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ABSTRACT

Deep spectral kernels are constructed by hierarchically stacking explicit spectral
kernel mappings derived from the Fourier transform of the spectral density func-
tion. This family of kernels unifies the expressive power of hierarchical architec-
tures with the ability of the spectral density in revealing essential patterns within
data, helping to understand the underlying mechanisms of models. In this paper,
we categorize most existing deep spectral kernel models into four classes based on
the stationarity of spectral kernels and the compositional structure of their asso-
ciated mappings. Building on this taxonomy, we rigorously investigate two ques-
tions concerning the general characterization of deep spectral kernels: (1) Does
the deep spectral kernel retain the reproducing property during the stacking pro-
cess? (2) In which class can the reproducing kernel Hilbert space (RKHS) induced
by the deep spectral kernel expand with increasing depth? Specifically, the behav-
ior of RKHS is related to its associated spectral density function. This means that
we can implement the deep spectral kernel by directly resampling from an adap-
tive spectral density. These insights motivate us to propose the generative spectral
kernel framework, which directly learns the adaptive spectral distribution by gen-
erative networks. This method, with the single-layer spectral kernel architecture,
can: (1) generate an adaptive spectral density and achieve deep spectral kernel per-
formance; (2) circumvent the optimization challenges introduced by multi-layer
stacking. Experimental results on the synthetic data and several real-world time
series datasets consistently validate our findings.

1 INTRODUCTION

The spectral kernel, derived from the inverse Fourier transform via Bochner’s theorem Bochner
(1959) or Yaglom’s theorem Yaglom (1987), can naturally realize complex-valued spectral kernel
mappings, consequently analyzing the data in the frequency domain. At its core lies the spectral
density, which is in one-to-one correspondence with the spectral kernel and can effectively uncover
underlying patterns within the data. Based on Bochner’s theorem, Rahimi and Recht Rahimi &
Recht (2007) introduced the spectral representation of stationary kernels. This seminal work in-
spired a proliferation of subsequent research, such as sparse spectral kernel Lázaro-Gredilla et al.
(2010) and spectral mixture kernel Wilson & Adams (2013). These approaches primarily relied on
stationary kernels, which depend solely on the distance ∥x−x′∥ between data x and x′. Therefore,
they fail to capture richer information in the feature space beyond the simple similarity. To deal
with more complex data patterns and tasks, Remes et al. Remes et al. (2017) generalized stationary
spectral kernels to non-stationary scenarios by defining the spectral density as a mixture of bivariate
Gaussian components. This advancement enables the kernels to capture input-dependent patterns as
well as long-range dependencies of data, significantly enhancing their modeling capacity.

Benefiting from the remarkable success of the hierarchical architecture in deep neural networks, re-
searchers have integrated this architecture into spectral kernels, leading to the development of deep
spectral kernel learning techniques. By stacking explicit spectral kernel mappings, these methods
unify the expressive power of hierarchical architectures with the ability of the spectral density in
revealing essential patterns within data, providing a principled perspective for understanding the
underlying mechanisms of models. Studies Mehrkanoon et al. (2017); Zhang et al. (2017) prelim-
inarily constructed deep spectral kernels by employing an alternating sequence of random Fourier
features and linear projections over multiple layers. Subsequently, this framework was extended to
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a deeper architecture Mehrkanoon & Suykens (2018) and a more compact version Xie et al. (2019).
Meanwhile, Xue et al., Xue et al. (2019) generalized the deep spectral kernel with stationary kernels
to non-stationary kernels based on Yaglom’s theorem. This work inspired a considerable body of
work focused on constructing deep spectral kernels using non-stationary kernels Li et al. (2020); Xue
et al. (2023); Li et al. (2022); Tian et al. (2024), which laid the groundwork for further innovations.

By jointly considering the stationarity (stationary or non-stationary) of spectral kernels and the com-
positional structure (removal or concatenation)1 of their associated mappings, existing deep spectral
kernel models can be systematically categorized into four classes. Building upon this categorization,
we present a rigorous investigation of two questions concerning the general characterization of deep
spectral kernels: (1) Does the deep spectral kernel retain the reproducing property during the stack-
ing process? (2) In which class can the RKHS of the deep spectral kernel expand with increasing
depth? Analysis results reveal that all classes of deep spectral kernels preserve the reproducing prop-
erty. Furthermore, when the corresponding mapping is compositionally structured by concatenating
the real and imaginary components, the induced RKHS is indeed expanding as the number of layers
increases. Remarkably, the progressive expansion of RKHS induced by the deep spectral kernels is
intrinsically related to its associated spectral density function. This implies that the deep spectral
kernel can be implemented by resampling from an adaptive spectral density function. Motivated by
this insight, we propose a novel deep spectral kernel learning framework, termed generative spectral
kernel (GensKer), which learns an adaptive spectral density via a generative network. This method
possesses two principal advantages: (1) it is capable of generating an adaptive spectral density and
thus attaining deep spectral kernel performance using a single-layer spectral kernel architecture. (2)
This architecture enables the proposal to circumvent the optimization challenges induced by stacked
periodic functions in deep spectral kernels. Our contributions are:

• We present a rigorous investigation central to the reproducing property of deep spectral
kernels and the progressive expansion of their associated RKHSs.

• We introduce a novel deep spectral kernel framework, which directly samples from a gen-
erated adaptive spectral density to implement the construction of the deep spectral kernel.

• We perform systematic experiments on synthetic data and six real-world time series
datasets to verify our findings and proposed method.

2 PRELIMINARY

2.1 SPECTRAL KERNEL

Spectral kernels, constructed from the inverse Fourier transform, can naturally realize complex-
valued spectral kernel mappings, consequently analyzing the data in the frequency domain. These
kernels can be broadly classified into two categories: (1) stationary spectral kernels, formulated from
Bochner’s theorem; and (2) non-stationary spectral kernels, derived from Yaglom’s theorem.

Theorem 1 (Bochner’s Theorem) Bochner (1959) A stationary kernel k(x,x′) = k(x − x′) on
Rd is positive definite if and only if it is the Fourier transform of a non-negative measure, such that:

k(x− x′) =

∫
Rd

s(ω)eiω(x−x′)dω, s(ω) =

∫
Rd

k(x− x′)e−iω(x−x′)d(x− x′), (1)

where s(ω) is the spectral density of a non-negative measure.

Theorem 2 (Yaglom’s Theorem) Yaglom (1987) A continuous kernel k(x,x′) is positive definite
if and only if it admits the following form:

k(x,x′) =

∫
Rd×Rd

ei(ωx−ω′x′)s(ω,ω′)dωdω′, s(ω,ω′) =

∫
Rd×Rd

e−i(ωx−ω′x′)k(x,x′)dxdx′, (2)

where s(ω,ω′) is the positive semi-definite bounded variation spectral density of a Lebesgue-
Stieltjes measure.

Theorem 1 and Theorem 2 establish a bijective correspondence between spectral kernels and their
spectral densities. This duality reveals that every spectral kernel admits a unique spectral density.

1The former denotes removing the imaginary component, while the latter represents concatenating the real
and imaginary components.
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2.2 DEEP SPECTRAL KERNEL

Definition 1 (Deep Spectral Kernel) Let k(x,x′) = Eω[zω(x)zω(x
′)∗] ≈ ⟨ϕ(x), ϕ(x′)⟩H be a

general kernel, zω(x)zω(x′)∗ constitutes an unbiased estimator of k(x,x′) under the spectral dis-
tribution (s(ω) or s(ω,ω′)). ϕ(·) denotes an explicit spectral kernel mapping, and H is a Hilbert
space. The deep spectral kernel with L layers is defined by:

kL(x,x′) = ⟨ϕL(ϕL−1 · · ·ϕ1(x)), ϕL(ϕL−1 · · ·ϕ1(x′))⟩. (3)

Definition 1 indicates that the core of deep spectral kernels lies in the design of explicit spectral
kernel mappings. These mappings are inherently complex-valued and can be obtained by employ-
ing the Monte Carlo sampling scheme based on equation 1 and equation 2. To ensure real-valued
kernel evaluations, two compositional structures are commonly employed, including removal and
concatenation. As a result, four classes of spectral kernel mappings are formulated by:

ϕs,w/o(x) =
1√
2M

cos(Ω⊤x), ϕns,w/o(x) =
1√
4M

[cos(Ω⊤x) + cos(Ω′⊤x)],

ϕs,c(x) =
1√
2M

[
cos(Ω⊤x)
sin(Ω⊤x)

]
, ϕns,c(x) =

1√
4M

[
cos(Ω⊤x) + cos(Ω′⊤x)
sin(Ω⊤x) + sin(Ω′⊤x)

]
,

(4)

where ϕs,w/o(·) and ϕs,c(·) denote the stationary spectral kernels in the removal and concatenation
scenarios, respectively. Ω = [ω1,ω2, · · · ,ωM ] denotes the frequency matrix, where {ωi}Mi=1 are
identically and independently distributed (i.i.d.) and are sampled from s(ω). Similarly, ϕns,w/o(·)
and ϕns,c(·) correspond to non-stationary spectral kernels, whose frequency pairs (ωi,ω

′i)i = 1M

are drawn i.i.d. from s(ω,ω′) to form the frequency matrices Ω and Ω′. M is the sampling number.

