓ,Qℓ

(Zℓ), capturing the current update. The cumulative update to Zℓ+1 incorporates past
layers through a weighted sum of previous memory registers Rj , with weights Γℓ

j ∈ R(d+1)×(n+1),
mimicking LFOM’s cumulative iterative process. We will henceforth refer to this architecture (20) as
“LFOM Memformer”.

The Hadamard product ⊙ modulates the influence of Rj , analogous to gradient preconditioning. This
setup subsumes the case of diagonal preconditioners Λk

i acting on gradients ∇Rw∗(wgd
i), which in

the general form looks like:

wgd
k+1 = w0 +

k∑
i=0

Λk
i∇Rw∗(wgd

i). (21)

The matrices Γℓ
j ∈ R(d+1)×(n+1) and Λk

i ∈ Rd×d serve similar roles, but their dimensions differ.
We expect this Hadamard product memory architecture to be able to perform richer algorithms than
LFOMs, though a formal characterization of its full potential remains to be done.

The full proof follows from the cumulative memory structure and the connection between attention and
preconditioned gradients, as discussed in the proof steps of Lemma 1. (A full proof of Proposition 2
is provided in Appendix A.) □

Remark. The update (20) could be interpreted as a type of gated memory, related to gating in LSTMs
and GRUs that also use the Hadamard product to modulate information flow through gates. This
similarity suggests that principles from these architectures could help refine memory mechanisms in
Transformers, potentially enhancing their ability to handle long-term dependencies in optimization
tasks. However, further exploration is needed to fully understand this relationship.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 EXPERIMENTAL RESULTS: MEMFORMER PERFORMANCE VS. CGD

In this section, we present our empirical results for Memformers “learning” conjugate gradient descent
(CGD), general linear first-order methods (LFOMs), and general LFOMs with GD++. The method
GD++ is a quasi-Newton method where the inverse Hessian in Newton’s method is approximated by
a truncated Neumann series; for more details on GD++, refer to Section A.10 of Von Oswald et al.
(2023a).

We consider the in-context loss function (12) for linear regression. The input dimension is set to
d = 5, and the number of training observations in the prompt is n = 20. Both the inputs x(i)

and the target weight vector w∗ are sampled from Gaussian distributions: x(i) ∼ N (0,Σ) and
w∗ ∼ N (0,Σ−1), where Σ = U⊤DU. Here, U is a uniformly random orthogonal matrix, and D
is a fixed diagonal matrix with entries diag(1, 1, 1/2, 1/4, 1).

We optimize the function f (8) for a three-layer linear transformer using the ADAM optimizer. The
matrices A0, A1, and A2 (as in (9)) are initialized with independent and identically distributed (i.i.d.)
Gaussian entries. Each gradient step is computed using a batch of size 1000, and we resample the
batch every 100 steps. We clip the gradient of each matrix to have a maximum norm of 0.01. All
plots are averaged over five runs, each with a different randomly sampled U (and thus different Σ).

Figure 1 illustrates the implementation of a CGD-like algorithm under the architecture given by (18).
In Figure 1a, the line-search parameters αℓ and deflection parameters γℓ for each layer ℓ are obtained
by training using ADAM. By “CGD-like,” we mean that upon training the Memformer using ADAM,
the Memformer layers learn general parameters αℓ and γℓ which, while they may not match the
exact CGD parameters for individual observations, perform well enough on each observation to be
comparable to, if not competitive with, CGD. We further explain the important issue of learning
general parameters in Section 4.

Figure 1b presents the same experiment as Figure 1a, using the architecture in (18), but with the
parameters Aℓ for each layer not restricted to scalars. Thus, past gradients are accounted for, similar
to CGD, but with preconditioners Aℓ. This is therefore not a “CGD-like” algorithm. We aim
to demonstrate that once we allow preconditioned gradients, a Memformer implements a certain
“LFOM-like” algorithm that distinctly outperforms CGD.

