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Abstract
While a large amount of work has focused on
designing adversarial attacks against image clas-
sifiers, only a few methods exist to attack seman-
tic segmentation models. We show that attack-
ing segmentation models presents task-specific
challenges, for which we propose novel solutions.
Our final evaluation protocol outperforms existing
methods, and shows that those can overestimate
the robustness of the models. Additionally, so
far adversarial training, the most successful way
for obtaining robust image classifiers, could not
be successfully applied to semantic segmentation.
We argue that this is because the task to be learned
is more challenging, and requires significantly
higher computational effort than for image classi-
fication. As a remedy, we show that by taking ad-
vantage of recent advances in robust IMAGENET
classifiers, one can train adversarially robust seg-
mentation models at limited computational cost
by fine-tuning robust backbones.

1. Introduction
The vulnerability of systems based on neural networks to
adversarial perturbations, that is small changes in the input
can drastically modify the output of the models, is now well-
known (Biggio et al., 2013; Szegedy et al., 2014; Grosse
et al., 2016; Jin et al., 2019). A large amount of work has
been dedicated to developing adversarial attacks in several
threat models for image classification, including ℓp-bounded
perturbations (Carlini and Wagner, 2017; Chen et al., 2018;
Rony et al., 2019), sparse attacks (Brown et al., 2017; Croce
et al., 2022), and those defined by perceptual metrics (Wong
et al., 2019; Laidlaw et al., 2021). At the same time, evalu-
ating the adversarial robustness in semantic segmentation,
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arguably a very relevant vision domain, has received signif-
icantly less attention. While a few early works (Xie et al.,
2017; Hendrik Metzen et al., 2017; Arnab et al., 2018) have
proposed methods to generate adversarial attacks in differ-
ent threat models, Gu et al. (2022); Agnihotri and Keuper
(2023) have recently shown that even for the most popular
ℓ∞-bounded attacks significant improvements are possible.
In particular, they suggest that the PGD attack (Madry et al.,
2018), which is commonly used against image classifiers,
with the sum of pixelwise cross-entropy losses as objective
function might not be suitable for the case of semantic seg-
mentation: in fact, the key difference to image classification
is that for semantic segmentation we have to flip the pre-
dictions of all pixels instead of just the prediction for the
image.

In this work, we make significant progress towards a bet-
ter adversarial robustness evaluation in semantic segmenta-
tion: first, we propose novel loss functions and optimization
schemes for this domain which are better suited to the task
of flipping all pixelwise predictions; second, observing that
these losses have complementary properties and thus are
successful on different images, we assemble them for a more
reliable robustness evaluation, similar to AutoAttack (Croce
and Hein, 2020) for image classification, into Segmentation
Ensemble Attack (SEA) and use the worst-case across at-
tacks. With our SEA we show that clean and robust semantic
segmentation models can be more than 10% less robust in
average pixel accuracy and up to 6% lower in mIOU than
suggested by existing attacks (Gu et al., 2022; Agnihotri
and Keuper, 2023). For detailed overview of literature on
the robustness of semantic segmentation see App. D.

We are also interested in advancing the state-of-the-art in
robust semantic segmentation. For image classification the
most successful methods (Rebuffi et al., 2021; Wang et al.,
2023) are based on adversarial training (Madry et al., 2018).
However, for semantic segmentation Gu et al. (2022) could
find only limited improvement in robustness using adver-
sarial training compared to standard models. We show that
obtaining robust segmentation models with adversarial train-
ing is indeed possible but requires larger computational
effort: in fact, more epochs and attacks steps are needed.
However, we show that the training effort can be signifi-
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Figure 1: Effect of adversarial attacks on semantic segmentation models. For an image from the ADE20K validation
set (first column, original image and ground truth mask), we show the image perturbed by targeted ℓ∞-attacks with size
ϵ∞ = 2/255 and target classes “grass” and “sky”, and the resulting predicted segmentation maps. For a standard (clean)
model, the attack is highly successful, whereas for our adversarially trained robust model the attack leads only minimal
changes of the the segmentation. We use targeted attacks for illustration but untargeted attacks in the rest of the paper.

cantly reduced by leveraging recent advances in training
robust models on IMAGENET (Debenedetti, 2022; Singh
et al., 2023; Liu et al., 2023). By initializing the backbone of
our segmentation model with a robust ConvNeXt, adversari-
ally pre-trained on IMAGENET, we achieve similar or better
adversarial robustness at up to 6 times lower computational
cost than models trained with clean initialization.