3 THEORETICAL ANALYSIS OF THE TWO QUESTIONS

3.1 REPRODUCING PROPERTY OF DEEP SPECTRAL KERNELS

The condition for preserving the reproducing property of functions was initially explored as early as
1995 in FitzGerald et al. (1995). The classical result is presented in Lemma 1.

Lemma 1 FitzGerald et al. (1995) Let g(·) be a function on C. Then for any reproducing kernel k,
g(k) remains a reproducing kernel if and only if g(·) is holomorphic on C and all the coefficients in
its Maclaurin series are nonnegative.

Following the formulation in Lemma 1, we formally define the stacking of deep spectral kernels as:

kL(x,x′) = g(kL−1(x,x′)), L ≥ 2. (5)

The analysis then reduces to specifying the function g(·) for each of the four classes of deep spectral
kernels and subsequently verifying their validity under the conditions of Lemma 1. The results are
presented in the following Proposition 1 and Proposition 2.

Proposition 1 For stationary spectral kernels in the removal and concatenation scenarios, their as-
sociated spectral kernel mappings are defined by: ϕs,w/o(x) = [cos(ω⊤

1 x), · · · , cos(ω⊤
Mx)]⊤ and

ϕs,c(x) = [cos(ω⊤
1 x), · · · , cos(ω⊤

Mx), sin(ω⊤
1 x), · · · , sin(ω⊤

Mx)]⊤, respectively, and {ωi}Mi=1 ∼
N (0, σ2I). The corresponding deep spectral kernels kLs,w/o(x,x

′) and kLs,c(x,x
′) is formulated

as:
kLs,w/o(x,x

′) = CL−1
s,w/o cosh(σ

2(kL−1
s,w/o(x,x

′))), L ≥ 2,

CL−1
s,w/o =

1

2
[e−

∥ϕL−1
s,w/o

···ϕ1
s,w/o

(x)∥22+∥ϕL−1
s,w/o

···ϕ1
s,w/o

(x′)∥22
2 σ2

],
(6)

and
kLs,c(x,x

′) = CL−1
s,c exp(σ2(kL−1

s,c (x,x′))), L ≥ 2,

CL−1
s,c =

1

2
[e−

∥ϕL−1
s,c ···ϕ1

s,c(x)∥22+∥ϕL−1
s,c ···ϕ1

s,c(x
′)∥22

2 σ2

].
(7)
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Proof 1 The proof is relegated to the appendix of our paper due to space limitations.

Proposition 2 For non-stationary spectral kernels in the removal and concatenation
scenarios, their associated spectral kernel mappings are defined by ϕns,w/o(x) =

[cos(ω⊤
1 x) + cos(ω′⊤

1 x), · · · , cos(ω⊤
Mx) + cos(ω′⊤

Mx)]⊤, and ϕns,c(x) = [cos(ω⊤
1 x) +

cos(ω′⊤
1 x), · · · , cos(ω⊤

Mx)+cos(ω′⊤
Mx), sin(ω⊤

1 x)+sin(ω′⊤
1 x), · · · , sin(ω⊤

Mx)+sin(ω′⊤
Mx)]⊤,

respectively, and {ωi,ω
′
i}Mi=1

i.i.d.∼ N (0, σ2I). The corresponding deep spectral kernels
kLns,w/o(x,x

′) and kLns,c(x,x
′) is formulated as:

kLns,w/o(x,x
′) = CL−1

ns,w/o(cosh(σ
2(kL−1

ns,w/o(x,x
′))) + 2), L ≥ 2,

CL−1
ns,w/o = e−

∥ϕL−1
ns,w/o

···ϕ1
ns,w/o

(x)∥22+∥ϕL−1
ns,w/o

···ϕ1
ns,w/o

(x′)∥22
2 σ2

,
(8)

and
kLns,c(x,x

′) = CL−1
ns,c (exp(σ

2(kL−1
ns,c (x,x

′))) + 1), L ≥ 2,

CL−1
ns,c = 2e−

∥ϕL−1
ns,c ···ϕ1

ns,c(x)∥22+∥ϕL−1
ns,c ···ϕ1

ns,c(x′)∥22
2 σ2

.
(9)

Proof 2 The proof is relegated to the appendix of our paper due to space limitations.

Proposition 1 and Proposition 2 demonstrate that deep spectral kernels in the removal and concate-
nation scenarios are constructed through hierarchical stacking, governed by the functions cosh(·)
and exp(·), respectively. These functions instantiate the role of g(·) in equation 5.

Remark 1 (Answer for the first question) The hierarchical stacking of deep spectral kernels can
be governed by the functions cosh(·) for the removal and exp(·) for the concatenation. Formally,
both cosh(·) and exp(·) are holomorphic over C, with nonnegative coefficients in their Maclaurin
series. Consequently, by invoking Lemma 1, we conclude that all four classes of deep spectral
kernels retain the reproducing property throughout the stacking process.

3.2 RKHS EXPANSION OF DEEP SPECTRAL KERNELS

A reproducing kernel k(·, ·) defined on a dataset X = {xi}Ni=1 induces a corresponding RKHS
Hk. The expansion of this RKHS can be formally described as an inclusion relation between the
original and its expansion. The inclusion relation between two RKHSs, Hk1

and Hk2
, induced

by kernels k1(·, ·) and k2(·, ·) respectively, was first examined in Aronszajn (1950). This work
established a connection between the inclusion relation of two RKHSs and the relationships between
their associated kernels, as summarized in Lemma 2. Subsequently, Huang et al., Huang et al. (2023)
extended this result to hierarchical kernels, where k2 is constructed as g(k1) with g(·) constrained
to be holomorphic. Formally, denote k1 ⪯ k2 if k2 − k1 remains a kernel.

Lemma 2 Let k1(·, ·) and k2(·, ·) be two kernels. Then Hk1 ⊂ Hk2 if and only if there exists a
non-negative constant α such that k1 ⪯ αk2.

Lemma 3 Huang et al. (2023) Let g be a holomorphic function on C of the form

g(z) =

∞∑
q=0

aqz
q, z ∈ C, aq ≥ 0, q ∈ Z, (10)

where a1 > 0. Then Hk ⊂ Hg(k). In particular, Hk ⊆ Hexp(k).

In line with the formulation provided in Section 2.2 and equation 5, Lemma 2 and Lemma 3 allow
the inclusion relation between HkL and HkL−1 can be transformed as the relationship between deep
spectral kernels kL and kL−1, which are characterized in Proposition 1 and Proposition 2. Since
the coefficients CL−1

s,w/o, CL−1
s,c , CL−1

ns,w/o, CL−1
ns,c , and δ2 are strictly positive, they do not affect the

intrinsic relationships between deep spectral kernels. Accordingly, the analysis reduces to verifying
the conditions of Lemma 2 and Lemma 3 for kL = g(kL−1).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For the concatenation scenario, the relationship between kLs,c and kL−1
s,c , as well as that between kLns,c

and kL−1
ns,c can be simplified as kLs,c = exp(kL−1

s,c ) and kLns,c = exp(kL−1
ns,c ) for L ≥ 2. By and Lemma

3, it follows directly that HkL−1
s,c

⊆ Hexp(kL−1
s,c ) = HkL

s,c
and HkL−1

ns,c
⊆ Hexp(kL−1

ns,c )
= HkL

ns,c
,

implying that the RKHS is expanding as the spectral kernel depth increases.

