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Abstract

The Lottery Ticket Hypothesis states that there exist sparse subnetworks (called 'winning’
Lottery Tickets) within dense networks that, when trained under the same regime, achieve
similar or better validation accuracy as the dense network. It has been shown that for larger
networks and more complex datasets, an additional pretraining step is required for winning
lottery tickets to be successfully found. Previous work linked the amount of pretraining
required to instability to SGD noise via Linear Mode Connectivity (LMC). In this paper,
we will dive deeper in the factors of training that influence SGD instability and as such
the requirements for finding 'winning’ tickets. We show that several techniques that have
a positive influence on dense network generalization increase SGD instability, and as such
hinder the extraction of 'winning’ tickets. By dampening this instability via smart hyper-
parameter selection, we show that we can extract 'winning’ tickets that are more sparse and
even outperform several tickets found with pretraining. The additional stability to SGD
noise has as unexpected side effect that useful features for classification are encoded in the
winning tickets purely by pruning. We show that these features do not emerge when trained
with more instability, and that they are transferable to different datasets, as well as enable
faster training of the ticket.

1 Introduction

The performance increase of AI models on different benchmarks has been significant over time, but this
came at a cost. Small increases in benchmark scores, are typically the results of a large upscaling in model
parameters, or training resources. Following a recent study by (Sevilla et al., |2022)) the computational
resources required to train a state-of-the-art neural network model has doubled roughly every 4 to 9 months.
This unsustainable growth results in models that can only be trained by large institutions.

However, often these models are severely overparameterized and can be significantly pruned without loss of
model performance. ? These approaches follow a typical train-prune-finetune pipeline, which still requires
training the model.

Recent work by [Frankle & Carbin|(2019)) introduced the Lottery Ticket Hypothesis (LTH), which states that
within an initialized neural network, there exists a sparse subnetwork that can be trained to similar accuracy
as the dense network. However, this came under scrutiny, as it was found that for larger models and datasets,
this hypothesis no longer holds. To remedy this, a new criteria called LMC has been introduced in [Frankle
et al.| (2020), which measures the error across a linear interpolation path between two networks trained from
the same initialization with different seeds. This lead to the inclusion of late-rewinding, pretraining the
dense network to a state of SGD stability, and finding Lottery Tickets within that network. This approach
has been called the Lottery Ticket Rewinding (LTR).

1.1 Contributions

e We show the influence of different parameters during the training process on the LMC metric, which
shows how stable an initialization is to SGD noise.
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o We further highlight the impact of these parameters on the predictive quality of Lottery Tickets,
and show that the configuration with the best performing dense network, not necessarily leads to
the best winning ticket.

o With careful hyperparameter selections, we can find Lottery Tickets that outperform tickets found
with late rewinding, albeit at extreme sparsities.

e We highlight that the tickets found with stability can function as feature extractors when frozen,
and that this property is transferable to other datasets.

2 Related Work

2.1 The Lottery Ticket Hypothesis

Empirical Analysis. Introduced by |[Frankle & Carbin| (2019), the Lottery Ticket Hypothesis posits that
within a dense neural network, there exists a sparse neural network that can achieve commensurate accuracy
when trained in the same circumstances. This has been further extended by [Frankle et al.| (2020) to include
late rewinding for more complex settings. |Zhou et al.| (2019) studies the different components of the LTH
methodology, concludes that masking can be seen as training the network, and introduces binary Supermasks
which can be applied on a random network to achieve significantly better validation accuracy than random
chance. These Supermasks were later improved upon in (Koster et al., 2022)) by using ternary masks. Ma,
et al.[ (2021)) introduces hard sanity checks for Lottery Tickets, and find that a high learning rate hinders the
discovery of Lottery Tickets. [Evci et al.| (2022) studies the Lottery Ticket Hypothesis in combination with
gradient flow. They find that sparse networks generally train poorly due to limited gradient flow, however
sparse tickets that suffer from the same issue do train faster and better. The authors hypothesize that this
is due to the ticket and trained ticket being located in the same loss basin. |Paul et al.| (2022) ... |Maene et al.
(2021)) ... |T et al.|(2022) ...

Transferability. Transferability of a Lottery Ticket to a different setting as the one for which it as extracted,
has been a thorougly studied subject. By achieving this, it means that some of the computational costs
incurred by finding the Lottery Ticket can be offset due to its versatility. Morcos et al.[(2019); Mehta, (2019)
find that Lottery Tickets can transfer well between different natural image datasets. [Sabatelli. et al.| (2021)
further extends this by transferring from natural image dataset to small-size non-natural image datasets
such as medical or art datasets. They find that in some cases the tickets underperform compared to a ticket
found for the target datasets, but they all outperform the dense network trained on the target dataset.
These results reinforce the observation that Lottery Tickets outperform dense networks when trained on
limited data (T et al., |2022)). |(Chen et al.| (2021)) further extends the study of transferability, by considering
transferability between different tasks such as classification, object detection and semantic segmentation. In
the context of NLP, [Desai et al.| (2021) discovers similarly that Lottery Tickets transfer well under different
data distributions.

