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Abstract
Subword tokenization is a heuristic to find001
contiguous pieces of characters that occur fre-002
quently, e.g., prefixes (dis-) and suffixes (-ing).003
However, natural language includes many more004
diverse patterns involving longer range depen-005
dencies, e.g., non-concatenative morphology in006
Arabic (Figure 1). A more expressive method007
to find such dependencies is to learn a vector-008
quantized codebook of tokens from raw bytes.009
We evaluate such learnt tokenizers on the task010
of machine translation across six language pairs011
and find that while they do not outperform012
subwords in general, they are more robust to013
misspellings and better on very short and very014
long sentences (by as much as 70%). We also015
demonstrate why they have a preference for016
representing non-concatenative morphologies.017

1 Introduction018

Byte Pair Encoding (Sennrich et al., 2016),019

the default method used in most language020

models, starts with a vocabulary of only the021

256 possible bytes and repeatedly merges022

the tokens that occur most frequently next to023

each other (e.g., t + h → th; th + e → the;024

. . .). The vocabulary of GPT-4, for instance,025

is obtained after 100,000 such merges, lead-026

ing to some arguably unnecessary tokens027

like .translatesAutoresizingMaskIntoConstraints ,028

//———————————————————029

———————\n\n , and abcdefghijklmnop030

qrstuvwxyz 1.031

Recent work has shown countless limitations032

with BPE subwords. Technical domains such as033

biomedical documents (Boecking et al., 2022a),034

source code (Dagan et al., 2024), and financial035

articles (Thawani et al., 2023b) benefit from pre-036

training their own tokenizer for improved language037

understanding.038

1Source of GPT-4 vocabulary: https://gist.github.
com/s-macke/ae83f6afb89794350f8d9a1ad8a09193

Figure 1: Left: Non-concatenative morphology in Ara-
bic often interleaves letters within the root (Clark et al.,
2022). Right: Subword tokenization in GPT-4 instead
only captures ‘contiguous’ sequences of characters.

Another key dimension where subwords lack 039

is language inclusivity (Team et al., 2022). Chi- 040

nese characters, for instance, can be often repre- 041

sented better at the stroke level (Si et al., 2023). 042

On the other hand, non-concatenative languages 043

like Arabic can benefit from capturing long-range 044

dependencies and not only contiguous patterns in 045

characters - as seen in Figure 1. 046

The research community has proposed several 047

alternative tokenizers to improve NLP models 048

(Thawani et al., 2023a; Clark et al., 2022; Kumar 049

and Thawani, 2022; Fleshman and Durme, 2023). 050

However, each of these tokenizers also modifies 051

the model architecture, number of parameters, vo- 052

cabulary size, and/or the training corpus, thereby 053

confounding the benefits of only the tokenizer vo- 054

cabulary (see Table 1). 055

This paper studies the effects of switching to 056

a more expressive tokenizer while controlling for 057

all the above confounders, in the context of neural 058

machine translation. 059

Our preferred alternative to subwords is a code- 060

book learnt using vector quantization when autoen- 061

coding words in different languages (Samuel and 062

Øvrelid, 2023) . It is a lossless arrangement of 063

the vocabulary space that does not merely segment 064

character sequences on the surface level, instead 065

learns longer range dependencies among the con- 066

stituent characters. We borrow the intermediate 067

Factorizer tokenization depicted in Figure 2 and 068
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Tokenizer Citation Architecture Vocab Size Parameters Train Data

FastText Bojanowski et al. (2017) No No No No
ELMo Peters et al. (2018) No No No No
CharBERT El Boukkouri et al. (2020) Yes No No Yes
CharFormer Tay et al. (2021) No No Yes Yes
LOBEF Sreedhar et al. (2022) No No No Yes
CANINE Clark et al. (2022) No No No Yes
ByT5 Xue et al. (2022) No No Yes Yes
MegaByte Yu et al. (2023) No No No Yes
RetVec Bursztein et al. (2023) No No No Yes
eByte/eChar Thawani et al. (2023a) No No Yes Yes

