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ABSTRACT

The performance of embodied agents has been shown to improve by increasing
model parameters, dataset size, and compute. This has been demonstrated in do-
mains from robotics to video games, when generative learning objectives on of-
fline datasets (pre-training) are used to model an agent’s behavior (imitation learn-
ing) or their environment (world modeling). This paper characterizes the role of
scale in these tasks more precisely. Going beyond the simple intuition that ‘bigger
is better’, we show that the same types of power laws found in language modeling
(e.g. between loss and optimal model size), also arise in world modeling and imi-
tation learning. However, the coefficients of these laws are heavily influenced by
the tokenizer, task & architecture – this has important implications on the optimal
sizing of models and data.

1 INTRODUCTION

Much progress in AI in the early 2020’s has been driven by increasing model size, dataset size, and
training compute. Whilst conceptually simple, the importance of this practice has led to an emerging
subfield studying the science of scaling. This field answers questions such as how to estimate the
benefit of increased compute investment, or how to optimally trade-off model and dataset size.

The role of scale in pre-training is until now best understood in the context of large language models
(LLMs). Following the observation that the empirical relationship between loss and key scaling
quantities can be accurately described by power laws (Kaplan et al., 2020), ensuing work studied the
precise trade-off between model and dataset size (Hoffmann et al., 2022), as well as considerations
about inference compute (Sardana and Frankle, 2023), repeated training data (Muennighoff et al.,
2024), parameter counting (Pearce and Song, 2024), and more (Section 2).

In comparison, less is understood about scaling in embodied AI. Recent high-impact works suggest
increasing model and dataset size can lead to ever more capable agents for two pre-training objec-
tives; behavior cloning (BC) (Reed et al., 2022; Baker et al., 2022; Brohan et al., 2023) and world
modeling (Hafner et al., 2020; Hu et al., 2023; Yang et al., 2023; Bruce et al., 2024). Such works
typically demonstrate the benefit of scale through ablations over only a few model sizes, shown in
terms of downstream agent performance, confirming the intuition that ‘bigger is better’ (Sartor and
Thompson (2024) provide an aggregated analysis). However, this leaves a large gap to the pre-
cise understanding of scale in LLMs, where for a given increase in compute, models can be sized
optimally, and their expected performance accurately predicted.

This paper helps close this gap. Similar to the initial study of scale in LLMs, we focus on the effect of
scaling on a generative pre-training loss (rather than on downstream agent performance, or reward-
or representation-centric objectives), in the infinite data regime, on a fixed offline dataset. Under this
setting, we train families of transformers on next-token prediction tasks using architectures popular
in both world modeling and BC tasks. This leads to several contributions, summarized in Figure 1.

• Scaling laws similar to those in LLMs can be observed in world modeling with tokenized obser-
vations and actions (Section 4.1, Figure 1a).

• The optimal trade-off between model and dataset size in world modeling is influenced by the
tokenizer’s compression rate (number of tokens per observation) (Section 4.1, Figure 1a & b).
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a) WM-Token-256, b) WM-Token-540
Noptimal ∝ C0.49, Doptimal ∝ C0.51 Noptimal ∝ C0.62, Doptimal ∝ C0.38
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c) BC-Token-540, d) BC-CNN
Noptimal ∝ C0.32, Doptimal ∝ C0.78 Noptimal ∝ C0.66, Doptimal ∝ C0.34
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Figure 1: This paper observes that scaling laws, as originally found in LLMs, also emerge in the
tasks of world modeling and BC, when studying the pre-training loss on large datasets of human
behavior. a, b) For world modeling, the power law coefficient determining optimal model size is
affected by the compression rate of the tokenizer. c) In BC with tokenized image observations (BC-
Token), small models need a large FLOPs budget to saturate, making these scaling laws less clear
cut. d) However, moving to a single continuous embedding per observation remedies this (BC-
CNN), producing prototypical scaling laws and a more balanced optimal model size coefficient.

• Scaling laws for BC with tokenized observations are harder to observe under modest compute
budgets. The optimal trade-off favors smaller models and more data (Section 4.2, Figure 1c).

• Scaling laws similar to those in LLMs can once again be observed in BC with one continuous
encoding per observation (Section 4.2, Figure 1d).

• Our findings can be understood through small-scale language modeling experiments (Section 5).

Organization. Section 2 provides detailed related work, contrasting the current understanding of
scaling in embodied AI with other domains. Section 3 introduces details for our main experiments,
including the architectures considered and details of scaling laws analyses. Section 4.1 & 4.2 present
our main results in world modeling and BC respectively. Section 5 presents insights behind our
main results, including a set of tiny-scale language experiments mimicking aspects of our main
experiments. Section 6 discusses our findings and notes limitations in our work.
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2 RELATED WORK

Scaling laws origin. The term scaling laws is used throughout the engineering and physical sciences
to denote power law relationships between two quantities, e.g. duration of a volcanic eruption and
the probability of it continuing (Cannavò and Nunnari, 2016). The name derives from the scale-
invariant1 property of power laws. While early work suggested that power laws could be good
empirical descriptors of important variables in deep learning (Hestness et al., 2017; Rosenfeld et al.,
2019), it was Kaplan et al. (2020) who provided a comprehensive study of power laws in transformer
LLMs, and popularized the usage of scaling laws in this context.