Variants. Talk about the SLTH, elastic lottery ticket hypothesis, Early-bird tickets, ...

2.2 (Linear) Mode Connectivity.

Frankle et al. 2021 "Linear Mode Connectivity and the Lottery Ticket Hypothesis"
Zhou et al. 2023 "Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature Connectivity"

Ainsworth et al. 2023 "GIT RE-BASIN: MERGING MODELS MODULO PERMUTATION SYMME-
TRIES"

Entezari et al. 2022 "The role of permutation invariance in linear mode connectivity of neural networks."

Fort et al. 2022 "Deep learning versus kernel learning: an empirical study of loss landscape geometry and
the time evolution of the Neural Tangent Kernel"

Ferbach et al. 2024 "Proving linear mode connectivity of neural networks via optimal transport"
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Iyer et al. 2024 "Linear Weight Interpolation Leads to Transient Performance Gains"

Adilova et al. 2024 "LAYER-WISE LINEAR MODE CONNECTIVITY"

3 Methodology

We start from commonly used training configurations (see ?7?) for the Lottery Ticket Hypothesis, taken
from [Frankle et al.| (2021)), and study the impact of different components of the training configuration on
train-time metrics, such as Linear Mode Connectivity [Frankle et al.| (2020]), forgetting scores [Toneva et al.
(2019), and convergence speed. Next, we use the relationships between configuration parameters and the
train-time metrics to explain phenomenons occurring in sparse lottery tickets.

3.1 The Lottery Ticket Hypothesis

Algorithm 1 Lottery Ticket Hypothesis with late rewinding.

. Initialize a neural network with weights 6, € R%.

. Initialize pruning mask M = 1%.

: Train 6y for p steps to 6. > Pretraining
:forne{l,...,N}do > Mask Search

Train M © 6, to convergence.

Prune the 20% of weights lowest magnitude.

Let M[i]=0 if the corresponding weight 7 is pruned.
7. end for

8: Train the final network M ©® 6,. > Sparse Training

D oA W N

Defined by an iterative procedure (see Algorithm [1)), the algorithm consists of two (or three) phases. In
the optional Pretraining phase, the network is lightly trained to provide a more stable rewind point [Frankle
et al.| (2020) for the next phase. The second phase is a Mask Search phase, in which the sparse network is
repeatedly trained with the same training configuration as the dense network. The goal of this training is to
identify parameters for pruning, as the lowest magnitude parameters at the end of this phase contribute least
to the predictive performance of the network. Next, a fixed percentage of the lowest magnitude parameters
are pruned and the remaining weights are reset to the rewind point (either the initialization or the pretrained
network). Finally, the Sparse Training phase, is the phase in which the ticket is trained until completion,
after which the network is usable in prediction. A winning lottery ticket is then defined as a pruned network
that can attain similar (or better) validation accuracy as the dense network in commensurate training.

It is evident that the trainability of a Lottery Ticket depends on both the initial weights and the pruning
mask. This directly translates to a dependency on the Pretraining phase for the initial weights and a
dependency on the Mask Search phase for the pruning mask. As such, modifications to the configurations
used in Mask Search, can greatly impact the final ticket. While it is prohibitively expensive to conduct a
grid search on all possible parameters, due to the expensive nature of this procedure, instead we focus on
the impact of a few parameters. This will allow us to better understand the impact on the trainability and
predictive quality of the resulting lottery tickets.

Batch Size. In the case of large datasets, it is often infeasible to use the whole dataset during each update
step of the network. As such, it is common to use minibatches of the dataset to update a network iteratively.
Intuitively, if the batch size is smaller, then the resulting gradient is more influenced by the subsampling of
the dataset and the batch composition can be distinctly different from the composition of the full dataset.
It has been shown in [Keskar et al|(2017)) that using a larger batch size leads to a sharp minimizer which
has a negative impact on the generalization of a neural network. We show similar impacts on generalization
in the form of lower validation accuracy when training the dense networks.

Momentum. Introduced as a technique to speed up gradient descent, momentum employs a factor p € [0, 1],
and allows gradient information to be carried over from previous batches in the weight update. As such, the
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updates function similar to a exponential moving average. Recent work to understand the role of momentum
in the generalization of Neural Networks has been undertaken by |Jelassi & Li| (2022), in which the authors
argue that momentum leads to classifiers generalizing on small-margin samples, rather than memorizing
those samples. The authors additionally find that the impact of momentum is more significant with higher
batch sizes.