Figure 2 presents the performance of LFOM Memformer under the architecture in (20), where the
matrix parameters Γj for each layer j are obtained by training using ADAM. In our experiments,
we consider the special case of Γℓ

j = Γj ∀ℓ, which is more natural, if we consider that each layer
j of the Memformer has an associated Γj . Figure 2a shows the results on non-isotropic data, and
Figure 2b shows the results on isotropic data. Note that this algorithm is quite similar in nature to the
previous case in Figure 1b. Here, the Γj’s essentially act as preconditioners of the gradients computed
in each layer. Consequently, the graphs of Figures 1b and 2a are nearly identical. In the isotropic
data experiment (Figure 2b), we observe that the Memformer does not perform better than a linear
transformer. In quadratics with isotropic data, there is no significant variation in curvature across
directions; thus, incorporating past gradients via momentum offers little advantage. Momentum is
more beneficial in cases with non-isotropic data.

Figure 3 presents LFOM Memformer with GD++ under the architecture in (20), where the Bℓ blocks
in the Pℓ matrices for each layer ℓ (9) are allowed to be non-zero. Once again, the matrix parameters
for each layer ℓ are obtained by training using ADAM. In this case, the Bℓ matrices resemble a
heavily truncated Neumann series of the inverse XX⊤ (Hessian of (12)), resulting in a quasi-Newton
method. The experiments are conducted on both non-isotropic data (Figure 3a) and isotropic data
(Figure 3b).

4 EXPERIMENTS: INFLUENCE OF BATCH SIZE ON PERFORMANCE

We emphasize here that the results presented in Section 3.3 compare the performance of Transformers
and Memformers (which learn shared generic parameters upon training) against CGD that runs on
fresh observations of batch size B = 1000, independently resampled from the same distribution. But
unlike CGD that computes specific parameters for each observation, the Transformer and Memformer
models learn shared parameters Pℓ, Qℓ (and αℓ, γℓ, or Γℓ) for each layer ℓ, and these parameters are
applied uniformly across all 1000 observations in the batch. In contrast, CGD is executed individually
on each of the 1000 observations in the batch, and the average log-loss versus layers is plotted.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Without Preconditioning (b) With Preconditioning

Figure 1: Comparison of Linear Transformer and CGD Memformer (18) with general CGD-like
parameters to actual CGD running separately on each test observation.

(a) Non-Isotropic Data (b) Isotropic Data

Figure 2: LFOM Memformer (20) performance on non-isotropic vs. isotropic test data (Pre = with
non-trivial preconditioners). Test data is independently sampled from the same distribution as the
training data.

The strength of LFOM Memformers (20) (with matrices Γℓ restricted to scalar multiples of the
identity) becomes even more pronounced when tested on training data with small batch sizes, such
as B = 1 and B = 10. In these scenarios, the Memformers learn parameters that significantly
outperform CGD running in parallel on each of the observations in those small batches. Figure 4
demonstrates this comparison. We further provide an experimental comparison of LFOM Memformer
performance vs. Nesterov Accelerated Gradient Method and Momentum GD in the Appendix.

5 EXPERIMENTS: IMPACT OF USING MULTI-HEADED ATTENTION

Our experiments show that increasing the number of attention heads improves test loss performance.
Multi-head attention enables Transformers to learn diverse preconditioning matrices, better adapting
to varying data covariance structures. In our architecture (17), attention values from each head
are summed into the memory register Rℓ at each layer. Heuristically, each head captures different
aspects of the data, estimating gradients from multiple perspectives. This ensemble-like behavior
reduces variance in gradient updates by averaging out individual noise and biases, leading to faster

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Non-Isotropic Data (b) Isotropic Data

Figure 3: LFOM Memformer (20) GD++ performance on non-isotropic vs. isotropic test data (Pre =
with non-trivial preconditioners). Test data is independently sampled from the same distribution as
the training data.

(a) Batch Size B = 1 (b) Batch Size B = 10

Figure 4: LFOM Memformer (20) with scalar preconditioners Γℓ vs. CGD performance on small
batch training data (B = 1 and B = 10). The Memformer demonstrates superior performance on the
training data.

convergence and more stable optimization. Acting as implicit regularization, it prevents overfitting
and enhances generalization on test data. This phenomenon is also supported by recent studies. Chen
et al. (2024) showed that multi-head attention is essential for effective context preprocessing in sparse
linear regression, aligning with our findings. Similarly, Cui et al. (2024) provided theoretical and
empirical evidence that multi-head attention outperforms single-head attention in in-context learning.

