Numbers Matter! Bringing Quantity-awareness to Retrieval Systems

Anonymous ACL submission

Abstract

Quantitative information plays a crucial role
in understanding and interpreting content of
documents. Many user queries contain quanti-
ties and cannot be resolved without understand-
ing their semantics, e.g., “car that costs less
than $10k”. Yet, modern search engines apply
the same ranking mechanisms for both words
and quantities, overlooking magnitude and unit
information. In this paper, we introduce two
quantity-aware ranking techniques designed to
rank both the quantity and textual content ei-
ther jointly or independently. These techniques
incorporate quantity information in available
retrieval systems and can address queries with
numerical conditions equal, greater than, and
less than. To evaluate the effectiveness of
our proposed models, we introduce two novel
quantity-aware benchmark datasets in the do-
mains of finance and medicine and compare
our method against various lexical and neural
models. The code and data are available under
https://github.com/filled_in_later.

1 Introduction

Despite advances in semantic search, and sophisti-
cated neural network architectures, handling quan-
titative information in text remains challenging.
Specifically with quantity-centric queries, in which
the query contains a quantity and a numerical con-
dition, e.g., “BMW with more than 530hp”. The
reason for this is that systems are not aware of
numbers and their semantics, such as proximity, in
particular in combination with units. Numbers and
units are treated in the same way as any other text
token that is subject to subsequent processing, e.g.,
indexing or embedding. What complicates treating
numbers and units in a proper way is that these
objects can also have different surface forms (e.g.,
6k vs 6,000 and mph vs miles per hour) and require
standardization (Weikum, 2020). While there are
approaches that specifically focus on numbers in
text, e.g., extracting quantities for entities (Ho et al.,

2019; Li et al., 2021), linking quantities in tables
(Ibrahim et al., 2019), or numerical reasoning (Ran
et al., 2019), they are tailored for specific tasks and
not semantic search in general. This applies to neu-
ral models supporting Information Retrieval (IR),
which are trained on general-purpose data without
the focus on quantity semantics. Language Models
(LM), forming the basis for neural models, exhibit
a limited understanding of number scales and prox-
imity (Wallace et al., 2019). Despite recent work
on numerical language models (Spokoyny et al.,
2022; Jin et al., 2021), these architectures are very
specific and require changes in the architecture of
popularly used language models in IR, which indi-
cates an expensive pre-training. Moreover, lack of
accessible quantity-centric benchmarks for training
or comparing systems exacerbates the issue.

In this paper, we present two strategies to enhance
the quantity understanding of current IR systems.
We aim for a general-purpose model that is not
specific to quantity ranking but is also capable of
textual ranking. The two approaches differ in their
integration of quantity ranking with textual ranking.
The first employs a disjoint combination, while
the second focuses on the joint ranking of quan-
tities within the context of textual content. The
disjoint approach is an unsupervised and heuris-
tic model utilizing an index structure, compatible
with various lexical and semantic IR systems. Due
to the independence assumption, the connection
between quantities and surrounding text is some-
what lost. Therefore, for joint ranking, we aim
to learn quantity-aware document and query rep-
resentations through task-specific fine-tuning of
neural IR models. Additionally, we introduce two
novel benchmark datasets for quantity-centric rank-
ing, specifically focusing on queries involving nu-
merical conditions, in the domains of finance and
medicine. We evaluate the performance of our sys-
tems against various lexical and neural models and
show significant improvements over the baselines.

https://github.com/filled_in_later

2 Related Work

Related work for quantity-centric search is limited.
(Ho et al., 2020, 2019) focuses on quantity search
for named entities, using a deep neural network
for extracting quantity-centric tuples from text and
query and matching based on context similarity.
Their pipeline involves semantic role labeling and
named entity extraction, both resource-intensive
and reliant on sparsely available annotated data
for quantities. Further, focusing on named entities
limits the applicability to real-world scenarios.
QFinder (Almasian et al., 2022) integrates numer-
ical and lexical indexes to enhance numerical un-
derstanding in a lexical IR system. Our disjoint
model utilizes QFinder’s heuristic ranking func-
tion, but we extend their approach to include neu-
ral models and go beyond the limited query lan-
guage, allowing users to provide queries in plain
text. MQSearch (Maiya et al., 2015) extracts quan-
tities with a set of regular expressions to create a
rule-based system for finding documents contain-
ing certain keywords and ranges of values. Loosely
related to IR, (Rybinski et al., 2023) and (Li et al.,
2021) perform numerical summarization on un-
structured text in form of plots and graphs.

In the area of databases, there has been some work
focusing on building numerical indices for queries
that contain numerical restrictions (Maiya et al.,
2015; Fontoura et al., 2007; Agrawal and Srikant,
2003). However, the main focus of such systems
is the efficiency of the index structure and filtering
out irrelevant numbers from the results with hard
constraints rather than ranking.

Unlike quantity-aware IR, investigating numeracy
in LMs is well-established. (Wallace et al., 2019)
is among the first to highlight the limitations of
embedding models when handling numbers. Subse-
quent efforts have led to dedicated embeddings and
LMs for understanding scales, basic arithmetic, and
numerical common sense knowledge (Spokoyny
et al., 2022; Jin et al., 2021; Thawani et al., 2021;
Sundararaman et al., 2020; Jiang et al., 2020;
Nogueira et al., 2021; Spithourakis and Riedel,
2018). These models are specific to numeracy and
not IR in general. While using them can enhance
performance, we focus on improving quantity un-
derstanding in current IR models without architec-
ture change or training a LM from scratch.

3 Quantity-aware Model
A quantity-centric query contains a numerical con-
dition, a value, and a unit, e.g., “iPhone XS with

price under $1500 ”. Queries like “What is the
price of iPhone XS?” are not considered quantity-
centric as they don’t require an understanding of
scales and units. In the following, we assume a
document collection where each document con-
sists of a sequence of sentences. Following previ-
ous work (Ho et al., 2019; Almasian et al., 2022),
we focus on sentences as retrieval units. A sen-
tence s; = (7;,Q;) is a sequence of tokens
T; = (t1,...,t;) and quantities Q; = (q1, ..., Gk)»
where a quantity ¢; = (u;, v;) is a tuple of a unit
u; and a value v;. A quantity query is denoted
by X = (Ty,¢,qz), where T, = (tgy,..,ts,)
are the search terms related to the query quantity
gz = (ug,vy). ¢ € {=,<,>} represents a nu-
merical condition, defining equal, less than, and
greater than conditions. Less than and greater than
indicate open bounds with values strictly less or
greater than the query value. The equal condition
pertains to values strictly equal to the query value.
The relevance, r(s;|X), of sentence s; to query X
is denoted in Eq 1. The similarity function sim, is
dependent on the query condition ¢, where 7 is a
generic function that maps a query and document
to their representations. Here, we explore differ-
ent ways to define 7, which can be an embedding
vector or a heuristic scoring function.

T(Si|X) ~ Simc(T(Tzan)vT(EaQi)) (1)

We begin with a disjoint quantity-ranking method.
Leveraging heuristic and supervised functions from
(Almasian et al., 2022), we extend this approach
to neural models. We point out the limitation of
the disjoint ranking and propose a quantity-centric
fine-tuning paradigm for neural IR systems for the
joint ranking of quantity and textual content.

3.1 Quantity Extraction

To facilitate both approaches, a prerequisite is a
quantity extractor capable of identifying values (v),
units (u), numerical conditions (c), and concepts
(cn) associated with quantities. Concepts represent
objects or events, and numerical values refer to. For
instance, in the sentence “The iPhone 11 has 64GB
of storage”, the concept is “iPhone 11 storage”.
For this purpose, we use the Comprehensive Quan-
tity Extractor (CQE) framework (Almasian et al.,
2023). However, this module can be substituted
with any alternative quantity extractor.

3.2 Disjoint Quantity Ranking

The disjoint model is based on the separation of
quantity and term ranking. We assume that the

textual relevance of a sentence to query terms is
independent of the proximity of query and sentence
values under the query condition. Then, the rele-
vance of a sentence can be the summation of (1)
textual similarity, and (2) proximity of quantities
in a sentence and a query, denoted in Eq 2. Note
that here, sim computes the similarity of search
terms to a sentence independent of sim., which
computes the quantity proximities given query con-
dition ¢. 7 and 7 signify that representations for
query and document are not necessary created from
the same model. If the query is not quantity-centric,
simply by removing the quantity score sim,, the
models fall back to term scoring.

r(si|X) ~ sim(r(T2), 7(T3)) + sime(r (42), 7 @
In the following, we describe the computation
of term (1) , and quantity (2) scorings, where
(1) sim(7(Ty), 7(T;)) and (2) sim(7(qz), T(Q;)-

The general pipeline is depicted in App A.1.