Vi1 = vy — €V f(0r) (1)
Orp1 =0 +vi1 (2)

Training epochs. Hypothesis: limiting the number of training epochs, also is a way to limit the training
instability, as we have less epochs, there is less noise that can influence the outcomes, and as such it is
possible for the networks to still be in the same loss basin. While this has a negative effect on the accuracy
(obviously!), this is also the fastest approach to generate stable lottery tickets, as we can limit the training
time.

3.2 Train-time Metrics

Linear Mode Connectivity. Introduced by [Frankle et al.| (2020), LMC is a metric that measures the
error on a linear interpolating path between two networks trained from the same initialization. If there is a
significant increase in error alongside the path, the initialization is said to be unstable to SGD noise. With
this justification came the introduction of the Pretraining phase, as pretraining for a small amount results
in a network stable to SGD noise.

Forgetting events. During training, a network learns to predict labels for its input samples. However, the
learning is not monotonic, meaning that if a sample is predicted correctly at some iteration 4, it possible that
an iteration ¢+ k it is no longer correctly predicted. To measure these 'forgetting events’, Toneva et al.| (2019)
introduced forgetting scores, which record whether a sample is learned correctly each time the network is
fed the sample. Samples that are never forgotten once learned are called 'unforgettable samples’.

Convergence speed. Measuring how fast a neural network reaches optimal accuracy given a certain training
configuration is a difficult task. We measure this by calculating the validation accuracy before training (acco)
and after every epoch (accep). We then measure the rate of increase, by averaging acce, — accy over the
duration of the training. To account for different optimal accuracies, we rescale this value. This formula can
be interpreted as the (rescaled) area under the validation curve of the network during training.

t
1 accCe, — accy
AUC = - —_—r = 3

t epzzzl acc; — accy (3)

3.3 Experimental setup

The main bulk of our experiments will be done on ResNet-18 + CIFAR-10. However, the experiments
of Section [ are repeated on ResNet-18 + CIFAR-100 and ResNet-34 + TinylmageNet to demonstrate
applicability on datasets of different complexities.

We use configurations from |T et al|(2022)) as a starting point. More specifically, this means that we use a
total training budget of 200 epochs in each iteration, after which we prune 20% of the weights. In the case
of Late-Rewinding, this budget includes a Pretraining phase of 2 epochs. Training is done by minimizing
the Cross-Entropy Loss with SGD, starting with a learning rate of 0.1 (or 0.2 for TinyImageNet) which is
cosine annealed, and a weight decay of 5E-4. A full breakdown of the training configuration can be found in
the appendix.
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Figure 1: Linear Mode Connectivity for a dense ResNet-18 model trained on CIFAR-10 with (left) and
without (right) pretraining, given different training configurations.

4 Experiments

4.1 Training Stability

Linear Mode Connectivity. We explore the influence of the momentum and batch size parameters on
train-time performance of ResNet-18 models on CIFAR-10. For this, we start with a randomly initialized
network and train this several times with different SGD noise. This allows us to record the LMC between
different trained versions in Figure Approaches that achieve better stability, i.e., achieving less severe
accuracy drops along the interpolation path, also suffer from a reduced dense network accuracy (see 0.00%
sparsity column in Table . This hints that while increased stability is linked to an increased performance
of Lottery Tickets, instability is required for neural networks to achieve their best performance.

We notice that without late-rewinding, no configuration achieves a minimal error path between two conver-
gences, showing that the networks are not stable to SGD noise. When adding two epochs of pretraining,
stability in general increases. Approaches without momentum (u = 0.0) attain perfect stability, while ap-
proaches with momentum do not longer make random chance predictions during interpolation. To study
when these approaches attain perfect LMC, we conduct a more thorough study in the appendix.

Example Forgetting. A similar indication of stability can be seen when recording the forgetting events
for different training configurations. We notice that samples are much more often forgotten during training
with momentum, indicating a more volatile approach to learning. This frequent forgetting and re-learning
of certain samples seems to be coupled to better generalization, as we see an increase in evaluation accuracy.
We hypothesize that the samples that are often forgotten are samples close to the decision boundary, which
are generalized upon, rather than memorized under the application of momentum, as shown by |Jelassi &
Li (2022). Regarding batch size, we notice that in general, forgetting events occur more often at lower
batch sizes, however at an extreme batch size, the number of forgetting events increases again. The number
of unforgettable samples is also significantly impacted by batch size, where a very large batch size has a

significantly lower number of unforgettable samples.
We further highlight the relationship between example forgetting and LMC in the appendix.