Factorizer Samuel and Øvrelid (2023) Yes Yes Yes Yes

Table 1: Literature Review of alternative tokenizers and what they control for. We work with Factorizer, the only
tokenizer that controls for all dimensions and makes it possible to compare directly against a subword vocabulary.

described in Section 3.069

We acknowledge that codebook-learned tokeniz-070

ers have several shortcomings. They are not as di-071

rectly interpetible as subwords. They require train-072

ing from scratch since most pretrained language073

models today use subword vocabularies instead.074

They lack the inductive bias that characters appear-075

ing close may form coherent units, which limits076

expressivity but is nonetheless a useful bias (Cao,077

2023).078

Nevertheless, we believe our empirical and con-079

trolled analysis of their performance in machine080

translation offers several contributions:081

1. We are the first to compare BPE tokenizers to082

a learnt vocabulary with the same size and the083

same architecture on the downstream task of084

Neural Machine Translation.085

2. We show that while BPE outperforms Factor-086

izer in general, the latter is more robust to087

noise and for very short and very long sen-088

tences (outperforms by as much as 70%).089

3. We analyze why Factorizer prefers non-090

concatenative morphologies like Arabic.091

We will publicly release all code (see supplemen-092

tary material) and checkpoints upon acceptance.093

2 Background094

Here, we describe the key tokenization strategies095

that we compare without modifying the underlying096

model architecture in any way. We refer the inter-097

ested reader to Mielke et al. (2021) for a deeper098

survey on tokenization in NLP.099

2.1 Bytes 100

Most natural language text on the internet is en- 101

coded using UTF-8 byte encodings, therefore a 102

byte-level representation of text makes for a conve- 103

nient option. Their vocabulary size is restricted to a 104

mere 256 possible bytes, and most Latin languages 105

require a single byte per character. 106

Such approaches (Xue et al., 2022; El Boukkouri 107

et al., 2020), however, suffer from being slow to 108

infer due to large description lengths, particularly 109

on non-Latin scripts (Edman et al., 2023). 110

2.2 Byte Pair Encoding 111

The modern workhorse of tokenization in NLP is a 112

heuristic atop byte representations called Byte Pair 113

Encoding. Starting from a base of 256 bytes and 114

a training corpus, the most frequently occurring 115

byte pairs are incrementally merged, e.g., t+h→th, 116

th+e→the, and so on. 117

Nearly all large language models today (Touvron 118

et al., 2023a,b; Groeneveld et al., 2024; Jiang et al., 119

2023) rely on Byte Pair Encoding as their base 120

tokenizer, with different number of merges. GPT3 121

(Brown et al., 2020) uses a vocabulary of 50,257 122

BPE tokens (50,000 merges and a special token) 123

while GPT4 (OpenAI et al., 2023) pushes it further 124

to 100,000 merges. 125

One of the main goals of this paper is to control 126

for dimensions like vocabulary size, hence we train 127

our own BPE on the training set of each dataset 128

(independently for source and target sides) with 129

a final size of 794 BPE tokens - the same as the 130

factorizer (see next section). 131

3 Methodology 132

We reuse the Factorized Subword Encoding 133

Samuel and Øvrelid (2023), which trains an au- 134
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Figure 2: Pictorial depiction of how the Factorizer
(Samuel and Øvrelid, 2023) learns token embeddings
as an autoencoder (seen here reconstructing the word
‘do’) where the final summed embeddings of the word
are used to evaluate on syntactic tasks. We specifically
borrow these intermediate codes labelled Factorizer 258
and Factorizer 794 in our paper as stand-in replacements
for a BPE tokenizer, enabling fair comparison on NMT.