3.2.1 Quantity Scoring

Using a quantity index containing explicit informa-
tion about values and units in normalized form, we
use heuristic functions to compute the proximity
of query and sentence values based on different
numerical conditions.

Index creation: Documents are split into sentences
that are processed independently by CQE. CQE
outputs standardized values, e.g., $300 million is
converted to $300,000,000 and normalized units,
e.g., kilometer per hour and km/h are mapped to the
same unit. A quantity index with unit/value pairs is
built from this output and resembles a lexical index.
Here, each unique unit/value pair points to a list of
sentences it occurs in.

Scoring functions: sim.(7(q.),7(Q;)) is esti-
mated by a scoring function gs that ranks the value
in a sentence based on the value in the query given
a numerical condition, where higher values indi-
cate higher relevance. ¢s is dependent on the nu-
merical condition, resulting in different scores for
the same values under different numerical condi-
tions. The quantity score only matters if the units
match, otherwise, the values are not comparable
and refer to different aspects of an object, e.g., the
horsepower of a car is different from the km/h it
reaches. ¢s is formulated in Eq 3. The indicator
function 1,, (u) enforces the match between the
units of the query and the sentence, and ®.. is the
condition-dependent scoring function. To obtain
a value between 0 and 1, the score is normalized

by the number of quantities |Q;| in s;. For brevity,
from now on we refer to ¢s(s, ¢, X) as simply gs.

Qi

-2 2 Lulu)®

®,. consists of three heuristic functions, one for
each numerical condition (equal, less than, greater
than), adapted from (Almasian et al., 2022). The
study in (Almasian et al., 2022) explores various
® functions and their implications for sorting of
results (Refer to App A.2). Simply by changing
the ®s, results can be rearranged, independent of
training data that might introduce bias for a specific
sorting preference. Nonetheless, for the evaluation
of our model against other baselines, we focus only
on the most intuitive variant, which ranks quantities
with values closer to the query value in descending
order. The ®s are defined in Eq. 4. v, is the query
value and v; is the sentence value.

qs (SZ,C X Uzavz) 3)

D_ (v, v;) =: exp(—|vy — v;])

Ux/'U,L' Vg >V;
B (vy.0;) =
>(T z) {0 else 4)
¢<(/U.Z’7/Ui) = {Ui/vx Vg <Vj
0 else

®_ assesses the proximity of v, to v; by employ-
ing the exponential decay of their difference. The
resulting score ranges between 0 and 1, with larger
absolute differences yielding lower scores.

The scoring functions . and &~ determine nu-
merical proximity based on the ratio of the query
value v, to the sentence value v;, resulting in a
score between 0 and 1. This ratio, independent of
magnitude, yields higher scores for closer values.

3.2.2 Term Scoring

Term scoring, sim/(7(T%), 7(1;)), can come from
any lexical or semantic ranker, requiring only nor-
malized scores. Yet, IR systems typically do not
normalize their scores, as it has no influence on
the final ranking. Here, we discuss ways to nor-
malize scores of lexical and semantic systems and
combine them with ¢s. For a lexical model we
use BM25 (Robertson and Zaragoza, 2009) and for
dense and sparse neural rankers, ColBERT (Khat-
tab and Zaharia, 2020) and SPLADE (Formal et al.,
2021) are employed.

Lexical model: Following (Almasian et al., 2022),
we combine ¢s with the BM25 score. The com-
bined score, represented in Eq 5, is constrained

to sentences containing the search terms, as indi-
cated by 17, (s;). The parameter « controls the
influence of the quantity scoring, falling back to
pure term-based scoring when « is set to zero. The
BM25(s;, T,;) score is normalized per query by
dividing each sentence’s score by the maximum
BM?25 score retrieved for the specified search terms
maxy = maxses(BM25(s,T;)).

BM25(s;, 1)

QBM25(s;, ¢, X) := -

+ alrp, (s;)gs
&)
Neural dense model: Representing a dense neu-
ral model, ColBERT is selected for term scoring.
This choice is due to the same model being used
for joint quantity ranking, where token-level inter-
actions are crucial. Contextualized term score is
computed with the similarity computation between
token embeddings of query and sentence, as in Eq 6.
ColIBERT utilizes two BERT (Devlin et al., 2019)
encoders for query and document (sentence), where
each encoder outputs a list of token embeddings.

COIBERT(T%, s;) =

> mazjepere(s,) BERT(TL)) - BERT(s;); (6)
k€|BERT(TY,)|

The term score comes from the MaxSim opera-
tion between the query and sentence embeddings.
MaxSim calculates an unbounded score for the
maximum cosine similarity among the token em-
beddings. To normalize this score, we require the
maximum score. However, calculating the max-
imum score for the entire collection is impracti-
cal. For ranking, ColBERT leverages the pruning-
friendly nature of the MaxSim in an approximate
nearest neighbor search (Johnson et al., 2019) to
return top-k most relevant candidate sentences Sy.
We compute the maximum score based on these
candidate sentences maxx = maxscs, (ColBERT)
to normalize the score between O and 1. ¢s is then
exclusively applied to the top-k candidates, serving
as a second-stage re-ranker for numerical proxim-
ity. The final score is defined in Eq 7, o controls
the impact of quantity scoring.
ColBERT(T, s;)

QCoIBERT(S;,¢, X) i= ———— - ¢$
maxy
(7

Note that the ¢s only affects the top-k sentences.
We also present a neural sparse model, where gs is
integrated into the entire ranking.

Neural sparse model: The SPLADE model ex-
tends the document and query terms and uses an

inverted index for sparse dot products, allowing for
end-to-end integration with the quantity scoring.
Instead of term frequencies inside the index, term
importance weights are computed by SPLADE. For
each sentence and query, the BERT embeddings
are passed through a ReLLU non-linearity and log
function to produce a sparse vector over the en-
tire vocabulary, where the values inside this vector
are the term importance. Then the relevance of
the query to a sentence is based on the sparse dot
product of this vector, as denoted in Eq 8.

SPLADE(s;, T,) :=
log(1 + ReLU(BERT(s;))) - log(1 4+ ReLU(BERT(T%)))
®)
We normalize the SPLADE score by the max-
imum score for a given query, maxy =
maxs,;ecs(SPLADE(s;, T;,)), as defined in Eq 9. For
higher precision, quantity score is only added to
sentences where there is a match between the ex-
panded query terms and documents, denoted by the
indicator function 1.

_ SPLADE(s:, Tu)

QSPLADE(s;, ¢, X) := al(s;)gs

(C)]

maxx

3.3 Joint Textual and Quantity Ranking

The independence assumption between the rele-
vance of quantities and terms can be problematic.
Consider the query “iPhone XR below €200”. In
a disjoint ranking, the following sentences can re-
ceive an inappropriately high score.

1)The price of an iPhone XR reached €236.50,
whereas Samsung Al4 is €132.00. This sentence
has multiple quantities and the numerical condition
is satisfied for a value unrelated to “iPhone XR”.
2) Older iPhones, including iPhone XR have
dropped in price with iPhone 8 to €152.94. Here,
“iPhone XR” has no associated quantity.

These cases are due to a lack of correct association
between concept and quantity. We refer to this as
quantity-concept mismatch. To address this, we
need to rank sentences based on quantities in con-
text. Transformer-based models inherently capture
token inter-dependencies across the entire context.
However, current benchmarks lack quantity-centric
data. Therefore, it remains unclear whether the
deficiency in quantity understanding is due to the
absence of task-specific training data or if the cur-
rent architectures hinder numerical comparisons.
To investigate this, we propose a data generation
approach to address following problems.

First is the inability to perform value comparisons
given numerical conditions. E.g., in the example
above, the models ignore the less than, condition
and focus on the semantic similarity of query text
and sentence. Second, the semantic similarity of
units is not well-defined. In the example above,
results with “dollar” and other currencies receive
high scores due to the context similarity of the units.
Refer to App B.6 for a detailed discussion.

Our data generation paradigm is designed to en-
hance value comparisons and understanding of unit
surface forms, by generating contrastive positive
and negative sentences through data augmentation.
Data augmentation, widely used in computer vi-
sion, has also found applications in NLP tasks (Sen-
nrich et al., 2016). The GENBERT model (Geva
et al., 2020) is a relevant example, which employs
templates for generating pre-training data, to en-
hance numerical reasoning in question-answering
systems without specialized architectures.