Contributions. As a summary (see also an illustration in
Fig. 1), in this work

• we propose novel loss functions to generate adversar-
ial attacks against semantic segmentation, show how to
adapt the optimization algorithms to significantly im-
prove their efficiency, and validate the findings in exten-
sive experiments.

• we propose Segmentation Ensemble Attack (SEA), an
ensemble of attacks based on complementary losses for
the ℓ∞ threat model, which improves significantly over
each individual attack.

• we show how to leverage existing robust image classi-
fiers to achieve adversarially robust segmentation mod-
els at reduced training time. To our knowledge, this
provides the SOTA robust models on PASCAL-VOC (Ev-
eringham et al., 2010) and the first ones on ADE20K
(Zhou et al., 2019).

2. Adversarial Robustness of Semantic
Segmentation Models

In the following we discuss details about the experimental
setup focused on the ℓ∞-threat model. We postpone the
discussion on threat model and metric selection to App. E.

Setup. The goal of semantic segmentation consists in classi-
fying each pixel of a given image into the available classes
(corresponding to different objects or background). We
denote a segmentation model f : Rw×h×c −→ Rw×h×K ,
which for an image x of size w×h (and c color channels) re-
turns z = f(x), where zij ∈ RK contains the score of each
of the K classes for the pixel xij . Then, similar to image
classification, the class predicted by f for xij is given by
mij = argmax

k=1,...,K
zijk, and m ∈ Rw×h is the segmentation

map of x. Assuming access to ground truth map y ∈ Rw×h,
one can compute the average pixel accuracy of f for x as
1

w·h
∑

i,j I(mij = yij). Then, the goal of an adversarial
attack on f is to reduce its segmentation performance. This
can be formalized as solving

min
δ

1

w · h
∑
i,j

I(argmax
k

f(x+ δ)ijk = yij) (1)

s. th. ∥δ∥p ≤ ϵ, x+ δ ∈ [0, 1]w×h×c

where one wants to minimize the number of correctly clas-
sified pixels with perturbations of bounded ℓp-norm and
remaining in the image domain. Since the objective func-
tion in Eq. (1) is non-differentiable, it is common to rephrase
the problem as

max
δ

1

w · h
∑
i,j

L(f(x+ δ)ij ,yij) (2)

s. th. ∥δ∥p ≤ ϵ, x+ δ ∈ [0, 1]w×h×c

where L : RK × R −→ R is a (almost everywhere) smooth
function whose maximization induces misclassification: this
can then be (approximately) solved by standard techniques
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for constrained optimization such as projected gradient de-
scent (PGD). Designing surrogate losses specific for seg-
mentation models is one of the key challenges to obtain
effective attacks. In this work we focus on the ℓ∞-threat
model, which means that every pixel of an input image can
be modified independently.

3. Adversarial Attacks on Segmentation
Models

Before developing methods to obtain adversarially robust
models, it is necessary to have effective attacks to test their
robustness. Projected gradient descent (PGD) (Madry et al.,
2018), together with its variants, is the most popular choice
to solve the optimization problem in Eq. (2). In fact, PGD
is also the basis of the existing attacks for semantic seg-
mentation of Gu et al. (2022); Agnihotri and Keuper (2023),
which we show (Table 4 in App. C.1) yields weaker attacks
as opposed to APGD (Croce and Hein, 2020).

3.1. Loss functions

In the case of semantic segmentation an attacker wants to
get as many pixels as possible to be misclassified. This is
exemplified by the objective function in Eq. (1) consisting
in the sum of pixelwise losses. However, this sum of losses
can give rise to conflicting descent directions for different
pixels, which can hinder the optimization. In the following
we give a short overview of the loss functions which have
been used in the literature and the ones which we propose
as new alternatives. We denote u ∈ RK the logits of each
pixel, and y ∈ N its correct label. Moreover, given u, we
indicate as p ∈ RK the predicted probability distribution via
the softmax function: pr = eur/

∑K
l=1 e

ul , r = 1, . . . ,K.