For the removal scenario, the relationships kLs,w/o = cosh(kL−1
s,w/o) and kLns,w/o = cosh(kL−1

ns,w/o)

hold for L ≥ 2. Without loss of generality, we assume kL = cosh(kL−1), L ≥ 2 for a general deep
spectral kernel, such that:

kL = cosh(kL−1) =
∞∑
p=0

(kL−1)2p

(2p)!
= 1 +

(kL−1)2

2!
+

(kL−1)4

4!
+ · · · . (11)

Next, we investigate the existence of a non-negative constant α holding kL−1 ⪯ αkL. If such an α

exists, then the difference αkL − kL−1 = α
(
1 + (kL−1)2

2! + (kL−1)4

4! + · · ·
)
− kL−1 must remains

a reproducing kernel. Because 1 + (kL−1)2

2! + (kL−1)4

4! + · · · does not contain the linear term kL−1,
the negative term −kL−1 inevitably retains in αkL − kL−1 for any α. This violates the positive
definiteness of αkL − kL−1, and thus no such α can satisfy kL−1 ⪯ αkL. We therefore conclude
that the RKHS fails to exhibit progressive expansion with increasing spectral kernel depth.

Remark 2 (Answer for the second question) When the imaginary component is preserved with
the concatenation form, the RKHS associated with deep spectral kernels exhibits progressive ex-
pansion with increasing spectral kernel depth. Conversely, this property ceases to hold upon re-
moval of the imaginary component.

In summary, this section has investigated the general characterizations of deep spectral kernels, in-
cluding the reproducing property and the RKHS extension. Our theoretical analyses indicate that
deep spectral kernels consistently retain the reproducing property during the stacking process. How-
ever, their associated RKHSs exhibit progressive expansion with increasing depth only when the
imaginary component is preserved, revealing the essential role of imaginary components.

4 GENERATIVE SPECTRAL KERNEL

The RKHS associated with the deep spectral kernel under the concatenation scenario exhibits pro-
gressive expansion, thereby endowing the model with enhanced representational capacity with the
increasing depth. Nevertheless, these methods still suffer from limitations: (1) the optimization
challenge. By stacking the periodic functions (i.e., the spectral kernel mappings), the deep spectral
kernel is prone to local minima. (2) The range of spectral density. In most existing deep spectral
kernel models, the spectral density function is data-independent and consists of predetermined com-
ponents, restricting the range of spectral density even within deep architectures. For example, Huang
et al. Huang et al. (2023) explored the deep Gaussian kernel and derived its associated spectral den-
sity function (detailed result is shown in Appendix B). The associated spectral density consists of
predetermined Gaussian components specified by the chosen bandwidth and the number of layers.

In the spectral kernel perspective, the progressive expansion (inclusion relation) of RKHSs induced
by the deep spectral kernels is linked to their corresponding spectral densities Huang et al. (2023);
Zhang & Zhao (2011). Moreover, Theorems 1 and 2 establish a one-to-one correspondence between
kernels and their spectral density through Fourier duality. These results indicate that a deep spectral
kernel can be implemented by directly resampling from an adaptive spectral density. This motivates
us to propose a novel deep spectral kernel learning framework, called generative spectral kernel
(GensKer), to address these limitations. This method directly generates an adaptive spectral density
and then constructs an associated spectral kernel based on Theorem 2. Concretely, GensKer includes
two core modules: the spectral generation module and the spectral kernel construction module. The
former is used to generate a joint spectral distribution s(ω,ω′). The latter constructs the spectral
kernel using the sampled frequency pairs {ωi,ω

′
i}Mi=1 ∼ s(ω,ω′) with the concatenation form.

The overall architecture is shown in Figure 1. This method, with a single spectral kernel architec-
ture, is capable of generating an adaptive and data-dependent spectral density, thereby realizing the
deep spectral kernel construction. Furthermore, this architecture enables GensKer to circumvent the
optimization challenges posed by deep spectral kernels.
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Figure 1: The architecture of the generative spectral kernel. The spectral generation module is used
to generate the spectral distribution s(ω,ω′). The loss Lp is introduced to constrain s(ω′|ω)s(ω) =
s(ω|ω′)s(ω′). The spectral kernel is constructed via the generated frequency pairs {ωi,ω

′
i}Mi=1.

4.1 SPECTRAL GENERATIVE MODULE

This module generates the spectral density using a spectral generation network. We redefine the
spectral density s(ω,ω′) through the desired conditional distribution, i.e., s(ω,ω′) = s(ω′|ω)s(ω).
Accordingly, the non-stationary spectral kernel k(x,x′) in equation 2 can be reformulated by:

k(x,x′) =

∫
Rd

s(ω′|ω)s(ω)ei(ω
⊤x−ω′⊤x′)dωdω′. (12)

Here s(ω′|ω)s(ω) is obtained via a spectral generation network, which is formulated as follows:

s(ω′|ω)s(ω) =s(ω′|ω = G2(ϵ2))s(ω|ϵ2)p(ϵ2),
ω = G2(ϵ2) ∼ s(ω|ϵ2)p(ϵ2), (ω′|ω = G2(ϵ2)) = G2(ϵ2)⊙B1(ϵ1) + Υ1(ϵ1),

(13)

where ϵ1, ϵ2
i.i.d.∼ p(ϵ) are the initialized spectrum and are sampled from the initialized spectral

density p(ϵ). G2 denotes a generator, making ω = G2(ϵ2) ∼ s(ω). B1 and Υ1 represent encoders,
using to learn the conditional representation (ω′|ω = G2(ϵ2)).

Since the joint spectral density s(ω,ω′) can be equivalently expressed via both s(ω′|ω)s(ω) and
s(ω|ω′)s(ω′), the non-stationary spectral kernel can also be redefined as:

k(x,x′) =

∫
Rd

s(ω|ω′)s(ω′)ei(ω
⊤x−ω′⊤x′)dωdω′,

s(ω|ω′)s(ω′) =s(ω|ω′ = G1(ϵ1))s(ω
′|ϵ1)p(ϵ1),

ω′ = G1(ϵ1) ∼ s(ω|ϵ1)p(ϵ1), (ω|ω′ = G1(ϵ1)) = G1(ϵ1)⊙B2(ϵ2) + Υ2(ϵ2),

(14)

where G1 represents a generator, making ω′ = G1(ϵ1) ∼ s(ω′). B2 and Υ2 are encoders to learn
the conditional representation (ω|ω′ = G1(ϵ1)).

To ensure s(ω′|ω)s(ω) = s(ω|ω′)s(ω′), we enforce a loss Lp. Specifically, this loss enables
s(ω′|ω = G2(ϵ2))s(ω|ϵ2)p(ϵ2) = s(ω|ω′ = G1(ϵ1))s(ω

′|ϵ1)p(ϵ1).
The generated s(ω,ω′) is a probability density function, satisfying the positive definiteness condi-
tion of the spectral density in Theorem 2. Therefore, it ensures that the constructed spectral kernels
are positive definite, thereby endowing them with the reproducing property.

4.2 SPECTRAL KERNEL MODULE

Building upon the theoretical analysis in Section 3.2, this module applies the generated spectral
density to construct spectral kernels under the concatenation form, coupling it with the spectral gen-

6
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eration module to form a unified model. This end-to-end framework enables the proposed GensKer
to generate a data-dependent and adaptive spectral density, resulting in an adaptive RKHS.

As presented in Section 2.2, the non-stationary spectral kernel can be defined by:

k(x,x′) ≈ ⟨ϕns,c(x), ϕns,c(x
′)⟩, ϕns,c(x) =

1√
4M

[
cos(Ω⊤x) + cos(Ω′⊤x)
sin(Ω⊤x) + sin(Ω′⊤x)

]
, (15)

where Ω = [ω1,ω2, · · · ,ωM ] and Ω′ = [ω′
1,ω

′
2, · · · ,ω′

M ] are frequency matrices. Instead of
learning the frequency pairs through hierarchically stacked spectral kernel mappings, we sample
them directly from the generated spectral density. In particular, {ωi}Mi=1 are sampled from the con-
ditional distribution s(ω|ω′), and {ω′

i}Mi=1 are sampled from s(ω′|ω). M is the sampling number.