toencoder to learn to decompose subwords into135

triplet codes, each ranging from 0 − 255, resem-136

bling an RGB color code2. Such a factoriza-137

tion helps construct tokens with compositional138

units, e.g., melon is represented as [30, 255, 209],139

melons as [261, 255, 209] and watermelons as140

[208, 235, 109], [45, 255, 209], sharing most of141

their encoding. We refer the interested reader to142

the original paper for more implementation and143

training details, which we summarize in Figure 2.144

They focus on pooling these RGB embeddings145

to give a single vector representation per subword,146

and then use them in a BERT-style model for147

morpho-syntactic tasks. We merely borrow their148

autoencoding codebook to discretize text in the149

same way as a BPE tokenizer would. Their origi-150

nal vocabulary size is 256 x 3 (one each for RGB)151

equivalent to 768 unique tokens.152

Another alternative we try is to keep the vocab-153

ulary size 256 and let the model’s positional en-154

codings learn patterns that inform whether a given155

code represents the R, the G, or the B part of a156

token’s representation.157

We use both variants in our experiments, distin-158

guishing them by the size of their vocabulary as159

2Unlike the RGB continuous spectrum, here [0, 1, 2] may
have more in common with [39, 40, 41] than with [1, 2, 3].

Factorizer 794 and Factorizer 2583. They corre- 160

spond nearly perfectly to the vocabulary sizes of 161

our baselines: BPE (794) and Bytes (256). 162

4 Experiment Setup 163

Our primary research question is to evaluate a 164

learnt Factorizer vocabulary with BPE subwords. 165

We operationalize this in the form of a neural ma- 166

chine translation experiment to compare different 167

tokenizers where the same model is trained from 168

scratch on the same dataset for the same number of 169

epochs with the same optimizer configuration. 170

Model Our base model is a 6 layer transformer 171

encoder-decoder (Vaswani et al., 2017) that has 8 172

attention heads, 512 hidden vector units, and a feed 173

forward intermediate size of 2048, with GeLU ac- 174

tivation (Hendrycks and Gimpel, 2023). We use 175

label smoothing at 0.1, and a dropout rate of 0.1. 176

We use the RTG 4 library for model implementa- 177

tion and an extended version of NLCodec library 178

(Gowda et al., 2021) for tokenization. 179

Datasets: We use a variety of machine transla- 180

tion datasets in our experiments, preprocessed with 181

the Moses tokenizer (Koehn et al., 2007). For each 182

language pair, we summarize our training, devel- 183

opment, and test sets in Table 2, each based on the 184

following source: 185

1. Europarl Corpus: Originating from the Eu- 186

ropean Parliament proceedings, this multilin- 187

gual dataset is focused on political and legisla- 188

tive language (Koehn, 2005). 189

2. News Commentary Corpus: This corpus in- 190

cludes multilingual news commentary articles, 191

with exposure to current events and journalis- 192

tic language (Tiedemann, 2009). 193

3. WMT Newstest Sets: Part of the annual 194

Workshop on Machine Translation evaluation, 195

these news article sets are used for benchmark- 196

ing translation system performance (Kocmi 197

et al., 2022). 198

4. Flores Benchmark: Designed for evaluating 199

translation in low-resource languages, Flores 200

includes a broad domain range, improving 201

model versatility (NLLB Team et al., 2022). 202

3Corresponding to 768 and 256 respectively but with a few
additional special tokens to denote [BOS], [EOS], etc.

4https://github.com/isi-nlp/rtg
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Language Pair Dataset Type Versions # Sentences Size (MBs) # Chars/Sentence

French-English Europarl Training v7 2,002,756 647.69 Fr-166.69; En-147.66(Fr-En) News Commentary Training v16 365,510 116.05

Newstest Development 2010 2,489 0.71 Fr-147.53 ; En-130.88

Newstest Test 2011 3,003 0.85 Fr-141.48 ; En-126.0
Newstest Test 2012 3,003 0.82 Fr-146.67 ; En-131.06
Newstest Test 2013 3,003 0.72 Fr-126.41 ; En-109.98

German-English Europarl Training v10 1,817,758 585.08 De-167.45 ; En-147.06(De-En) News Commentary Training v16 388,482 120.34

