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Abstract
Quantitative information plays a crucial role001
in understanding and interpreting content of002
documents. Many user queries contain quanti-003
ties and cannot be resolved without understand-004
ing their semantics, e.g., “car that costs less005
than $10k”. Yet, modern search engines apply006
the same ranking mechanisms for both words007
and quantities, overlooking magnitude and unit008
information. In this paper, we introduce two009
quantity-aware ranking techniques designed to010
rank both the quantity and textual content ei-011
ther jointly or independently. These techniques012
incorporate quantity information in available013
retrieval systems and can address queries with014
numerical conditions equal, greater than, and015
less than. To evaluate the effectiveness of016
our proposed models, we introduce two novel017
quantity-aware benchmark datasets in the do-018
mains of finance and medicine and compare019
our method against various lexical and neural020
models. The code and data are available under021
https://github.com/filled_in_later.022

1 Introduction023

Despite advances in semantic search, and sophisti-024

cated neural network architectures, handling quan-025

titative information in text remains challenging.026

Specifically with quantity-centric queries, in which027

the query contains a quantity and a numerical con-028

dition, e.g., “BMW with more than 530hp”. The029

reason for this is that systems are not aware of030

numbers and their semantics, such as proximity, in031

particular in combination with units. Numbers and032

units are treated in the same way as any other text033

token that is subject to subsequent processing, e.g.,034

indexing or embedding. What complicates treating035

numbers and units in a proper way is that these036

objects can also have different surface forms (e.g.,037

6k vs 6,000 and mph vs miles per hour) and require038

standardization (Weikum, 2020). While there are039

approaches that specifically focus on numbers in040

text, e.g., extracting quantities for entities (Ho et al.,041

2019; Li et al., 2021), linking quantities in tables 042

(Ibrahim et al., 2019), or numerical reasoning (Ran 043

et al., 2019), they are tailored for specific tasks and 044

not semantic search in general. This applies to neu- 045

ral models supporting Information Retrieval (IR), 046

which are trained on general-purpose data without 047

the focus on quantity semantics. Language Models 048

(LM), forming the basis for neural models, exhibit 049

a limited understanding of number scales and prox- 050

imity (Wallace et al., 2019). Despite recent work 051

on numerical language models (Spokoyny et al., 052

2022; Jin et al., 2021), these architectures are very 053

specific and require changes in the architecture of 054

popularly used language models in IR, which indi- 055

cates an expensive pre-training. Moreover, lack of 056

accessible quantity-centric benchmarks for training 057

or comparing systems exacerbates the issue. 058

In this paper, we present two strategies to enhance 059

the quantity understanding of current IR systems. 060

We aim for a general-purpose model that is not 061

specific to quantity ranking but is also capable of 062

textual ranking. The two approaches differ in their 063

integration of quantity ranking with textual ranking. 064

The first employs a disjoint combination, while 065

the second focuses on the joint ranking of quan- 066

tities within the context of textual content. The 067

disjoint approach is an unsupervised and heuris- 068

tic model utilizing an index structure, compatible 069

with various lexical and semantic IR systems. Due 070

to the independence assumption, the connection 071

between quantities and surrounding text is some- 072

what lost. Therefore, for joint ranking, we aim 073

to learn quantity-aware document and query rep- 074

resentations through task-specific fine-tuning of 075

neural IR models. Additionally, we introduce two 076

novel benchmark datasets for quantity-centric rank- 077

ing, specifically focusing on queries involving nu- 078

merical conditions, in the domains of finance and 079

medicine. We evaluate the performance of our sys- 080

tems against various lexical and neural models and 081

show significant improvements over the baselines. 082
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2 Related Work083

Related work for quantity-centric search is limited.084

(Ho et al., 2020, 2019) focuses on quantity search085

for named entities, using a deep neural network086

for extracting quantity-centric tuples from text and087

query and matching based on context similarity.088

Their pipeline involves semantic role labeling and089

named entity extraction, both resource-intensive090

and reliant on sparsely available annotated data091

for quantities. Further, focusing on named entities092

limits the applicability to real-world scenarios.093

QFinder (Almasian et al., 2022) integrates numer-094

ical and lexical indexes to enhance numerical un-095

derstanding in a lexical IR system. Our disjoint096

model utilizes QFinder’s heuristic ranking func-097

tion, but we extend their approach to include neu-098

ral models and go beyond the limited query lan-099

guage, allowing users to provide queries in plain100

text. MQSearch (Maiya et al., 2015) extracts quan-101

tities with a set of regular expressions to create a102

rule-based system for finding documents contain-103

ing certain keywords and ranges of values. Loosely104

related to IR, (Rybinski et al., 2023) and (Li et al.,105

2021) perform numerical summarization on un-106

structured text in form of plots and graphs.107

In the area of databases, there has been some work108

focusing on building numerical indices for queries109

that contain numerical restrictions (Maiya et al.,110

2015; Fontoura et al., 2007; Agrawal and Srikant,111

2003). However, the main focus of such systems112

is the efficiency of the index structure and filtering113

out irrelevant numbers from the results with hard114

constraints rather than ranking.115

Unlike quantity-aware IR, investigating numeracy116

in LMs is well-established. (Wallace et al., 2019)117

is among the first to highlight the limitations of118

embedding models when handling numbers. Subse-119

quent efforts have led to dedicated embeddings and120

LMs for understanding scales, basic arithmetic, and121

numerical common sense knowledge (Spokoyny122

et al., 2022; Jin et al., 2021; Thawani et al., 2021;123

Sundararaman et al., 2020; Jiang et al., 2020;124

Nogueira et al., 2021; Spithourakis and Riedel,125

2018). These models are specific to numeracy and126

not IR in general. While using them can enhance127

performance, we focus on improving quantity un-128

derstanding in current IR models without architec-129

ture change or training a LM from scratch.130

3 Quantity-aware Model131

A quantity-centric query contains a numerical con-132

dition, a value, and a unit, e.g., “iPhone XS with133

price under $1500 ”. Queries like “What is the 134

price of iPhone XS?” are not considered quantity- 135

centric as they don’t require an understanding of 136

scales and units. In the following, we assume a 137

document collection where each document con- 138

sists of a sequence of sentences. Following previ- 139

ous work (Ho et al., 2019; Almasian et al., 2022), 140

we focus on sentences as retrieval units. A sen- 141

tence si := (Ti, Qi) is a sequence of tokens 142

Ti = (t1, ..., tl) and quantities Qi = (q1, ..., qk), 143

where a quantity qi = (ui, vi) is a tuple of a unit 144

ui and a value vi. A quantity query is denoted 145

by X = (Tx, c, qx), where Tx = (tx1 , .., txn) 146

are the search terms related to the query quantity 147

qx = (ux, vx). c ∈ {=, <,>} represents a nu- 148

merical condition, defining equal, less than, and 149

greater than conditions. Less than and greater than 150

indicate open bounds with values strictly less or 151

greater than the query value. The equal condition 152

pertains to values strictly equal to the query value. 153

The relevance, r(si|X), of sentence si to query X 154

is denoted in Eq 1. The similarity function simc is 155

dependent on the query condition c, where τ is a 156

generic function that maps a query and document 157

to their representations. Here, we explore differ- 158

ent ways to define τ , which can be an embedding 159

vector or a heuristic scoring function. 160

r(si|X) ∼ simc(τ(Tx, qx), τ(Ti, Qi)) (1) 161

We begin with a disjoint quantity-ranking method. 162

Leveraging heuristic and supervised functions from 163

(Almasian et al., 2022), we extend this approach 164

to neural models. We point out the limitation of 165

the disjoint ranking and propose a quantity-centric 166

fine-tuning paradigm for neural IR systems for the 167

joint ranking of quantity and textual content. 168

3.1 Quantity Extraction 169

To facilitate both approaches, a prerequisite is a 170

quantity extractor capable of identifying values (v), 171

units (u), numerical conditions (c), and concepts 172

(cn) associated with quantities. Concepts represent 173

objects or events, and numerical values refer to. For 174

instance, in the sentence “The iPhone 11 has 64GB 175

of storage”, the concept is “iPhone 11 storage”. 176

For this purpose, we use the Comprehensive Quan- 177

tity Extractor (CQE) framework (Almasian et al., 178

2023). However, this module can be substituted 179

with any alternative quantity extractor. 180

3.2 Disjoint Quantity Ranking 181

The disjoint model is based on the separation of 182

quantity and term ranking. We assume that the 183
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textual relevance of a sentence to query terms is184