As a result, we obtain a generative spectral kernel, which is constructed by the generated spectral
density. Taking the classification task as an example, where the spectral kernel mapping ϕns,c(x)
is considered as the feature extractor. The loss function is defined as: L = Lc + Lp, where Lp =

ℓp

(
G2(ϵ2) ⊙ (G2(ϵ2) ⊙ B1(ϵ1) + Υ1(ϵ1)), G1(ϵ1)(G1(ϵ1) ⊙ B2(ϵ2) + Υ2(ϵ2))

)
denotes the

distribution loss to constraint s(ω′|ω = G2(ϵ2))s(ω|ϵ2)p(ϵ2) = s(ω|ω′ = G1(ϵ1))s(ω
′|ϵ1)p(ϵ1).

Lc =
1
N

∑N
i=1 ℓc(xi, yi) denotes the classification loss.

5 EXPERIMENTS

This section experimentally validates the theoretical results (i.e., the influence of the imaginary
component on the RKHS and performance) and the principal advantages of the proposed GensKer.
All experiments are implemented using PyTorch Paszke et al. (2019) and conducted on a workstation
with NVIDIA RTX 3090 GPU, AMD R7-5700X 3.40GHz 8-core CPU, and 32 GB memory.

5.1 EXPERIMENTAL VALIDATION FOR THE THEORETICAL RESULTS IN SECTION 3.2

5.1.1 THE INFLUENCE OF THE IMAGINARY COMPONENT ON THE RKHS

Figure 2: The performance (MSE) changes.

The theoretical analysis in Section 3.2 demon-
strates that the RKHS associated with deep
spectral kernels, constructed with the concate-
nation form, exhibits progressive expansion
with increasing depth. Conversely, this prop-
erty ceases to hold upon removal of the imag-
inary components. In this part, we verify this
point by examining the relationship between
the performance of deep spectral kernels and
their depth in kernel regression tasks, which
relatively reflects the theoretical properties of
these kernels. We first elaborate a series of synthetic data {xi, yi}6000i=1 by the function yi =
sin(xi) + sin(3xi) + sin(5xi) + sin(10xi), xi ∈ [0, 10], where 5000 samples are used for train-
ing and 1000 for testing. Next, we investigate the performance changes of deep spectral kernel
models with increasing depth on the synthetic data. Considering the optimization challenges and the
risk of overfitting, the maximum number of L is set to 6. The result is shown in Figure 2.

The result in Figure 2 illustrates that the performance under the concatenation scenario (i.e., with the
imaginary component) achieves incremental improvement with increasing depth for both stationary
and non-stationary cases. This is attributed to the integration of the imaginary component, resulting
in a progressive extension of the RKHS. By contrast, the performance under the removal scenario
(i.e., without the imaginary component) exhibits the instability for both cases. This is evidenced by
the fact that the performance appears to have no statistically significant correlation with the model
depth. These findings align with our theoretical analysis.

5.1.2 THE INFLUENCE OF THE IMAGINARY COMPONENT ON THE PERFORMANCE

In fact, the spectral kernel mapping can be interpreted as a single-layer neural network with the sin(·)
or cos(·) activation. By stacking such spectral kernel mappings, one obtains ϕL(ϕL−1 · · ·ϕ1(·)),

7
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which constitutes a deep spectral kernel network. In this experiment, we investigate the impact of
the imaginary component by comparing two forms (with or without the imaginary component) of
deep spectral kernel networks on the time series classification task based on 6-sub-datasets with
default training and testing data splitting from the UCR Archive Dau et al. (2019) dataset. The deep
spectral kernel network with L = 3 is considered as the feature extractor, and a fully connected layer
serves as the classifier. All models are trained using ADAM Kingma & Ba (2014) with a learning
rate of 0.01. Results are presented in Table 1.

Table 1: Time series classification results under both station-
ary (S) and non-stationary (Ns) cases. w/ denotes the case
of combining the imaginary component in the concatena-
tion way, while w/o denotes the case of removing the imagi-
nary component. ↑ represents the performance improvement
brought by the imaginary component.

FordA ECG200 ECG5000 Rock Trace Plane

S
w/ 83.42 92.40 93.63 66.60 83.00 97.81

w/o 82.59 89.50 93.60 65.50 82.53 96.76
↑ 0.83 2.90 0.03 1.10 0.47 1.05

Ns
w/ 83.99 92.20 93.54 68.20 83.70 98.00

w/o 83.66 91.80 93.31 63.50 82.90 97.19
↑ 0.33 0.40 0.23 4.70 0.80 0.81

The quantitative results reveal that:
(1) The concatenation scenario (i.e.,
with the imaginary component) con-
sistently shows outstanding perfor-
mance on both stationary and non-
stationary cases. This is attributed
to the integration of the imagi-
nary component, which can mine
more complex patterns of data. (2)
The deep spectral kernel, constructed
from the non-stationary spectral ker-
nel, outperforms the one induced by
a stationary spectral kernel on most
datasets. This confirms that non-stationary spectral kernels are capable of breaking the locality lim-
itations in the stationary case while effectively capturing long-range dependencies within the data.

5.2 EXPERIMENTAL VALIDATION FOR THE PRINCIPAL ADVANTAGES OF GENSKER

5.2.1 VALIDATION FOR THE ADVANTAGE IN ADAPTIVE SPECTRAL DENSITY

As advocated in Section 4, GensKer with a single-layer spectral kernel architecture is capable of
generating an adaptive spectral density and realizing the deep spectral kernel. In this section, time
series classification tasks on the UCR Archive dataset are also performed to verify these points. On
the one hand, we compare the plain deep spectral kernel models (under the concatenation scenario
without any additional conditions) with their corresponding generative spectral kernel models for
both stationary (S) and non-stationary (Ns) cases. On the other hand, we compare our method with
several state-of-the-art spectral kernel learning methods, including TRF Shilton et al. (2022), GRFF
Fang et al. (2023), and DKEF Wenliang et al. (2019) for the stationary case, as well as DSKN Xue
et al. (2019), ASKL Li et al. (2020), and CokeNet Tian et al. (2024) for the non-stationary case.
The detailed information of these methods can be found in Appendix C. For the plain deep spectral
kernel models, a three-layer deep spectral kernel network is used for inherent feature extraction.
For the generative spectral kernel models, to avoid the optimization challenges posed by the deep
spectral kernel models, the generators (G1, G2) and encoders (B1, B2, Υ1, Υ2) are implemented as
simple fully connected networks with ReLU activation. Specifically, G1, G2, B1, and B2 include
one hidden layer, while Υ1 and Υ2 are the linear transformation. A three-layer fully connected
network with ReLU activation serves as the classifier for both types of methods. All models are
trained by using ADAM with a learning rate of 0.01 (or 0.001). The results are reported in Table 2.

Table 2: Time series classification results (accuracy (Acc) and parameters (Para)) for the stationary
(S) and non-stationary (Ns) cases. The best results are highlighted in bold.

Model FordA ECG200 ECG5000 Rock Trace Plane
Acc Para Acc Para Acc Para Acc Para Acc Para Acc Para

S

plain 74.28 1.59M 90.70 1.38M 93.05 1.40M 64.80 2.79M 81.70 1.47M 95.81 1.41M
TRF 65.74 0.52M 88.60 0.32M 91.72 0.34M 59.60 1.72M 74.90 0.41M 94.57 0.34M

GRFF 74.92 0.28M 85.90 0.23M 93.10 0.24M 69.60 0.59M 81.70 0.25M 96.76 0.24M
DKEF 76.65 0.65M 87.80 0.37M 91.94 0.40M 59.20 1.81M 75.70 0.47M 96.38 0.39M
Ours 79.42 0.43M 91.70 0.32M 93.14 0.33M 71.40 1.03M 82.90 0.37M 96.89 0.34M

Ns

plain 76.11 2.89M 92.00 2.48M 93.09 2.53M 65.20 5.29M 82.10 2.66M 95.71 2.53M
DSKN 75.47 1.72M 90.00 1.30M 92.78 1.35M 59.60 4.12M 81.70 1.49M 94.95 1.35M
ASKL 72.50 2.00M 87.53 0.39M 92.75 0.57M 44.00 5.70M 80.00 1.11M 97.14 0.59M

CokeNet 71.61 1.58M 89.95 0.76M 93.40 0.85M 57.50 6.39M 76.05 1.12M 97.14 0.86M
Ours 82.04 0.79M 91.70 0.42M 93.59 0.46M 72.60 3.31M 83.60 0.58M 97.43 0.46M
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Figure 3: The data distributions of FordA and Plane.