Figure 5 compares models with 1-head and 5-head attention, illustrating the benefits of multiple
heads on convergence speed and test loss performance.

6 DISCUSSION AND FUTURE WORK

This work demonstrates the capability of memory-augmented Transformers (Memformers) to im-
plement a broad range of first-order optimization methods, opening several research directions. We
briefly comment on some of these aspects below.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) 1-Head Attention Performance (b) 5-Head Attention Performance

Figure 5: Comparison of LFOM Memformer (20) (with scalar preconditioners Γℓ) performance using
1-head and 5-head attention, relative to CGD.

(i) Architectural Flexibility: Small modifications, such as (gated) memory registers, significantly
enhance Transformers’ ability to learn and implement diverse optimization algorithms. Future
research could explore further architectural innovations to unlock even greater capabilities.

(ii) General Function Classes: While our approach successfully makes Transformers implement
LFOMs on quadratic functions, future work should extend this to more general objective func-
tions. Doing so may require novel training strategies, and possibly architectural adjustments to
handle non-quadratic functions. The role of nonlinear attention and the MLP component of
Transformers may also prove to be useful here.

(iii) Efficiency vs. Generalization: Attention-based methods require more computation than
directly implementing conjugate gradient descent or momentum GD. However, Transformers
excel in learning general parameters, enabling LFOMs to generalize across new data without
needing per-instance optimization. Exploring practical use of such “learned optimizers” to
either warmstart a solver, or to potentially even bypass it, is a tantalizing research topic.

(iv) Theoretical Foundations and Convergence Analysis: Strengthening the theoretical basis of
Transformers’ optimization capabilities, including convergence analysis and their alignment
with classical optimization theory, is another important direction for future research.

(v) Meta-learning and Transfer Learning: The ability of Transformers to learn and general-
ize optimization algorithms offers exciting potential for meta-learning and transfer learning,
providing new opportunities in areas where traditional optimization methods fall short.

6.1 LIMITATIONS

We briefly remark on some limitations of our current framework. For instance, while Memformers are
quite versatile, our experiments (Figures 1, 2) indicate they do not radically outperform preconditioned
GD on general quadratic problems as in (12), where the preconditioner matrix Γℓ (and likewise, Aℓ)
for the current layer ℓ is the main contributor to loss performance at each update step ℓ (17). On the
other hand, this behavior is likely due to the task being quadratic, and a future study that tackles more
general ICL formulations will likely shed light here.

Transformers can implement second-order methods like Newton’s method (Fu et al., 2023; Giannou
et al., 2024), which typically outperform LFOMs in convergence speed and accuracy. However, we
reiterate that the main focus of our paper is to explore the space of first-order optimization algorithms
that augmented Transformers can learn, as opposed to looking for “the best” algorithm.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We believe the following points provide a clear path for replicating our results:

• Code Availability: The code for our experiments, including Memformers and
LFOM implementations, is available at https://anonymous.4open.science/r/
ICLR-2025-Memformer_LFOM.

• Experiment Setup: Detailed descriptions of the training setup, model architecture, parame-
ter initialization, and optimization methods are included in Sections 2 and 3.3.

• Random Seeds: Random seeds were fixed across all experiments to ensure consistency, and
they are provided in the code repository for replication.

• Hardware Requirements: All experiments were conducted on NVIDIA T4 GPUs in
Google Colab.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
ear attention is (maybe) all you need (to understand transformer optimization). arXiv preprint
arXiv:2310.01082, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.
Xingwu Chen, Lei Zhao, and Difan Zou. How transformers utilize multi-head attention in in-context

learning? a case study on sparse linear regression. arXiv preprint arXiv:2408.04532, 2024.
Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention

in in-context linear regression. arXiv preprint arXiv:2401.17426, 2024.
Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt

learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. arXiv preprint arXiv:2310.17086,
2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D Lee. How well
can transformers emulate in-context newton’s method? arXiv preprint arXiv:2403.03183, 2024.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. arXiv preprint arXiv:2303.07971, 2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

11

https://anonymous.4open.science/r/ICLR-2025-Memformer_LFOM
https://anonymous.4open.science/r/ICLR-2025-Memformer_LFOM
http://distill.pub/2017/momentum

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pages 9355–9366. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
versatile in-context learners. arXiv preprint arXiv:2402.14180, 2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023a.