Similar to GENBERT, we fine-tune neural IR mod-
els used in the disjoint setting, ColBERT, and
SPLADE, on synthetic data for quantity-centric
IR !. The data generation pipeline has three stages
described in the following: quantity extraction,
query generation, and sample generation.

3.3.1 Quantity Extraction

The documents are split into sentences and fed to
CQE to extract quantities and concepts. The cor-
pus is then transformed into an index-like structure
based on concepts and units. We refer to this struc-
ture as concept/unit index. The keys of the index
are concept/unit pairs that point to a list of values
associated with the pair and a list of respective
sentences they occur in. The list of values can be
viewed as the distribution of values for a concept
under a specific unit. An example entry is shown
in App B.1. We utilize this index structures in the
subsequent steps for query and sample generation.

3.3.2 Query Generation

For each concept/unit pair, three queries, one for
each condition, are created with the template

query = {concept} {numerical_condition}
{unit_before}{value}{unit_after}.

The variables enclosed in the brackets are popu-
lated during query generation. These steps are

!Given that we are perturbing values and units in a sen-
tence, one might alternatively call this data perturbation.

given in an algorithm in the App B.2. In the follow-
ing, we describe how each placeholder is filled.
Unit: A surface form of the query unit is chosen
randomly from a dictionary of unit surfaces pro-
vided by CQE, e.g., “€” is a surface of the unit
“euro”. unit_before and unit_after account for
symbols appearing before, e.g., ““€” and abbrevia-
tions after a value, e.g., “EUR?”, respectively.
Value: For sample generation, sentences contain-
ing values meeting the query condition are cru-
cial. Therefore, selecting query values with enough
supporting sentences is vital. We propose the fol-
lowing strategy, based on the value distribution of
concept/unit index:

Equal query: Query values are chosen from the
most frequent values in the index (peak of value
distributions), ensuring availability of maximum
supporting sentences for a given concept and unit.
Less and greater than queries: For these bounds,
optimal candidates are close to the average of the
value distribution, such that when the numerical
condition is applied more sentence fall within lim-
its. Infrequent values (tail of the distribution) may
have inadequate supporting sentences for the sam-
ple generation step. Refer to the App B.3 for exam-
ples on value selection.

To avoid systemic bias by focusing on the most
frequent values, we generate a second set of queries
for each unit and concept pair by picking the query
values at random.

To account for variability in representation, sur-
face forms of large values that have multiple writ-
ten forms are randomly replaced with their written
form. This takes the shape of a composite of num-
bers and postfixes, such as "10 million," or includes
commas for digit separation, e.g., “10,000,000.
Numerical Condition: This is a phrase in nat-
ural language indicating a bound on a quantity,
e.g., “above” for greater than condition. For this
purpose, a surface-form dictionary is created, and
the respective placeholder is filled with values ran-
domly chosen from the dictionary (see App B.4).
Concept: CQE identifies multi-word spans in a
sentence as concepts. Utilizing them directly for
query generation overlooks the nuances of seman-
tic queries. For example, in the sentence “Disney+
charges $6.99 a month.”, “Disney+" is the extracted
concept. “Disney+” is a streaming platform, in-
cluding other media services. Such a sentence is
relevant for a lexical query with exact matches, e.g.,
“Disney+ price under $7.99 a month”, or for a se-
mantic query, e.g., “streaming platform price over

5 dollar/month”. Relying exclusively on keywords
in sentences poses a risk of biasing the neural mod-
els toward lexical search and away from semantic
search. To avoid such a case, we add concept ex-
pansion, where a large language model, namely
GPT-3 (Chen et al., 2023), is used to generate syn-
onyms or synsets for a given concept (see App B.5).
These expansions are used to generate semantic
queries. E.g., “Disney+” becomes “Streaming plat-
form”. For each expanded concept new values and
unit surface forms are sampled to generate seman-
tic queries for each numerical condition.

3.3.3 Sample Generation

The input of this stage are the generated queries and
the concept/unit index. The sample generation step
creates positive and negative training samples for
each quantity-centric query. This includes positive
and negative samples obtained directly from the
dataset, as well as additional augmented samples.
An overview of the sample generation pipeline and
an algorithmic view is presented in App B.7. In the
following, we describe each step in detail.
Look-up: Given a query containing a (concept,
unit, condition, value), we conduct a lookup in the
concept/unit index to retrieve the sentences and the
distribution of values.

Positive and Negative Sentences List: The ob-
tained sentences are divided into positive s and
negative s_ lists, based on the numerical condition.
54+ contains sentences, where the values in them
satisfying the condition and s_ contains sentence
violating the condition.

Original sampling: With sample size n, sentences
are randomly selected from s as positive samples
(so+) and from s_ as negative samples (s,—). Refer
to App B.9 for information on the sample size.
Unit permutation sampling: This method gener-
ates positive and negative samples to cover diverse
unit surface forms using CQE’s unit dictionary.
Positive samples contain various surface forms of
the unit in the query, while negative samples in-
clude surface forms of units in the same family as
the query unit, creating negatives.

* A positive sample, S,4, is formulated by sub-
stituting the unit in a positive sentences, s,
with other surface forms of unit in query u;.

* A negative sample, s,,_ is created by replac-
ing the unit in a positive sentences, s, with
a surface form of a unit different from query
unit ,u;, but belonging to the same family. The

unit families are grouping based on the prop-
erty they measure. For example, “pace”, “me-
ter”, and “foot” all belong to the family of
“length”. Sampling the surface form from the
same family ensures a fine distinction between

unit types, even in similar contexts.

Value permutation sampling: This permutation
emphasizes the importance of the value compar-
ison and numerical conditions, highlighting that
sentence relevance depends on whether the sen-
tence value satisfies the query condition or not.

* A positive sample, s, , is formulated by per-
muting the values in a negative sentence s_,
maintaining the correct concept and unit but
adjusting the value to satisfy the quantity con-
dition.

* A negative sample, s,_, is generated by per-
muting the values in a positive sentence s,
where concept, unit, and value are all correct,
to invalidates the quantity condition.

The replacement values are sampled from the val-
ues in the concept/unit index, mirroring the under-
lying distribution of the relevant quantity, as to the
reason for this choice, refer to the App B.8.
Aggregate: The final set of positive and negative
samples for each query is the union of all samples
generated from the original sampling, value and
unit permutation, sy = S, U sy4 U sy and
Sf— = So— U Sy— U Sy—_.

The models reported in the evaluation use a combi-
nation of original sampling with unit permutation
and concept expansion on the query. Value per-
mutation did not show stable performance gains,
which we attribute to the difficulty of numerical rep-
resentations in dense models. For more discussion
on this matter and ablation study of augmentation
methods refer to App C.5.

4 Evaluation

Given the absence of task-specific models, we as-
sess our quantity-aware models against general do-
main lexical and neural models.

Lexical models include a BM25 and a BM25 ¢4,
variant. BM25 ;s has a separate numerical in-
dex to eliminate the results of BM25 where the
query condition is not met. This method resembles
the numerical indices from databases, focusing on
filtering rather than ranking.

Table 1: Query types in FinQuant and MedQuant.

FinQuant MedQuant
Total queries 420 210
Sentence in corpus 306,291 153,252
Per condition 140 70
Keyword-based queries 300 120
Semantic queries 120 90

Neural models include the trained checkpoints
of SPLADE and ColBERT as well as Cohere,s 2.
Cohere,3 embeddings are included to show that
even industry-level models trained on extensive
data still lack quantity-centric understanding.

4.1 Datasets

We introduce two English resources called Fin-
Quant and MedQuant. To the best of our knowl-
edge, these are the first quantity-centric bench-
marks for retrieval. Test queries were manually
formulated using the concept/unit index, covering
both lexical and semantic queries. Statistics for var-
ious query types are presented in Table 1. There is
an equal number of queries for each condition, and
semantic queries constitute a smaller portion due
to annotation challenges. For details on the dataset
creation, refer to App C.1. The data is annotated by
the two authors of the paper, with inter-annotator
agreement computed on a subset of 20 samples per
dataset. The Cohen’s Kappa coefficient (Cohen,
1960) is 0.83 and 0.88 for FinQuant and MedQuant,
respectively. FinQuant corpus contains over 300k
sentences from 473,375 news articles. MedQuant
is smaller, containing over 150k sentences from
375,580 medical documents of the TREC Medical
Records (Voorhees, 2013). Since the concept/unit
index is used for dataset creation, CQE’s perfor-
mance directly affects the data quality. While CQE
is adept at handling financial data, extractions on
clinical data were noisy, impacting performance
comparisons later on. However, we find it impor-
tant to report results on both datasets, making the
reader aware of the lesser quality of MedQuant.