independent of the proximity of query and sentence185

values under the query condition. Then, the rele-186

vance of a sentence can be the summation of (1)187

textual similarity, and (2) proximity of quantities188

in a sentence and a query, denoted in Eq 2. Note189

that here, sim computes the similarity of search190

terms to a sentence independent of simc, which191

computes the quantity proximities given query con-192

dition c. τ and τ
′

signify that representations for193

query and document are not necessary created from194

the same model. If the query is not quantity-centric,195

simply by removing the quantity score simc, the196

models fall back to term scoring.197

r(si|X) ∼ sim(τ(Tx), τ(Ti)) + simc(τ
′
(qx), τ

′
(Qi))

(2)198

In the following, we describe the computation199

of term (1) , and quantity (2) scorings, where200

(1) sim(τ(Tx), τ(Ti)) and (2) simc(τ(qx), τ(Qi).201

The general pipeline is depicted in App A.1.202

3.2.1 Quantity Scoring203

Using a quantity index containing explicit informa-204

tion about values and units in normalized form, we205

use heuristic functions to compute the proximity206

of query and sentence values based on different207

numerical conditions.208

Index creation: Documents are split into sentences209

that are processed independently by CQE. CQE210

outputs standardized values, e.g., $300 million is211

converted to $300,000,000 and normalized units,212

e.g., kilometer per hour and km/h are mapped to the213

same unit. A quantity index with unit/value pairs is214

built from this output and resembles a lexical index.215

Here, each unique unit/value pair points to a list of216

sentences it occurs in.217

Scoring functions: simc(τ(qx), τ(Qi)) is esti-218

mated by a scoring function qs that ranks the value219

in a sentence based on the value in the query given220

a numerical condition, where higher values indi-221

cate higher relevance. qs is dependent on the nu-222

merical condition, resulting in different scores for223

the same values under different numerical condi-224

tions. The quantity score only matters if the units225

match, otherwise, the values are not comparable226

and refer to different aspects of an object, e.g., the227

horsepower of a car is different from the km/h it228

reaches. qs is formulated in Eq 3. The indicator229

function 1ui(ux) enforces the match between the230

units of the query and the sentence, and Φc is the231

condition-dependent scoring function. To obtain232

a value between 0 and 1, the score is normalized233

by the number of quantities |Qi| in si. For brevity, 234

from now on we refer to qs(s, c,X) as simply qs. 235

qs(si, c,X) :=
1

|Qi|

|Qi|∑
i=1

1ui(ux)Φc(vx, vi) (3) 236

Φc consists of three heuristic functions, one for 237

each numerical condition (equal, less than, greater 238

than), adapted from (Almasian et al., 2022). The 239

study in (Almasian et al., 2022) explores various 240

Φ functions and their implications for sorting of 241

results (Refer to App A.2). Simply by changing 242

the Φs, results can be rearranged, independent of 243

training data that might introduce bias for a specific 244

sorting preference. Nonetheless, for the evaluation 245

of our model against other baselines, we focus only 246

on the most intuitive variant, which ranks quantities 247

with values closer to the query value in descending 248

order. The Φs are defined in Eq. 4. vx is the query 249

value and vi is the sentence value. 250

Φ=(vx, vi) =: exp(−|vx − vi|)

Φ>(vx, vi) =:

{
vx/vi vx>vi

0 else

Φ<(vx, vi) =:

{
vi/vx vx<vi

0 else

(4) 251

Φ= assesses the proximity of vx to vi by employ- 252

ing the exponential decay of their difference. The 253

resulting score ranges between 0 and 1, with larger 254

absolute differences yielding lower scores. 255

The scoring functions Φ< and Φ> determine nu- 256

merical proximity based on the ratio of the query 257

value vx to the sentence value vi, resulting in a 258

score between 0 and 1. This ratio, independent of 259

magnitude, yields higher scores for closer values. 260

3.2.2 Term Scoring 261

Term scoring, sim(τ(Tx), τ(Ti)), can come from 262

any lexical or semantic ranker, requiring only nor- 263

malized scores. Yet, IR systems typically do not 264

normalize their scores, as it has no influence on 265

the final ranking. Here, we discuss ways to nor- 266

malize scores of lexical and semantic systems and 267

combine them with qs. For a lexical model we 268

use BM25 (Robertson and Zaragoza, 2009) and for 269

dense and sparse neural rankers, ColBERT (Khat- 270

tab and Zaharia, 2020) and SPLADE (Formal et al., 271

2021) are employed. 272

Lexical model: Following (Almasian et al., 2022), 273

we combine qs with the BM25 score. The com- 274

bined score, represented in Eq 5, is constrained 275
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to sentences containing the search terms, as indi-276

cated by 1Tx(si). The parameter α controls the277

influence of the quantity scoring, falling back to278

pure term-based scoring when α is set to zero. The279

BM25(si, Tx) score is normalized per query by280

dividing each sentence’s score by the maximum281

BM25 score retrieved for the specified search terms282

maxX = maxs∈S(BM25(s, Tx)).283

QBM25(si, c,X) :=
BM25(si, Tx)

maxX
+ α1Tx(si)qs

(5)284

Neural dense model: Representing a dense neu-285

ral model, ColBERT is selected for term scoring.286

This choice is due to the same model being used287

for joint quantity ranking, where token-level inter-288

actions are crucial. Contextualized term score is289

computed with the similarity computation between290

token embeddings of query and sentence, as in Eq 6.291

ColBERT utilizes two BERT (Devlin et al., 2019)292

encoders for query and document (sentence), where293

each encoder outputs a list of token embeddings.294

ColBERT(Tx, si) =∑
k∈|BERT(Tx)|

maxj∈|BERT(si)|BERT(Tx)k · BERT(si)j (6)295

The term score comes from the MaxSim opera-296

tion between the query and sentence embeddings.297

MaxSim calculates an unbounded score for the298

maximum cosine similarity among the token em-299

beddings. To normalize this score, we require the300

maximum score. However, calculating the max-301

imum score for the entire collection is impracti-302

cal. For ranking, ColBERT leverages the pruning-303

friendly nature of the MaxSim in an approximate304

nearest neighbor search (Johnson et al., 2019) to305

return top-k most relevant candidate sentences Sk.306

We compute the maximum score based on these307

candidate sentences maxX = maxs∈Sk
(ColBERT)308

to normalize the score between 0 and 1. qs is then309

exclusively applied to the top-k candidates, serving310

as a second-stage re-ranker for numerical proxim-311

ity. The final score is defined in Eq 7, α controls312

the impact of quantity scoring.313

QColBERT(si, c,X) :=
ColBERT(Tx, si)