Johannes Von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer:
A memory-augmented transformer for sequence modeling. arXiv preprint arXiv:2010.06891,
2020.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning:
An information compression perspective for in-context example selection and ordering. arXiv
preprint arXiv:2212.10375, 2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Dongkuan Xu, Junjie Liang, Wei Cheng, Hua Wei, Haifeng Chen, and Xiang Zhang. Transformer-
style relational reasoning with dynamic memory updating for temporal network modeling. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 4546–4554, 2021.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

A PROOFS

A.1 PROOF OF LEMMA 1: EQUIVALENCE TO PRECONDITIONED GRADIENT DESCENT

This proof already exists in the literature, for instance, in Subsection C.1 of Ahn et al. (2024).
However, we repeat it here, to make this paper as self-contained as possible.

Consider a set of fixed samples x(1), . . . ,x(n), along with a fixed vector w∗. Let P = {Pi}ki=0 and
Q = {Qi}ki=0 represent fixed weights, and let Zi evolve as per equation (6). Define Xi as the first
d rows of Zk (under equation (9), we have Xi = X0 for all i), and let Yi be the (d+ 1)-th row of
Zi. Now, let g(x,y, k) : Rd ×R× Z → R be a function such that for xn+1 = x and y

(0)
n+1 = y, the

function is defined as g(x,y, k) := y
(k)
n+1. It’s worth noting that y(k)

n+1 = [Yk]n+1.

We can verify that, under equation (9), the update rule for y(k)
n+1 is given by:

Yk+1 = Yk − 1

n
YkMX⊤

0 AkX0, (22)

where M is a mask matrix of the form:

M =

[
I 0
0 0

]
.

The following points can be verified:

1. g(x,y, k) = g(x, 0, k) + y. To see this, note that for each i ∈ {1, . . . , n}, we have:

y
(i)
k+1 = y

(i)
k − 1

n

n∑
j=1

x(i)⊤Akx
(j)y

(j)
k .

Thus, y(i)
k does not depend on y

(t)
n+1 for any t. For y(k)

n+1, the update becomes:

y
(k+1)
n+1 = y

(k)
n+1 −

1

n

n∑
j=1

x⊤
n+1Akx

(j)y
(j)
k ,

which clearly shows that the dependence on y
(k)
n+1 is additive. Through a simple induction, we can

establish:
g(x,y, k + 1)− y = g(x,y, k)− y.

2. The function g(x, 0, k) is linear in x. To see this, note that for j ̸= n+ 1, y(k)
j does not depend on

x
(t)
n+1 for any t, j, or k. Therefore, the update for y(k+1)

n+1 depends linearly on xn+1 and y
(k)
n+1. Since

y
(0)
n+1 = 0 is linear in x, we conclude by induction that the result holds.

Considering these points, we can confirm that for each k, there exists a vector θk ∈ Rd such that:

g(x,y, k) = g(x, 0, k) + y = ⟨θk,x⟩+ y,

for all x and y. It follows that g(x,y, 0) = y, so that ⟨θ0,x⟩ = g(x,y, 0)−y = 0, implying θ0 = 0.

We now focus on the third key fact: for each i, we have:

g(x(i),y(i), k) = y
(i)
k = ⟨θk,x(i)⟩+ y(i).

To prove this, let xn+1 := x(i) for some i ∈ {1, . . . , n}. Then:

y
(i)
k+1 = y

(i)
k − 1

n

n∑
j=1

x(i)⊤Akx
(j)y

(j)
k ,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

y
(k+1)
n+1 = y

(k)
n+1 −

1

n

n∑
j=1

x⊤
n+1Akx

(j)y
(j)
k ,

therefore, y(i)
k+1 = y

(k+1)
n+1 when y

(i)
k = y

(k)
n+1. This completes the induction, given that y(i)

0 = y
(0)
n+1

by definition.