4.2 Ranking Performance

Table 2 shows the ranking performance of quantity-
aware models, in terms of P@10, MRR@10,
NDCG@10, R@100, and latency in milliseconds.
The three models with a “Q” prefix indicate the
disjoint and unsupervised rankers. Neural models
with a 7 postfix are joint models fine-tuned on syn-

https://cohere.com/embeddings DLA: 10.02.24

thetic data. Permutation re-sampling is used to test
for significant improvements (Riezler and Maxwell,
2005). Results denoted with T mark highly signifi-
cant improvements over the baseline models, with-
out quantity awareness with a p-value < 0.01. All
results are from single runs. For Implementation
details refer to App C.3.

Contrary to our initial hypothesis, disjoint rankers
consistently outperform joint models across all met-
rics, with improvements exceeding 10 points in
P@10 and over 30 points in MRR and NDCG over
the base models (without the “Q” prefix), without
requiring additional fine-tuning. The only draw-
back of disjoint models is a minimal increase in
latency, especially for QBM25 and QSPLADE,
where the quantity score is added to the entire
ranking. This overhead diminishes for the top-
performing model, QColBERT, where the quantity
score serves as a re-ranker on the top-k candidates.
ColBERT shows high recall on both datasets, sug-
gesting that relevant results are within the top-k
but not necessarily at the very top. Hence, the re-
ranking with the quantity score proves beneficial.
Joint models show a comparable performance
boost, with metrics falling below those of the dis-
joint ranker but still improving from the base mod-
els. This validates our hypothesis that the absence
of task-specific data has amplified the challenge of
quantity understanding for retrieval systems. Here,
once again the ColBERT y; variant shows superior
performance. We attribute the better performance
of the ColBERT-based model to the fine-grained
token-level interactions that allow the model to
learn better associations between tokens. In quan-
tity ranking, token interactions play a more sig-
nificant role compared to the query and document
expansions conducted by SPLADE. This also show-
cases that the architecture and how the inter-token
interactions are modeled matter for quantity un-
derstanding. Nonetheless, even after fine-tuning,
understanding numerical conditions remains a chal-
lenge. We investigate how much the fine-tuned
models rely on quantities for ranking in App C.4.

4.3 Cross-dataset Generalization

Two lower bottom rows of Table 2 list the perfor-
mance drop of joint rankers on out-of-domain data,
compared to models fine-tuned on generated data
from the same domain. Each model is fine-tuned
on data from the other dataset and shows minimal
performance drop, suggesting that the models learn
patterns for quantity-centric queries without mem-

https://cohere.com/embeddings

Table 2: P@10, MRR@ 10, NDCG@ 10 and R@100 for on FinQuant and MedQuant. Top-2 values in each column

are highlighted in bold.
Model latency FinQuant MedQuant
(ms) P@I0 MRR@I0 NDCG@10 R@100 P@I10 MRR@I0 NDCG@10 R@100
BM25 9 006 0.14 0.09 0.47 004 011 0.07 0.37
BM25ier 9 0.14 032 0.25 0.60 0.08 0.19 0.15 0.48
baselines Cohere,3 - 0.14 022 0.19 0.27 0.10 0.17 0.15 0.25
SPLADE 26 0.10 024 0.19 0.53 0.11 0.25 0.20 0.58
ColBERT 36 0.15 0.35 0.27 0.70 012 031 0.24 0.63
QBM25 311 021 0.53 0.41 0.55 0.18 047 0.37 0.51
joint QSPLADE 319 0.291 0.67f 0.53f 0.831 0.197 0.52f 0.38" 0.70t
QCoIBERT 42 0.30" 0.691 0.561 0.87f 0.18" 0.51f 0.37" 0.73"
L SPLADE;; 26 021t 051 0.41% 0.74% 0.14t 037 0.29° 0.63f
disjoint t t t t t t t t t
ColBERT;; 36 0.23 0.55 0.44 0.77 0.18" 044 0.36 0.72
dataset SPLADEau 26 -0.03 -0.06 -0.07 -0.04 -0.02 -0.01 -0.04 -0.05
Cross-aatasel CoIBERT,w 36 -0.03 -0.07 -0.06 -0.03 2002 -0.01 -0.03 -0.02
.« . . 0.8
orizing common queries. . BM25 Cohere_v3 WM ColBERT MmN QSPLADE WEE SPLADE_ft

4.4 Lexical vs Semantic Queries

Fig 1a shows NDCG@10 of all models on lexical
and semantic subsets of the FinQuant. The seen
and unseen are lexical queries and expansion and
w/o surface form represent semantic queries. For
the details of their distinction refer to App C.2.
Interestingly, the disjoint ranking using dense mod-
els captures both semantic similarity and quantity
understanding. QBM25 performs equally well as
dense models in lexical queries but significantly
worse on semantic ones. Joint rankers outperform
base models in both lexical and semantic queries
but lag behind disjoint models.

Fig 1b depicts NDCG@10 of all models on dif-
ferent numerical conditions. Equal queries are in
general easier for the models as the notion of rele-
vance in this case aligns with textual ranking. The
performance drops almost 20 points for the bound-
based conditions. This drop is consistent across all
models, implying that the bound-based conditions
are harder for models to rank.

5 Conclusion and Ongoing Work

This work introduces two methods to integrate
quantity understanding into existing retrieval sys-
tems. The disjoint approach is an unsupervised and
heuristic method, while the joint approach involves
fine-tuning on quantity-centric synthetic data to
enhance quantity understanding. The disjoint scor-
ing can be combined with any lexical or semantic
matchers without the change in their architecture
or need for fine-tuning, showing consistently good
performance regardless of data distribution. More-
over, the notation of quantity proximity is easily
altered by changing the quantity scoring function,

0.7

BN BM25_filter WSS SPLADE QBM25 N QColBERT MM ColBERT_ft

0.6

05
8
S04
Zo3
0.1 J
0.0 ‘ : ‘
seen

unseen expansion w/o surface form

(a) Lexical vs semantic subsets

. BM25
Emm BM25_filter WSS SPLADE

Cohere_v3 WEE ColBERT M QSPLADE W SPLADE_ft
QBM25 N QCoIBERT WM ColBERT_ft
0.7

0.6

10

®0.5

204

NDCG

0.2

0.1

0.0

complete equal greater than less then

(b) Subset with different numerical conditions

Figure 1: Performance on different subsets of FinQuant.

leading to great flexibility in terms of different sort-
ing of results. However, the quantity index intro-
duces an overhead in query latency, is sensitive
to errors from quantity extraction and the inde-
pendence assumption leads to possible concept-
quantity mismatch in the results. Conversely, the
joint models are better at finding concept and quan-
tity associations but their overall performance is
lower. Yet, if one does not want to be dependent
on an external index and quantity extractor, the
fine-tuning on synthetic data can enhance quan-
tity awareness to some extend. We also introduce
two benchmark datasets and evaluated our methods
against multiple baselines. In future, we explore
the impact of numerical embeddings in retrieval.

6 Limitations

In this section, we highlight the limitations of the
proposed evaluation resources and the models in-
troduced in this paper.

Evaluation resources: One immediate consider-
ation about the datasets is the relatively limited
number of test queries compared to larger-scale
datasets such as MSMARCO (Nguyen et al., 2016).
This is mainly due to limited human resources and
budget in an academic setting. Nonetheless, we ar-
gue that this number of the query is already enough
to showcase certain quantity-centric capabilities.
Another shortcoming of the data is the absence of
queries for ranges, e.g., “iPhone with price between
500 and 800 dollars”, and negations, “iPhones not
equal to 500 dollars”.