Scaling laws in LLMs. As the real-world value of LLMs was understood, scaling in LLMs became
a high-priority research topic. Hoffmann et al. (2022) conducted a precise analysis into the trade-off
of model and dataset size, finding they should be increased in equal proportions. This conflicted
with Kaplan et al.’s suggestion that model size should be prioritized – an incorrect conclusion that
Pearce and Song (2024) showed largely arose from counting only non-embedding parameters.

Many other aspects of LLM scaling analyses are beginning to be refined. Su et al. (2024) revis-
ited the methodology used to find scaling coefficients. Hägele et al. (2024) found that multiple
independent cosine schedules could be reproduced more efficiently through a constant learning rate
with multiple short decays, or stochastic weight averaging. Pearce and Song (2024) & Porian et al.
(2024) found that well-tuned constant learning rates were sufficient to recover certain coefficients.
Bi et al. (2024) study the effect of various hyperparameters on scaling. Muennighoff et al. (2024)
looked at repeated epochs, finding up to four epochs produce negligible departures from the infinite
data regime. Sardana and Frankle (2023) factored in inference compute to the definition of what is
compute-optimal. Isik et al. (2024) study the link between pre-training loss and downstream per-
formance. A further line of research aims to explain why power laws are such a good descriptor of
empirical deep learning (Hutter, 2021; Maloney et al., 2022; Bahri et al., 2024).

Scaling in embodied AI. Compared to LLMs, our understanding of scale in embodied settings is
less advanced. Early successes in competitive games showed that running reinforcement learning
(RL) at scale could surpass human performance, e.g. (Silver et al., 2017; Berner et al., 2019). In
self-play RL, power laws were observed between certain quantities by Neumann and Gros (2022).
Meanwhile, Hilton et al. (2023) noted that, in general, reward signals do not follow power laws, and
defined a transformation of reward (intrinsic performance) that created self-consistent scaling laws.

Inspired by the effectiveness of scaling in LLMs, embodied AI research has recently begun to ex-
plore the effectiveness of generative pre-training objectives on offline datasets, when executed at
scale. This includes behavior cloning objectives in video games (Baker et al., 2022; Raad et al.,
2024), robotics (Brohan et al., 2022; 2023; Padalkar et al., 2023; Bousmalis et al., 2023), or multiple
domains (Reed et al., 2022), as well as world modeling objectives (Hu et al., 2023; Yang et al., 2023;
Bruce et al., 2024). In these studies, the benefit of scale is generally shown through increasing model
size on a specific downstream task of interest (e.g. measured by completion rate) – an aggregated
survey is provided by Sartor and Thompson (2024).

Whilst such studies provide strong evidence that scale can be effective in embodied domains, the
complexity introduced by downstream task evaluation makes quantifying the effects, and asking
more nuanced questions very challenging (e.g. how to trade-off model and dataset size). To ad-
dress this, we argue that a better starting point for studying scale in these generative pre-training
approaches, is to study the effect of scale on pre-training loss. Whilst downstream task performance
may be of ultimate interest, LLM research evidences the utility of focusing on this clean intermedi-
ate signal, which is more straightforward to analyze. Few prior works have taken such an approach.
In Appendix A we contrast our BC efforts with Tuyls et al. (2023) who provide a valuable initial
study on the relationship between compute and pre-training loss for BC. We also discuss scaling
analyses of image and video modeling, which are related to world modeling.

1For two variables x & y, the power law y = axb is invariant to scaling x by a constant c.
Formally: a(cx)b = cbaxb =⇒ cby = cbaxb =⇒ y = axb.
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Figure 2: The World Modelling (WM) and Behavior Cloning (BC) tasks & architecture combi-
nations considered in this work. The fire symbol signifies trainable components, the ice symbol
signifies frozen pre-trained components.

3 METHODOLOGY

This section provides details for our main experiments. We describe the pre-training tasks, architec-
tures, and datasets considered. We also detail the methodology used in the scaling law analyses.

3.1 TASKS

We consider trajectories constructed as sequences of alternating observations ot and actions at for
timestep t ∈ N. In this work, observations are always images, ot ∈ R3×w×h and any continuous
actions are discretized during preprocessing leaving, at ∈ {0, 1}da .

Given this data format, we consider two tasks. World modeling (WM) (Ha and Schmidhuber, 2018)
predicts future observations from previous observations and actions. This allows an agent to ex-
plicitly understand how its environment works, which can be used for planning, or dyna-style RL
(Sutton, 2018). Behavior cloning (BC) predicts the future actions that the dataset’s demonstrators
take (Bakker et al., 1996). This creates a policy that can be directly used to act in the environ-
ment, either as-is or following further fine-tuning. Concretely, these two tasks require modeling the
following quantities,

World modeling: P (ot+1|ot . . .ot−k,at . . .at−k), (1)
Behavior cloning: P (at|ot . . .ot−k,at−1 . . .at−k−1). (2)

This work focuses on generative pre-training aiming to model this full conditional probability dis-
tribution. We leave a study of scaling laws for alternative objectives, e.g., explicitly targeting repre-
sentation learning (Nair et al., 2022) or reward-centric models (Hafner et al., 2020), to future work.

3.2 ARCHITECTURES

All experiments revolve around GPT-2 style causal transformers (Radford et al., 2019) as the core
of the model. However we consider two different methods for inputting image observations, sum-
marized in Figure 2. Section 3.4 details how we measure the model size of each.