Let X̄ ∈ Rd×n be the matrix whose columns are x(1), . . . ,x(n), excluding xn+1, and let Ȳk ∈ R1×n

be the vector of y(1)
k , . . . ,y

(n)
k . It follows that:

Ȳk = Ȳ0 + θ⊤k X̄.

Using this, the update formula for y(k)
n+1 becomes:

y
(k+1)
n+1 = y

(k)
n+1 −

1

n
⟨AkX̄

⊤Ȳk,xn+1⟩, (23)

leading to the update:

⟨θk+1,xn+1⟩ = ⟨θk,xn+1⟩ −
1

n
⟨AkX̄(X̄⊤θk + Ȳ0),xn+1⟩. (24)

Since xn+1 is arbitrary, we derive the general update formula:

θk+1 = θk − 1

n
AkX̄X̄⊤(θk +w∗). (25)

Treating Ak as a preconditioner, and letting f(θ) := 1
2n (θ +w∗)⊤X̄X̄⊤(θ +w∗), we can express

the update as:

θk+1 = θk − 1

n
Ak∇f(θ). (26)

Finally, let wgd
k := −θk. We can verify that f(−w) = Rw∗(w), implying that:

wgd
k+1 = wgd

k − 1

n
Ak∇Rw∗(wgd

k). (27)

We also confirm that for any xn+1, the prediction of y(k)
n+1 is:

g(xn+1,yn+1, k) = yn+1 − ⟨θ,xn+1⟩ = yn+1 + ⟨wgd
k ,xn+1⟩.

This concludes the proof. We have simply followed the update rule (6) to its logical conclusion.

A.2 FULL PROOF OF PROPOSITION 1

A memory-augmented Transformer can implement Conjugate Gradient Descent (CGD) through a
dynamic memory mechanism that recursively refines search directions, where the update rules are:

Rℓ = AttnPℓ,Qℓ
(Zℓ) + γℓRℓ−1, (28)

Zℓ+1 = Zℓ + αℓ
1

n
Rℓ, (29)

where γℓ and αℓ control past update influence and step size.

PROOF

Our goal is to demonstrate that, under appropriate parameter configurations, the memory-augmented
Transformer updates given by equations (28) and (29) correspond precisely to the Conjugate Gradient
Descent (CGD) algorithm when applied to the quadratic loss function:

Rw∗(w) =
1

2n
(w −w∗)⊤XX⊤(w −w∗). (30)

We will establish a mapping between the Transformer’s operations and the steps of the CGD algorithm,
demonstrating that the Transformer can implement CGD under certain parameter settings.

CGD ALGORITHM FOR QUADRATIC FUNCTIONS

For minimizing a quadratic function, the CGD algorithm proceeds as follows:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm. Conjugate Gradient Descent (CGD)

Initialize w0 and r0 = −∇f(w0), s0 = r0
w1 = w0 + r0
for n = 1, 2, . . . do

Compute the residual: rn = −∇f(wn)
Compute the conjugacy coefficient:

γn =
r⊤n rn

r⊤n−1rn−1

Update the search direction:
sn = rn + γnsn−1

Compute the step size:

αn =
r⊤n rn
s⊤nHsn

Update the parameters:
wn+1 = wn + αnsn

end for

MAPPING CGD UPDATES TO TRANSFORMER UPDATES

We first recall that in the proof of Lemma 1 (A.1), the wgd
k+1 update rule

wgd
k+1 = wgd

k − 1

n
Ak∇Rw∗(wgd

k), (31)

is a direct downstream consequence of the Zℓ+1 update rule (6)

Zℓ+1 = Zℓ +
1

n
AttnPℓ,Qℓ

(Zℓ), ℓ = 0, 1, . . . , L− 1, (32)

under the parameterization given in equation (9). Thus, the AttnPℓ,Qℓ
term in the Zℓ update equation

is, in a precise sense, paralleled by the − 1
nAk∇Rw∗(wgd

k) term in the wgd
k+1 update equation (31).

STEP 1: INITIALIZATION

• CGD:
w0 given, r0 = −∇f(w0), s0 = r0.