The results in Table 2 illustrate the following
information: (1) the generative spectral ker-
nel model achieves performance comparable
to, and even superior to, the plain deep spec-
tral kernel under both stationary and non-
stationary cases. This indicates that our pro-
posal is capable of realizing the deep spec-
tral kernel by a single-layer spectral kernel
architecture. (2) Compared with other SOTA
spectral kernel learning methods, our proposed generative spectral kernel also achieves outstanding
performance with fewer parameters, especially for the non-stationary case. This reveals that the
proposed GensKer is capable of generating an adaptive spectral density and further exploring the
inherent pattern within the data. Specifically, our method performs exceptionally well on FordA,
while its performance on Plane is comparable to other models. We visualize their data distribution
in Figure 3 and can observe that the classes in Plane are well-separated and exhibit high intra-class
compactness, resulting in similar performance for all methods. By contrast, there is no significant
difference between the classes in FordA. Therefore, compelling further analysis is needed to eluci-
date the divergence in their latent patterns, highlighting the effectiveness of our method in generating
a data-dependent spectral density and uncovering the essential characteristics of the data. The data
distributions of the remaining datasets and analyses are shown in Appendix D.1. In summary, our
method effectively captures the inherent data patterns through the adaptive spectral density while
requiring fewer parameters, thereby yielding a more lightweight model with broader applicability.

5.2.2 VALIDATION FOR THE ADVANTAGE IN OPTIMIZATION CHALLENGE

Deep Spectral Kernel Generative Spectral Kernel

Figure 4: The loss landscape and curve.

In this experiment, we evaluate the ability of
GensKer in circumventing the optimization chal-
lenges by comparing the geometry of the loss land-
scape and the convergence trained by ADAM on
FordA. We visualize the loss landscape around the
final epoch and the training loss curve for the deep
spectral kernel and generative spectral kernel in Fig-
ure 4. It demonstrates that (1) the loss landscape of
the deep spectral kernel is rugged with a sharp min-
imum. By contrast, the proposed GensKer exhibits
a smooth loss landscape with a flat minimum. (2)
The training loss of the deep spectral kernel exhibits
oscillations for the first 15 epochs and then rapidly
converges to a sharp minimum. In comparison, our
method descends smoothly without instability and
converges to a lower loss value. These results are
consistent with their loss landscape. All the observations demonstrate that the proposed GensKer
effectively mitigates the optimization challenge posed by deep spectral kernels.

6 CONCLUSION

In this paper, we first investigate two questions concerning the deep spectral kernel: (1) Does the
deep spectral kernel retain the reproducing property during the stacking process? (2) In which class
can the RKHS induced by the deep spectral kernel expand with increasing depth? Rigorous the-
oretical analyses indicate that all types of deep spectral kernels maintain the reproducing property
throughout the stacking process. Furthermore, when retaining the imaginary component, the RKHS
corresponding to the deep spectral kernel expands with increasing spectral kernel depth, which is
related to the spectral density function from the perspective of the spectral kernel. Based on these
findings, we propose a generative spectral kernel, which directly generates the spectral density via
a generative network. This method, with a single-layer spectral kernel architecture, can: (1) gen-
erate an adaptive sepctrl density and achieve deep spectral kernel performance; (2) circumvent the
optimization challenges introduced by stacked periodic functions. Finally, these findings have been
verified through a set of experiments using synthetic data and six real-world time series datasets.
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APPENDIX

In this section, we provide:

• Detailed proof of theoretical results, including Proposition 1, Proposition 2.

• The mentioned special case, deep Gaussian kernel, in Section 4 of the main paper.

• The detailed information of the compared SOTA spectral kernel learning methods.

• The additional experiment results. The data distribution, loss landscape for the other
datasets, and further evaluation of the generated spectral density.

• The statement of the use of large language models (LLMs).

A DETAILED PROOF OF THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 1

Proposition 1 For the stationary spectral kernel under the removal and concatenation scenarios,
the spectral kernel mappings are defined by: ϕs,w/o(x) = [cos(ω⊤

1 x), · · · , cos(ω⊤
Mx)]⊤ and

ϕs,c(x) = [cos(ω⊤
1 x), · · · , cos(ω⊤

Mx), sin(ω⊤
1 x), · · · , sin(ω⊤

Mx)]⊤, respectively, and {ωi}Mi=1 ∼
N (0, σ2I). The stacking of their corresponding deep spectral kernels kLs,w/o(x,x

′) and kLs,c(x,x
′)

is formulated as:

kLs,w/o(x,x
′) = CL−1

s,w/o cosh(σ
2(kL−1

s,w/o(x,x
′))), L ≥ 2,

CL−1
s,w/o =

1

4
[e−

∥ϕL−1
s,w/o

···ϕ1
s,w/o

(x)∥22+∥ϕL−1
s,w/o

···ϕ1
s,w/o

(x′)∥22
2 σ2

],
(1)

and
kLs,c(x,x

′) = CL−1
s,c exp(σ2(kL−1

s,c (x,x′))), L ≥ 2,

CL−1
s,c =

1

2
[e−

∥ϕL−1
s,c ···ϕ1

s,c(x)∥22+∥ϕL−1
s,c ···ϕ1

s,c(x
′)∥22

2 σ2

].
(2)

Proof 1 Let kLs,w/o(x,x
′) = ⟨ϕL

s,w/o(· · ·ϕ
1
s,w/o(x)), ϕ

L
s,w/o(· · ·ϕ

1
s,w/o(x

′))⟩ denotes the
deep spectral kernel with L layers under the removal scenario, where ϕ1

s,w/o(x) =

[cos(ω1⊤
1 x), · · · , cos(ω1⊤

M x)]⊤ and ϕ1
s,w/o(x

′) = [cos(ω1⊤
1 x′), · · · , cos(ω1⊤

M x′)]⊤. The
hierarchical relationship of spectral kernel mapping is formulated by ϕL

s,w/o(x) =

[cos(ωL⊤
1 (ϕL−1

s,w/o(x)), · · · , cos(ω
L⊤
M (ϕL−1

s,w/o(x))]
⊤. Following these settings, we have

k1s,w/o(x,x
′) = ⟨ϕ1

s,w/o(x), ϕ
1
s,w/o(x

′)⟩

=
1

2M

M∑
i=1

cos(ω1⊤
i x) cos(ω1⊤

i x′)

≈ 1

2
Eω1∼N (0,σ2I)[cos(ω

1⊤x) cos(ω1⊤x′)]

=
1

2
Eω1∼N (0,σ2I)

1

2
[cos(ω1⊤x+ ω1⊤x′) + cos(ω1⊤x− ω1⊤x′)]

=
1

4
[e−

∥x+x′∥22σ2

2 + e−
∥x−x′∥22σ2

2 ]

=
1

4
[e−

[∥x∥22+∥x′∥22]σ2

2 e−σ2x⊤x′
+ e−

[∥x∥22+∥x′∥22]σ2

2 eσ
2x⊤x′

]

=
1

4
[e−

[∥x∥22+∥x′∥22]σ2

2 ][e−σ2x⊤x′
+ eσ

2x⊤x′
]

=
1

4
[e−

[∥x∥22+∥x′∥22]σ2

2 ] cosh(σ2x⊤x′),

(3)
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Then,

k2s,w/o(x,x
′) = ⟨ϕ2

s,w/o(ϕ
1
s,w/o(x)), ϕ

2
s,w/o(ϕ

1
s,w/o(x

′))⟩

=
1

2M

M∑
i=1

cos(ω2⊤
i ϕ1

s,w/o(x)) cos(ω
2⊤
i ϕ1

s,w/o(x
′))

≈ 1

2
Eω2∼N (0,σ2I)[cos(ω

2⊤ϕ1
s,w/o(x)) cos(ω

2⊤ϕ1
s,w/o(x

′))]

=
1

4
[e−

[∥ϕ1
s,w/o

(x)∥22+∥ϕ1
s,w/o

(x′)∥22]σ2

2 ] cosh(σ2ϕ1
s,w/o(x)

⊤ϕ1
s,w/o(x

′)),

(4)

where ϕ1
s,w/o(x)

⊤ϕ1
s,w/o(x

′) = k1s,w/o(x,x
′).