Quantity-aware models: When considering neu-
ral models, one limitation is their reliance on hard-
ware capabilities, particularly the need for GPUs
to ensure efficient training, indexing, and inference.
The query latency values reported in this paper
would suffer greatly if the computations were don
on CPU. Moreover, both the synthetic data gener-
ation paradigm and the disjoint model rely on a
quantity extractor. In the case of the disjoint model,
the quality of the quantity index directly relies on
the quality of value and unit extraction. If a value
and unit is not detected by the extractor it will not
be considered by the scoring function. In the joint
model, for data generation, the quantity extractor
should also possess the ability to detect concepts in
text, introducing the potential for additional error
propagation through the system. In this work, we
do not discuss models that deal with ranges and
negations. Adding such variations to the disjoint
models requires only a change in the numerical
scoring function but it is more difficult for the joint
setting where proper training data is required. For
the bound-based conditions of less than and greater
than, we considered open bounds. Depending on
the user intent closed bounds might be more appro-
priate, however, similar to the optimal sorting of
results, this issue does not have a single solution.

References

Rakesh Agrawal and Ramakrishnan Srikant. 2003.
Searching with Numbers. IEEE Trans. Knowl. Data
Eng., 15(4):855-870.

Satya Almasian, Milena Bruseva, and Michael Gertz.
2022. QFinder: A Framework for Quantity-centric

Ranking. In SIGIR °22: The 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 3272-3277. ACM.

Satya Almasian, Vivian Kazakova, Philip G6ldner, and
Michael Gertz. 2023. CQE: A Comprehensive Quan-
tity Extractor. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP, pages 12845-12859. ACL.

Zekai Chen, Mariann Micsinai Balan, and Kevin Brown.
2023. Language Models are Few-shot Learners for
Prognostic Prediction. CoRR, abs/2302.12692.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 20(1):37-46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, NAACL-HLT, pages 4171-4186. ACL.

Marcus Fontoura, Ronny Lempel, Runping Qi, and Ja-
son Y. Zien. 2007. Inverted Index Support for Nu-
meric Search. Internet Math., 3(2):153-185.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE: Sparse Lexical and Ex-
pansion Model for First Stage Ranking. In The 44th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages

2288-2292. ACM.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting Numerical Reasoning Skills into Language
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

ACL, pages 946-958. ACL.

Vinh Thinh Ho, Yusra Ibrahim, Koninika Pal, Klaus
Berberich, and Gerhard Weikum. 2019. Qsearch: An-
swering Quantity Queries from Text. In The Seman-
tic Web - ISWC - 18th International Semantic Web
Conference, Proceedings, volume 11778 of Lecture
Notes in Computer Science, pages 237-257. Springer.

Vinh Thinh Ho, Koninika Pal, Niko Kleer, Klaus
Berberich, and Gerhard Weikum. 2020. Entities
with Quantities: Extraction, Search, and Ranking.
In WSDM °20: The Thirteenth ACM International
Conference on Web Search and Data Mining, pages
833-836. ACM.

Yusra Ibrahim, Mirek Riedewald, Gerhard Weikum, and
Demetrios Zeinalipour-Yazti. 2019. Bridging Quan-
tities in Tables and Text. In 35th IEEE International
Conference on Data Engineering, ICDE, pages 1010—
1021. IEEE.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo
Chu, Yinggong Zhao, Libin Shen, and Kewei Tu.
2020. Learning Numeral Embedding. In Findings

https://doi.org/10.1109/TKDE.2003.1209004
https://aclanthology.org/2023.emnlp-main.793
https://aclanthology.org/2023.emnlp-main.793
https://aclanthology.org/2023.emnlp-main.793
https://doi.org/10.48550/ARXIV.2302.12692
https://doi.org/10.48550/ARXIV.2302.12692
https://doi.org/10.48550/ARXIV.2302.12692
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1080/15427951.2006.10129119
https://doi.org/10.1080/15427951.2006.10129119
https://doi.org/10.1080/15427951.2006.10129119
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1145/3336191.3371860
https://doi.org/10.1145/3336191.3371860
https://doi.org/10.1145/3336191.3371860
https://doi.org/10.1109/ICDE.2019.00094
https://doi.org/10.1109/ICDE.2019.00094
https://doi.org/10.1109/ICDE.2019.00094
https://doi.org/10.18653/v1/2020.findings-emnlp.235

of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
2586-2599. ACL.

Zhihua Jin, Xin Jiang, Xingbo Wang, Qun Liu,
Yong Wang, Xiaozhe Ren, and Huamin Qu. 2021.
NumGPT: Improving Numeracy Ability of Genera-
tive Pre-trained Models. CoRR, abs/2109.03137.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547.

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and Effective Passage Search via Contextu-
alized Late Interaction over BERT. In Proceedings
of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39-48. ACM.

Tongliang Li, Lei Fang, Jian-Guang Lou, Zhoujun Li,
and Dongmei Zhang. 2021. AnaSearch: Extract,
Retrieve and Visualize Structured Results from Un-
structured Text for Analytical Queries. In WSDM
21, The Fourteenth ACM International Conference
on Web Search and Data Mining, pages 906-909.
ACM.

Arun S. Maiya, Dale Visser, and Andrew Wan. 2015.
Mining Measured Information from Text. In Proceed-
ings of the 38th International SIGIR Conference on
Research and Development in Information Retrieval,

pages 899-902. ACM.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), volume 1773 of
CEUR Workshop Proceedings. CEUR-WS.org.

Rodrigo Frassetto Nogueira, Zhiying Jiang, and Jimmy
Lin. 2021. Investigating the Limitations of the
Transformers with Simple Arithmetic Tasks. CoRR,
abs/2102.13019.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine Reading Comprehen-
sion with Numerical Reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing EMNLP-IJCNLP, pages
2474-2484. ACL.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for

Machine Translation and/or Summarization, pages
57-64, Ann Arbor, Michigan. ACL.

Stephen Robertson and Hugo Zaragoza. 2009. The
Probabilistic Relevance Framework: BM25 and Be-
yond. Now Publishers Inc.

10

Maciej Rybinski, Stephen Wan, Sarvnaz Karimi, Cé-
cile Paris, Brian Jin, Neil I. Huth, Peter J. Thorburn,
and Dean P. Holzworth. 2023. SciHarvester: Search-
ing Scientific Documents for Numerical Values. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR, pages 3135-3139. ACM.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL. ACL.

Georgios P. Spithourakis and Sebastian Riedel. 2018.
Numeracy for Language Models: Evaluating and Im-
proving their Ability to Predict Numbers. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
pages 2104-2115. ACL.

Daniel Spokoyny, Ivan Lee, Zhao Jin, and Taylor Berg-
Kirkpatrick. 2022. Masked Measurement Prediction:
Learning to Jointly Predict Quantities and Units from
Textual Context. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 17—
29. ACL.

Dhanasekar Sundararaman, Shijing Si, Vivek Subra-
manian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. 2020. Methods for Numeracy-
Preserving Word Embeddings. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP, pages 4742-4753.
ACL.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro A.
Szekely. 2021. Representing Numbers in NLP: a
Survey and a Vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT, pages 644—
656. ACL.

Christophe Van Gysel and Maarten de Rijke. 2018.
Pytrec_eval: An Extremely Fast Python Interface
to trec_eval. In SIGIR. ACM.

Ellen M. Voorhees. 2013. The TREC Medical Records
Track. In ACM Conference on Bioinformatics,
Computational Biology and Biomedical Informatics.
ACM-BCB 2013, page 239. ACM.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP Models Know
Numbers? Probing Numeracy in Embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP, pages 5306—
5314. ACL.

Gerhard Weikum. 2020. Entities with Quantities. IEEE
Data Eng. Bull., 43(1):4-8.

http://arxiv.org/abs/2109.03137
http://arxiv.org/abs/2109.03137
http://arxiv.org/abs/2109.03137
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/2766462.2767789
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://doi.org/10.1145/3539618.3591808
https://doi.org/10.1145/3539618.3591808
https://doi.org/10.1145/3539618.3591808
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/P18-1196
https://doi.org/10.18653/v1/P18-1196
https://doi.org/10.18653/v1/P18-1196
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.1145/2506583.2506624
https://doi.org/10.1145/2506583.2506624
https://doi.org/10.1145/2506583.2506624
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
http://sites.computer.org/debull/A20mar/p4.pdf

Term index

Document §

corpus Quantity index gz
— *3 N

D o

EE

P — g

D ey (quantiy terms, condicon) | 8 B

Query =1 processing |77 'E g

£&

Figure 2: General pipeline of the disjoint quantity-
ranking approach, where a separate quantity index is re-
sponsible for computing quantity proximity and a term-
based lexical or semantic index is used to compute the
similarity of the search terms to sentences.

A Disjoint Quantity Ranking

In this section, we provide additional material re-
lated to the disjoint quantity ranking model.