• Transformer:
– The initial state Z0 in (6) parallels w0 in (31).
– The memory register R is initialized to AttnP0,Q0

(Z0), i.e., R0 = AttnP0,Q0
(Z0),

corresponding to s0 = r0.
– We set γ0 = 0, consistent with CGD initialization.

STEP 2: UPDATE MEMORY REGISTER (SEARCH DIRECTION)

• Transformer Memory Update:

Rℓ = AttnPℓ,Qℓ
(Zℓ) + γℓRℓ−1.

• Correspondence with CGD:
sn = rn + γnsn−1.

Identifying Rℓ ↔ sn, γℓ = γn, and Rℓ−1 ↔ sn−1, the Transformer’s memory update
matches CGD.

STEP 3: UPDATE PARAMETERS

• Transformer Parameter Update:

Zℓ+1 = Zℓ + αℓ
1

n
Rℓ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Correspondence with CGD:

wn+1 = wn + αnsn.

The scaling factor 1
n accounts for the gradient’s scaling, consistent with the CGD update

when considering the Hessian H = 1
nXX⊤.

STEP 4: CONJUGACY COEFFICIENT γℓ AND STEP SIZE αℓ

• CGD Computations: Scalar values computed based on residuals and the Hessian.
• Transformer Implementation:

– γℓ and αℓ are treated as parameters, ensuring structural correspondence.
– The Transformer’s architecture allows these as fixed or learnable parameters.

Therefore, under suitable parameter configurations, the memory-augmented Transformer can imple-
ment CGD, demonstrating the feasibility of using the Transformer’s architecture to perform CGD-like
updates.

A.3 FULL PROOF OF PROPOSITION 2

A memory-augmented Transformer can implement k steps of Linear First-Order Methods (LFOMs)
by maintaining memory registers across layers, where the update rules are:

Rℓ = AttnPℓ,Qℓ
(Zℓ), (33)

Zℓ+1 = Zℓ +
1

n

ℓ∑
j=0

Γℓ
j ⊙Rj , (34)

where Γℓ
j governs the contribution of previous layers, and ⊙ is the Hadamard (element-wise) product

for scaling.

Our goal is to show that the memory-augmented Transformer with updates given by equations (33)
and (34) can implement k steps of an LFOM, whose general formulation is:

wk+1 = w0 +

k∑
i=0

Λk
i∇f(wi),

where Λk
i are diagonal matrices that scale the gradients ∇f(wi).

We will proceed by establishing a correspondence between the variables and updates in the memory-
augmented Transformer and those in the LFOM, and by showing that, under appropriate parameter
settings, the Transformer updates replicate the LFOM updates.

The first order of business is to realize that, in the proof of Lemma 1 (A.1), the wgd
k+1 update rule (31)

is a direct downstream consequence of the Zℓ+1 update rule (6), under the parameterization given in
equation (9).

Set Rℓ = AttnPℓ,Qℓ
(Zℓ) per (33). Then the consequence of the Zℓ+1 = Zℓ +

1
n

∑ℓ
j=0 Γ

ℓ
j ⊙Rj

update rule is that each AttnPj ,Qj (Zj) is coordinate-wise scaled by Γℓ
j ∈ R(d+1)×(n+1). But if

AttnPj ,Qj
(Zj) is coordinate-wise scaled by Γℓ

j , then the Yk+1 update rule in (22) now instead looks
like Yk+1 = Yk − 1

n

∑k
j=0 Γ

k
j

∣∣
d+1

⊙ (YkMX⊤
0 AkX0), where Γk

j

∣∣
d+1

denotes the (d+ 1)-th row
of Γk

j . This is because, by definition, Yi is the (d+ 1)-th row of Zi (A.1).

From the basic Yk update rule in (22), the update formula for y(k+1)
n+1 in (23) follows as a consequence.

Except that now, this update formula will include a coordinate-wise scaling as well, which we will
denote by Λk

j ∈ Rd:

y
(k+1)
n+1 = y

(k)
n+1 −

1

n

k∑
j=0

⟨(AjX̄
⊤Ȳj)⊙ Λk

j ,xn+1⟩,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

which in turn leads to θk+1 = θk − 1
n

∑k
j=0(AjX̄X̄⊤(θj + w∗)) ⊙ Λk

j in place of (25) and

wgd
k+1 = wgd

k − 1
n

∑k
j=0 Aj∇Rw∗(wgd

j)⊙Λk
j in place of (26). The negative signs can, of course, be

incorporated within the Λk
j s.