By employing the recursive iteration method, we can obtain:

kLs,w/o(x,x
′) = CL

s,w/o cosh(δ
2kL−1

s,w/o(x,x
′)), L ≥ 2,

CL−1
s,w/o =

1

4
[e−

∥ϕL−1
s,w/o

···ϕ1
s,w/o

(x)∥22+∥ϕL−1
s,w/o

···ϕ1
s,w/o

(x′)∥22
2 σ2

].
(5)

Similar to the removal scenario, let kLs,c(x,x
′) = ⟨ϕL

s,c(· · ·ϕ1
s,c(x)), ϕ

L
s,c(· · ·ϕ1

s,c(x
′))⟩

denotes the deep spectral kernel with L layers under the concatenation scenario,
where ϕ1

s,c(x) = [cos(ω1⊤
1 x), · · · , cos(ω1⊤

M x), sin(ω1⊤
1 x), · · · , sin(ω1⊤

M x)]⊤ and
ϕ1
s,c(x

′) = [cos(ω1⊤
1 x′), · · · , cos(ω1⊤

M x′), sin(ω1⊤
1 x′), · · · , sin(ω1⊤

M x′)]⊤. The hi-
erarchical relationship of spectral kernel mapping is formulated by ϕL

s,c(x) =

[cos(ωL⊤
1 (ϕL−1

s,c (x)), · · · , cos(ωL⊤
M (ϕL−1

s,c (x))]⊤, sin(ωL⊤
1 (ϕL−1

s,c (x)), · · · , sin(ωL⊤
M (ϕL−1

s,c (x))]⊤.
Following these settings, we have

k1s,c(x,x
′) = ⟨ϕ1

s,c(x), ϕ
1
s,c(x

′)⟩

=
1

2M

M∑
i=1

[cos(ω1⊤
i x) cos(ω1⊤

i x′) + sin(ω1⊤
i x) sin(ω1⊤

i x′)]

=
1

2M

M∑
i=1

cos(ω1⊤
i (x− x′))

≈ 1

2
Eω1∼N (0,σ2I)[cos(ω

1⊤(x− x′))]

=
1

2
e

∥x−x′∥22δ2

2 .

(6)

Then, the deep stationary spectral kernel with L = 2 can be formulated as follows:

k2s,c(x,x
′) = ⟨ϕ2

s,c(ϕ
1
s,c(x)), ϕ

2
s,c(ϕ

1
s,c(x

′))⟩

=
1

2M

M∑
i=1

cos(ω2⊤
i (ϕ1

s,c(x)− ϕ1
s,c(x

′)))

≈ 1

2
Eω2∼N (0,σ2I)[cos(ω

2⊤(ϕ1
s,c(x)− ϕ1

s,c(x
′)))]

=
1

2
e−

[∥ϕ1
s,c(x)−ϕ1

s,c(x
′)∥22σ2

2

=
1

2
[e−

[∥ϕ1
s,c(x)∥22+∥ϕ1

s,c(x
′)∥22]σ2

2 ]eσ
2ϕ1

s,c(x)
⊤ϕ1

s,c(x
′),

(7)

where ϕ1
s,c(x)

⊤ϕ1
s,c(x

′) = k1s,c(x,x
′). By employing the recursive iteration method, we can obtain:

kLs,c(x,x
′) = CL

s,c exp(δ
2kL−1

s,c (x,x′)), L ≥ 2,

CL−1
s,c =

1

2
[e−

∥ϕL−1
s,c ···ϕ1

s,c(x)∥22+∥ϕL−1
s,c ···ϕ1

s,c(x′)∥22
2 σ2

].
(8)

In summary, the proof of Proposition 1 is completed.
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A.2 PROOF OF PROPOSITION 2

Proposition 2 For the non-stationary spectral kernel under the removal and con-
catenation scenarios, the spectral kernel mappings are defined by ϕns,w/o(x) =

[cos(ω⊤
1 x) + cos(ω′⊤

1 x), · · · , cos(ω⊤
Mx) + cos(ω′⊤

Mx)]⊤, and ϕns,c(x) = [cos(ω⊤
1 x) +

cos(ω′⊤
1 x), · · · , cos(ω⊤

Mx)+cos(ω′⊤
Mx), sin(ω⊤

1 x)+sin(ω′⊤
1 x), · · · , sin(ω⊤

Mx)+sin(ω′⊤
Mx)]⊤,

respectively, and {ωi,ω
′
i}Mi=1

i.i.d.∼ N (0, σ2I). The stacking of their corresponding deep spectral
kernels kLns,w/o(x,x

′) and kLns,c(x,x
′) is formulated as:

kLns,w/o(x,x
′) = CL−1

ns,w/o(cosh(σ
2(kL−1

ns,w/o(x,x
′))) + 2), L ≥ 2,

CL−1
ns,w/o = e−

∥ϕL−1
ns,w/o

···ϕ1
ns,w/o

(x)∥22+∥ϕL−1
ns,w/o

···ϕ1
ns,w/o

(x′)∥22
2 σ2

,
(9)

and
kLns,c(x,x

′) = CL−1
ns,c (exp(σ

2(kL−1
ns,c (x,x

′))) + 1), L ≥ 2,

CL−1
ns,c = 2e−

∥ϕL−1
ns,c ···ϕ1

ns,c(x)∥22+∥ϕL−1
ns,c ···ϕ1

ns,c(x′)∥22
2 σ2

.
(10)

Proof 2 Let kLns,w/o(x,x
′) = ⟨ϕL

ns,w/o(· · ·ϕ
1
ns,w/o(x)), ϕ

L
ns,w/o(· · ·ϕ

1
ns,w/o(x

′))⟩ denotes
the deep non-stationary spectral kernel with L layers under the removal scenario, where
ϕ1
ns,w/o(x) = [cos(ω1⊤

1 x) + cos(ω
′1⊤
1 x), · · · , cos(ω1⊤

M x) + cos(ω
′1⊤
M x)]⊤ and ϕ1

ns,w/o(x
′) =

[cos(ω1⊤
1 x′) + cos(ω

′1⊤
1 x′), · · · , cos(ω1⊤

M x′) + cos(ω
′1⊤
M x′)]⊤. The hierarchical relation-

ship of spectral kernel mapping is formulated by ϕL
ns,w/o(x) = [cos(ωL⊤

1 (ϕL−1
ns,w/o(x)) +

cos(ω
′L⊤
1 (ϕL−1

ns,w/o(x)), · · · , cos(ω
L⊤
M (ϕL−1

s,w/o(x))+ cos(ω
′L⊤
M (ϕL−1

s,w/o(x))]
⊤. Following these set-

tings, we have

k1ns,w/o(x,x
′) = ⟨ϕ1

ns,w/o(x), ϕ
1
ns,w/o(x

′)⟩

=
1

4M

M∑
i=1

[cos(ω1⊤
i x) + cos(ω

′1⊤
i x)][cos(ω1⊤

i x′) + cos(ω
′1⊤
i x′)]

≈ 1

4
Eω1,ω′1∼N (0,σ2I)[cos(ω

1⊤x) + cos(ω
′1⊤x)][cos(ω1⊤x′) + cos(ω

′1⊤x′)]

=
1

4

[
Eω1,ω′1∼N (0,σ2I)[cos(ω

1⊤x) cos(ω1⊤x′)] + Eω1,ω′1∼N (0,σ2I)[cos(ω
1⊤x) cos(ω

′1⊤x′)]

+ Eω1,ω′1∼N (0,σ2I)[cos(ω
′1⊤x) cos(ω1⊤x′)] + Eω1,ω′1∼N (0,σ2I)[cos(ω

′1⊤x) cos(ω
′1⊤x′)]

]
= e−

[∥x∥22+∥x′∥22]σ2

2 cosh(σ2x⊤x′).
(11)

Then, the deep non-stationary spectral kernel with L = 2 can be formulated as follows:
k2ns,w/o(x,x

′) = ⟨ϕ2
ns,w/o(ϕ

1
ns,w/o(x)), ϕ

2
ns,w/o(ϕ

1
ns,w/o(x

′))⟩

=
1

4M

M∑
i=1

[cos(ω2⊤
i ϕ1

ns,w/o(x)) + cos(ω
′2⊤
i ϕ1

ns,w/o(x))][cos(ω
2⊤
i ϕ1

ns,w/o(x
′)) + cos(ω

′2⊤
i ϕ1

ns,w/o(x
′))]

≈ 1

4
Eω2,ω′2∼N (0,σ2I)[cos(ω

2⊤
i ϕ1

ns,w/o(x)) + cos(ω
′2⊤
i ϕ1

ns,w/o(x))][cos(ω
2⊤
i ϕ1

ns,w/o(x
′)) + cos(ω

′2⊤
i ϕ1

ns,w/o(x
′))]