A.1 Disjoint Quantity Ranking Pipeline

The general pipeline for the disjoint quantity-
ranking model is shown in Figure 2. The query
is processed into quantity, search terms, and con-
ditions, using CQE or similar packages. The doc-
ument corpus is indexed separately for terms and
quantities, whereas the term-based index can be a
traditional lexical index or a vector database. This
term-based index retrieves semantically or lexically
similar sentences. From the retrieved sentences, the
quantity index identifies values that share the same
unit as the query, computing proximity based on
the provided condition. The final ranking combines
scores from term-based and quantity ranking.

A.2 Optimal Sorting

Although all the sentences that satisfy a numerical
condition and have the correct concept and unit are
potentially relevant, the order in which the result
items are presented to the user can either aid or
hinder the user in finding the desired result. In
term-based ranking, the optimal order of results
is evident. However, when it comes to quantities,
relevance is more subjective and the optimal sort-
ing is dependent on the user’s information needs.
For example, a user searching for “iPhone camera
that has more than 8 inches” might look for a max-
imum value larger than 8 inches or a display only
marginally larger, both of which are valid answers.
Presenting results in ascending or descending or-
der based on numerical distances allows the user
to identify the desired result more efficiently. (Al-
masian et al., 2022) briefly addresses this issue

11

and explores potential alternatives for scoring func-
tions to enable various sorting options. Disjoint
approach is flexible concerning different sorting.
By switching a scoring function, the results can be
rearranged. Joint model are not as adaptive, and re-
arranging the results requires additional fine-tuning
based on a new preferred sorting.

B Joint Quantity Ranking

In this section, we provide the additional material
related to the joint quantity ranking model.

B.1 Concept-unit Index

An entry in the concept/unit index from the Fin-
Quant dataset is shown below.

non

{("cannabis company”,"cent per share"):
{"values":[1.4, 17.0, 17.0, 22.0, 26.0,
35.0, 84.0],

"sentences”:['The cannabis company says
the loss amounted to 0.9 of a cent per
share for the quarter ended May 31
compared with a loss of \$4 million or

1.4 cents per share a year earlier .',
'The cannabis company says its loss
amounted to 17 cents per diluted share
for the quarter ended Jan. 31 .',...1}}

Note that repetition of values for the same con-
cept/unit pair is stored as duplicates, such that the
frequency of values is kept for the distribution, e.g.,
value “17.0” is repeated twice as it occurs in two
distinct sentences. The creation steps are depicted
in Figure 3. The corpus is analyzed with CQE to
extract values, units, and concepts from each sen-
tence, where sentences sharing the same unit and
concept are grouped into a list, along with values
represented as a distribution.

B.2 Query Generation

The complete query generation pipeline is depicted
in Figure 4. The concept/unit index is used to select
values and units for numerical conditions. Addi-
tionally, a large language model is used to expand
concepts for semantic queries. The template gener-
ation block combines all the outputs to formulate
three queries for each unit and concept pair. To
generate expanded concepts, a new query value is
chosen from the value distribution, leading to the
formulation of a new set of queries. Additionally,
we offer the query generation pseudocode in Algo-
rithm 1 to make the input and output of each step
clear. In the algorithm, v refers to the value, u to
the unit, c to the condition, and cn to the concept.

Extraction of concepts
and quantities

Document —;| CQE
corpus

s = (vy,u,cny)
52 = (V2 CNp)
53 > (v1,Up, CN3)

Concept/unit index

N,y = [51, 55,56 .. | Lo
€Ny, Us = [$2, 50,56 -] laailkn
N3, Uz = [S3, 58,54 -+ | Lasilln

Distribution of values per
concept and unit

Figure 3: Overview of the quantity tagging step and creation of concept/unit index structure.

Concept/unit index

€y Uy = [51,55,56 .. batlka eny,uy = (v=,v5, v<) Queries

g,y > [52,59,56 ..] betlla | Value selection for equal, less cnyuy - (o vs,vo) | e Template | o
€Nz, Uy = [S3,5,54 -] fagily and greater than conditions Cna Utz - (v, vy v2) generation

All concepts Concept dictionary

cn; - extention;
cn, - extention,
cny - extentiony

Concept
“Iugmentation

Extend concepts
LLM P

Figure 4: Overview of the query generation pipeline,
using concept/unit index and a large language model for
concept expansion.

0[J.S 0.708 1 151752 2225 3 6 6.46.76.8 7 9 9.49.6 1010.2

Figure 5: An example of choosing query values for
equal and bound-based conditions.

Algorithm 1 Query Generation

function GENERATE_QUERY(cn, u, ¢)
v < get_query_values(cn_unit_dict, c)
u_b, u_a < get_unit_surfaceform(u)
¢ 4 get_condition_surfaceforms(c)
query < conc + ¢ + ub+v+u_a
return query

end function

cn_unit_dict <— concept/unit index
cn_expand_dict <— concept expansions
for (cn, u) in cn_unit_dict do:
for cn in [cn, cn_expand_dict[cn]] do:
for c in (equal, greater,less) do:
GENEARATE_QUERY (cn, u, ¢)
end for
end for
end for

B.3 Choosing the Right Query Value

Each entry in the concept/unit index points to the
sentences and list of values in those sentences. For
the data augmentation to work, we require a num-
ber of positive and negative samples per query and
therefore, it is important to choose the value of the
query such that supporting sentences in the corpus
are present. A hypothetical example of value distri-
bution is shown in Figure 5. For the equal query,
the challenge is to find enough positive samples,
since there is an abundance of not equal values in
each distribution. In Figure 5, values with the high-
est frequency, denoted by red arrows pointing to
peaks in the distribution, serve as optimal candi-
dates for the equal condition. In this manner, we
make sure that there a enough positive samples for
the data augmentation. Values close to the aver-
age (highlighted in a yellow box) are chosen for
the Less than and greater than queries. For such
queries, we avoid infrequent values towards the
tail of the distribution, to avoid too few positive or
negative samples.

B.4 Dictionary of Numerical Conditions

A non-comprehensive dictionary of surface forms
for numerical conditions is shown Table 3, con-
taining multiple surface forms for each condition.

Table 3: Numerical conditions used for query generation
and their surface forms.

Condition Surface forms

Equal exactly, exact, equals, equals to, for, with, of, at
greater than greater than, more than, above, larger than, over, higher than, exceed, exceeding

Less than smaller than, below, less than, fewer than, no more than, beneath

B.5 Concept Expansion

For concept expansion, we use the OpenAlI API 3
and employ the text-davinci-003 model with
few-shot learning. We set the temperature to 1 to
encourage creative responses. Since the concepts
come from two distinct domains of finance and

Shttps://openai.com/ DLA:11.02.2024

https://openai.com/

medicine, the few-shot examples vary accordingly.
Below we specify the two prompts used for
concept expansion, the result is stored in a concept
expansion dictionary and utilized during query
generation. The place-holder concept is replaced
with a concept from the concept/unit index.

For finance domain:

Complete with the words super set or
synonym, but do not reuse the exact
same words, the word "Super Set"”

should not be in the response and
response should have at least two words:

S&P 500 = stock market index

Audi = car

0il prices = petroleum prices
unemployment rate = unemployment
percentage

iPhone sales = phone sales

Netflix shares = stock shares

President Trump = President

iPhone 11= iphone

Hong Kong = city

stake PEXA = Property Exchange Australia
shares

{concept} =
For medical domain:

Complete with the words super set or
synonym, but do not reuse the exact
same words, the word "Super Set"”

should not be in the response and
response should have at least two words:

ophthalmic solution = eye medication
Control group = treatment group
irinotecan hydrochloride = chemotherapy
drug

monoclonal antibody = substitute
antibodies

MRI scans = Magnetic resonance imaging
influenza HIN1 vaccine = flu vaccine

HAI antibody response = Influenza-specific

antibody response
{concept} =
B.6 When Semantic Search Back-fires

Semantic retrieval systems consider an entire con-
text to find a fuzzy relevance to a query at hand.
Often, this aligns well with the user’s expecta-
tions. For instance, when searching for a “dark
color evening dress”, any dress that can be worn
as an evening gown and has a dark color would be
suitable. But as soon as the user becomes more

13

Output of query generation

1)

Concept/unit index

cny, Uy = [51, 55,5 ... btk Queries
Ny, Uy = [Sp, So,S6 .| etk oy = v_uy
N3, Uy = [S3, 56,54 -] il

cny > vouy

Unit dictionary ‘ l
uy - [surfy, surfy, ...] -
s up > [surfy, surfs, ...] Unit Value

uz > [surfs, surfy, ..] permutation permutation

""" | |

In postive sample s, u, replaced with a surface of u;, surf; In negative sample s_, v, replaced to satisfy query condition