maxX
α · qs

(7)314

Note that the qs only affects the top-k sentences.315

We also present a neural sparse model, where qs is316

integrated into the entire ranking.317

Neural sparse model: The SPLADE model ex-318

tends the document and query terms and uses an319

inverted index for sparse dot products, allowing for 320

end-to-end integration with the quantity scoring. 321

Instead of term frequencies inside the index, term 322

importance weights are computed by SPLADE. For 323

each sentence and query, the BERT embeddings 324

are passed through a ReLU non-linearity and log 325

function to produce a sparse vector over the en- 326

tire vocabulary, where the values inside this vector 327

are the term importance. Then the relevance of 328

the query to a sentence is based on the sparse dot 329

product of this vector, as denoted in Eq 8. 330

SPLADE(si, Tx) :=

log(1+ ReLU(BERT(si))) · log(1+ ReLU(BERT(Tx)))
(8) 331

We normalize the SPLADE score by the max- 332

imum score for a given query, maxX = 333

maxsi∈S(SPLADE(si, Tx)), as defined in Eq 9. For 334

higher precision, quantity score is only added to 335

sentences where there is a match between the ex- 336

panded query terms and documents, denoted by the 337

indicator function 1. 338

QSPLADE(si, c,X) :=
SPLADE(si, Tx)

maxX
+ α1(si)qs

(9) 339

3.3 Joint Textual and Quantity Ranking 340

The independence assumption between the rele- 341

vance of quantities and terms can be problematic. 342

Consider the query “iPhone XR below C200”. In 343

a disjoint ranking, the following sentences can re- 344

ceive an inappropriately high score. 345

1)The price of an iPhone XR reached C236.50, 346

whereas Samsung A14 is C132.00. This sentence 347

has multiple quantities and the numerical condition 348

is satisfied for a value unrelated to “iPhone XR”. 349

2) Older iPhones, including iPhone XR have 350

dropped in price with iPhone 8 to C152.94. Here, 351

“iPhone XR” has no associated quantity. 352

These cases are due to a lack of correct association 353

between concept and quantity. We refer to this as 354

quantity-concept mismatch. To address this, we 355

need to rank sentences based on quantities in con- 356

text. Transformer-based models inherently capture 357

token inter-dependencies across the entire context. 358

However, current benchmarks lack quantity-centric 359

data. Therefore, it remains unclear whether the 360

deficiency in quantity understanding is due to the 361

absence of task-specific training data or if the cur- 362

rent architectures hinder numerical comparisons. 363

To investigate this, we propose a data generation 364

approach to address following problems. 365

4



First is the inability to perform value comparisons366

given numerical conditions. E.g., in the example367

above, the models ignore the less than, condition368

and focus on the semantic similarity of query text369

and sentence. Second, the semantic similarity of370

units is not well-defined. In the example above,371

results with “dollar” and other currencies receive372

high scores due to the context similarity of the units.373

Refer to App B.6 for a detailed discussion.374

Our data generation paradigm is designed to en-375

hance value comparisons and understanding of unit376

surface forms, by generating contrastive positive377

and negative sentences through data augmentation.378

Data augmentation, widely used in computer vi-379

sion, has also found applications in NLP tasks (Sen-380

nrich et al., 2016). The GENBERT model (Geva381

et al., 2020) is a relevant example, which employs382

templates for generating pre-training data, to en-383

hance numerical reasoning in question-answering384

systems without specialized architectures.385

Similar to GENBERT, we fine-tune neural IR mod-386

els used in the disjoint setting, ColBERT, and387

SPLADE, on synthetic data for quantity-centric388

IR 1. The data generation pipeline has three stages389

described in the following: quantity extraction,390

query generation, and sample generation.391

3.3.1 Quantity Extraction392

The documents are split into sentences and fed to393

CQE to extract quantities and concepts. The cor-394

pus is then transformed into an index-like structure395

based on concepts and units. We refer to this struc-396

ture as concept/unit index. The keys of the index397

are concept/unit pairs that point to a list of values398

associated with the pair and a list of respective399

sentences they occur in. The list of values can be400

viewed as the distribution of values for a concept401

under a specific unit. An example entry is shown402

in App B.1. We utilize this index structures in the403

subsequent steps for query and sample generation.404

3.3.2 Query Generation405

For each concept/unit pair, three queries, one for406

each condition, are created with the template407

query = {concept} {numerical_condition}
{unit_before}{value}{unit_after}.

The variables enclosed in the brackets are popu-408

lated during query generation. These steps are409

1Given that we are perturbing values and units in a sen-
tence, one might alternatively call this data perturbation.

given in an algorithm in the App B.2. In the follow- 410

ing, we describe how each placeholder is filled. 411

Unit: A surface form of the query unit is chosen 412

randomly from a dictionary of unit surfaces pro- 413

vided by CQE, e.g., “C” is a surface of the unit 414

“euro”. unit_before and unit_after account for 415

symbols appearing before, e.g., “C” and abbrevia- 416

tions after a value, e.g., “EUR”, respectively. 417

Value: For sample generation, sentences contain- 418

ing values meeting the query condition are cru- 419

cial. Therefore, selecting query values with enough 420

supporting sentences is vital. We propose the fol- 421

lowing strategy, based on the value distribution of 422

concept/unit index: 423

Equal query: Query values are chosen from the 424

most frequent values in the index (peak of value 425

distributions), ensuring availability of maximum 426

supporting sentences for a given concept and unit. 427

Less and greater than queries: For these bounds, 428

optimal candidates are close to the average of the 429

value distribution, such that when the numerical 430

condition is applied more sentence fall within lim- 431

its. Infrequent values (tail of the distribution) may 432

have inadequate supporting sentences for the sam- 433

ple generation step. Refer to the App B.3 for exam- 434

ples on value selection. 435

To avoid systemic bias by focusing on the most 436

frequent values, we generate a second set of queries 437

for each unit and concept pair by picking the query 438

values at random. 439

To account for variability in representation, sur- 440

face forms of large values that have multiple writ- 441

ten forms are randomly replaced with their written 442

form. This takes the shape of a composite of num- 443

bers and postfixes, such as "10 million," or includes 444

commas for digit separation, e.g., “10,000,000”. 445

Numerical Condition: This is a phrase in nat- 446

ural language indicating a bound on a quantity, 447

e.g., “above” for greater than condition. For this 448

purpose, a surface-form dictionary is created, and 449

the respective placeholder is filled with values ran- 450

domly chosen from the dictionary (see App B.4). 451

Concept: CQE identifies multi-word spans in a 452

sentence as concepts. Utilizing them directly for 453

query generation overlooks the nuances of seman- 454

tic queries. For example, in the sentence “Disney+ 455

charges $6.99 a month.”, “Disney+” is the extracted 456

concept. “Disney+” is a streaming platform, in- 457

cluding other media services. Such a sentence is 458

relevant for a lexical query with exact matches, e.g., 459

“Disney+ price under $7.99 a month”, or for a se- 460

mantic query, e.g., “streaming platform price over 461
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5 dollar/month”. Relying exclusively on keywords462