Limited Training. Instability to SGD noise is a function of the training time of a network. Indeed, if
we start from the same initialization and we train multiple networks with different SGD noise for a limited
number of epochs, the resulting networks will be linearly connected (Show in a figure). The likely reason
for this, is that neural networks first learn general representations and then more specific features. As after
a limited number of epochs, these networks are not yet well-converged, they have only learned the more

general representations.
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Table 1: Forgetting statistics and convergence statistics for different configurations used in training ResNet-
18 models on CIFAR-10.

u Batch Size Forgetting events  Unforgettable samples Train Convergence Val. Convergence

0.0 32 9.27 £ 7.43 34.87% 0.9567 0.9503
0.0 100 2.84 + 4.18 43.14% 0.9776 0.9643
0.0 256 2.22 + 3.11 42.76% 0.9752 0.9459
0.0 1024 3.32 £ 3.62 19.92% 0.9639 0.9520
0.9 100 8.94 + 10.69 23.22% 0.9230 0.9132
0.9 256 5.64 £ 7.73 30.35% 0.9458 0.9338
0.9 1024 3.07 £ 4.05 32.84% 0.9639 0.9505

Table 2: Lottery Ticket performances for different training parameters at different sparsity levels.

Ticket Parameters Sparsity

Dataset p  Pretrain Batch Size  0.00%  67.23%  89.26%  96.48%  98.84%
CIFAR-10 0.0 X 100 94.58%  94.39%  93.93%  92.95%  91.10%
CIFAR-10 0.0 X 256 93.63% 94.02% 93.93% 93.39% 92.67%
CIFAR-10 0.9 X 100 95.24% 94.99% 94.39% 93.25% 91.41%
CIFAR-10 0.9 X 256 95.18%  94.98%  94.29%  93.36%  91.39%
CIFAR-10 0.0 v 100 94.62%  95.06% 94.95% 94.71% 93.95%
CIFAR-10 0.0 v 256 93.54% 93.97% 93.94% 93.50% 92.77%
CIFAR-10 0.9 v 100 95.30% 95.13% 94.85% 93.90% 92.31%
CIFAR-10 0.9 v 256 95.24% 95.16% 94.55%  93.57%  91.86%

4.2 Impact on Lottery Tickets

In Table 2] we have listed the validation accuracies of Lottery Tickets found under different parameter
configurations at certain critical sparsities. In the next paragraphs, we use these performances to highlight
the different stages at which the SGD instability of the training procedure impacts the resulting Lottery
Tickets. For a full overview of the results, as well as results on ResNet-18 + CIFAR-100, see the appendix.

Without late-rewinding. When not considering the additional stability of rewinding to a set of pretrained
weights, we notice that unstable configurations dominate in the low sparsity regime. However, at deeper
sparsities, we notice that stable configurations gain the upper hand. Following the observations that the
batch size during training introduces less instability than momentum, we notice that the first equilibrium,
at 89.26% sparsity, is in relation to batch size, while at 96.48% sparsity the advantages of momentum are
wiped out compared to the most stable configuration (u = 0.0, batch size = 256). Finally, at an extreme
sparsity (98.84%), the differences are even more pronounced. We should note that while unstable training
leads to better performing dense networks, from which the performance

Hypothesis: We see for TinylmageNet, that the effect of batch size is much more pronounced. This is either
related to the difficulty of the samples, or more likely, to the number of classes.

With late-rewinding. This approach provides stability by design and this is noticeable in a significantly
increase in accuracy at most sparsities compared to the approach without pretraining. Interestingly, we once
again notice that configurations with p = 0.9 begin to underperform at 95.60% sparsity, while the effect
of smaller batch sizes is much less pronounced. In fact, at all sparsities we notice that smaller batch sizes
outperform larger batch sizes, which differs from the observations without late-rewinding. Full results at all
tested sparsities are in the appendix.



Under review as submission to TMLR

Table 3: Linear probing results at different locations in a ResNet-18 ticket extracted under different training
configurations.

Ticket parameters 89.26% sparsity 96.48% sparsity
i Pretraining Batch Size Block 4 Block 8 Block 4 Block 8
0.0 X 100 33.61 4= 1.60% 30.93 £ 0.82% 33.45 4 0.41% 30.51 4 0.38%
0.0 X 256 51.38 + 0.81% 82.87 + 0.84% 52.17 + 1.22% 80.85 + 1.57%
0.9 X 100 29.48 + 2.03% 28.65 + 0.92% 29.39 + 1.81% 25.71 £+ 1.03%
0.9 X 256 30.70 + 0.52% 27.83 + 1.55% 29.87 + 1.42% 28.15 + 0.21%
0.0 v 100 52.08 + 0.95% 73.11 + 1.16% 49.32 + 1.95% 65.81 =+ 1.77%
0.0 v 256 56.27 + 0.48% 84.53 + 1.07% 55.91 + 0.69% 83.71 + 1.35%
0.9 v 100 39.27 + 1.58% 48.92 + 3.44% 36.74 + 0.67% 42.49 £ 2.03%
0.9 v 256 37.27 + 5.31% 46.29 + 7.13% 33.97 + 1.76% 38.62 + 3.30%
Permuted Baseline 36.92% 23.38%

4.3 Less training epochs

Throughout training, the effects of SGD noise accumulates, leading to more instability. As such, by limiting
the number of epochs trained, we can limit the instability incurred by these tickets, and limit the accuracy
drop when pruning. We note that while there is a smaller drop in accuracy of tickets w.r.t. the dense
network, these tickets are not practically useful, as the dense network is not fully converged.