Losses used in literature for segmentation attacks

Cross-entropy (CE): the most common choice as objec-
tive function in PGD based attacks is the cross-entropy
between the one-hot encoding of the ground truth label and
the softmax of the logits, i.e. LCE(u, y) = − log py =

−uy + log
(∑K

j=1 e
uj

)
. The cross-entropy loss is un-

bounded, which is problematic for semantic segmentation
as already misclassified pixels will still be optimized instead
of focusing on still correctly classified pixels (see discussion
for the Jensen-Shannon-divergence).
Balanced cross-entropy: Gu et al. (2022) propose to bal-
ance the importance of the cross-entropy loss of correctly
and wrongly classified pixels over iterations. In particular, at
iteration t = 1, . . . , T , they use, with λ(t) = (t− 1)/(2T ).
Let j∗ = argmax

j=1,...,K
uj , then the loss can be defined as

LBal-CE(u, y) =(
(1− λ(t)) · Ij∗=y + λ(t) · Ij∗ ̸=y

)
· LCE(u, y)

In this way the algorithm first focuses only on the correctly
classified pixels and then progressively balances the atten-
tion on the two subset of pixels: this has the goal of avoiding
to make updates which find new misclassified pixels but
leads to correct decisions for already misclassified pixels.
Weighted cross-entropy: Agnihotri and Keuper (2023)
propose to weigh the importance of the pixels via cosine
similarity between the prediction vector (post-applying the
sigmoid function σ(t) = 1/(1+e−t)) and one-hot encoding
ey of the ground truth class. This can be written as

LCosSim-CE(u, y) =
⟨σ(u), ey⟩

∥σ(u)∥2 ∥ey∥2
· LCE(u, y)

= σ(uy)/ ∥σ(u)∥2 · LCE(u, y)

and again has the effect of reducing the importance of the
pixels which are confidently misclassified.

Novel losses for attacks on semantic segmentation

Masked cross-entropy: in order to avoid over-optimizing
misclassified pixels one can apply a mask which excludes
such pixels from the loss computation, that is

LMask-CE(u, y) = I(argmax
j=1,...,K

uj = y) · LCE(u, y).

The downside of using such a mask is that the loss becomes
discontinuous and ignoring misclassified pixels might lead
to changes which revert back wrongly classified pixels into
correctly classified ones with the danger of creating a situa-
tion where one starts oscillating. We note that Hendrik Met-
zen et al. (2017) proposed, for targeted attacks, to not op-
timize the loss for pixels already classified into the target
class with confidence higher than a fixed threshold. Sim-
ilarly Xie et al. (2017) did not include the pixels already
belonging to the target class in the loss computation for
unconstrained attacks. However, the masked CE-loss has
not been thoroughly explored for ℓ∞-bounded untargeted
attacks.
Jensen-Shannon (JS) divergence: an intermediate behav-
ior between losses which do not consider whether the attack
is successful on a certain pixel and the classification mask
used above would adjust the importance in the updates of
each pixel depending on the confidence in the correct class.
Given two distributions p and q, the Jensen-Shannon diver-
gence is defined as

DJS(p ∥ q) = (DKL(p ∥m) +DKL(q ∥m)) /2

with m = (p+ q)/2

where DKL indicates the Kullback–Leibler divergence. If
we assume p to be the softmax output of the logits u and
q the one-hot encoding of the target y, we get LJS(u, y) =
DJS(p ∥ q). Since DJS measures the similarity between
the two distributions p and q, maximizing LJS drives the
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prediction of the model away from the ground truth. Unlike
the KL divergence or the CE loss, the JS divergence is
bounded, which means that the influence of every pixel is
limited. In particular, it has the following property (see App.
A for a proof)

lim
py→0

∂LJS(u, y)

∂ut
= 0, for t = 1, . . . ,K

In contrast, the CE loss has a non-zero gradient if py → 0:
thus, even clearly misclassified pixels still influence the
optimization of the loss, hence one has to use masking.
For the JS-divergence this is not necessary as misclassified
pixels with py being small do not significantly influence the
gradient, and thus the attack can focus on pixels which are
not successfully perturbed yet without any mask.
Masked spherical loss: using the softmax output of a clas-
sifier can make, in some circumstances, the attack (partially)
fail or weaker (Croce and Hein, 2020). A more direct ap-
proach is to directly minimize the logit of the correct class.
However, we found it to work better when projecting the
logits on the unit sphere: this recovers the structure of the
spherical scoring rule (Bickel, 2007) which is a proper multi-
class loss. We hypothesize that the projection first brings
the logits of different pixels on the same scale, which bal-
ances the gradients deriving from each of them, and, second,
involves the logits of all classes in the loss as part of the
denominator. Since this loss is directly targeted to mis-
classification, we use it in combination with the mask for
misclassified pixels:

LMask-Sph. = −I(argmax
j=1,...,K

uj = y) · uy/ ∥u∥2 .