Tokenized architecture. Our first architecture tokenizes each image observation into multiple
discrete tokens. This is done with a frozen VQGAN encoder Encθ(ot) → zt, where zt ∈
{1, 2, ..., Vo}dz , for vocabulary size Vo and latent dimension dz . Discretized actions are mapped
to a non-overlapping vocabulary. Following tokenization, training sequences take the form,

[z1t , z
2
t , ..., z

dz
t , a1t , a

2
t , ..., a

da
t , z1t+1, z

2
t+1, ...z

dz
t+1, a

1
t+1, a

2
t+1, ..., a

da
t+1, ...], (3)

where each item of the sequence is an integer within our vocabulary. A transformer is then trained to
maximize the likelihood of either the latent image tokens (world modeling), or action tokens (BC).

This tokenized architecture is widely used both in world modeling (Micheli et al., 2022) and BC
tasks (Bousmalis et al., 2023). Gato (Reed et al., 2022) used a similar design but with continuous
patches rather than discrete tokens. Our implementation tests both a ‘small’ (28M parameters, dz =
256) and ‘large’ (150M parameters, dz = 540) VQGAN – further details in Appendix B.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

CNN architecture. Our second architecture differs in two ways. 1) Each image observation is
input into the transformer as a single continuous embedding, extracted from a small trainable con-
volutional neural network (CNN). 2) Action dimensions are predicted independently (rather than in
series), assuming P (at| . . . ) ≈

∏da

i=1 P (ait| . . . ). A single forward pass of the transformer is needed
per action prediction.

This produces an architecture similar to Baker et al. (2022) (VPT additionally used a transformer-
XL and a refined hierarchical action space). Our implementation uses an Impala-style (Espeholt
et al., 2018) CNN with 0.6M parameters for embedding image observations.

3.3 DATASETS

This paper focuses on the effect of scaling on the pre-training loss over an offline dataset. To study
this cleanly, datasets must meet two criteria.

1. Dataset size. Repeated training on the same data alters the effect of scaling. Therefore,
datasets should be large enough that all model sizes use a low number of training epochs.

2. Dataset diversity. Both the behavior and environment must contain enough richness and
variety that pre-training loss does not saturate across the model sizes tested.

Many existing benchmark datasets fail to fulfill these criteria – if not due to limited size, then because
behavior is generated from a pre-trained fixed policy, or the environment is too simple.

Our work instead focuses on a dataset of human behavior collected in a video game named Bleeding
Edge. This is a fast-paced 4 vs 4 multiplayer game, with a range of characters, abilities and maps.
Game play is highly complex due to the cooperative and competitive dynamics. Success requires
selecting high-level strategies (e.g. choosing which map regions to fight for), as well as fine-grained
reactive control during combat. Figure 9 shows example sequences from our dataset.

Supported by the game’s developer Ninja Theory, we compiled a dataset of 8.6 years of anonymized
game play, containing both image observations and controller actions. We refer to this as the 7 map
dataset. We also use a subset of this for some experiments, of around 1.1 years from a single map,
which we name the Sky Garden dataset. Appendix B.3 provides further technical details.

3.4 SCALING ANALYSIS METHODOLOGY

We are interested in studying the relationship between several quantities defined below.

• Model size N , the total number of trainable parameters (ignoring VQGAN parameters
for WM-Token & BC-Token, but including the fixed-size CNN for BC-CNN). Embedding
parameters are included in the count following Pearce and Song (2024).

• Dataset size D, the total number of inputs the transformer sees during training. For WM-
Token and BC-Token this is dz + da per observation & action pair, and for BC-CNN this
is one per observation & action pair.

• Compute C, the number of floating point operations (FLOPs) used during training. The
common approximation of C = 6ND (Kaplan et al., 2020) is used.

• Loss L, the standard classification cross-entropy loss (all targets are discretized). We as-
sume training loss is an accurate proxy for test loss (Appendix B.3.1 analyzes further).

More specifically, we are interested in ‘compute-optimal’ versions of each quantity. For loss, this is
defined as the minimal loss possible for a given FLOPs budget,

Loptimal(C) = min
s.t. C=6ND

L(N,D), (4)

where L(N,D) is the empirical loss achieved with an N parameter model trained on D tokens. We
further define optimal model and dataset sizes as the configuration that produce this minimal loss
given a FLOPs budget,

Noptimal(C), Doptimal(C) = argmin
N,D s.t. C=6ND

L(N,D). (5)
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Table 1: Summary of fitted scaling coefficients for our main experiments. Note that we favor the
Frontier fit when available, and only use the Parametric fit for BC-Token-540 (see Section 3.4).

Frontier fit Parametric fit
Experiment Noptimal ∝ Ca Doptimal ∝ Cb Noptimal ∝ Ca Doptimal ∝ Cb

WM-Token-256 0.49 0.51 0.52 0.48
WM-Token-540 0.62 0.37 0.78 0.22
BC-Token-540 N/A N/A 0.32 0.68
BC-CNN 0.66 0.34 0.47 0.53

Scaling analysis. The heart of scaling law analysis is fitting power law relationships predicting
these compute-optimal quantities. For predicting optimal model and dataset size, we use,

N̂optimal(C) = a0C
a D̂optimal(C) = b0C

b, (6)

with fitted constants a0, a, b0, b. 2 We consider two methods to fit these relationships, introduced
by Hoffmann et al. (2022). Their Method 1, which we term Frontier fit, classifies efficient models
as those falling on the efficient frontier (see Figure 1). Coefficients can then be estimated straight-
forwardly through a line of best fit on a plot of FLOPs vs parameters or data for these efficient
models.