in sentences poses a risk of biasing the neural mod-463

els toward lexical search and away from semantic464

search. To avoid such a case, we add concept ex-465

pansion, where a large language model, namely466

GPT-3 (Chen et al., 2023), is used to generate syn-467

onyms or synsets for a given concept (see App B.5).468

These expansions are used to generate semantic469

queries. E.g., “Disney+” becomes “Streaming plat-470

form”. For each expanded concept new values and471

unit surface forms are sampled to generate seman-472

tic queries for each numerical condition.473

3.3.3 Sample Generation474

The input of this stage are the generated queries and475

the concept/unit index. The sample generation step476

creates positive and negative training samples for477

each quantity-centric query. This includes positive478

and negative samples obtained directly from the479

dataset, as well as additional augmented samples.480

An overview of the sample generation pipeline and481

an algorithmic view is presented in App B.7. In the482

following, we describe each step in detail.483

Look-up: Given a query containing a (concept,484

unit, condition, value), we conduct a lookup in the485

concept/unit index to retrieve the sentences and the486

distribution of values.487

Positive and Negative Sentences List: The ob-488

tained sentences are divided into positive s+ and489

negative s− lists, based on the numerical condition.490

s+ contains sentences, where the values in them491

satisfying the condition and s− contains sentence492

violating the condition.493

Original sampling: With sample size n, sentences494

are randomly selected from s+ as positive samples495

(so+) and from s− as negative samples (so−). Refer496

to App B.9 for information on the sample size.497

Unit permutation sampling: This method gener-498

ates positive and negative samples to cover diverse499

unit surface forms using CQE’s unit dictionary.500

Positive samples contain various surface forms of501

the unit in the query, while negative samples in-502

clude surface forms of units in the same family as503

the query unit, creating negatives.504

• A positive sample, su+, is formulated by sub-505

stituting the unit in a positive sentences, s+,506

with other surface forms of unit in query ui.507

• A negative sample, su− is created by replac-508

ing the unit in a positive sentences, s+, with509

a surface form of a unit different from query510

unit ,ui, but belonging to the same family. The511

unit families are grouping based on the prop- 512

erty they measure. For example, “pace”, “me- 513

ter”, and “foot” all belong to the family of 514

“length”. Sampling the surface form from the 515

same family ensures a fine distinction between 516

unit types, even in similar contexts. 517

Value permutation sampling: This permutation 518

emphasizes the importance of the value compar- 519

ison and numerical conditions, highlighting that 520

sentence relevance depends on whether the sen- 521

tence value satisfies the query condition or not. 522

• A positive sample, sv+, is formulated by per- 523

muting the values in a negative sentence s−, 524

maintaining the correct concept and unit but 525

adjusting the value to satisfy the quantity con- 526

dition. 527

• A negative sample, sv−, is generated by per- 528

muting the values in a positive sentence s+, 529

where concept, unit, and value are all correct, 530

to invalidates the quantity condition. 531

The replacement values are sampled from the val- 532

ues in the concept/unit index, mirroring the under- 533

lying distribution of the relevant quantity, as to the 534

reason for this choice, refer to the App B.8. 535

Aggregate: The final set of positive and negative 536

samples for each query is the union of all samples 537

generated from the original sampling, value and 538

unit permutation, sf+ = so+ ∪ su+ ∪ sv+ and 539

sf− = so− ∪ su− ∪ sv−. 540

The models reported in the evaluation use a combi- 541

nation of original sampling with unit permutation 542

and concept expansion on the query. Value per- 543

mutation did not show stable performance gains, 544

which we attribute to the difficulty of numerical rep- 545

resentations in dense models. For more discussion 546

on this matter and ablation study of augmentation 547

methods refer to App C.5. 548

4 Evaluation 549

Given the absence of task-specific models, we as- 550

sess our quantity-aware models against general do- 551

main lexical and neural models. 552

Lexical models include a BM25 and a BM25filter 553

variant. BM25filter has a separate numerical in- 554

dex to eliminate the results of BM25 where the 555

query condition is not met. This method resembles 556

the numerical indices from databases, focusing on 557

filtering rather than ranking. 558
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Table 1: Query types in FinQuant and MedQuant.

FinQuant MedQuant

Total queries 420 210
Sentence in corpus 306,291 153,252
Per condition 140 70
Keyword-based queries 300 120
Semantic queries 120 90

Neural models include the trained checkpoints559

of SPLADE and ColBERT as well as Coherev3 2.560

Coherev3 embeddings are included to show that561

even industry-level models trained on extensive562

data still lack quantity-centric understanding.563

4.1 Datasets564

We introduce two English resources called Fin-565

Quant and MedQuant. To the best of our knowl-566

edge, these are the first quantity-centric bench-567

marks for retrieval. Test queries were manually568

formulated using the concept/unit index, covering569

both lexical and semantic queries. Statistics for var-570

ious query types are presented in Table 1. There is571

an equal number of queries for each condition, and572

semantic queries constitute a smaller portion due573

to annotation challenges. For details on the dataset574

creation, refer to App C.1. The data is annotated by575

the two authors of the paper, with inter-annotator576

agreement computed on a subset of 20 samples per577

dataset. The Cohen’s Kappa coefficient (Cohen,578

1960) is 0.83 and 0.88 for FinQuant and MedQuant,579

respectively. FinQuant corpus contains over 300k580

sentences from 473,375 news articles. MedQuant581

is smaller, containing over 150k sentences from582

375,580 medical documents of the TREC Medical583

Records (Voorhees, 2013). Since the concept/unit584

index is used for dataset creation, CQE’s perfor-585

mance directly affects the data quality. While CQE586

is adept at handling financial data, extractions on587

clinical data were noisy, impacting performance588

comparisons later on. However, we find it impor-589

tant to report results on both datasets, making the590

reader aware of the lesser quality of MedQuant.591

4.2 Ranking Performance592

Table 2 shows the ranking performance of quantity-593

aware models, in terms of P@10, MRR@10,594

NDCG@10, R@100, and latency in milliseconds.595

The three models with a “Q” prefix indicate the596

disjoint and unsupervised rankers. Neural models597

with a ft postfix are joint models fine-tuned on syn-598

2https://cohere.com/embeddings DLA: 10.02.24

thetic data. Permutation re-sampling is used to test 599

for significant improvements (Riezler and Maxwell, 600

2005). Results denoted with † mark highly signifi- 601

cant improvements over the baseline models, with- 602

out quantity awareness with a p-value < 0.01. All 603

results are from single runs. For Implementation 604

details refer to App C.3. 605

Contrary to our initial hypothesis, disjoint rankers 606

consistently outperform joint models across all met- 607

rics, with improvements exceeding 10 points in 608

P@10 and over 30 points in MRR and NDCG over 609

the base models (without the “Q” prefix), without 610

requiring additional fine-tuning. The only draw- 611

back of disjoint models is a minimal increase in 612

latency, especially for QBM25 and QSPLADE, 613

where the quantity score is added to the entire 614

ranking. This overhead diminishes for the top- 615

performing model, QColBERT, where the quantity 616

score serves as a re-ranker on the top-k candidates. 617

ColBERT shows high recall on both datasets, sug- 618

gesting that relevant results are within the top-k 619

but not necessarily at the very top. Hence, the re- 620

ranking with the quantity score proves beneficial. 621

Joint models show a comparable performance 622

boost, with metrics falling below those of the dis- 623

joint ranker but still improving from the base mod- 624

els. This validates our hypothesis that the absence 625

of task-specific data has amplified the challenge of 626

quantity understanding for retrieval systems. Here, 627

once again the ColBERTft variant shows superior 628

performance. We attribute the better performance 629

of the ColBERT-based model to the fine-grained 630

token-level interactions that allow the model to 631

learn better associations between tokens. In quan- 632

tity ranking, token interactions play a more sig- 633

nificant role compared to the query and document 634

expansions conducted by SPLADE. This also show- 635

cases that the architecture and how the inter-token 636

interactions are modeled matter for quantity un- 637

derstanding. Nonetheless, even after fine-tuning, 638

understanding numerical conditions remains a chal- 639

lenge. We investigate how much the fine-tuned 640

models rely on quantities for ranking in App C.4. 641

4.3 Cross-dataset Generalization 642

Two lower bottom rows of Table 2 list the perfor- 643

mance drop of joint rankers on out-of-domain data, 644

compared to models fine-tuned on generated data 645

from the same domain. Each model is fine-tuned 646

on data from the other dataset and shows minimal 647

performance drop, suggesting that the models learn 648

patterns for quantity-centric queries without mem- 649

7
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Table 2: P@10, MRR@10, NDCG@10 and R@100 for on FinQuant and MedQuant. Top-2 values in each column
are highlighted in bold.