CQE

—

= In positive sample 5., u; replaced with surface of another unit surf; | | — In posotive sample s, v; replaced to reject query condition

Figure 6: Overview of the sample generation using
value and unit permutation.

specific like “blue evening dress”, the embedding
space could also bring a similar color like “teal”
into the search result. Depending on the user’s flex-
ibility regarding the dress color, this behavior may
or may not be desirable. Such hard constraints are
challenging for neural models. Quantity-centric
queries compose hard constraints on values and
units where the fuzzy matching of context might do
more harm than good. For instance, when search-
ing for a “car with more than 320 hp”, if the results
contain a car with “360 brake horsepower” instead
of horsepower the result is irrelevant. Both horse-
power and brake horsepower are used in similar
contexts but refer to different attributes. Horse-
power measures the power generated by the engine,
while brake horsepower measures how much of the
power produced by the engine is sent to the wheels
which makes the car accelerate. Another common
problem is with currencies. Given that monetary
values often appear in similar contexts, it becomes
challenging for the neural models to differentiate
between various currency units. The same applies
to hard constraints on values, where based on a
given numerical condition, values outside of that
bound are considered irrelevant.

B.7 Sample Generation with Permutations

An outline of sample generation pipeline is shown
in Figure 6. The input of this stage is the gener-
ated queries and the concept/unit index. For each
quantity-centric query, a list of positive and nega-
tive samples are created by applying the numerical
condition on the list of sentences from the index.
The original positive and negative samples are then
chosen at random from such a list. The same list
is utilized as seed samples for data augmentation.
Unit and value permutation are employed to gener-
ate augmented positive and hard negative samples.
Hard negative are positive samples, where the unit
or value is perturb to violet the query condition.

The steps are presented in Algorithm 2. Each sam-
pling mechanism is encapsulated within a distinct
function and the final training samples are the union
of all generation mechanisms. In the algorithm, v
refers to value, vals to list of value of a given
concept and unit, » to unit, ¢ to condition, cn to
concept and n to sample size.

Algorithm 2 Sample Generation

function ORIGINAL_SAMPLING(S4, s—,n)
return sample(s1,n), sample(s—,n)
end function

function UNIT_PERMUTATION(S+, 1,)
Su+ < replace_same_unit_surface(s, u)
Su— < replace_other_unit_surface(sy, u)
return sample(Sy+,n), sample(Sy—,n)
end function

function V_PERMUATION(S4, s—,n,vals, ¢)
Su+ < replace_with_positive_value(s_, v)
Su— < replace_with_negative_value(s, v, ¢)
return sample(S,+,n), sample(s,—,n)

end function

conc_unit_dict <— concept/unit index

queries < list of queries

n < number of samples

for (cn, u, ¢, v) in queries do:
s,vals < conc_unit_dict[(cn, u)]
S+,5— < filter_based_on_condition(s, ¢, v)
So+s So— < ORIGINAL_SAMPLING (S, S—,n)
Su+, Su— < UNIT_PERMUTATION (S, 7, u)
Su4, Sv— < V_PERMUTATION(S 4, s—, n, vals, v, c)
Sf+ = So+ U Syt U Syt
Sf— = So— USy— Usy—

end for

B.8 Sampling within Distribution

It is crucial that the permuted values obey the origi-
nal value distribution of the corpus. The properties
of concepts are often limited to a specific range,
e.g., the value “10000” is unreasonable for per-
centage rate of unemployment. Moreover, certain
values are on a discrete scale with limited options,
e.g., “RAM of a laptop” is limited to distinct values
such as 4,8, and 16. Assigning a random number
outside this range, like 10, would be unrealistic.
Therefore, for the synthetic data to obey the rule of
the real-world dataset and reflect the distribution of
different properties, the permuted value are chosen
from the values observed in the corpus.

B.9 Down-sampling

If the number of available sentences in the positive
and negative lists is smaller than the sample size,
a downsampling procedure is implemented. When
|s4| < mor|s_| < n, we reduce the sample size

14

to the smallest number of available samples.

C Evaluation

In this section, we present additional evaluations
and implementation details. To reproduce the re-
sults, access model checkpoints and datasets, we
encourage readers to refer to our repository.

C.1 FinQuant and MedQuant Datasets

In this section, we give an overview of the
creation the FinQuant and MedQuant evaluation
benchmarks. FinQuant is created from a set of
news articles in categories of economics, science,
sports, and technology, collected between 2018
and 2022. MedQuant contains TREC Medical
Records (Voorhees, 2013) on clinical Trails. Both
datasets were split into sentences and processed
to eliminate boilerplate HTML or headers. All
sentences containing a single quantity were incor-
porated into the collection. The entire test data is
manually created and tagged. In the following, we
describe the query formulation and annotation task.

Query formulation: Given access to the
concept/unit index and the value distributions, an-
notators were tasked to formulate quantity-centric
queries. They were instructed to scan the entire
index for possible synonyms to a given concept
when formulating a query and keep track of the
synonyms in a list. For example, if one chooses
“Microsoft Surface Earbuds” with the unit “pound
sterling”, the annotator scans the other concepts
inside the concept/unit index with “pound sterling’
as unit to detect relevant ones, e.g., “Earbuds”,
“Microsoft headphones”. In the subsequent stage,
the value distributions of all selected concepts
are consolidated into one and presented to the
annotator. The annotator is then instructed to
choose three values for equal, less than, and
greater than queries, in such a way that supporting
sentences for the query is present within the value
distribution. In the final stage, the annotator will
formulate the query in natural text, e.g., “Microsoft
Surface Earbuds lower than 179 pound sterling”.
The annotators have access to the dictionary of
surface forms for units and conditions to help
query formulation.

’

Candiate list generation : For each query, a list of
candidates relevant sentences was generated using
the concept/unit index. All sentences related to

the concept and its synonyms were filtered based
on the query value and condition. The filtering
is done automatically based on the query value
and numerical condition to lower the effort of
annotation. We recognize that the quality of the
candidate set relies directly on how effectively the
quantity extractor captures associations between
quantity and concepts. We observed that although
the extractions for financial data were of high
quality, in the medical domain, several quantities
were overlooked. In both datasets, there is no
guarantee that the candidate list is comprehensive
and covers all relevant instances.

Annotation: An annotation guideline was devised
for a consistent annotation of ambiguous cases and
is published with the dataset. Annotators were pre-
sented with a list of candidate sentences for each
query and were tasked to mark the relevant sen-
tences. The marked sentences are used at ground
truth for subsequent evaluation.

C.2 Semantic and Lexical Queries

The queries are categorized into four types: seen,
unseen, expansion, and w/o surface form. The lex-
ical queries fall under the categories of seen and
unseen. For such cases, during query formulation,
the annotators picked concepts from the concept/u-
nit index without the change in surface form. The
concepts from the unseen category, were removed
from the index for data generation and training
of the joint neural models. Therefore, it contains
lexical queries that were not seen during training.
For example, ““YouTube channel” is a concept in
the unseen subset, which means all instances of
“YouTube channel” were removed from the concep-
t/unit index before data generation.

Semantic queries fall under the categories of expan-
sion and w/o surface form and were slightly harder
to formulate, thereby, fewer instances of them are
present in the data. For expansion queries, a con-
cept from the lexical set was chosen to expand to
one of its supersets or synonyms. For example,
“social media channel” is a semantic concept from
“YouTube channel”. These expansions were used to
formulate queries that did not have a lexical match
in the database and often included a superset of
many concepts. In the case of “social media chan-
nels”, the model should be able to retrieve other
social media channels like “Facebook™ as well as
“YouTube”. In the case of lexical models based
on BM25, the difference is evident in Figurela,

15

where the models show great performance on seen
and unseen subset, but if the same queries are con-
verted to their semantic counterpart, as in expan-
sion, the models fail to retrieve the correct result.
W/o surface form are other semantic queries that
were formulated independent of the lexical queries.

C.3 Implementation

The code is implemented in Python 3.10.9 and
PyTroch 1.13.1. The general sentence splitting
and text cleaning were performed with SpaCy 3.6 4.
As mentioned before we use the CQE library 3
for quantity extraction. Evaluation and metrics
were computed with the help of pytrec_eval li-
brary (Van Gysel and de Rijke, 2018). In the fol-
lowing, we discuss the implementation details for
each model separately.