Frontier fit is our preferred method when available – it avoids making any assumptions about the
training curves, directly fitting the best models observed. However, it requires training models past
the point where they are the optimal configuration (seen on a loss-FLOPs plot as overlapping curves).
In some of our experiments (BC-Token and Section 5.1), this was not possible.

In these situations, we resort to Method 3 of Hoffmann et al. (2022), which we term Parametric fit.
This fits the coefficients α, β,Nc, Dc, E to a parametric loss form,

L̂(N,D) =
Nc

Nα
+

Dc

Dβ
+ E, (7)

to the empirical training curves. In our implementation, we use SciPy’s curve_fit function. We
then find a = β/(α + β), b = α/(α + β). This makes a very strong assumption about the training
curves, but allows coefficients to be estimated at a smaller compute budget.

For loss prediction we use the form recommended by Pearce and Song (2024),

L̂optimal(N,D) = c0C
−c + E. (8)

We again use the curve_fit function, fitted to models along the efficient frontier. During fitting,
we set bounds on the variables: c0 ∈ [0,∞], c ∈ [−1, 1], E ∈ [0.1,∞].

Training details. While early scaling studies conducted sweeps over multiple cosine decays of
differing lengths (Kaplan et al., 2020; Hoffmann et al., 2022), follow up work found this redundant
(Pearce and Song, 2024; Hägele et al., 2024; Porian et al., 2024). We follow the approach of using
a constant learning rate per model, so each requires only one training run. We aim to train models
until they have passed their compute efficient FLOPs budget. We only modify the parameters of the
transformer, following the configurations documented in Appendix B.

4 SCALING ANALYSIS IN EMBODIED AI

This section presents our main results. We begin by considering the scaling laws for the task of
world modelling in Section 4.1 with two different tokenizers (turning image observations into 256
and 540 tokens for the small and large variants respectively). Section 4.2 then considers the task of
BC both with tokenized and CNN architectures. Finally, Section 4.3 tests the extrapolation capability
of these scaling laws for the task of world modeling.
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Figure 3: WM-Token scaling with dz =256 tokens per image observation. Left shows the paramet-
ric fit. Middle & right show the frontier fit estimating optimal model & dataset size respectively.
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Figure 4: WM-Token scaling with dz =540 tokens per image observation. Left shows the paramet-
ric fit. Middle & right show the frontier fit estimating optimal model & dataset size respectively.
Compared to the results for WM-Token-256, the power law coefficient for Noptimal increases from
0.49 to 0.62.

4.1 SCALING ANALYSIS IN WORLD MODELING

Figures 3 & 4 present our results for the task of world modeling, with the scaling law coefficients
summarised in Table 1. For WM-Token-256 we find that the optimal coefficients for model and
dataset size are both ≈ 0.5, e.g. one should increase both model and dataset size in the same
proportions. This matches the scaling laws observed in LLMs (Hoffmann et al., 2022). Increasing
the number of tokens per image to 540 for WM-Token-540 changes the optimal trade-off between
model and dataset size, skewing towards model size; Noptimal = 0.62, Doptimal = 0.37. We discuss
this further in Section 5.3.

4.2 SCALING ANALYSIS IN BEHAVIOR CLONING
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Figure 5: BC-Token scaling with dz = 540 tokens per image observation. Models above 2M param-
eters do not saturate over the FLOPs range considered and coefficients can not be inferred using the
frontier fit method.

We present our results on the scaling law coefficients for BC-Token in Figure 5. Despite sharing an
architecture with WM-Token-540 we now observe the opposite dependence on model and dataset

2Note that by subscribing to C = 6ND we find a = 1− b; N ∝ Ca =⇒ C/D ∝ Ca =⇒ D ∝ C1−a.
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Figure 6: BC-CNN scaling. Left shows the parametric fit. Middle & right show the frontier fit
estimating optimal model & dataset size respectively. Compared to the results for BC-Token the
model sizes considered compute-optimal are considerably larger. The power law coefficient for
Noptimal also increases significantly from 0.32 to 0.66 skewing towards scaling model size as opposed
to dataset size when scaling up compute.

sizes. The coefficients skew heavily towards dataset size; Noptimal = 0.32, Doptimal = 0.68 (com-
pared to Noptimal = 0.62, Doptimal = 0.37 – explained in Section 5.1). Furthermore, under the same
compute budget the compute-optimal model sizes are significantly smaller. For a compute budget of
1018 and 1019 FLOPs we find that model sizes of 2M and 11M are compute-optimal for BC-Token-
540 compared to 27M and 110M for WM-Token-540. In our experiments, we observe the losses
for the BC-Token models take much longer to plateau leading to less overlap between model sizes.
This results in the frontier fit not being suitable for accurately estimating the scaling law coefficients,
hence we rely on the parametric fit for these results.