Model latency FinQuant MedQuant

(ms) P@10 MRR@10 NDCG@10 R@100 P@10 MRR@10 NDCG@10 R@100

baselines

BM25 9 0.06 0.14 0.09 0.47 0.04 0.11 0.07 0.37
BM25filter 9 0.14 0.32 0.25 0.60 0.08 0.19 0.15 0.48
Coherev3 - 0.14 0.22 0.19 0.27 0.10 0.17 0.15 0.25
SPLADE 26 0.10 0.24 0.19 0.53 0.11 0.25 0.20 0.58
ColBERT 36 0.15 0.35 0.27 0.70 0.12 0.31 0.24 0.63

joint
QBM25 311 0.21 0.53 0.41 0.55 0.18 0.47 0.37 0.51
QSPLADE 319 0.29† 0.67† 0.53† 0.83† 0.19† 0.52† 0.38† 0.70†

QColBERT 42 0.30† 0.69† 0.56† 0.87† 0.18† 0.51† 0.37† 0.73†

disjoint SPLADEft 26 0.21† 0.51† 0.41† 0.74† 0.14† 0.37† 0.29† 0.63†

ColBERTft 36† 0.23† 0.55† 0.44† 0.77† 0.18† 0.44† 0.36† 0.72†

cross-dataset SPLADEout 26 -0.03 -0.06 -0.07 -0.04 -0.02 -0.01 -0.04 -0.05
ColBERTout 36 -0.03 -0.07 -0.06 -0.03 -0.02 -0.01 -0.03 -0.02

orizing common queries.650

4.4 Lexical vs Semantic Queries651

Fig 1a shows NDCG@10 of all models on lexical652

and semantic subsets of the FinQuant. The seen653

and unseen are lexical queries and expansion and654

w/o surface form represent semantic queries. For655

the details of their distinction refer to App C.2.656

Interestingly, the disjoint ranking using dense mod-657

els captures both semantic similarity and quantity658

understanding. QBM25 performs equally well as659

dense models in lexical queries but significantly660

worse on semantic ones. Joint rankers outperform661

base models in both lexical and semantic queries662

but lag behind disjoint models.663

Fig 1b depicts NDCG@10 of all models on dif-664

ferent numerical conditions. Equal queries are in665

general easier for the models as the notion of rele-666

vance in this case aligns with textual ranking. The667

performance drops almost 20 points for the bound-668

based conditions. This drop is consistent across all669

models, implying that the bound-based conditions670

are harder for models to rank.671

5 Conclusion and Ongoing Work672

This work introduces two methods to integrate673

quantity understanding into existing retrieval sys-674

tems. The disjoint approach is an unsupervised and675

heuristic method, while the joint approach involves676

fine-tuning on quantity-centric synthetic data to677

enhance quantity understanding. The disjoint scor-678

ing can be combined with any lexical or semantic679

matchers without the change in their architecture680

or need for fine-tuning, showing consistently good681

performance regardless of data distribution. More-682

over, the notation of quantity proximity is easily683

altered by changing the quantity scoring function,684

(a) Lexical vs semantic subsets

(b) Subset with different numerical conditions

Figure 1: Performance on different subsets of FinQuant.

leading to great flexibility in terms of different sort- 685

ing of results. However, the quantity index intro- 686

duces an overhead in query latency, is sensitive 687

to errors from quantity extraction and the inde- 688

pendence assumption leads to possible concept- 689

quantity mismatch in the results. Conversely, the 690

joint models are better at finding concept and quan- 691

tity associations but their overall performance is 692

lower. Yet, if one does not want to be dependent 693

on an external index and quantity extractor, the 694

fine-tuning on synthetic data can enhance quan- 695

tity awareness to some extend. We also introduce 696

two benchmark datasets and evaluated our methods 697

against multiple baselines. In future, we explore 698

the impact of numerical embeddings in retrieval. 699
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6 Limitations700

In this section, we highlight the limitations of the701

proposed evaluation resources and the models in-702

troduced in this paper.703

Evaluation resources: One immediate consider-704

ation about the datasets is the relatively limited705

number of test queries compared to larger-scale706

datasets such as MSMARCO (Nguyen et al., 2016).707

This is mainly due to limited human resources and708

budget in an academic setting. Nonetheless, we ar-709

gue that this number of the query is already enough710

to showcase certain quantity-centric capabilities.711

Another shortcoming of the data is the absence of712

queries for ranges, e.g., “iPhone with price between713

500 and 800 dollars”, and negations, “iPhones not714

equal to 500 dollars”.715

Quantity-aware models: When considering neu-716

ral models, one limitation is their reliance on hard-717

ware capabilities, particularly the need for GPUs718

to ensure efficient training, indexing, and inference.719

The query latency values reported in this paper720

would suffer greatly if the computations were don721

on CPU. Moreover, both the synthetic data gener-722

ation paradigm and the disjoint model rely on a723

quantity extractor. In the case of the disjoint model,724

the quality of the quantity index directly relies on725

the quality of value and unit extraction. If a value726

and unit is not detected by the extractor it will not727

be considered by the scoring function. In the joint728

model, for data generation, the quantity extractor729

should also possess the ability to detect concepts in730

text, introducing the potential for additional error731

propagation through the system. In this work, we732

do not discuss models that deal with ranges and733

negations. Adding such variations to the disjoint734

models requires only a change in the numerical735

scoring function but it is more difficult for the joint736

setting where proper training data is required. For737

the bound-based conditions of less than and greater738

than, we considered open bounds. Depending on739

the user intent closed bounds might be more appro-740

priate, however, similar to the optimal sorting of741

results, this issue does not have a single solution.742
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Figure 2: General pipeline of the disjoint quantity-
ranking approach, where a separate quantity index is re-
sponsible for computing quantity proximity and a term-
based lexical or semantic index is used to compute the
similarity of the search terms to sentences.

A Disjoint Quantity Ranking917

In this section, we provide additional material re-918

lated to the disjoint quantity ranking model.919

A.1 Disjoint Quantity Ranking Pipeline920

The general pipeline for the disjoint quantity-921

ranking model is shown in Figure 2. The query922

is processed into quantity, search terms, and con-923

ditions, using CQE or similar packages. The doc-924

ument corpus is indexed separately for terms and925

quantities, whereas the term-based index can be a926

traditional lexical index or a vector database. This927

term-based index retrieves semantically or lexically928

similar sentences. From the retrieved sentences, the929

quantity index identifies values that share the same930

unit as the query, computing proximity based on931

the provided condition. The final ranking combines932

scores from term-based and quantity ranking.933

A.2 Optimal Sorting934

Although all the sentences that satisfy a numerical935

condition and have the correct concept and unit are936

potentially relevant, the order in which the result937

items are presented to the user can either aid or938

hinder the user in finding the desired result. In939

term-based ranking, the optimal order of results940

is evident. However, when it comes to quantities,941

relevance is more subjective and the optimal sort-942

ing is dependent on the user’s information needs.943

For example, a user searching for “iPhone camera944

that has more than 8 inches” might look for a max-945

imum value larger than 8 inches or a display only946

marginally larger, both of which are valid answers.947

Presenting results in ascending or descending or-948

der based on numerical distances allows the user949

to identify the desired result more efficiently. (Al-950

masian et al., 2022) briefly addresses this issue951

and explores potential alternatives for scoring func- 952

tions to enable various sorting options. Disjoint 953

approach is flexible concerning different sorting. 954

By switching a scoring function, the results can be 955

rearranged. Joint model are not as adaptive, and re- 956

arranging the results requires additional fine-tuning 957

based on a new preferred sorting. 958

B Joint Quantity Ranking 959

In this section, we provide the additional material 960

related to the joint quantity ranking model. 961

B.1 Concept-unit Index 962

An entry in the concept/unit index from the Fin- 963

Quant dataset is shown below. 964

{("cannabis company","cent per share"):
{"values":[1.4, 17.0, 17.0, 22.0, 26.0,
35.0, 84.0],
"sentences":['The cannabis company says
the loss amounted to 0.9 of a cent per
share for the quarter ended May 31
compared with a loss of \$4 million or
1.4 cents per share a year earlier .',
'The cannabis company says its loss
amounted to 17 cents per diluted share
for the quarter ended Jan. 31 .',...]}}