Newstest Development 2017 3,004 0.71 De-122.04 ; En-111.07

Newstest Test 2018 2,998 0.74 De-107.27 ; En-101.98
Newstest Test 2019 2,000 0.43 De-126.66 ; En-116.22
Newstest Test 2020 785 0.43 De-282.84 ; En-263.92

Spanish-English Europarl Training v7 1,960,641 619.08 Es-161.68 ; En-147.58(Es-En) News Commentary Training v16 369,540 114.09

Newstest Development 2010 2,489 0.69 Es-142.36 ; En-130.88

Newstest Test 2011 3,003 0.83 Es-140.73 ; En-131.06
Newstest Test 2012 3,003 0.81 Es-123.09 ; En-109.98
Newstest Test 2013 3,003 0.71 Es-138.57 ; En-126.0

English-Arabic Flores200 Training v1 997 0.33 En-289.44 ; Ar - 353.62(En-Ar) News Commentary Training v16 140,929 132.74

UN Test Development v1 4,000 1.79 En-175.36 ; Ar - 148.38

Flores200 devtest Test v1 1,012 0.34 En-130.4 ; Ar-114.93

Spanish-Arabic Flores200 Training v1 997 0.36 Es-335.49 ; Ar-351.81(Es-Ar) News Commentary Training v16 132,616 130.82

UN Test Development v1 4,000 1.9 Es-200.63 ; Ar-148.38

Flores200 devtest Test v1 1,012 0.37 Es-155.14 ; Ar-114.93

French-Arabic Flores200 Training v1 997 0.35 Fr-345.85 ; Ar-354.56(Fr-Ar) News Commentary Training v16 104009 105.57

UN Test Development v1 4000 1.91 Fr-198.43 ; Ar-148.38

Flores200 devtest Test v1 1012 0.38 Fr-155.77 ; Ar-114.93

Table 2: Summary of our Training, Development, and Test Datasets on six language pairs.

5. United Nations (UN) Test Sets: Derived203

from official UN documents, this dataset intro-204

duces models to complex diplomatic and inter-205

national terminology (Ziemski et al., 2016).206

Training and Evaluation We use the Adam op-207

timizer (Kingma and Ba, 2017) with a controlled208

learning rate that warms up for 16K steps followed209

by a decay rate recommended for training trans-210

former models. Each model is trained from scratch,211

and the hyperparameters (per language pair) are212

chosen by grid search to optimize the baseline213

validation BLEU. We train all models for up to214

100, 000 steps (early stop by development loss with215

a patience of 5) with batch size 24, 000. We report216

sacreBLEU (Post, 2018) and chrF (β = 2) scores217

(Popović, 2015).218

As is common in machine translation experi-219

ments, our models do not share source and target220

vocabularies. In most experiments below, we fur-221

ther isolate the effects of tokenization to a single222

side (source or target) while fixing the other side223

to be the default baseline with 8, 000 BPE tokens.224

Doing so at the target side has the added advantage225

that the autoregressive decoding speed at inference226

is unaffected by the source vocabulary, which is227

one of the prominent critiques against, say, byte- 228

level models. 229

5 Results and Discussion 230

The purpose of this work is to compare traditionally 231

used tokenizers like Byte and BPE subwords to the 232

learnt tokenizers: Factorizer 258 and Factorizer 233

794. We break down our results into the following 234

research questions: 235

5.1 How well do learnt tokenizers encode 236

source text and decode target text? 237

We first experiment with different source-side to- 238

kenizers while keeping the target side as BPE 8K. 239

Table 3 shows that Factorizer (794) does not outper- 240

form BPE but is better than Bytes when translating 241

Arabic to other languages. We theorize that the 242

Bytes tokenizer does relatively better on English 243

primarily due to how UTF-8 encodes each Latin 244

alphabet with a single byte each, whereas Arabic 245

alphabets require two bytes each. 246

Based on the above results, we further experi- 247

ment with the two best tokenizers BPE 794 and 248

Factorizer 794 at target-side in machine translation. 249

The smaller vocabulary Byte and Factorizer 258 250
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Factorizer 794 BPE 794 Byte 258 Factorizer 258