5 Consequences of SGD stability

5.1 Linear evaluation

To determine the expressivity of the features within the tickets (pretrained weights + pruning mask), we
devise a linear evaluation experiment inspired by linear probing (Alain & Bengiol [2017). At certain layers
in the network, we insert a linear probe, which is a channel-wise pooling operation followed by a linear
classification layer. While the linear probe is training, we freeze all other parameters in the network, such
that we do not modify any of the features and the resulting accuracy correctly reflects the predictive quality
of the features. For consistency between different parameter configurations, we use a single set of parameters
to train the linear layer. While this might have some minimal influence on the validation accuracy of the
probe, the general trends are explicit enough to warrant not exploring different hyperparameter settings for
the probes.

An overview of the results can be found in Table[3] We notice that the stable configurations result in potent
feature extractors at initialization. This shows that simply by pruning, useful features can be found from
initialization or weights in early training. Additionally, using late-rewinding has a positive influence on the
linear probing accuracy. We compare the results with a baseline, which consists of the best performing ticket
with a random permuted mask. This baseline preserves the initialization and the layerwise sparsity, and
thus shows that the remarkable performance can not be explained by those factors alone. Full results with
additional visualizations can be found in the appendix.

The best performing masks can be likened to the Supermasks found by [Zhou et al.| (2019)). The key difference
between our observation and Supermasks is that our stable tickets are used as feature extractor, so a linear
layer is finetuned on top, rather than evaluated without any training. In general, the Supermasks have been
only extracted in simpler settings, namely for 3-layer fully connected networks on MNIST, or 2-/4-/6-layer
CNNs on CIFAR-10, so no indication exists of applicability on more complex settings. Initial accuracies
of a Supermask were limited to 80% on MNIST, or 24% on CIFAR-10, but by optimizing the mask, while
keeping the initialization the same (reminiscent of the Strong Lottery Ticket Hypothesis), accuracies of up
t0 95.3% on MNIST and 65.4% on CIFAR-10 could be achieved.
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Table 4: Validation accuracies of a 89.26% sparse ResNet-18 ticket when trained on a CIFAR-10 subset.

Ticket parameters Subset sizes

i Pretraining Batch Size 1% 2% 5% 10%
0.0 X 100 44.22 + 1.47% 53.37 £ 1.41% 68.40 + 0.96% 78.90 £+ 0.30%
0.0 X 256 85.43 4+ 0.58% 88.03 &+ 0.62% 90.58 &= 0.21% 91.82 + 0.11%
0.9 X 100 42.93 £+ 2.12% 52.80 £ 3.05% 71.35 + 1.49% 80.96 + 0.29%
0.9 X 256 37.02 = 1.03% 47.38 £ 1.35% 63.93 + 4.25% 75.44 £+ 1.05%
0.0 v 100 68.02 + 2.81% 74.49 + 0.60% 83.43 + 0.25% 88.69 + 0.48%
0.0 v 256 85.84 4 0.70% 88.09 & 0.47% 90.40 &= 0.21% 91.68 £ 0.11%
0.9 v 100 53.85 + 3.47% 59.29 £ 2.70% 71.10 £ 0.55% 81.51 £ 0.90%
0.9 v 256 45.06 £ 4.52% 53.55 £ 5.55% 66.54 £+ 0.32% 76.99 £+ 0.75%

Best Dense Network 42.54 + 1.15% 51.25 + 0.78% 67.15 + 0.34% 78.42 £+ 0.53%

5.2 Few-shot learning performances

Starting from the ticket, we next determine few-shot learning performances by using coresets during the
Sparse Training phase. As we focus on small dataset sizes, we will use the random selection method, as this
has been shown to work best in those cases (Guo et al., |2022]).

We consider the following subset sizes: [1% , 2%, 5%, 10%)]. Each class is equally represented in the dataset
subset. To allow for comparability between TinylmageNet and CIFAR-10, we have chosen 1% as a bottom
limit, as TinyImageNet features 500 images per class, while CIFAR-10 features 5000 images per class. Going
lower than 1% could be feasible for CIFAR-10, but will be difficult for TinyImageNet, as then the subset
selection process will significantly impact the performance of the trained network. Results for tickets at
89.26% sparsity on CIFAR-10 are listed in Table 4l Additional results and visualizations can be found in
the appendix.