Note that repetition of values for the same con- 965

cept/unit pair is stored as duplicates, such that the 966

frequency of values is kept for the distribution, e.g., 967

value “17.0” is repeated twice as it occurs in two 968

distinct sentences. The creation steps are depicted 969

in Figure 3. The corpus is analyzed with CQE to 970

extract values, units, and concepts from each sen- 971

tence, where sentences sharing the same unit and 972

concept are grouped into a list, along with values 973

represented as a distribution. 974

B.2 Query Generation 975

The complete query generation pipeline is depicted 976

in Figure 4. The concept/unit index is used to select 977

values and units for numerical conditions. Addi- 978

tionally, a large language model is used to expand 979

concepts for semantic queries. The template gener- 980

ation block combines all the outputs to formulate 981

three queries for each unit and concept pair. To 982

generate expanded concepts, a new query value is 983

chosen from the value distribution, leading to the 984

formulation of a new set of queries. Additionally, 985

we offer the query generation pseudocode in Algo- 986

rithm 1 to make the input and output of each step 987

clear. In the algorithm, v refers to the value, u to 988

the unit, c to the condition, and cn to the concept. 989
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Figure 3: Overview of the quantity tagging step and creation of concept/unit index structure.

Figure 4: Overview of the query generation pipeline,
using concept/unit index and a large language model for
concept expansion.

Figure 5: An example of choosing query values for
equal and bound-based conditions.

Algorithm 1 Query Generation
function GENERATE_QUERY(cn, u, c)

v ← get_query_values(cn_unit_dict, c)
u_b, u_a← get_unit_surfaceform(u)
c← get_condition_surfaceforms(c)
query ← conc+ c+ u_b+ v + u_a
return query

end function

cn_unit_dict← concept/unit index
cn_expand_dict← concept expansions
for (cn, u) in cn_unit_dict do:

for cn in [cn, cn_expand_dict[cn]] do:
for c in (equal, greater, less) do:

GENEARATE_QUERY(cn, u, c)
end for

end for
end for

B.3 Choosing the Right Query Value 990

Each entry in the concept/unit index points to the 991

sentences and list of values in those sentences. For 992

the data augmentation to work, we require a num- 993

ber of positive and negative samples per query and 994

therefore, it is important to choose the value of the 995

query such that supporting sentences in the corpus 996

are present. A hypothetical example of value distri- 997

bution is shown in Figure 5. For the equal query, 998

the challenge is to find enough positive samples, 999

since there is an abundance of not equal values in 1000

each distribution. In Figure 5, values with the high- 1001

est frequency, denoted by red arrows pointing to 1002

peaks in the distribution, serve as optimal candi- 1003

dates for the equal condition. In this manner, we 1004

make sure that there a enough positive samples for 1005

the data augmentation. Values close to the aver- 1006

age (highlighted in a yellow box) are chosen for 1007

the Less than and greater than queries. For such 1008

queries, we avoid infrequent values towards the 1009

tail of the distribution, to avoid too few positive or 1010

negative samples. 1011

B.4 Dictionary of Numerical Conditions 1012

A non-comprehensive dictionary of surface forms 1013

for numerical conditions is shown Table 3, con- 1014

taining multiple surface forms for each condition. 1015

Table 3: Numerical conditions used for query generation
and their surface forms.

Condition Surface forms

Equal exactly, exact, equals, equals to, for, with, of, at
greater than greater than, more than, above, larger than, over, higher than, exceed, exceeding
Less than smaller than, below, less than, fewer than, no more than, beneath

1016

B.5 Concept Expansion 1017

For concept expansion, we use the OpenAI API 3 1018

and employ the text-davinci-003 model with 1019

few-shot learning. We set the temperature to 1 to 1020

encourage creative responses. Since the concepts 1021

come from two distinct domains of finance and 1022

3https://openai.com/ DLA:11.02.2024
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medicine, the few-shot examples vary accordingly.1023

Below we specify the two prompts used for1024

concept expansion, the result is stored in a concept1025

expansion dictionary and utilized during query1026

generation. The place-holder concept is replaced1027

with a concept from the concept/unit index.1028

1029

For finance domain:1030

Complete with the words super set or
synonym, but do not reuse the exact
same words, the word "Super Set"
should not be in the response and
response should have at least two words:

S&P 500 = stock market index
Audi = car
Oil prices = petroleum prices
unemployment rate = unemployment
percentage
iPhone sales = phone sales
Netflix shares = stock shares
President Trump = President
iPhone 11= iphone
Hong Kong = city
stake PEXA = Property Exchange Australia
shares

{concept} =

For medical domain:1031

Complete with the words super set or
synonym, but do not reuse the exact
same words, the word "Super Set"
should not be in the response and
response should have at least two words:

ophthalmic solution = eye medication
Control group = treatment group
irinotecan hydrochloride = chemotherapy
drug
monoclonal antibody = substitute
antibodies
MRI scans = Magnetic resonance imaging
influenza H1N1 vaccine = flu vaccine
HAI antibody response = Influenza-specific
antibody response

{concept} =

B.6 When Semantic Search Back-fires1032

Semantic retrieval systems consider an entire con-1033

text to find a fuzzy relevance to a query at hand.1034

Often, this aligns well with the user’s expecta-1035

tions. For instance, when searching for a “dark1036

color evening dress”, any dress that can be worn1037

as an evening gown and has a dark color would be1038

suitable. But as soon as the user becomes more1039

Figure 6: Overview of the sample generation using
value and unit permutation.

specific like “blue evening dress”, the embedding 1040

space could also bring a similar color like “teal” 1041

into the search result. Depending on the user’s flex- 1042

ibility regarding the dress color, this behavior may 1043

or may not be desirable. Such hard constraints are 1044

challenging for neural models. Quantity-centric 1045

queries compose hard constraints on values and 1046

units where the fuzzy matching of context might do 1047

more harm than good. For instance, when search- 1048

ing for a “car with more than 320 hp”, if the results 1049

contain a car with “360 brake horsepower” instead 1050

of horsepower the result is irrelevant. Both horse- 1051

power and brake horsepower are used in similar 1052

contexts but refer to different attributes. Horse- 1053

power measures the power generated by the engine, 1054

while brake horsepower measures how much of the 1055

power produced by the engine is sent to the wheels 1056

which makes the car accelerate. Another common 1057

problem is with currencies. Given that monetary 1058

values often appear in similar contexts, it becomes 1059

challenging for the neural models to differentiate 1060

between various currency units. The same applies 1061

to hard constraints on values, where based on a 1062

given numerical condition, values outside of that 1063

bound are considered irrelevant. 1064

B.7 Sample Generation with Permutations 1065

An outline of sample generation pipeline is shown 1066

in Figure 6. The input of this stage is the gener- 1067

ated queries and the concept/unit index. For each 1068

quantity-centric query, a list of positive and nega- 1069

tive samples are created by applying the numerical 1070

condition on the list of sentences from the index. 1071

The original positive and negative samples are then 1072

chosen at random from such a list. The same list 1073

is utilized as seed samples for data augmentation. 1074

Unit and value permutation are employed to gener- 1075

ate augmented positive and hard negative samples. 1076

Hard negative are positive samples, where the unit 1077

or value is perturb to violet the query condition. 1078
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The steps are presented in Algorithm 2. Each sam-1079