3.2. Complementary performance of different losses for
varying attack radii

In Table 1 we compare the effectiveness of the attacks (all
using APGD) based on existing or proposed losses for a
standard and an adversarially trained semantic segmentation
model on PASCAL-VOC (details in Sec. 4). We are mainly
interested in the attack performance across different radii ϵ
for the ℓ∞-threat model. We note that the best attack/loss
depends on the radius, and is almost always achieved by one
of our novel proposed losses. In particular, existing attacks
have problems when using large ϵ values, as already ob-
served in (Agnihotri and Keuper, 2023). When considering
the image-wise worst attack regarding accuracy, we see that
there is quite a gap between the worst-case over all attacks
and the best single attack. This motivates our ensemble of
attacks discussed next.

3.3. Segmentation Ensemble Attack (SEA)

Progressive radius reduction. In Table 1 we see that the
worst case over losses is significantly lower than each in-
dividual attack. Besides the complementarity of the losses,

this suggests that the optimization algorithm faces some
issue regardless of the objective function, and can get stuck
in suboptimal local minima. At the same time, increasing
the perturbation set, i.e. larger ϵ∞, reduces robust accuracy,
which means that the gradient information provided by the
models are still valid (no gradient masking is occurring).
Thus, we take inspiration from Croce and Hein (2021), who
adapted APGD to the ℓ1-threat model to tackle the difficul-
ties in optimizing the perturbations. In the case of semantic
segmentation, we hypothesize that jointly optimizing the
loss of thousands of pixels raises similar issues, and thus
we adapt this technique to our task: we split the budget of
iterations into three slots (with ratio 3 : 3 : 4) where we run
the attack with 2 ·ϵ∞, 1.5 ·ϵ∞ and ϵ∞ respectively. The best
adversarial attack found during each stage is then projected
onto the smaller ℓ∞-ball to start the algorithm in the next
stage.

Radius reduction vs more iterations. To assess the effec-
tiveness of the scheme with progressive reduction of the
radius ϵ (red-ϵ) described above, we compare it with 300
iterations to the original APGD scheme (const-ϵ) of either
300 iterations or 100 iterations and 3 random restarts, so that
all schemes have the same computational budget. We show
in Fig. 2 (in the Appendix) the robust accuracy achieved
by the three attacks with different objective functions, for
ϵ∞ ∈ {8/255, 12/255}, on the adversarially trained model
on PASCAL-VOC. One can observe that the red-ϵ APGD
yields the best results (lowest accuracy) for almost every
case, with large improvements especially at ϵ∞ = 12/255.
This suggests that this scheme is better suited for generating
stronger attacks on semantic segmentation models than com-
mon options used in image classification like more iterations
or random restarts.

Final scheme. Distilling the findings of the complementary
nature of the various losses at different robustness levels and
the improvement in the optimization algorithm provided by
the scheme with progressive radius shrinkage, we propose
Segmentation Ensemble Attack, or SEA, as an evaluation
protocol for segmentation models. It includes four runs
of 300 iterations with red-ϵ APGD optimizing each of the
four best losses found above, namely LMask-CE, LBal-CE, LJS
and LMask-Sph. The motivation for this choice comes from
the fact that the worst-case over these four losses leads to
maximum 0.1% higher robust average accuracy or mIOU
than using all six losses, and thus the two left-out losses,
LCE and LCosSim-CE, do not add much further value (see App.
C.2). For more analysis see App. C.2.

4. Adversarially Robust Segmentation Models
In the following we discuss methods for robust segmenta-
tion models presented by prior work, and propose to take
advantage of pre-trained robust classifiers to obtain robust
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Table 1: Comparison of losses at different robustness levels. We use each of the losses discussed in Sec. 3.1 as objective
in APGD with 100 iterations on one clean and one robust model. We report average pixel accuracy and mIOU (clean
performance is indicated next to the model name). Depending on the radius ϵ∞, the best results are realized by different
losses. The worst-case over all runs is often significantly lower than each individual one.