BM25 models: We use the Okapi BM25 pack-
age © for all BM25 variants. The QBM25 and
BM25 4, are variations of Okapi BM25 designed
to include a numerical index for ranking and filter-
ing. The parameters of BM25 were tuned to each
of our datasets separately, as presented in Table 4.
The latency values are computed with plug-ins for
an opensearch ’ instance on a desktop computer
with 15GB of RAM. In comparison to the dense
models, the lexical models do not require specific
hardware architectures.

Table 4: Hyper parameters of BM25-based models on
the benchmark datasets.

FinQuant MedQuant
BM25 b=05,kl1 =05 b=05,kl =05
BM25¢iiter b=0.75,kl=15 b=0.75kl=1.5
QBM25 b=05,kl1 =05 b=0.5kl=0.75

Cohere baseline: We used the Cohere API ® for
Cohere,3 embeddings. Query embeddings were
used to encode the queries and the document
embeddings to encode the collection.

ColBERT models: (Khattab and Zaharia, 2020)
supplied the trained checkpoint for the base
ColBERT model. For fine-tuning on augmented
data, the model was initialized with this base
checkpoint. The checkpoint was employed for

*https://spacy.io/ DLA: 11.02.2024

Shttps://github.com/vivkaz/CQE DLA: 11.02.2024

6https: //pypi.org/project/rank-bm25/ DLA:
11.02.2024

"https://opensearch.org/ DLA: 11.02.2024

8https://cohere.com/ DLA: 11.02.2024

https://spacy.io/
https://github.com/vivkaz/CQE
https://pypi.org/project/rank-bm25/
https://opensearch.org/
https://cohere.com/

the evaluation of both ColBERT and QColBERT.
ColBERT; was fine-tunned using the training
script the from the official repository °. The
code in the repository was modified to establish
an endpoint for QColBERT incorporating a
quantity index. We did not perform extensive
hyperparameter tuning except for the learning rate
and mainly used the parameters advised by the
authors for both FinQuant and MedQuant datasets.
We fine-tuned the joint ColIBERT ¢; for 2 epochs,
with a batch size of 256 and a learning rate of
1e-05 on a server with four A-100 GPUs and 40GB
of memory. The evaluation and benchmarking
for latency were performed on the same server,
utilizing all four GPUs.

SPLADE models: SPLADE ;; was also fine-tuned
using the training script by the authors '°. The
pre-trained checkpoint was acquired from Hugging
Face !' and utilized for both the SPLADE
model and QSPLADE. Scripts from the official
repository were adjusted to add numerical index
for QSPLADE. Similar to ColBERT, we conducted
limited hyperparameter tuning, mainly focusing
on the learning rate. We fine-tuned SPLADE f;
for 2 epochs using a batch size of 240, a learning
rate of 2e-5, and a weight decay of 0.01. The
fine-tuning was conducted on a server with four
A-100 GPUs and 40GB of memory. The evaluation
and benchmarking for latency were performed on
the same server, utilizing all four GPUs.

For all disjoint rankers, QBM25, QColBERT, and
QSPLADE the quantity impact parameter of « is
set to 1, such that the impact of term and quantity
ranking are equal.

Generated data: Based on the combination of aug-
mentation methods the size of training data would
vary. In all cases, we saved a small sample of
1000 queries for validation. There were 40,732
and 20,376 concept and unit pairs considered for
query generation in FinQuant and MedQuant, re-
spectively. If concept expansion is applied these
numbers would double to account for queries on
expanded concepts. We set the sample size n to 2,
meaning that for each query two positive and neg-

9https ://github.com/stanford-futuredata/
ColBERT DLA:11.02.2024

Ohttps://github.com/naver/splade DLA:11.02.2024

llhttps ://huggingface.co/naver/
splade-cocondenser-ensembledistil DLA:11.02.2024

16

ColBERT
mask value
mask unit
ColBERT ft
mask value

mask unit

(a) ColBERT based models
S

mask value

diff=0.03

mask unit

SPLADE_ft

diff=0.04

mask value

mask unit

0.00 0.20

(b) SPLADE based models

Figure 7: The effect of task-specific fine tuning on mod-
els attention to quantity tokens. In the masked variants
either the unit or the value of the sentences in the col-
lection is masked.

ative samples were chosen from the data without
augmentation. As a result, based on augmentation
methods, additional n = 2 samples would be added
for unit and value permutation, a total 3n per query.

C.4 Effect of Fine-tuning

To assess the impact of task-specific fine-tuning on
the internal ranking strategy of the dense models,
we evaluate two masked versions of the data.
Mask value: In this scenario, we mask all values
in the collection with the [MASK] token before run-
ning the evaluation. This task aims to determine
the extent to which the model depends on the value
token for retrieving the correct sentence.

Mask unit: Here, we mask unit tokens in the col-
lection before running the evaluation with [MASK]
token. This task is intended to observe the impact
of unit comparison on the final ranking.

We compare the base version of the dense mod-
els with their fine-tuned version on the different
masking of the FinQuant dataset. The results for
the ColBERT models are shown in Figure 7a and
for SPLADE models in Figure 7b. In both cases,
the fine-tuned version exhibits a more significant
drop in performance compared to the base models.
This indicates that after fine-tuning, the model be-
comes more dependent on the quantity of tokens,
values, and units, in the text to identify the relevant
sentence.

C.5 Ablation Study on Augmentation
Methods

To check the effect of different augmentation strate-
gies, we perform an ablation study, by fine-tuning

https://github.com/stanford-futuredata/ColBERT
https://github.com/stanford-futuredata/ColBERT
https://github.com/naver/splade
https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/naver/splade-cocondenser-ensembledistil

o R T e —

no perturbation
value 1
unit |

e e B

value & concept

e]
ey — ————— ———————— —

0.15 0.20 0.25 0.30 0.35 0.40 0.45

(a) ColBERT

SPLADE

no perturbation
value

unit

concept

value & unit

value & concept [R

unit & concept
value & unit & concept

0.15 0.20 025 0.30 035 0.40 0.45

(b) SPLADE ;,

Figure 8: Ablation study on different augmentation
methods, where value and unit, refer to value and unit
permutation and concept refers to concept expansion.

the neural models on data generated using a com-
bination of different strategies. The main points of
variabilities are concept expansion in the query gen-
eration process and value and unit permutation for
sample generation. The results for CoIBERT ; and
SPLADE t; on FinQuant dataset is demonstrated in
Figures 8a and 8b, respectively. no perturbation
refers to the case where no data augmentation was
applied and only the positive and negative samples
from the original sampling are used for training.

An interesting trend is the detrimental effect of
value permutation. The value permutation on
its own enhances the performance of the base
model. However, as soon as it is accompanied by
other augmentation methods the performance de-
grades slightly. The best combination for both the
SPLADE and ColBERT model is unit permutation
and concept expansion, both of these augmentation
techniques on their own also provide a larger boost
in comparison to value permutation. To this end,
the variant of the models presented for evaluation
as ColBERT f; and SPLADE ; are trained on unit
permutation and concept expansion subset. We
find this behaviour rather surprising and counter-
intuitive. Usually, the performance of neural mod-
els increases with the amount of data presented for
a given task, however, perturbing the values does
not seem to enhance the performance as expected.
This can be related to the internal representation
of the neural models, which is hindering their abil-
ity to correctly learn quantity semantics. In future
work, we aim to test the effect of dedicated numer-
ical embedding and language models for this task.

17

	Introduction
	Related Work
	Quantity-aware Model
	Quantity Extraction
	Disjoint Quantity Ranking
	Quantity Scoring
	Term Scoring

	Joint Textual and Quantity Ranking
	Quantity Extraction
	Query Generation
	Sample Generation

	Evaluation
	Datasets
	Ranking Performance
	Cross-dataset Generalization
	Lexical vs Semantic Queries

	Conclusion and Ongoing Work
	Limitations
	Disjoint Quantity Ranking
	Disjoint Quantity Ranking Pipeline
	Optimal Sorting

	Joint Quantity Ranking
	Concept-unit Index
	Query Generation
	Choosing the Right Query Value
	Dictionary of Numerical Conditions
	Concept Expansion
	When Semantic Search Back-fires
	Sample Generation with Permutations
	Sampling within Distribution
	Down-sampling

	Evaluation
	FinQuant and MedQuant Datasets
	Semantic and Lexical Queries
	Implementation
	Effect of Fine-tuning
	Ablation Study on Augmentation Methods