If we simply rewrite Λk
j ∈ Rd as a diagonal matrix in Rd×d, this setup then subsumes the case of

diagonal preconditioners Λk
j ∈ Rd×d acting on the gradients ∇Rw∗(wgd

j), which in the general form
looks like:

wgd
k+1 = w0 +

k∑
i=0

Λk
i∇Rw∗(wgd

i). (35)

where Λk
i are diagonal matrices.

Note. The memory-augmented Transformer performs exactly these updates in the special case when
the preconditioners Aj are scalar multiples of the identity. If the preconditioners Aj are non-trivial,
then this architecture performs “LFOM-like” algorithms that lie in a class richer than LFOMs (3.2).

B COMPARISON TO NESTEROV ACCELERATED GRADIENT METHOD (NAG)
AND MOMENTUM GRADIENT DESCENT (MGD)

B.1 NESTEROV ACCELERATED GRADIENT METHOD (NAG)

NAG is a commonly used optimization technique that builds on classical gradient descent by incorpo-
rating a momentum term that anticipates the next update. Specifically, the weights are updated using
the following update rules:

vk+1 = wk + βk(wk −wk−1)

wk+1 = vk+1 − ηk∇f(vk+1)

Here, βk controls the influence of previous updates (momentum), and ηk is the learning rate. In our
experiments, we selected ηk = 0.03 and βk = 0.9 after testing various values of these parameters
on the given distribution, as in Section 3.3. These values provided the best performance. The
momentum term allows NAG to “look ahead” in the optimization trajectory, which often leads to
faster convergence than vanilla gradient descent.

B.2 MOMENTUM GRADIENT DESCENT (MGD)

Momentum Gradient Descent operates similarly to NAG but without the anticipation of future steps.
The algorithm updates the weights based on a momentum term that accelerates convergence in
directions with consistent gradients. The update rule for MGD is given by:

vk+1 = βkvk − ηk∇f(wk)

wk+1 = wk + vk+1

In our experiments, the learning rate ηk = 0.005 and momentum parameter βk = 0.9 provided the
best results on the given distribution, as in Section 3.3. Momentum helps to mitigate oscillations in
directions with high curvature, stabilizing the optimization trajectory and leading to faster convergence
compared to gradient descent.

B.3 MEMFORMERS VS. NAG AND MGD

In our experiments, we observed that Memformers (20) outperform both NAG and MGD on non-
isotropic data. Figures 6a and 6b compare the performance of Memformer with NAG and MGD,
respectively, on the same non-isotropic data. As shown, the Memformer achieves faster convergence
and much better loss performance compared to both algorithms.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Nesterov AGM vs. LFOM Memformer on non-
isotropic data.

(b) Momentum GD vs. LFOM Memformer on non-
isotropic data.

Figure 6: Comparison of Nesterov Accelerated Gradient Method (left) and Momentum Gradient
Descent (right) vs. LFOM Memformer on non-isotropic data.

C MEMFORMER EXPERIMENTS WITH MORE THAN 4 LAYERS

In our experiments, we observed that Memformers with more than 4 layers continue to demonstrate
impressive performance in learning optimization strategies. We conducted experiments with Mem-
formers having up to 7 layers and dimension d = 10. Training beyond this point becomes impractical
due to extensive iteration requirements and significant convergence times, which can span several
hours. This limitation is a consequence of computational constraints (e.g., available GPUs) rather
than any inherent deficiency of the Memformer architecture itself.

Here, d refers to the rank of the square matrix XXT in the empirical loss quadratic as described in
Equation 12.

1. Experiment 7a (Dimension d = 5, Layers = 5): As expected, Conjugate Gradient Descent
(CGD) converges within d steps due to the dimensionality constraint. Remarkably, even though the
Memformer only learns general parameters Aℓ (Equation 9) and Γℓ (Equation 20), it manages to
keep up with CGD for up to 4 steps, showcasing its efficiency.