To better understand the change in the scaling law coefficients, we now consider the BC-CNN ar-
chitecture for the task of BC in Figure 6. For this architecture, we observe that the coefficients
now skew towards model size (similarly to those in (Tuyls et al., 2023)), with Noptimal = 0.66, and
Doptimal = 0.34. Section 5.2 provides more intuition on the differences between the WM-Token and
BC-Token setups that lead to this change.

Further to studying the differences in scaling law coefficients between tasks and architectures, we
also study the accuracy of extrapolation.

4.3 EXTRAPOLATION IN WORLD MODELING
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Figure 7: Testing the extrapolation capability of our derived scaling law for WM-Token-256 by
training an 894M parameter model with an order of magnitude more compute than was used for
the scaling law analyses. We observe good agreement between our predicted optimal loss/model
size/number of training tokens (dotted lines) and our actual training run.

To test the extrapolation accuracy of our derived scaling laws, we train a 894M parameter WM-
Token-256 model with an order of magnitude more compute than used for the scaling law analy-
ses. Figure 7 presents both the learning curve as well as the extrapolated lines derived from the
Frontier fit method. We take the point with the loss value closest to our extrapolated loss curve
(∼ 1.58 × 1021FLOPS), and mark it on the Frontier fit extrapolations. We observe very good
agreement between that point and our compute-optimal predictions for both model and dataset size,
demonstrating the accuracy of our derived scaling laws. The gap between our prediction and the
actual training run suggests we could further optimize the hyperparameters (learning rate and batch
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size in particular) for the 894M parameter model, which was not extensively tuned due to compute
requirements.

5 FURTHER ANALYSIS

Section 4 made several observations about the effect of scale in the pre-training of embodied agents.
This section aims to understand these results further, and provide intuition for why they occur.
Specifically we target three questions.

• Q1: Why does BC-Token produce training curves that do not plateau, while WM-Token
does, given an identical architecture and dataset? (Section 5.1)

• Q2: Why does moving from BC-Token to BC-CNN resolve this issue? (Section 5.2)
• Q3: Why does increasing the amount of tokens per image observation (256 to 540) lead to

an increase in the optimal model size coefficient (0.49 to 0.62)? (Section 5.3)

5.1 Q1: BC-TOKEN VS. WM-TOKEN

The lack of saturation of BC-Token models compared to WM-Token models can be attributed to two
factors. The first is a sparser loss. A single observation-action pair is discretized into dz + da total
tokens. With the large VQGAN tokenizer, world modeling receives supervision for dz/(dz + da) =
540/556 ≈ 97% tokens, while BC is supervised for da/(dz + da) = 16/556 ≈ 3% of tokens.

The second factor is the granularity of the targets. The large tokenizer creates a world modeling
vocabulary size of 4096. Each vocabulary item roughly corresponds to a specific color and texture
for an image patch. Many vocabulary items may only be used to model specific map regions or
special abilities. Hence, the world modeling loss is very granular. On the other hand, a player can
take the same action in multiple different situations – continue straight could be used to escape an
enemy, chase an enemy, or navigate to a checkpoint. Hence, the supervision for BC is more vague
and abstracted. We can think of this as a super-classed label.

To demonstrate the effect of these two factors on optimal model size coefficients, we run a set of
tiny-scale experiments in language modeling. Transformers are trained on next-character prediction,
on a dataset of Shakespeare text3 using a single character for each token. Model sizes are varied from
4k parameters to 17M parameters. Context length is fixed at 16 characters/tokens.

Figure 8 (left) shows training curves over all 16 tokens, followed by a sparse loss where supervision
is only provided from the final token (middle), and then additionally under a super-classed setting
(right). This super-classes the final target – rather than using all 128 ASCII characters, they are
randomly shuffled into one of two macro classes.

These modifications are intended to mirror the effect of moving from WM-Token to BC-Token. We
compute optimal model size coefficients using the parametric fit as most models are not trained long
enough for the frontier fit method. Indeed, we see that the coefficient drops from 0.63 to 0.15 with
both the sparse and super-classed loss. This matches the magnitude of decrease seen in Table 1 from
0.66 to 0.32, indicating that the proposed mechanisms explain our findings.

5.2 Q2: BC-TOKEN VS. BC-CNN

Despite the same non-granular loss signal, why does switching architecture from BC-Token to BC-
CNN makes the loss of similar model sizes plateau under a much smaller compute budget?

Consider each architecture using a transformer with 1M parameters. Observe from Figure 2 that
BC-Token receives dz + da = 556 inputs for every action ât it predicts, while BC-CNN receives
just one input for every action predicted. Hence, BC-Token uses around 556 times more compute in
its action prediction (556 × 2 × 1M ≈ 1 × 109 FLOPs) than BC-CNN (1 × 2 × 1M ≈ 2 × 106

FLOPs). This means that even with the same number of parameters, BC-Token can learn a far
more expressive function than BC-CNN. Hence, BC-Token requires far more tokens to match this
expressivity, and training curves for a given model size plateau much later.

3Shakespeare character dataset from: https://github.com/karpathy/nanoGPT
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Figure 8: Training curves and parametric fit for character modeling experiments. The standard dense
LLM loss has been modified to reflect properties of BC – a sparse loss (one of 16 tokens), and then
additionally super-classing the targets into two classes.