ϵ∞
losses used in prior works proposed losses Worst case

LCE LBal-CE LCosSim-CE LJS LMask-CE LMask-Sph. over losses

Clean model (93.4 77.2)

0.5/255 49.3 25.1 42.3 18.5 46.9 24.0 39.4 18.3 36.9 14.9 37.5 14.5 32.5 12.1
2/255 7.4 4.0 2.9 1.5 3.4 2.3 0.5 0.4 0.3 0.2 0.1 0.1 0.1 0.0

Adversarially trained classifier (92.7 75.9)

4/255 88.9 65.7 88.7 64.8 88.9 65.4 88.4 64.8 88.9 65.6 90.4 69.7 88.3 64.4
8/255 78.9 48.9 74.2 41.3 77.8 47.3 75.3 43.5 74.6 41.8 80.3 49.6 72.3 38.4
12/255 59.9 28.9 43.3 14.9 56.6 26.4 45.1 18.6 38.8 13.2 38.9 12.1 31.9 8.4
16/255 41.5 18.1 20.7 5.7 34.0 15.3 19.1 7.4 12.9 3.4 8.4 2.0 6.4 1.1

segmentation models. Standard adversarial training is done
and all evaluations are carried out with our SEA on the
entire validation set, see App. B for details.

4.1. Existing work on adversarially robust semantic
segmentation models

As mentioned above, unlike for image classification, only
a few works have applied adversarial training to obtain ro-
bust segmentation models. Gu et al. (2022) do adversarial
training with 3 or 7 steps of their SegPGD at ϵ∞ = 8/255,
using a ResNet-50 as backbone in a PSPNet (Zhao et al.,
2017) architecture. However, the obtained adversarial ro-
bustness, see upper part of Table 2, is relatively low. Since
the models are not available, we can only show the robust-
ness values reported in their paper which are based on the
original SegPGD attack and not evaluated using SEA, but
one can see that the improvement in mIOU provided by AT7

is smaller than 14% compared to the clean model. More-
over, under the evaluation with SEA our clean model has
no robustness already at ϵ = 4/255 , suggesting that the
reported robustness for the models from Gu et al. (2022)
might be overestimated and would significantly decrease
with SEA.

4.2. Robust models via robust initialization

Since Liu et al. (2022) showed that their ConvNeXt, one of
the currently most popular architectures for vision tasks, is
very effective also for semantic segmentation, we use it as
backbone in UPerNet (Xiao et al., 2018b). Moreover, Singh
et al. (2023) have recently shown substantial improvements
in adversarial training on IMAGENET using the ConvNeXt
architecture. We use here ConvNeXt-T (similar size as
ResNet-50), and present the results for larger ConvNeXt
backbones in App. C.3.

PASCAL-VOC. Table 2 reports the statistics about the ro-
bustness of the various models trained on PASCAL-VOC.
First, we use a ConvNeXt given by clean pre-training on
IMAGENET as initialization for the backbone (the decoder
is randomly initialized). When using 2 steps of PGD for
generating the perturbations for training (denoted as AT2),
50 epochs of adversarial training are not sufficient to achieve
non-trivial robustness. However, increasing the length of
training to 300 epochs makes the model significantly more
robust, suggesting that learning robust segmentation models
is a challenging problem. Then, in order to give a warm start
to the training algorithm, we initialize the backbone with a
robust image classifiers, adversarially trained on IMAGENET
at ϵ∞ = 4/255. 50 epochs of AT2 from robust initializa-
tion leads to 86.7% of robust accuracy at ϵ∞ = 4/255, and
above 50% at ϵ∞ = 8/255 (while having only 0.5% lower
clean accuracy than the clean model which has 0% robust-
ness). This is significantly better than using 300 epochs
from clean initialization. Moreover, it already exceeds, even
compared to their original evaluation, the results reported
by Gu et al. (2022). We further test the effect of increasing
the number of steps for training from 2 to 5 (AT5), which
doubles the computational cost per epoch. In this case,
even 50 epochs from clean initialization give a model with
good robustness, which again improves with 300 epochs.
Even with AT5, using the robust initialization allows us to
match (or outperform at large ϵ values) with 50 epochs the
robustness of the models with clean initialization and 300
epochs. This shows that robust classifiers, commonly avail-
able, can significantly help in reducing the cost of getting
robust segmentation models. Finally, our models show more
than 2x higher robustness than reported in Gu et al. (2022).
Interestingly, the large gains in robustness do not degrade
much the clean performance, which is a typical drawback
of adversarial training.
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Table 2: Comparison of training schemes for PASCAL-VOC. For each model and ϵ∞ value we report robust average pixel
accuracy (white background columns) and mIoU (grey background columns) given by our SEA. * indicates that the result is
taken from the original paper (since the model is not available) and obtained using a weaker attack.