BLEU chrF BLEU chrF BLEU chrF BLEU chrF

En → De 22.4 ± 4.4 53.4 ± 3.0 22.7 ± 4.6 54.4 ± 3.2 25.2 ± 5.2 55.6 ± 3.4 20.8 ± 4.0 52.2 ± 2.9
En → Fr 22.4 ± 0.7 53.7 ± 1.0 21.6 ± 2.2 53.1 ± 2.3 25.1 ± 0.7 56.0 ± 0.9 24.0 ± 0.7 52.7 ± 1.0
En → Es 28.0 ± 1.5 54.8 ± 1.3 29.3 ± 1.5 56.2 ± 1.3 32.1 ± 1.8 56.9 ± 1.6 27.9 ± 1.5 54.1 ± 1.3

En → xx 24.3 54.0 24.5 54.6 27.5 56.1 24.2 53.0

Ar → En 20.5 ± 0.3 48.5 ± 0.3 22.2 ± 0.1 49.8 ± 0.5 21.2 ± 0.7 48.2 ± 0.3 17.7 ± 0.1 45.0 ± 0.2
Ar → Fr 13.9 ± 0.5 42.4 ± 0.1 15.0 ± 0.3 44.1 ± 0.1 11.2 ± 0.8 38.7 ± 0.7 11.1 ± 0.1 38.6 ± 0.1
Ar → Es 12.6 ± 0.3 39.7 ± 0.3 13.2 ± 0.1 40.9 ± 0.1 4.9 ± 3.3 27.3 ± 6.2 10.5 ± 0.2 37.4 ± 0.2

Ar → xx 15.7 43.6 16.8 44.9 12.4 38.1 13.1 40.3

Table 3: Comparison of different source tokenizers with the target fixed (xx→ BPE-8K) across 6 language pairs,
along with standard deviations over 3 runs with different random seeds. English source experiments are averaged
over three different test sets, resulting in higher variance. We also report (micro) averages grouped by source
language. Takeaway: Factorizer does not outperform BPE but is better than Bytes when translating Arabic.

Figure 3: BLEU scores on target side with the source
side fixed as (xx← BPE-8K) across six language pairs.
BPE consistently outperforms Factorizer.

tokenizers are also particularly slow at inference,251

since they must autoregressively decode more num-252

ber of times for the same sentence than BPE 794253

and Factorizer 794. Figure 3 shows again that while254

Factorizer performs competitively with BPE, it is255

unable to beat it for any of the six language pairs.256

In the following sections, we perform further ab-257

lations primarily on the Arabic-English translation258

task, since Factorizer shows relative promise in en-259

coding Arabic. Moreover, the Ar→ En task helps260

us qualitatively analyze model outputs in English261

(Section 5.4).262

5.2 How robust are tokenizers to data263

scarcity?264

Prior work (Samuel and Øvrelid, 2023) has shown265

the benefits that alternative tokenizers have when266

Figure 4: Data Scarcity: BLEU scores over Ar→ En
with different source-side tokenizers (target-side fixed
at BPE 8k). Most tokenizers lose performance in a low
resource setting but Factorizer 794 gains the most.

training with low resources. Here, we evaluate the 267

relative drop in performance of our models when 268

trained on lower resources. 269

More specifically, we experiment with Arabic 270

→ English translation where the training set is now 271

UN Test (4,000 examples) and the development set 272

is Flores 200 (997 examples). In the high resource 273

setting, the total training set had 141,926 exam- 274

ples and the development set had 4,000 examples. 275

For fair comparison, our test set in both settings is 276

Flores 200 devtest (1,012 examples). 277

Figure 4 reports BLEU scores when compar- 278

ing different source-side tokenizers, keeping target- 279

side tokenizer fixed at our default BPE 8k. We find 280

that while most tokenizers lose some score in the 281

low resource setting, Factorizer 794 on the contrary 282

gains the most, demonstrating better robustness to 283

data scarcity. 284
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Figure 5: Ar→En relative BLEU scores (100 denotes
noiseless5) with varying degrees of noise added to the
test source sentences. Factorizer performance relatively
degrades less than BPE as noise increases.