pling mechanism is encapsulated within a distinct1080

function and the final training samples are the union1081

of all generation mechanisms. In the algorithm, v1082

refers to value, vals to list of value of a given1083

concept and unit, u to unit, c to condition, cn to1084

concept and n to sample size.1085

Algorithm 2 Sample Generation
function ORIGINAL_SAMPLING(s+, s−, n)

return sample( s+,n), sample( s−,n)
end function

function UNIT_PERMUTATION(s+, n, u)
su+ ← replace_same_unit_surface(s+, u)
su− ← replace_other_unit_surface(s+, u)
return sample( su+,n), sample( su−,n)

end function

function V_PERMUATION(s+, s−, n, vals, c)
su+ ← replace_with_positive_value(s−, v)
su− ← replace_with_negative_value(s+, v, c)
return sample( sv+,n), sample( sv−,n)

end function

conc_unit_dict← concept/unit index
queries← list of queries
n← number of samples
for (cn, u, c, v) in queries do:

s, vals← conc_unit_dict[(cn, u)]
s+, s− ← filter_based_on_condition(s, c, v)
so+, so− ← ORIGINAL_SAMPLING(s+, s−, n)
su+, su− ← UNIT_PERMUTATION(s+, n, u)
sv+, sv− ← V_PERMUTATION(s+, s−, n, vals, v, c)
sf+ = so+ ∪ su+ ∪ sv+
sf− = so− ∪ su− ∪ sv−

end for

B.8 Sampling within Distribution1086

It is crucial that the permuted values obey the origi-1087

nal value distribution of the corpus. The properties1088

of concepts are often limited to a specific range,1089

e.g., the value “10000” is unreasonable for per-1090

centage rate of unemployment. Moreover, certain1091

values are on a discrete scale with limited options,1092

e.g., “RAM of a laptop” is limited to distinct values1093

such as 4,8, and 16. Assigning a random number1094

outside this range, like 10, would be unrealistic.1095

Therefore, for the synthetic data to obey the rule of1096

the real-world dataset and reflect the distribution of1097

different properties, the permuted value are chosen1098

from the values observed in the corpus.1099

B.9 Down-sampling1100

If the number of available sentences in the positive1101

and negative lists is smaller than the sample size,1102

a downsampling procedure is implemented. When1103

|s+| < n or |s−| < n, we reduce the sample size1104

to the smallest number of available samples. 1105

C Evaluation 1106

In this section, we present additional evaluations 1107

and implementation details. To reproduce the re- 1108

sults, access model checkpoints and datasets, we 1109

encourage readers to refer to our repository. 1110

C.1 FinQuant and MedQuant Datasets 1111

In this section, we give an overview of the 1112

creation the FinQuant and MedQuant evaluation 1113

benchmarks. FinQuant is created from a set of 1114

news articles in categories of economics, science, 1115

sports, and technology, collected between 2018 1116

and 2022. MedQuant contains TREC Medical 1117

Records (Voorhees, 2013) on clinical Trails. Both 1118

datasets were split into sentences and processed 1119

to eliminate boilerplate HTML or headers. All 1120

sentences containing a single quantity were incor- 1121

porated into the collection. The entire test data is 1122

manually created and tagged. In the following, we 1123

describe the query formulation and annotation task. 1124

1125

Query formulation: Given access to the 1126

concept/unit index and the value distributions, an- 1127

notators were tasked to formulate quantity-centric 1128

queries. They were instructed to scan the entire 1129

index for possible synonyms to a given concept 1130

when formulating a query and keep track of the 1131

synonyms in a list. For example, if one chooses 1132

“Microsoft Surface Earbuds” with the unit “pound 1133

sterling”, the annotator scans the other concepts 1134

inside the concept/unit index with “pound sterling” 1135

as unit to detect relevant ones, e.g., “Earbuds”, 1136

“Microsoft headphones”. In the subsequent stage, 1137

the value distributions of all selected concepts 1138

are consolidated into one and presented to the 1139

annotator. The annotator is then instructed to 1140

choose three values for equal, less than, and 1141

greater than queries, in such a way that supporting 1142

sentences for the query is present within the value 1143

distribution. In the final stage, the annotator will 1144

formulate the query in natural text, e.g., “Microsoft 1145

Surface Earbuds lower than 179 pound sterling”. 1146

The annotators have access to the dictionary of 1147

surface forms for units and conditions to help 1148

query formulation. 1149

1150

Candiate list generation : For each query, a list of 1151

candidates relevant sentences was generated using 1152

the concept/unit index. All sentences related to 1153
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the concept and its synonyms were filtered based1154

on the query value and condition. The filtering1155

is done automatically based on the query value1156

and numerical condition to lower the effort of1157

annotation. We recognize that the quality of the1158

candidate set relies directly on how effectively the1159

quantity extractor captures associations between1160

quantity and concepts. We observed that although1161

the extractions for financial data were of high1162

quality, in the medical domain, several quantities1163

were overlooked. In both datasets, there is no1164

guarantee that the candidate list is comprehensive1165

and covers all relevant instances.1166

1167

Annotation: An annotation guideline was devised1168

for a consistent annotation of ambiguous cases and1169

is published with the dataset. Annotators were pre-1170

sented with a list of candidate sentences for each1171

query and were tasked to mark the relevant sen-1172

tences. The marked sentences are used at ground1173

truth for subsequent evaluation.1174

C.2 Semantic and Lexical Queries1175

The queries are categorized into four types: seen,1176

unseen, expansion, and w/o surface form. The lex-1177

ical queries fall under the categories of seen and1178

unseen. For such cases, during query formulation,1179

the annotators picked concepts from the concept/u-1180

nit index without the change in surface form. The1181

concepts from the unseen category, were removed1182

from the index for data generation and training1183

of the joint neural models. Therefore, it contains1184

lexical queries that were not seen during training.1185

For example, “YouTube channel” is a concept in1186

the unseen subset, which means all instances of1187

“YouTube channel” were removed from the concep-1188

t/unit index before data generation.1189

Semantic queries fall under the categories of expan-1190

sion and w/o surface form and were slightly harder1191

to formulate, thereby, fewer instances of them are1192

present in the data. For expansion queries, a con-1193

cept from the lexical set was chosen to expand to1194

one of its supersets or synonyms. For example,1195

“social media channel” is a semantic concept from1196

“YouTube channel”. These expansions were used to1197

formulate queries that did not have a lexical match1198

in the database and often included a superset of1199

many concepts. In the case of “social media chan-1200

nels”, the model should be able to retrieve other1201

social media channels like “Facebook” as well as1202

“YouTube”. In the case of lexical models based1203

on BM25, the difference is evident in Figure1a,1204

where the models show great performance on seen 1205

and unseen subset, but if the same queries are con- 1206

verted to their semantic counterpart, as in expan- 1207

sion, the models fail to retrieve the correct result. 1208

W/o surface form are other semantic queries that 1209

were formulated independent of the lexical queries. 1210

C.3 Implementation 1211

The code is implemented in Python 3.10.9 and 1212

PyTroch 1.13.1. The general sentence splitting 1213

and text cleaning were performed with SpaCy 3.6 4. 1214

As mentioned before we use the CQE library 5 1215

for quantity extraction. Evaluation and metrics 1216

were computed with the help of pytrec_eval li- 1217

brary (Van Gysel and de Rijke, 2018). In the fol- 1218

lowing, we discuss the implementation details for 1219

each model separately. 1220

BM25 models: We use the Okapi BM25 pack- 1221

age 6 for all BM25 variants. The QBM25 and 1222

BM25filter are variations of Okapi BM25 designed 1223

to include a numerical index for ranking and filter- 1224

ing. The parameters of BM25 were tuned to each 1225

of our datasets separately, as presented in Table 4. 1226

The latency values are computed with plug-ins for 1227

an opensearch 7 instance on a desktop computer 1228

with 15GB of RAM. In comparison to the dense 1229

models, the lexical models do not require specific 1230

hardware architectures. 1231

Table 4: Hyper parameters of BM25-based models on
the benchmark datasets.