= e−
[∥ϕ1

ns,w/o
(x)∥22+∥ϕ1

ns,w/o
(x′)∥22]σ2

2 cosh(σ2ϕ1
ns,w/o(x)

⊤ϕ1
ns,w/o(x

′))

(12)

By employing the recursive iteration method, we can obtain:

kLns,w/o(x,x
′) = CL−1

ns,w/o(cosh(σ
2(kL−1

ns,w/o(x,x
′))) + 2), L ≥ 2,

CL−1
ns,w/o = e−

∥ϕL−1
ns,w/o

···ϕ1
ns,w/o

(x)∥22+∥ϕL−1
ns,w/o

···ϕ1
ns,w/o

(x′)∥22
2 σ2

.
(13)

Similar to the removal scenario, let kLns,c(x,x
′) = ⟨ϕL

ns,c(· · ·ϕ1
ns,c(x)), ϕ

L
ns,c(· · ·ϕ1

ns,c(x
′))⟩

denotes the deep non-stationary spectral kernel with L layers under the concatenation scenario,
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where ϕ1
ns,c(x) = [cos(ω1⊤

1 x) + cos(ω
′1⊤
1 x), · · · , cos(ω1⊤

M x) + cos(ω
′1⊤
M x), sin(ω1⊤

1 x) +

sin(ω
′1⊤
1 x), · · · , sin(ω1⊤

M x) + sin(ω
′1⊤
M x)]⊤ and ϕ1

ns,c(x
′) = [cos(ω1⊤

1 x′) +

cos(ω
′1⊤
1 x′), · · · , cos(ω1⊤

M x′) + cos(ω
′1⊤
M x′), sin(ω1⊤

1 x′) + sin(ω
′1⊤
1 x′), · · · , sin(ω1⊤

M x′) +

sin(ω
′1⊤
M x′)]⊤. The hierarchical relationship of spectral kernel mapping is formulated

by ϕL
ns,c(x) = [cos(ωL⊤

1 (ϕL−1
ns,c (x)) + cos(ω

′L⊤
1 (ϕL−1

ns,c (x)), · · · , cos(ωL⊤
M (ϕL−1

s,c (x)) +

cos(ω
′L⊤
M (ϕL−1

s,c (x)), sin(ωL⊤
1 (ϕL−1

ns,c (x)) + sin(ω
′L⊤
1 (ϕL−1

ns,c (x)), · · · , sin(ωL⊤
M (ϕL−1

s,c (x)) +

sin(ω
′L⊤
M (ϕL−1

s,c (x))]⊤. Following these settings, we have

k1ns,c(x,x
′) = ⟨ϕ1

ns,c(x), ϕ
1
ns,c(x

′)⟩ = ⟨ϕ1
ns,c(x), ϕ

1
ns,c(x

′)⟩

=
1

4M

M∑
i=1

[cos(ω1⊤
i x) + cos(ω

′1⊤
i x)][cos(ω1⊤

i x′) + cos(ω
′1⊤
i x′)] + [sin(ω1⊤

i x) + sin(ω
′1⊤
i x)][sin(ω1⊤

i x′) + sin(ω
′1⊤
i x′)]

≈ 1

4
Eω1,ω′1∼N (0,σ2I)[cos(ω

1⊤
i x) + cos(ω

′1⊤
i x)][cos(ω1⊤

i x′) + cos(ω
′1⊤
i x′)] + [sin(ω1⊤

i x) + sin(ω
′1⊤
i x)][sin(ω1⊤

i x′) + sin(ω
′1⊤
i x′)].

(14)
Based on all the above results, we can obtain:

k1ns,c(x,x
′) = 2e−

[∥x∥22+∥x′∥22]σ2

2 exp(σ2x⊤x′), (15)

and the case of L = 2 can be formulated as follows:

k2ns,c(x,x
′) = ⟨ϕ2

ns,c(ϕ
1
ns,c(x)), ϕ

2
ns,c(ϕ

1
ns,c(x

′))⟩

≈ 2e−
[∥ϕ1

ns,c(x)∥22+∥ϕ1
ns,c(x′)∥22]σ2

2 exp(σ2ϕ1
ns,c(x)

⊤ϕ1
ns,c(x

′)).
(16)

By employing the recursive iteration method, we can obtain:

kLns,c(x,x
′) = CL−1

ns,c (exp(σ
2(kL−1

ns,c (x,x
′))) + 1), L ≥ 2,

CL−1
ns,c = 2e−

∥ϕL−1
ns,c ···ϕ1

ns,c(x)∥22+∥ϕL−1
ns,c ···ϕ1

ns,c(x′)∥22
2 σ2

.
(17)

In summary, the proof of Proposition 2 is completed.

B DEEP GAUSSIAN KERNEL BASED ON BOCHNER’S THEOREM

Lemma 1 Huang et al. (2023) Given the Gaussian kernel k0 = exp(−λ∥x − x′∥2) =∫
Rd e

−i(x−x′)ωs0(ω)dω, and s0(ω) = 1
(2

√
λπ)d

exp(− ∥ω∥2

4λ ) with x,x′,ω ∈ Rd, λ > 0. The

deep Gaussian kernel defined by kL(x,x′) = exp(kL−1(x,x′)), it holds

kL(x,x′) = eL(0)
∞∑
p=0

βL,p

p!
exp(−pλ∥x− x′∥22), p ∈ N,

kL(x,x′) =eL(0) + hL(x,x′), hL(x,x′) =

∫
Rd

e−i(x−x′)·ωsL(ω)dω,

sL(ω) =
eL(0)

(2
√
λπ)d

∞∑
p=1

βL,p

L!Ld/2
exp(−∥ω∥22

4λL
).

(18)

Proof 3 The proof can be found in Huang et al. (2023).

Lemma 1 indicates that the deep Gaussian kernel tends to be a combination of Gaussian kernels
with different bandwidth parameters. Furthermore, the bandwidth parameter pλ depends solely on
λ, since p is a given number for each Gaussian component. The weight of each Gaussian component
is given by βL,p

p! . These observations suggest that, for fixed λ and L, the deep Gaussian kernel can be
regarded as a combination of multiple Gaussian kernels with determined components. As the depth
increases, the constituent components remain unchanged, while only their corresponding weighting
coefficients are adaptively adjusted. By considering the first five Gaussian kernel components, we
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Figure 1: The deep Gaussian kernel with L = 1, 2, 3.

illustrate the deep Gaussian kernel with L = 1, 2, 3 in Figure 1, which is consistent with the afore-
mentioned analysis. The corresponding weights associated with each component are shown in Table
1.

From the spectral kernel perspective, the evolution of the deep Gaussian kernel is primarily governed
by changes in its associated spectral density. Such spectral density functions also tend to include
determined components (i.e., Gaussian spectral density) with the given λ and L. This means that we
can construct the deep spectral kernel by directly resampling from an adaptive spectral density.

Table 1: The weight of Gaussian component within the deep Gaussian kernel.
βL,p

p!p1/2 L = 1 L = 2 L = 3

p = 1 β1,1 = 1, βL,p

p!p1/2 = 1, βL,p

p! = 1 β2,1 = 1, βL,p

p!p1/2 = 1, βL,p

p! = 1 β3,1 = 1, βL,p

p!p1/2 = 1, βL,p

p! = 1

p = 2 β1,2 = 2, βL,p

p!p1/2 = 2
2
√
2

, βL,p

p! = 1 β2,2 = 1, βL,p

p!p1/2 = 1
2
√
2

, βL,p

p! = 1
2 β3,2 = 1, βL,p

p!p1/2 = 1
2
√
2

, βL,p

p! = 1
2

p = 3 β1,3 = 5, βL,p

p!p1/2 = 5
6
√
3

, βL,p

p! = 5
6 β2,3 = 3, βL,p

p!p1/2 = 3
6
√
3

, βL,p

p! = 3
6 β3,3 = 1, βL,p

p!p1/2 = 1
6
√
3

, βL,p

p! = 1
6

p = 4 β1,4 = 15, βL,p

p!p1/2 = 15
24

√
4

, βL,p

p! = 15
24 β2,4 = 7, βL,p

p!p1/2 = 7
24

√
4

, βL,p

p! = 7
24 β3,4 = 4, βL,p

p!p1/2 = 4
24

√
4

, βL,p

p! = 4
24

p = 5 β1,5 = 52, βL,p

p!p1/2 = 52
120

√
5

, βL,p

p! = 52
120 β2,5 = 15, βL,p

p!p1/2 = 15
120

√
5

, βL,p

p! = 15
120 β3,5 = 11, βL,p

p!p1/2 = 11
120

√
5

, βL,p

p! = 11
120

C THE COMPARED METHODS

To further evaluate the proposed generative spectral kernel, we compare several SOTA deep spectral
kernel methods, including TRF Shilton et al. (2022), GRFF Fang et al. (2023), and DKEF Wenliang
et al. (2019) for the stationary case, as well as DSKN Xue et al. (2019), ASKL Li et al. (2020), and
CokeNet Tian et al. (2024) for the non-stationary case.