Training scheme 0 4/255 8/255 12/255 16/255

PSPNet with ResNet-50 backbone (previous works)

clean (Gu et al., 2022) – 76.6 – – – 3.4* – – – –
AT3 (Gu et al., 2022) – 75.4 – – – 10.3* – – – –
AT7 (Gu et al., 2022) – 74.4 – – – 17.0* – – – –

UPerNet with ConvNeXt-T backbone (ours)

clean 93.4 77.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AT2 clean init. 50 ep. 93.4 77.4 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
AT2 clean init. 300 ep. 93.1 76.3 86.5 59.6 44.1 16.6 4.6 0.1 0.0 0.0
AT2 robust init. 50 ep. 92.9 75.9 86.7 60.8 50.2 21.0 9.3 2.4 0.8 0.3

AT5 clean init. 50 ep. 91.9 73.1 86.2 59.2 64.6 28.3 20.7 4.9 2.0 0.4
AT5 clean init. 300 ep. 92.8 75.5 88.6 64.4 71.4 37.7 23.4 6.6 2.7 0.6
AT5 robust init. 50 ep. 92.7 75.2 88.3 63.8 71.2 37.0 27.4 8.1 4.2 0.9

Table 3: Comparison of training schemes for ADE20K. We repeat the evaluation from Table 2 on ADE20K, for which
no previous work presented robust models. Robust ACC and mIOU evaluated with SEA are shown for UPerNet with
ConvNeXt-T backbone.

Training scheme 0 4/255 8/255 12/255

clean 128 ep. 75.5 41.1 0.0 0.0 0.0 0.0 0.0 0.0

AT5 clean init. 128 ep. 68.0 26.1 52.4 14.0 24.7 4.7 2.4 0.3
AT5 robust init. 32 ep. 68.8 25.2 55.4 15.6 28.3 5.9 3.8 0.7
AT5 robust init. 128 ep. 70.5 31.7 55.6 18.6 26.4 6.7 3.3 0.8

ADE20K. We further test the effectiveness of our scheme
for obtaining robust models on the more challenging
ADE20K dataset, with 150 object classes compared to 20
of PASCAL-VOC. We remark that, we train our models to
predict also a background class, and similarly the attacks
can use it to induce misclassification. Similar to PASCAL-
VOC, Table 8 in App. C.3 one can see that 128 epochs (used
following Liu et al. (2022)) of AT2 from clean initialization
are not sufficient to obtain a robust model, while they are
with robust initialization. For AT5 in Table 3, the model
initialized with the robust backbone has higher clean and
robust performance than that with standard backbone.

To test whether the robust initialization allows us to save
training time, we additionally report (in Table 3) a model
trained for only 32 epochs: it outperforms the one from
clean initialization with 4x lower computational cost. More-
over, it has similar performance to the model with 128
epochs and robust initialization in the target threat model
(ϵ = 4/255), while it trades-off some clean performance for
robustness at higher radii (longer training can fit better the
training data, improving clean accuracy). We highlight that
ours are the first adversarially trained models reported for

ADE20K, which explains the lack of baselines.

5. Conclusion
We have shown that adversarial attacks on semantic segmen-
tation models can be improved by adapting the optimization
algorithms and objective functions, developing SEA, an
ensemble of attacks which outperforms existing methods.
This may open new research directions, for example for
losses which take into account the interaction of neighboring
pixels or directly target mIOU to achieve stronger attacks.
Moreover, we could train segmentation models with SOTA
robustness, even at limited computational cost by taking
advantage of adversarially pre-trained image classifiers. It
will be interesting to test the effect of applying our method
to other architectures.

Limitations. We consider SEA an important step towards
strong evaluation of robustness for semantic segmentation
models. However, as shown for image classification (Croce
and Hein, 2020), PGD-based attacks should be comple-
mented by white-box attacks of different type and especially
black-box methods.
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