5.3 How robust are tokenizers to noise?285

Following Samuel and Øvrelid (2023) we exper-286

iment with adding different degrees of artificial287

noise in our Arabic→English experiments with288

BPE 794-BPE 794 and Factorizer 794-Factorizer289

794 5. We add, remove, or replace each non-space290

character with a certain probability in the test set291

source sentences (Arabic); the training set remains292

uncorrupted in each case. In line with previous293

work, Figure 5 find that Factorizer performance rel-294

atively degrades less than BPE as noise increases.295

5.4 Do different tokenizers specialize in296

different kinds of translations?297

We note in Table 3 how Byte-tokenized models298

work better for Latin scripts than non-Latin ones.299

This can be possibly explained by the inherent bias300

within UTF-8 encoding scheme which yields a sin-301

gle byte to all Latin characters but as many as three302

bytes per character for languages that appear later303

in the Basic Multilingual Plane (BMP).304

Here, we ask similarly what other factors may in-305

fluence the performance of a tokenizer in machine306

translation. We use the Compare-MT (Neubig et al.,307

2019) library to stratify results according to source308

length, target length, frequency of words, presence309

of key phrases, and other dimensions.310

5The noiseless BLEU scores are respectively 23.4 and 20.1
(in line with above results).

Length Factorizer-794 BPE-794

<10 17.33 10.73
[10,20) 15.06 16.65
[20,30) 17.45 18.63
[30,40) 20.22 19.30
[40,50) 18.62 19.43
[50,60) 17.98 19.58
>=60 45.30 33.16

Table 4: BLEU scores on Arabic→ English stratified
by lengths. Factorizer particularly outperforms when
the reference is either very short or very long.

Table 4 depicts a stratification by length of tar- 311

get reference. We find that Factorizer significantly 312

outperforms BPE on very short and very long trans- 313

lations, by as much as 70%. Table 5 also highlights 314

such representative samples from the test set of our 315

Arabic→ English experiments. 316

5.5 Can we quantify the morphological 317

preference of tokenizers? 318

Our experiments show that relatively, Factorizers 319

perform better on Arabic than say, English. We 320

note in Figure 1 how the non-concatenative mor- 321

phology of Arabic may be a factor behind this re- 322

sult. In this subsection, we further quantify this 323

intuition. 324

We test the hypothesis of whether BPE and Fac- 325

torizer are separately suited to be better at different 326

kinds of morphologies. To this end, we cluster the 327

top 10,000 words in both Arabic and English by 328

their root form (Sylak-Glassman, 2016; van der 329

Zwaan et al., 2019), e.g., the root form have maps 330

to the following common words: have, has, had, 331

having. Next, we tokenize each such word using 332

the two tokenizers (BPE 794 and Factorizer 794), 333

and count the subset of encoding that is ‘most rep- 334

resentative’ of the root cluster. 335

We define representativeness here as the fraction 336

of words that share this code within this cluster. For 337

example, if two of the above four forms of the root 338

have include a code ha## and six other English 339

words also include this code, then the representa- 340

tiveness score for this cluster in BPE is 2
8 = 0.25. 341

We plot the histograms of representativeness 342

scores over 1,410 English roots and 73 Arabic ones 343

in Figures 6 and 7. Distributions that are shifted 344

towards the right side on the X-axis indicate a more 345

representative code that captures root forms. We 346

observe that while BPE subwords are better suited 347
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Text SentBLEU

Reference The harbor was the site of an infamous naval standoff in 1889 when seven ships from Germany, the US,
and Britain refused to leave the harbor.

Factorizer The facility was the site of a notorious sea-lane confrontation in a little-noticed year when seven ships
from Germany, the US, and Britain refused to leave the air.