We notice that a significant portion of the validation accuracy attained with the full training dataset can be
recovered in scenarios with higher SGD stability. In the most extreme case, we can attain 85% validation
accuracy by training with 50 randomly chosen images per class of CIFAR-10. This is a gain of 43% over
training the dense network with that subset. When increasing the number of samples in the subset, the
resulting accuracy gain in these scenarios is not linear, but rather slows down. This is exemplified by the
transition of 1% to 2%, for which the accuracy gain is higher than that of 5% to 10%. In the unstable
scenarios we notice that the validation accuracy of the ticket often lies in a similar range as that of the dense
network, or is even slightly lower. Additionally, the accuracy gain when increasing the number of samples
shows a much more linear trend.

5.3 Dataset Transferability

Previous research has demonstrated that Lottery Tickets generalize well to other datasets. We further
explore the observations made in Section [5.1] that certain tickets can function as feature extractors when
frozen, and analyze the transferability of those features to different datasets. Starting from tickets extracted
on ResNet-18 + CIFAR-10, we replace the linear layer with a new linear layer with a target-specific number
of outputs. While this procedure leads to a loss of sparsity in the classification layer, this is the only possible
approach short of resparsifying the linear layer, which might induce side effects.

Transferring is done to MNIST, CIFAR-100, TinyImageNet and EuroSat. The reasoning for these datasets is
as following. MNIST is an easy dataset, albeit monochrome, which features different instances from CIFAR-
10 (numbers, rather than objects). CIFAR-100 has been generated in the same manner as CIFAR-10, but
images and classes are mutually exclusive between the datasets, and it contains more classes. TinylmageNet
is a more challenging dataset, with more classes and less instances per class than CIFAR-10. Finally, EuroSat
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Table 5: Transferability of frozen ResNet-18 tickets extracted on CIFAR-10 with different configurations.

Ticket parameters Target dataset
 Pretraining Batch Size MNIST CIFAR-100 TinyImageNet EuroSat
0.0 X 100 82.11 4+ 0.48% 16.66 + 0.20% 7.42 + 0.14% 70.46 £+ 0.94%
0.0 X 256 97.25 + 0.15% 40.57 + 1.07% 18.13 + 0.33% 85.21 + 0.56%
0.9 X 100 77.03 £+ 0.31% 12.73 £+ 0.82% 5.49 + 0.21% 61.00 + 1.81%
0.9 X 256 77.30 + 1.60% 13.35 + 0.74% 6.28 + 0.92% 60.74 + 5.21%
0.0 v 100 96.90 + 0.03% 36.18 + 1.02% 18.48 + 0.79% 82.40 + 0.98%
0.0 v 256 97.45 + 0.21% 41.63 + 0.91% 21.56 + 1.21% 85.47 + 0.98%
0.9 v 100 90.85 + 1.60% 17.34 + 1.80% 8.46 + 0.29% 69.37 + 1.06%
0.9 v 256 92.79 4+ 2.67% 18.96 + 4.22% 10.47 + 1.91% 70.86 + 1.43%
Finetuned dense network 71.17 + 0.81% . 4.41 £+ 0.25% .
Retrained dense network 99.58 + 0.04% 77.40 + 0.37% . 98.51 + 0.53%

features landscape images, rather than object images. Each of these datasets has characteristics not present
in CIFAR-10, which serves to demonstrate the versatility of the features present within the lottery ticket.

We show the results for 89.26% sparsity tickets in Table[5] where we additionally compare with two baselines.
The first baseline (Finetuned Dense Network) is achieved by replacing the last linear layer of a fully-trained
dense network, freezing the other layers, and finetuning on the target dataset. The second baseline (Retrained
dense network) uses the same training parameters to train on the target dataset from scratch. We show the
full training curves in the appendix.

It can be clearly seen that the tickets with the least instability transfer best to the different datasets. While
pretraining aids in increasing the transfer performance, it is unable to close the gap between the more unstable
tickets and the best performing tickets. Additionally, we notice that in each case the features encoded in the
sparse tickets transfer considerably better than those encoded in the dense network, even though the dense
network is trained, while the tickets are not. This shows that by iteratively pruning, features emerge in the
ticket that are more transferable than those obtained by training.

5.4 Linear Mode Connectivity of Tickets

6 Discussion

6.1 Loss Basin interpretation

Satisfying Linear Mode Connectivity can be interpreted as having two solutions that lie in the same linear
connected loss basin. When extracting stable lottery tickets, we notice that the winning tickets all lie in the
same loss basin (see Figure .

6.2 Instability via momentum or batch size

We have noticed empirically that using a the commonly used p = 0.9 for the momentum parameter, or a
smaller batch size, results in a lower stability. This has been shown both in experiments with linear mode
connectivity, and in the LTH itself. However, the cause of this instability is not precisely determined. We
hypothesize that this is related to difficult-to-classify samples within the training dataset. We can however
infer that the instability incurred by a lower batch size is less severe than using o = 0.9. This is can be seen
in the LMC experiments, where pretraining is not sufficient to fully overcome the instability of momentum.