5.3 Q3: WM-TOKEN-256 VS. WM-TOKEN-540

Finally, we seek to understand why the optimal model size coefficient increases when moving from
the 256 to the 540 token VQGAN. As the number of tokens per image observation are increased, the
compression rate of the tokenized representation decreases. We would expect that each individual
token becomes easier to predict in this less compressed representation. This would mean a less
expressive function is needed (smaller model size), but also a smaller number of examples would
need to be seen (smaller dataset size). It is less clear what ratios these ingredients decrease in, and
hence what effect a lower compression rate has on the optimal model size coefficient.

For further insight into how compression affects the optimal model size coefficient, we ran a small
scale experiment in language modeling using two text representations; 1) ASCII character-level
tokenization. (low compression) 2) GPT-2 tokenizer (high compression). We used the BookCorpus
dataset (Zhu et al., 2015), and trained models past their compute-optimal point, so the Frontier fit
method could be used for coefficient estimation.

Appendix C shows results. Under the character-level tokenizer (low compression), we find
Noptimal ∝ C0.66. For the GPT-2 tokenizer (high compression), we find Noptimal ∝ C0.44. The
key takeaway is that the more compressed representation has led to a lower optimal model size
coefficient, which reflects what we see in the world modeling experiments.

6 DISCUSSION & CONCLUSION

This paper establishes a deeper understanding of scaling laws for world modeling and behavior
cloning, two tasks that underpin embodied AI applications in domains such as video games and
robotics. Focusing on generative pre-training of such models, we show that it is possible to recover
scaling laws similar to those established in the LLM literature. Establishing such a link is key to
making efficient use of available resources, and to training compute-optimal models.

Considering the task of world modeling, we find that models can be smoothly scaled following
best practices and insights from the LLM literature. Surprisingly, the scaling coefficients for our
WM-Token-256 architecture very closely match those established for LLMs. Comparing to our
WM-Token-540 model and additional analysis, we further establish that scaling is affected by the
tokenizer’s compression rate.

Turning to pre-training BC policies for agents, the choice of architecture is extremely important in
determining optimal scaling behavior. When using architectures with tokenized image observations,
dataset size should be increased much more rapidly than model size. Meanwhile, for BC-CNN
architectures, model size should be increased faster than dataset size.

Limitations. While we show that scaling laws can be precisely described in the infinite data regime
and for appropriate architectures, future work is needed to establish scaling laws for alternative mod-
els and under varying dataset quality. In addition, we focus on loss as an intermediate quantity that
can be effectively optimized in pre-training. Many additional considerations are required for effec-
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tive AI models, such as downstream task performance and model inference times. How valuable
scaling laws can be in providing insights relevant to those choices remains an open question.
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Data for this project was provided via a partnership with Ninja Theory, who collected a large corpus
of human gameplay data for their game Bleeding Edge. Data collection was covered by an End User
License Agreement (EULA) and our use of the data was governed by a data sharing agreement with
the game studio, and approved by our institution’s IRB. This data was recorded between September
2020 and October 2022. To minimize risk to human subjects, any personally identifiable information
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The appendix is organized as follows.

• Appendix A contains an extended related work section.

• Appendix B contains details on the training of the model configurations, hyperparameters,
and a description of the datasets used.

• Appendix C contains results from Section 5.3.

• Appendix D contains further results training world models on a robotics task.

• Appendix E contains further results demonstrating the link between pre-training loss and
performance.

A EXTENDED RELATED WORK

Here we contrast more granular details of several related works.

Tuyls et al. (2023) provide (amongst other things) a valuable initial study on the relationship between
compute and pre-training loss for BC. They focus on Atari and Nethack games, where the dataset is
generated by a fixed pre-trained agent. They test one architecture – a single-layer LSTM network,
scaling width-wise to increase parameter count. They find the model size coefficient Noptimal ∝ Ca

varies between 0.58 to 0.79 for different games.

By contrast, our work focuses on transformer-based models, and we consider two variants of archi-
tecture. We also train on human behavior, rather than pre-trained agents (which could be viewed as
model distillation). Additionally, we go beyond BC and also study scale in world modeling.

Scaling laws in other domains. Scaling laws have also been observed in auto-regressive model-
ing of other modalities. Most relevant to our world modeling task are those of video and images.
Henighan et al. (2020) found the optimal trade off between model and dataset size to match their re-
ported LLM coefficient (Noptimal ∝ C0.7) and was not affected by tokenizer. Our experiments offer
different findings in the domain of world modeling on human data – we use updated methodologies
to measure this trade-off (Hoffmann et al., 2022), finding it is affected by the tokenizer. Tian et al.
(2024) show scaling laws emerge in image modeling with non raster-ordered next-token prediction.

B SCALING EXPERIMENTS FURTHER DETAILS

B.1 HYPERPARAMETERS

We trained two VQGANs from scratch with reconstruction losses.

• BE-Small. Based on Esser et al. (2021), uses dz = 256, Vo = 4096, h = w = 128, with
28M parameters, and a CNN design. It was trained on a single SkyGarden Bleeding Edge
map.

• BE-Large. Based on Yu et al. (2022), uses dz = 540, Vo = 4096, h = 180, w = 300, with
150M parameters, and a vision transformer design. It was trained on all seven Bleeding
Edge maps.

We selected the numbers of tokens per image based on qualitative assessment of reconstructions. We
found that 256 tokens per image was the minimum that still allowed a reconstruction to capture the
majority of salient gameplay details. However certain details still were lacking, such as an enemy
player’s health bars – hence we also considered a 540 token version that provided a higher quality
reconstruction.