2. Experiment 7b (Dimension d = 10, Layers = 7): In this case, CGD does not converge until
beyond 7 steps, which aligns with theoretical expectations. Nevertheless, the Memformer remains
highly competitive, matching CGD’s performance for 6 steps and even performing comparably at
7 steps. This demonstrates the Memformer’s robust generalization capabilities, even under more
complex conditions.

D EXPERIMENT ON CONVERGENCE VERIFICATION FOR MEMFORMER
PARAMETER Aℓ TO Σ

Our strategy to train the Memformer (20) was to first train the Aℓ’s (9) in each layer ℓ on the training
batch and then to “fine-tune” the Γℓ’s on the training batch. Therefore, we present here an empirical
verification of our results per Theorem 3 in Ahn et al. (2024).

Theorem 3. (Ahn et al. (2024)) Assume that x(i) iid∼ N (0,Σ) and wx ∼ N (0,Σ−1), for i = 1, . . . , n,
and for some Σ ≻ 0. Consider the optimization of in-context loss (8) for a k-layer transformer with
the parameter configuration in Eq. (9) given by:

min
{Aℓ}L−1

ℓ=0

f(A).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Memformer performance for d = 5 with 5 layers. (b) Memformer performance for d = 10 with 7 layers.

Figure 7: Performance comparison of Memformers with CGD for various dimensions and layer
configurations.

Let S ⊂ RL×d×d be defined as follows: A ∈ S if and only if for all i = 0, . . . , L − 1, there exist
scalars ai ∈ R such that Ai = aiΣ

−1. Then

inf
(A,B)∈S

L−1∑
i=0

∥∇Ai
f(A,B)∥2F = 0,

where ∇Ai
f denotes the derivative with respect to the Frobenius norm ∥Ai∥F .

We evaluated the in-context learning (ICL) loss for linear regression with d = 5 and n = 20, where
x(i) ∼ N (0,Σ) and wx ∼ N (0,Σ−1). The covariance Σ was generated as Σ = UTDU , with U
being a random orthogonal matrix and D = diag(1, 1, 1/4, 1/16, 1). A three-layer linear transformer
was trained using ADAM, with A0, A1, A2 initialized as i.i.d. Gaussian matrices. Each gradient
step used minibatches of size 20,000, resampled every 100 steps, and gradients were clipped to 0.01.
Results were averaged over 5 runs with independent U and Σ samples.

To measure convergence, we computed the normalized Frobenius norm distance:

Dist(M, I) := min
α

∥M − αI∥F
∥M∥F

, α :=
1

d

d∑
i=1

M [i, i],

which quantifies the deviation of M/∥M∥F from a scaled identity. The distance Dist(Σ1/2AiΣ
1/2, I),

averaged over 5 runs, is shown in Figures 8a, 8b, and 8c as a function of training iterations.

(a) A0 convergence. (b) A1 convergence. (c) A2 convergence.

Figure 8: Convergence of Σ1/2AiΣ
1/2 to the scaled identity matrix for each i, as predicted by

Theorem 3 of Ahn et al. (2024).

19

	Introduction
	Related Work

	Background and Problem Setup
	Linear Transformers on Random Linear Regression
	Linear First-Order Methods

	Memformers Can Implement LFOMs In-Context
	Dynamic Memory for CGD-like Algorithms
	Implementing k Steps of LFOM with Memory Registers
	Experimental Results: Memformer Performance vs. CGD

	Experiments: Influence of Batch Size on Performance
	Experiments: Impact of Using Multi-Headed Attention
	Discussion and Future Work
	Limitations

	Reproducibility Statement
	Supplementary Material
	Proofs
	Proof of Lemma 1: Equivalence to Preconditioned Gradient Descent
	Full Proof of Proposition 1
	Full Proof of Proposition 2

	Comparison to Nesterov Accelerated Gradient Method (NAG) and Momentum Gradient Descent (MGD)
	Nesterov Accelerated Gradient Method (NAG)
	Momentum Gradient Descent (MGD)
	Memformers vs. NAG and MGD

	Memformer Experiments With More Than 4 Layers
	Experiment on Convergence Verification for Memformer Parameter A to