Small Batch Size. When using a small batch size, the gradient of a single (or multiple) such samples,
influences the total batch gradient in a much greater fashion. This can lead to a gradient signal away from
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Figure 2: Caption

the easy optimization path. While this is desirable in the dense training regime, as this leads to better
generalization, when optimizing a sparse network this leads to worse results.

Momentum. A similar observation can be made for the momentum parameter, albeit a little less straight-
forward. By applying momentum, the optimization step incorporates information of previous batches, thus
amplifying the gradient effect of outliers in batches.

6.3 Frozen Feature Extractor

We notice in several experiments that, when instability is low enough, the tickets found via the LTH contain
useful features without additional training. This suggests that some information of the dataset is encoded
within the ticket, by pruning, when instability is low enough. The encoded information can be used to
recover a large percentage (more than 90% in the case of CIFAR-10) of the validation accuracy of a fully
trained dense network, by finetuning a linear classifier on the features. Additionally, these features aid in
speeding up the convergence of the validation accuracy when training such a ticket.

This effect has been observed independently of the pretraining applied, albeit that with a pretrained ticket,
the effects are amplified. Furthermore, we have shown that these features are not specific for the source
dataset of the ticket, but can instead be transferred to other datasets, both in similar settings, or in radically

different settings.

This behavior is reminiscent of the Strong Lottery Ticket Hypothesis, which poses that any trained network
can be approximated by pruning connections from a sufficiently large untrained network. There is however
a nuanced difference, in that the stable tickets found by our approach require a finetuned classification layer
to achieve good validation accuracy.

7 Conclusion

In this research we study a number of training configurations and their influence on Lottery Tickets. We
notice that commonly used hyperparameters, such a momentum and lower batch sizes have positive effect
on the generalization of dense networks as already reported in the literature, but can negatively impact
the Lottery Ticket Hypothesis. This impact is linked to the instability to SGD noise created by these
hyperparameters during the training process. This is exemplified in a sharp increase of forgetting events

10
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during training, the lack of Linear Mode Connectivity between different seeds of SGD noise, and lower
convergence speeds in training and validation accuracy.

When applying these insights in training instability on the Lottery Ticket Hypothesis, we notice that in the
cases with the least training instability, winning lottery tickets can be found at higher sparsities without any
pretraining necessary. Even when considering additional stability in the form of pretraining, the more stable
approaches show less accuracy degradation at higher sparsities.

On top of the higher validation accuracy at deeper sparsities, we show that tickets found with a higher
stability exhibit several nice properties encoded by the pruned initialization. We notice that these tickets
achieve better few-shot generalizability, and can in fact be used as frozen feature extractors to a remarkable
accuracy.

Future work. While we have shown that stable tickets can be good feature extractors when frozen, we
have not highlighted how exactly this behavior emerges, and is linked to training stability. We believe that
further exploring this property might lead to tickets that can be extracted faster, albeit at a small accuracy
cost.
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A Full Lottery Ticket results

In Figure [3] we show the validation accuracies of Lottery tickets at different sparsities, when trained with
different configurations. For convenience, we have highlighted the sparsities discussed in the main table with
a dotted line. We notice that overall the rate of performance decay with momentum is higher than without
momentum. Even though these tickets start with a higher accuracy than those without momentum, at a
certain sparsity they underperform w.r.t. those without momentum, indicating that a more stable training
process provides better quality tickets at high sparsities.
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Figure 3: Validation accuracies at different sparsities for Lottery Tickets extracted from a ResNet-18 model
on the CIFAR-10 dataset.

B Finding optimal rewind points

For several parameter configurations of ResNet-18, the default rewind point of 2 epochs was insufficient
to provide stability to SGD noise. As such, we conduct a stability study to determine at which points
(measured in epochs) SGD stability emerges. We follow the same definition of stability as in [Frankle et al.
(2020), meaning if the error across a linear path is less than 2%.

To speed up this procedure, we use a binary search algorithm to determine the first stable rewind point for
each configuration. This allows us to find this rewind point in [log2200] + 1 = 9 steps. We employ three
random initializations for the rewind point, and to measure stability we use three different sets of SGD noise,
for a total of 9 runs per configuration.

We list the results in Table [} We notice that, as discussed in the main paper, both momentum and lower
batch size impact stability negatively. In particular, the use of momentum has a significant impact, where
for each configuration, we notice that Linear Mode Stability only emerges at >10% of the total training
epochs.

Table 6: Stability to SGD noise for different parameter configurations of a ResNet-18 on CIFAR-10.