BC-CNN details. We use h = w = 128. The 0.6M paramter CNN is similar to that used by (Baker
et al., 2022), however it uses ConvNext blocks (Liu et al., 2022). The CNN produces an embedding
of size 1024 which is then put through a linear layer to obtain a vector matching the transformer’s
embedding dimension.

Transformer configurations are given in Table 2. We describe the parameters for the WM-Token
architecture. Note that MLP layers are four times the width of embed dim. Model configurations
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roughly followed the model configurations used in Table A9 of Hoffmann et al. (2022), where resid-
ual stream dimension, number of layers, and number of heads were roughly increased proportionally.

Table 2: Transformer configurations. Here N is listed for the tokenized architectures. Parameter
count varies slightly for BC-CNN due to inclusion of the embedding CNN and differing numbers of
embedding parameters sizes.

N Layers Num heads Embed dim

2M 3 3 180
4M 4 4 240
11M 6 6 360
15M 4 4 512
27M 8 8 512
52M 10 10 640
110M 15 12 768
206M 16 16 1024
894M 23 14 1792

B.2 TRAINING DETAILS

All transformers are trained with a variant of nanoGPT (Karpathy, 2022) using PyTorch Lightning
(Falcon and The PyTorch Lightning team, 2019).

This section lists key hyperparameters. Note that it was important to find optimization settings that
produced the lowest possible loss for a given model size. In general larger models require smaller
learning rates. Our approach first optimized the smallest model through a grid sweep, we would
then sequentially run a sweep over the next largest model, starting at the smaller model’s optimized
learning rate. Table 3-6 provide final settings.

Table 3: Hyperparameters for WM-Token with dz =256 tokens per image observation.

N Seq len Context length Tokens per update Learning rate

15M 10 2,720 522,240 0.0007
27M 10 2,720 522,240 0.0007
52M 10 2,720 522,240 0.0007
110M 10 2,720 522,240 0.0007
206M 10 2,720 522,240 0.00057
894M 10 2,720 2M 0.00028

Table 4: Hyperparameters for WM-Token with dz =540 tokens per image observation.

N Seq len Context length Tokens per update Learning rate

4M 10 5,560 533,760 0.005
11M 10 5,560 533,760 0.001
27M 10 5,560 533,760 0.001
52M 10 5,560 533,760 0.001
110M 10 5,560 533,760 0.0005
206M 10 5,560 533,760 0.0005
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Table 5: Hyperparameters for BC-Token with dz =540 tokens per image observation.

N Seq len Context length Tokens per update Learning rate

2M 10 5,560 533,760 0.0005
4M 10 5,560 533,760 0.0005
11M 10 5,560 533,760 0.0001
27M 10 5,560 533,760 0.0001

Table 6: Hyperparameters for BC-CNN.

N Seq len Context length Items per update Learning rate

2M 10 10 2560 0.0003
3M 10 10 2560 0.0003
10M 10 10 2560 0.0003
26M 10 10 2560 0.0003
51M 10 10 2560 0.0003

Figure 9: Example trajectories from a dataset of 8.6 years of human gameplay in the video game
Bleeding Edge across 7 maps.

B.3 DATASET DETAILS

Image observations were stored in MP4 format at 60fps, alongside binary files containing the asso-
ciated controller actions. A time code extracted from the game was stored for each frame, to ensure
actions and frames remained in sync at training time.

The 7 Maps dataset comprised 60,986 matches, yielding 530,713 individual player trajectories (each
around 9 minutes), totaling 27.89 TiB on disk. This amounted to around 8.6 years of gameplay. After
downsampling to 10Hz (the frequency models are trained on), this equated to 1.63B frames. This
was then divided into training / validation / test sets by dividing the matches with an 80:10:10 split.

Our filtered Sky Garden dataset used the same 80:10:10 split and 10Hz downsampling, but focused
on just one map, yielding 71,940 individual player trajectories, or 355.5M frames (around 1.12 years
of game play).

For discretizing the controller actions, while the buttons are natively discrete, we discretize the x
and y values of the left and right joysticks into eleven buckets.
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B.3.1 ON THE INFINITE DATA REGIME

We wish to study scaling in the infinite data regime, where training loss is not significantly effected
by models repeatedly training on the same datapoints which can lead to overfitting effects. This
section calculates the number of training tokens allowed for each model family trained in this work.
Viewing Figure 1 alongside these numbers confirms that models remain in the infinite data regime
for all our experiments.

WM-Token-540, BC-Token-540. We trained on the 7 maps dataset, with 1.63B observation-action
pairs. Models used the tokenized architecture with the large VQGAN, so each observation-action
pair creates 540 + 16 = 556 transformer inputs, for a total of 1.63B×556 = 906B training tokens.
Muennighoff et al. (2024) observe that tokens may be reused up to four times with negligible de-
parture from the infinite data regime. This produces 3.6T tokens. For a 200M parameter model the
compute allowed by the infinite data regime is C = 6ND = 6×200M×3.6T = 4.3×1021 FLOPs.