FinQuant MedQuant

BM25 b = 0.5, k1 = 0.5, b = 0.5, k1 = 0.5
BM25filter b = 0.75, k1 = 1.5 b = 0.75, k1 = 1.5
QBM25 b = 0.5, k1 = 0.5 b = 0.5, k1 = 0.75

Cohere baseline: We used the Cohere API 8 for 1232

Coherev3 embeddings. Query embeddings were 1233

used to encode the queries and the document 1234

embeddings to encode the collection. 1235

1236

ColBERT models: (Khattab and Zaharia, 2020) 1237

supplied the trained checkpoint for the base 1238

ColBERT model. For fine-tuning on augmented 1239

data, the model was initialized with this base 1240

checkpoint. The checkpoint was employed for 1241

4https://spacy.io/ DLA: 11.02.2024
5https://github.com/vivkaz/CQE DLA: 11.02.2024
6https://pypi.org/project/rank-bm25/ DLA:

11.02.2024
7https://opensearch.org/ DLA: 11.02.2024
8https://cohere.com/ DLA: 11.02.2024
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the evaluation of both ColBERT and QColBERT.1242

ColBERTft was fine-tunned using the training1243

script the from the official repository 9. The1244

code in the repository was modified to establish1245

an endpoint for QColBERT incorporating a1246

quantity index. We did not perform extensive1247

hyperparameter tuning except for the learning rate1248

and mainly used the parameters advised by the1249

authors for both FinQuant and MedQuant datasets.1250

We fine-tuned the joint ColBERTft for 2 epochs,1251

with a batch size of 256 and a learning rate of1252

1e-05 on a server with four A-100 GPUs and 40GB1253

of memory. The evaluation and benchmarking1254

for latency were performed on the same server,1255

utilizing all four GPUs.1256

1257

SPLADE models: SPLADEft was also fine-tuned1258

using the training script by the authors 10. The1259

pre-trained checkpoint was acquired from Hugging1260

Face 11 and utilized for both the SPLADE1261

model and QSPLADE. Scripts from the official1262

repository were adjusted to add numerical index1263

for QSPLADE. Similar to ColBERT, we conducted1264

limited hyperparameter tuning, mainly focusing1265

on the learning rate. We fine-tuned SPLADEft1266

for 2 epochs using a batch size of 240, a learning1267

rate of 2e-5, and a weight decay of 0.01. The1268

fine-tuning was conducted on a server with four1269

A-100 GPUs and 40GB of memory. The evaluation1270

and benchmarking for latency were performed on1271

the same server, utilizing all four GPUs.1272

1273

For all disjoint rankers, QBM25, QColBERT, and1274

QSPLADE the quantity impact parameter of α is1275

set to 1, such that the impact of term and quantity1276

ranking are equal.1277

1278

Generated data: Based on the combination of aug-1279

mentation methods the size of training data would1280

vary. In all cases, we saved a small sample of1281

1000 queries for validation. There were 40,7321282

and 20,376 concept and unit pairs considered for1283

query generation in FinQuant and MedQuant, re-1284

spectively. If concept expansion is applied these1285

numbers would double to account for queries on1286

expanded concepts. We set the sample size n to 2,1287

meaning that for each query two positive and neg-1288

9https://github.com/stanford-futuredata/
ColBERT DLA:11.02.2024

10https://github.com/naver/splade DLA:11.02.2024
11https://huggingface.co/naver/

splade-cocondenser-ensembledistil DLA:11.02.2024

(a) ColBERT based models

(b) SPLADE based models

Figure 7: The effect of task-specific fine tuning on mod-
els attention to quantity tokens. In the masked variants
either the unit or the value of the sentences in the col-
lection is masked.

ative samples were chosen from the data without 1289

augmentation. As a result, based on augmentation 1290

methods, additional n = 2 samples would be added 1291

for unit and value permutation, a total 3n per query. 1292

C.4 Effect of Fine-tuning 1293

To assess the impact of task-specific fine-tuning on 1294

the internal ranking strategy of the dense models, 1295

we evaluate two masked versions of the data. 1296

Mask value: In this scenario, we mask all values 1297

in the collection with the [MASK] token before run- 1298

ning the evaluation. This task aims to determine 1299

the extent to which the model depends on the value 1300

token for retrieving the correct sentence. 1301

Mask unit: Here, we mask unit tokens in the col- 1302

lection before running the evaluation with [MASK] 1303

token. This task is intended to observe the impact 1304

of unit comparison on the final ranking. 1305

We compare the base version of the dense mod- 1306

els with their fine-tuned version on the different 1307

masking of the FinQuant dataset. The results for 1308

the ColBERT models are shown in Figure 7a and 1309

for SPLADE models in Figure 7b. In both cases, 1310

the fine-tuned version exhibits a more significant 1311

drop in performance compared to the base models. 1312

This indicates that after fine-tuning, the model be- 1313

comes more dependent on the quantity of tokens, 1314

values, and units, in the text to identify the relevant 1315

sentence. 1316

C.5 Ablation Study on Augmentation 1317

Methods 1318

To check the effect of different augmentation strate- 1319

gies, we perform an ablation study, by fine-tuning 1320
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(a) ColBERTft

(b) SPLADEft

Figure 8: Ablation study on different augmentation
methods, where value and unit, refer to value and unit
permutation and concept refers to concept expansion.

the neural models on data generated using a com-1321

bination of different strategies. The main points of1322

variabilities are concept expansion in the query gen-1323

eration process and value and unit permutation for1324

sample generation. The results for ColBERTft and1325

SPLADEft on FinQuant dataset is demonstrated in1326

Figures 8a and 8b, respectively. no perturbation1327

refers to the case where no data augmentation was1328

applied and only the positive and negative samples1329

from the original sampling are used for training.1330

An interesting trend is the detrimental effect of1331

value permutation. The value permutation on1332

its own enhances the performance of the base1333

model. However, as soon as it is accompanied by1334

other augmentation methods the performance de-1335

grades slightly. The best combination for both the1336

SPLADE and ColBERT model is unit permutation1337

and concept expansion, both of these augmentation1338

techniques on their own also provide a larger boost1339

in comparison to value permutation. To this end,1340

the variant of the models presented for evaluation1341

as ColBERTft and SPLADEft are trained on unit1342

permutation and concept expansion subset. We1343

find this behaviour rather surprising and counter-1344

intuitive. Usually, the performance of neural mod-1345

els increases with the amount of data presented for1346

a given task, however, perturbing the values does1347

not seem to enhance the performance as expected.1348

This can be related to the internal representation1349

of the neural models, which is hindering their abil-1350

ity to correctly learn quantity semantics. In future1351

work, we aim to test the effect of dedicated numer-1352

ical embedding and language models for this task.1353

1354
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