©w=20.0 ©w=0.9
32 BS 100 BS 256 BS 1024 BS 32 BS 100 BS 256 BS 1024 BS
First stable epoch 5 <=2 1 6.7£12 8.7+12 46709 22.0=£08
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C Validation Accuracy Convergence.

In we have visualized the validation accuracy convergence of Lottery Tickets at different sparsities.
We notice that the convergence scores without momentum are significantly better, and seem to suffer less
from a decreasing factor than those with momentum. conclusion here that these converge better.

Pretraining = False Pretraining = True

0.88 /—’\“\’\ 1 /F/—’ R
0.96 / ]

batch size

e
o
&

o
v
5 b iy — 256
2 "---\“_\ . ~. 100
o092 LAREN p n
[v) — 00
--- 09
0.90 +
0.88 -
T T T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Pruning Iteration Pruning Iteration

Figure 4: The convergence scores at different sparsities for Lottery Tickets extracted from a ResNet-18 model
on the CIFAR-10 dataset.

D Forgetting events and instability

As shown in [Toneva et al.| (2019), a subset of the CIFAR-10 dataset, selected by removing samples with a
low forgetting score, can be used to train a ResNet-18 model without loss of generalization, as compared to
the full dataset. The authors show that this is true for removing up to the 30% of the samples with the
lowest forgetting events. To see how the removal of these samples influences the instability to SGD noise,
we repeat the training of a ResNet-18 model with p = 0.9, batch size = 256 at different subset levels.

We notice in Table [7] that removing the 20% easiest samples has no significant impact on the validation
accuracy, but that removing the 20% hardest samples significantly impacts the generalization. Via SGD
stability analysis in 77, we additionally notice that removing the harder samples leads to more stability,
while removing the easier samples ...

Table 7: Validation accuracy of ResNet-18 + CIFAR-10 on different settings of samples removed.

Easiest samples removed Hardest samples removed
Original ~ 20% 50% 20% 50%
95.18%  95.04% 93.79% 92.43% 87.43%

E Linear Probing

Full results of the linear probing experiment for different parameter configurations can be found in Fig-
ure bl This includes results at each residual block and for each sparsity up until 96.48% (after which each
configuration begins to lose accuracy rapidly).
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Figure 5: Linear Probe accuracy for a ResNet-18 ticket given different parameter configurations.
(E[) Without late rewinding. (]E[) With late rewinding.

F Additional tables

15



Under review as submission to TMLR

Table 8: Caption

Ticket Parameters Sparsity
Dataset i Pretrain Batch Size 0.00% 67.23% 89.26% 96.48% 98.84%

CIFAR-100 0.0 X 100 76.66 + 0.22% 75.57 + 0.18% 73.53 + 0.52%

CIFAR-100 0.0 X 256 74.39 + 0.23% 75.03 +£ 0.36%  74.46 + 0.13%

CIFAR-100 0.9 X 100 78.54 + 0.12% 76.60 + 0.08%  73.91 + 0.28%

CIFAR-100 0.9 X 256 77.74 + 0.37% 76.47 + 0.10% 74.07 + 0.17%

CIFAR-100 0.0 v 100 76.57 + 0.26% 76.76 + 0.20% 76.23 + 0.39%

CIFAR-100 0.0 v 256 74.41 + 0.18% 74.62 £+ 0.16% 73.54 + 0.19%

CIFAR-100 0.9 v 100 78.18 + 0.11%  77.20 + 0.32% 74.66 + 0.42%

CIFAR-100 0.9 v 256 7771 £ 0.25%  77.57 £ 0.47% 77.24 + 0.35%

Table 9: Caption
Ticket Parameters Sparsity

Dataset i Pretrain  Batch Size 0.00% 67.23% 89.26% 96.48% 98.8
TImgNet 0.0 X 100 61.14 + 0.42% 59.76 + 0.14% 57.79 + 0.13% 54.47 + 0.33%
TImgNet 0.0 X 256 59.33 + 0.09% 59.95 + 0.48%  60.20 + 0.19% 58.89 + 0.17%
TImgNet 0.9 X 100 63.74 + 0.36% 62.46 + 0.30% 35.95 + 30.70%  35.69 + 30.51%
TImgNet 0.9 X 256 61.57 + 0.86% 60.37 + 0.31% 56.93 + 1.45% 52.76 + 3.98%
TImgNet 0.0 v 100 60.91 + 0.43% 62.90 + 0.56%  62.67 + 0.54% 60.37 + 0.17%
TImgNet 0.0 v 256 59.27 £+ 0.41% 60.01 £+ 0.08% 60.08 + 0.36% 58.59 + 0.66%
TImgNet 0.9 v 100 63.45 + 0.53% 63.02 + 0.33%  60.10 + 0.81% 57.73 + 0.56%
TImgNet 0.9 v 256 61.66 + 0.39% 61.22 4+ 0.45% 58.95 4+ 0.10% 55.91 + 0.74%
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