WM-Token-256. This is trained on the Sky Garden dataset, with 355M observation-action pairs.
Each pair is split into 256 + 16 = 272 tokens, for 97B training tokens, or 97B×4 = 386B effective
tokens. For a 200M parameter model the compute allowed by the ‘infinite data regime’ is C =
6ND = 6× 200M × 386B = 4.6× 1020 FLOPs.

BC-CNN. Trained on 7 maps dataset, but now with one token per observation-action pair, this
creates a possible 1.63B × 4 = 6.52B effective tokens. A 50M parameter model uses C = 6ND =
6× 50M × 6.52B = 2.0× 1018 FLOPs.

C FURTHER ANALYSIS DETAILS

Experimental results supporting Section 5.3.
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Figure 10: Relating to Section 5.3, character-level (low compression). Utilising the frontier fit
(middle and right) we derive the power law coefficient for Noptimal as 0.66 and Doptimal as 0.34.
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Figure 11: Relating to Section 5.3, GPT-2 tokenizer (high compression). Utilising the frontier fit
(middle and right) we derive the power law coefficient for Noptimal as 0.44 and Doptimal as 0.56, an
increase from 0.66 in Figure 10 found when utilising a lower compression character-level tokenizer.
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D WORLD MODELING FOR ROBOTICS

To supplement our main experiments conducted on a large dataset of human behavior in a video
game, we conduct smaller scale experiments on the real-world robotics RT-1 dataset (Brohan et al.,
2022) – a dataset of high-skill human demonstrations. These firstly evidence that scaling laws
emerge in other environments. Furthermore, we find further support that tokenizer compression rate
(number of tokens per observation) affects scaling coefficients.

We use the RT-1 dataset, resized to 128x128 pixels per image. We trained a set of five VQVAEs with
zo ∈ [16, 36, 64, 100, 256] and Vo = 4096 for 40,000 updates on batches of 128. Reconstructions
are visualized in Figure 12.

Figure 12: VQVAE reconstructions on the RT-1 dataset for differing numbers of tokens per obser-
vation, zo ∈ [16, 36, 64, 100, 256].

For each VQVAE, we then train a range of WM-Token model sizes N ∈
[0.08M, 0.2M, 0.28M, 0.54M, 0.99M ], and measure scaling coefficients using the frontier fit
method – see Figure 14 for training curves.

First, we observe that scaling laws similar to those in our main set of experiments emerge for all VQ-
VAEs, with predictably decreasing losses and similar optimal parameter scaling coefficients (0.56 to
0.65 in Figure 14).

Secondly, we observe that the optimal parameter scaling coefficient increases with increasing num-
bers of tokens per image. To verify this, we repeated three times, and in Figure 13 plot all coeffi-
cients. This supports our claim that a higher compression rate leads to a lower optimal parameter
coefficient.
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Figure 13: RT-1 experiments. Optimal parameter coefficient vs. number of tokens per observation,
with three repeated runs per VQVAE.
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zo = 16, Noptimal ∝ C0.56, Noptimal ∝ D0.44
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zo = 36, Noptimal ∝ C0.60, Noptimal ∝ D0.40
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zo = 64, Noptimal ∝ C0.61, Noptimal ∝ D0.39
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zo = 100, Noptimal ∝ C0.60, Noptimal ∝ D0.40
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zo = 256, Noptimal ∝ C0.65, Noptimal ∝ D0.34
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Figure 14: RT-1 experiments. Note that the optimal parameter coefficient increases with the number
of tokens per observation.
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E PRE-TRAINING LOSS AND PERFORMANCE

This section presents evidence for pre-training loss correlating with agent performance.

E.1 PRE-TRAINING LOSS VS. WORLD MODELING METRICS

We use metrics commonly used to assess the quality of the world models (Yang et al., 2023), orig-
inally developed in the video generation literature. Conditioned on an initial real frame and a se-
quence of real actions, we compare the observations generated by the world model, with the real
sequence of observations, measuring FVD, LPIPS and PSNR. Specifically, we generate 1024 videos
each of 10 seconds. We perform this for various checkpoints on each size in our WM-Token-256 set
of models. This allows a plot of the checkpoint pre-training loss vs video generation metric to be
assessed.

Figure 15 shows results. We find correlations of 0.77, -0.57, 0.83 for LPIPS, PSNR, FVD respec-
tively. This evidences the strong relationship between pre-training loss and world model quality.
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Figure 15: WM-Token-256 pre-training loss vs. video generation metrics. Pearson correlation of
0.77, -0.57, 0.83 is found for LPIPS, PSNR, FVD respectively.

E.2 BEHAVIORAL CLONING META-ANALYSIS

We conducted a meta-analysis of Tuyls et al. (2023) to quantify the strength of relationship between
pre-training loss and online return. This is possible in their set up for two reasons. 1) Tuyls et al.
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use a simple environment that can be run cheaply as a gym environment, so all checkpoints can be
evaluated. 2) Tuyls et al.’s data generating policy is an expert rules-based policy, so BC necessarily
leads to an expert agent.

By pairing data points from Figure 5a and b of Tuyls et al. (2023), we plot pre-training loss vs.
online return in Figure 16. This produces a correlation coefficient of -0.97, which provides strong
evidence that in the infinite data regime, pre-training loss is a good proxy for online performance.
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Figure 16: Meta analysis of Tuyls et al. (2023), assessing strength of the relationship between pre-
training loss and online return. This came out to a Pearson correlation coefficient of -0.97.
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