55.20

BPE Seven ships from Germany, the United States, and Britain refused to leave. 14.94

Reference The Internet combines elements of both mass and interpersonal communication.
Factorizer The Internet combines elements of both mass and private communication. 80.50
BPE The Internet brings together elements of both public and personal communication. 26.78

Reference Argentina is well known for having one of the best polo teams and players in the world.
Factorizer Argentina is famous for having one of the best teams and Buddhist players in the world. 52.86
BPE Argentina is notorious for the existence of one of the world ’ s best statesmen. 17.40

Reference Christmas is one of the most important holidays of Christianity, and is celebrated as the birthday of Jesus.
Factorizer Christmas is one of Christianity ’ s most important Christmas habits, celebrated as Christmas. 23.41
BPE Christmas is one of the most important holidays of Christianity, and is celebrated as Christmas ’s birthday. 76.83

Reference As knowledge of Greek declined, the West found itself cut off from its Greek philosophical and scientific
roots.

Factorizer While knowledge has declined in Greeks, the West has found itself insulated from its philosophical roots
and Greek science.

13.80

BPE As Greek knowledge declined, the West found itself isolated from its philosophical and scientific roots. 42.68

Reference A couple may decide it is not in their best interest, or in the interest of their child, to raise a baby.
Factorizer She may decide that she is neither good nor in her child ’ s interest to rank a baby. 10.37
BPE uan may decide that it is not in their interest, or in the interest of their child, to have a baby. 60.26

Table 5: Representative samples of Arabic → English translations - three examples each of where Factorizer
significantly outperforms BPE and vice versa (as measured by Sentence BLEU). We highlight the winning system’s
successes and failures.

to the concatenative morphology of English, Arabic348

root forms that share non-concatenative morpholog-349

ical features are better encapsulated by the learnt350

codes in Factorizer (blue distribution leans more to351

the right, i.e., higher representativeness).352

6 Related Work353

Some recent work has challenged subword tok-354

enization schemes. Table 1 highlights the different355

kinds of alternative tokenizations existing in prior356

work and why this paper works with the Factorizer,357

the only tokenizer that controls for all dimensions358

and makes it possible to compare directly against a359

subword vocabulary. This section summarizes the360

different efforts by the community towards alteran-361

tive tokenization:362

Character/Byte-level ByT5 (Xue et al., 2022),363

CANINE (Clark et al., 2022), and SubChar (Si364

et al., 2021) propose using very small fixed-length365

units such as characters, bytes, or glyph strokes in-366

stead of dynamic-length subwords or words. This367

often comes at the expense of larger sequence368

lengths and more compute requirements, especially369

for a transformer architecture which typically has370

a complexity of O(n2) in number of input tokens.371

Edman et al. (2023) investigate byte and subword-372

level models for machine translation. 373

Beyond word level CodeBPE (Chirkova and 374

Troshin, 2022) and Multi Word Expressions (Ku- 375

mar and Thawani, 2022; Zaninello and Birch, 2020; 376

Rikters and Bojar, 2017) show promise in yet larger 377

tokens that cross word boundaries, e.g., a vocab- 378

ulary with single tokens for the strings “for i in 379

range” or “New York City” respectively. 380

Learnt subword segmentation Some methods 381

(Mofijul Islam et al., 2022; Kaushal and Mahowald, 382

2022; Pinter et al., 2021; Tay et al., 2021; Provilkov 383

et al., 2020; Wang et al., 2021) parameterize the 384

process of segmentation by pooling character n- 385

grams or sampling one of the many ways to seg- 386

ment a given word. In contrast, we are interested 387

in a different rearrangement of the vocabulary that 388

does not segment words at the surface level alone. 389

Domain specific tokenization Several domains 390

have benefited from a custom tokenization strat- 391

egy (Dagan et al., 2024). Numbers are often in- 392

consistently segmented into subwords, leading to 393

decreased arithmetic (Wallace et al., 2019) and es- 394

timation (Thawani et al., 2021) skills. The extent 395

of these numeric limitations is so dire that GPT-4 396

(OpenAI et al., 2023) has an explicit workaround 397

7



Figure 6: Representativeness in English. BPE 794 codes
well represent more root forms than Factorizer 794 (right-
wards is better). See Section 5.5 for details.