• TRF: Tuned Random Features, which selects the spectral density function from a repro-
ducing kernel Hilbert space to search the space of all stationary kernels.

• GRFF: Generative Random Fourier Features, an end-to-end spectral kernel learning ap-
proach that models the spectral density distribution of the stationary kernel via a generative
network based on the random Fourier features. It is worth noting that this method is similar
to our plain deep stationary spectral kernel. The key distinction lies in the fact that the
architecture of our plain deep stationary spectral kernel is constructed in the concatenation
scenario.

• DKEF: Deep Kernels for Exponential Family Densities, a scheme for learning a kernel
parameterized by a deep network. This gives a very rich class of density models, capable
of fitting complex structures on moderate-dimensional problems.

• DSKN: Deep Spectral Kernel Network, which integrates the non-stationary spectral kernel
into the deep architecture. This method models deep spectral kernels by stacking the non-
stationary spectral kernel mappings.

• ASKL: Automated Spectral Kernel Learning, an efficient learning framework that incor-
porates the process of finding suitable kernels and model training. This method introduced
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regularization terms via investigating the effect of the derived data-dependent generaliza-
tion error bounds.

• CokeNet: Copula-Nested Spectral Kernel Network, the core idea of this method is to in-
troduce copula networks into the design of the spectral density based on Sklar’s theorem to
extend the range of hypothesis space of deep spectral kernels.

D ADDITIONAL EXPERIMENT RESULTS

In this section, we report the additional experiment results, including the data distribution and loss
landscape of the other datasets.

D.1 DATA DISTRIBUTION

For completeness, we also provide the results of the time series classification task in Table 2. The
data distributions of the remaining datasets are visualized in Figure 2. As discussed in Section 5.2.1,
our proposed generative spectral kernel exhibits advantages in capturing the inherent patterns within
the data. For datasets that are well-separated and exhibit high intra-class compactness, our proposed
method achieves performance comparable to that of other methods. For example, the similar perfor-
mance (93.59% vs. 93.40%) on ECG5000 and (91.70% vs. 92.00%) on ECG200 compared with
the mainstream deep spectral kernel methods. By contrast, for datasets lacking clear class separa-
bility, our proposed generative spectral kernel outperforms other methods impressively and achieves
11.35% accuracy increment (65.20 → 72.60) on Rock and 7.79% (76.11 → 82.04) on FordA. These
results indicate the effectiveness of our method in uncovering the essential characteristics of the data.

Table 2: Time series classification results (accuracy (Acc) and parameters (Para)) for the stationary
(S) and non-stationary (Ns) cases. The best results are highlighted in bold.

Model FordA ECG200 ECG5000 Rock Trace Plane
Acc Para Acc Para Acc Para Acc Para Acc Para Acc Para

S

plain 74.28 1.59M 90.70 1.38M 93.05 1.40M 64.80 2.79M 81.70 1.47M 95.81 1.41M
TRF 65.74 0.52M 88.60 0.32M 91.72 0.34M 59.60 1.72M 74.90 0.41M 94.57 0.34M

GRFF 74.92 0.28M 85.90 0.23M 93.10 0.24M 69.60 0.59M 81.70 0.25M 96.76 0.24M
DKEF 76.65 0.65M 87.80 0.37M 91.94 0.40M 59.20 1.81M 75.70 0.47M 96.38 0.39M
Ours 79.42 0.43M 91.70 0.32M 93.14 0.33M 71.40 1.03M 82.90 0.37M 96.89 0.34M

Ns

plain 76.11 2.89M 92.00 2.48M 93.09 2.53M 65.20 5.29M 82.10 2.66M 95.71 2.53M
DSKN 75.47 1.72M 90.00 1.30M 92.78 1.35M 59.60 4.12M 81.70 1.49M 94.95 1.35M
ASKL 72.50 2.00M 87.53 0.39M 92.75 0.57M 44.00 5.70M 80.00 1.11M 97.14 0.59M

CokeNet 71.61 1.58M 89.95 0.76M 93.40 0.85M 57.50 6.39M 76.05 1.12M 97.14 0.86M
Ours 82.04 0.79M 91.70 0.42M 93.59 0.46M 72.60 3.31M 83.60 0.58M 97.43 0.46M

Figure 2: The data distribution of the remaining datasets
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D.2 LOSS LANDSCAPE

The spectral kernel mapping can be interpreted as a single-layer neural network equipped with a
periodic activation function. The stacking will lead to a highly non-convex loss landscape with
numerous local minima, thereby posing a significant optimization challenge Xue & Wu (2020).
Compared with deep spectral kernel models, the proposed generative spectral kernel is constructed
with a single-layer spectral kernel architecture, thereby circumventing the associated optimization
challenges. To evaluate this advantage, we compare the loss landscape for the deep spectral kernel
model and the generative spectral kernel model on the time series classification task.

In this experiment, the proposed generative spectral kernel follows the same setting as described in
Section 5.2.1. The generators (G1 and G2) and encoders (B1 and B2) are simultaneously designed
as a two-layer fully connected network with ReLU activation. Υ1 and Υ2 are set as the linear
transformation. All models are trained using the ADAM algorithm with a learning rate of 0.01.

We visualize the loss landscape of the remaining datasets in Figure 3. We can observe that the loss
landscape of the deep spectral kernel model is rugged with a sharp minimum point in most instances.
By contrast, the proposed method exhibits a smooth loss landscape with a wide minimum. This is
attributed to the framework of the generative spectral kernel, which solely involves single-layer
spectral kernel mapping. This framework avoids the stacking of periodic functions within the deep
spectral kernel, which commonly leads to numerous local minima.

Rock Trace PlaneECG200 ECG5000

D
eep spectral 

kernel
G

enerative spectral
kernel

Figure 3: The loss landscape of the remaining datasets

D.3 THE ADAPTIVE SPECTRAL DENSITY

To further assess the effectiveness of the proposed GensKer in generating adaptive spectral densities,
the kernel regression task (the same as Section 5.1.1 of the main text) is performed on the synthetic
data for the deep spectral kernel and the proposed generative spectral kernel. Specifically, the deep
spectral kernel (L = 1, 2, 3, respectively) is constructed by stacking the non-stationary spectral
kernel mappings under the concatenation scenario. The architecture of the generative spectral kernel
is the same as that in Section 5.2.1. Since the generative spectral kernel is not equipped with a deep
architecture, the same model is applied to the cases of L = 1, 2, 3.

We first elaborate a series of synthetic data {xi, yi}6000i=1 by the function yi = sin(xi) + sin(3xi) +
sin(5xi) + sin(10xi), xi ∈ [0, 10], where 5000 samples are used for training and 1000 for testing.
Then, we evaluate their performance on the kernel regression task. The result is shown in Figure 4.
It demonstrates the following information: (1) The proposed generative spectral kernel consistently
shows outstanding performance on L = 1, 2, 3, which is attributed to the powerful representation
ability of the generated spectral density. (2) The deep spectral kernel underperforms over x ∈ [4, 6],
but its performance improves progressively as the number of layers increases. In particular, under
L = 3, the performance of the deep spectral kernel is nearly comparable to that of the generative
spectral kernel. This observation further indicates that the RKHS induced by the deep spectral

7
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kernel in the concatenation setting undergoes progressive expansion with increasing depth, thereby
contributing to performance gains.

Figure 4: The regression results of different models.

E THE STATEMENT OF THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that the large language model (LLM) was used solely for language polishing (except for
the definition, lemma, theorem, and proposition), including the grammar, wording, and readability.
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