Figure 7: Representativeness in Arabic. Factorizer 794
codes well represent more root forms than BPE 794
(rightwards is better). See Section 5.5 for details.

of adding all numbers from 0 to 999 as individual398

tokens to the model’s vocabulary. Boecking et al.399

(2022b) train a better tokenizer for the biomedical400

domain and Dagan et al. (2024) perform a similar401

analysis over code language models.402

7 Conclusion403

In conclusion, our study explored the impact of to-404

kenization schemes on neural machine translation405

performance by comparing traditional Byte Pair406

Encoding (BPE) with a recent, learned tokenizer407

known as Factorizer. Our experiments, conducted408

across six language pairs, revealed that while BPE409

continues to hold its ground as the superior tok-410

enizer in most scenarios, Factorizer shows promise,411

particularly when translating from Arabic. Notably,412

Factorizer outperformed BPE in translating very413

short and very long sentences, indicating its poten-414

tial in handling edge cases effectively.415

We rigorously analyze one of the factors influ-416

encing this relative preference for BPE towards417

inflectional morphologies like English and Factor-418

izer towards non-concatenative morphologies like419

Arabic. We find that learnt codebooks better rep-420

resent the non-concatenative root forms in Arabic421

than subword heuristics (Figure 7).422

Our findings underscore the importance of con-423

tinuing to explore and refine tokenization tech-424

niques in the field of neural machine translation.425

While BPE remains a strong baseline, the potential426

for improvement with learned tokenizers like Fac-427

torizer warrants further investigation, particularly428

in language pairs and scenarios where traditional429

methods may falter.430

8 Limitations 431

We acknowledge that codebook-learned tokenizers 432

have several shortcomings. They are not as directly 433

interpetible as subwords. They need to be trained 434

on a corpus (though so do subword tokenizers), 435

and cannot be plugged into a pretrained language 436

model. They lack the inductive bias that characters 437

appearing close may form coherent units. 438

Our paper empirically analyses the research 439

question: to what extent could BPE tokenizers be 440

inhibiting machine translation? While our results 441

indicate that Factorizers (codebook-learnt tokeniz- 442

ers) do not outperform subword-based models in 443

general, our work highlights how and where do 444

they perform at par. 445

This study is limited to machine translation, but 446

we refer readers to the Appendix in Samuel and 447

Øvrelid (2023) for preliminary experiments on 448

GLUE, a general NLP benchmark. They find simi- 449

larly that Factorizer does not outperform but also 450

does not lag far behind the default BPE tokenizers. 451

9 Ethical Impact 452

We acknowledge that research on tokenization in 453

language models is one of the fundamental steps 454

where language diversity is essential for an equi- 455

table outcome in Generative AI. 456

Our work is in part an effort to evaluate tok- 457

enizers that make less assumptions about the mor- 458

phology of the underlying language than BPE-like 459

subword segmentation heuristics. We analyze in 460

Section 5.5 how non-concatenative morphology in 461

Arabic may influence the relatively better perfor- 462

mance of factorizers than on English. 463
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Maja Popović. 2015. chrF: character n-gram F-score731
for automatic MT evaluation. In Proceedings of the732
Tenth Workshop on Statistical Machine Translation,733
pages 392–395, Lisbon, Portugal. Association for734
Computational Linguistics.735

Matt Post. 2018. A call for clarity in reporting BLEU736
scores. In Proceedings of the Third Conference on737
Machine Translation: Research Papers, pages 186–738
191, Brussels, Belgium. Association for Computa-739
tional Linguistics.740

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.741
2020. BPE-dropout: Simple and effective subword742
regularization. In Proceedings of the 58th Annual743
Meeting of the Association for Computational Lin-744
guistics, pages 1882–1892, Online. Association for745
Computational Linguistics.746
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