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Abstract
We propose a new dataset distillation algorithm
using reparameterization and convexification of
implicit gradients (RCIG), that substantially im-
proves the state-of-the-art. To this end, we first
formulate dataset distillation as a bi-level opti-
mization problem. Then, we show how implicit
gradients can be effectively used to compute meta-
gradient updates. We further equip the algo-
rithm with a convexified approximation that corre-
sponds to learning on top of a frozen finite-width
neural tangent kernel. Finally, we improve bias
in implicit gradients by parameterizing the neu-
ral network to enable analytical computation of
final-layer parameters given the body parameters.
RCIG establishes the new state-of-the-art on a di-
verse series of dataset distillation tasks. Notably,
with one image per class, on resized ImageNet,
RCIG sees on average a 108% improvement over
the previous state-of-the-art distillation algorithm.
Similarly, we observed a 66% gain over SOTA on
Tiny-ImageNet and 37% on CIFAR-100. 1

1. Introduction
Dataset distillation aims to condense a given dataset into
a synthetic version that ideally preserves the information
of the original set (Wang et al., 2018). Training on this
synthetic set should result in similar performance compared
to training on the original dataset.

Dataset distillation can be formulated as a bi-level opti-
mization problem with an inner objective to update model
parameters on the support/synthetic/distilled set, and an
outer (meta) objective to refine the distilled sets via meta-
gradient updates (Wang et al., 2018). Evaluating the meta-
optimization loop is difficult, as we have to solve the inner
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optimization loop and then back-propagate errors through
it to obtain the meta gradients. This could be done via
backpropagation through time (Werbos, 1988), evolution
strategies (Salimans et al., 2017), and equilibrium propaga-
tion (Scellier & Bengio, 2016). Numerous research works
have improved dataset distillation by introducing surrogate
objectives for computing the meta gradients through gra-
dient matching (Zhao & Bilen, 2021a), training trajectory
matching (Cazenavette et al., 2022a), feature alignment
(Wang et al., 2022), by regressing on neural features (Zhou
et al., 2022), and by leveraging the neural tangent kernel
(NTK) theory (Jacot et al., 2018; Arora et al., 2019a) in
exact (Nguyen et al., 2021a;b) and approximate forms (Loo
et al., 2022a).

What does it take to significantly increase the accuracy and
performance of dataset distillation? In this paper, we con-
struct a novel dataset distillation algorithm that substantially
outperforms state-of-the-art methods, by re-parameterizing
and convexifying implicit gradients. Implicit gradients (IGs)
leverage implicit function theorem (Bengio, 2000; Chen
& Hagan, 1999; Rajeswaran et al., 2019), that defines a
meta-gradient update for a bi-level optimization problem
(meta-learning with inner and outer loops). IG, off the bat,
can serve as a dataset distillation algorithm, but it could per-
form significantly better via linearized training. Linearized
training, which corresponds to learning on a frozen finite
width neural tangent kernel (NTK) (Jacot et al., 2018), con-
vexifies the inner model, and as a result refines the implicit
gradients. We show that such convexified implicit gradients
dataset distillation algorithm equipped with a reparameter-
ization technique for reducing the bias in IG considerably
supersedes the state-of-the-art performance on 17 out of 22
reported benchmarks.

In summary, we make the following new contributions:

I. We step-by-step construct a new dataset distillation algo-
rithm called reparameterized convexified implicit gradients
(RCIG), that establishes the new state-of-the-art. II. We
show how to effectively design and improve implicit gradi-
ents to obtain a bi-level dataset distillation algorithm. III.
We conduct a large experimental evaluation of our method
in a diverse set of dataset distillation tasks and benchmarks
and compare its performance to other advanced baselines.
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2. Background
Coresets and Dataset Distillation. Coresets are weighted
subsets of the training data such that training on them
results in the similar performance to training on the full
dataset (Munteanu et al., 2018; Mirzasoleiman et al., 2020;
Pooladzandi et al., 2022). Existing coreset selection meth-
ods employ clustering (Feldman & Langberg, 2011; Lucic
et al., 2016; Bachem et al., 2016), bilevel optimization (Bor-
sos et al., 2020), and sensitivity analysis (Munteanu et al.,
2018; Huggins et al., 2016; Tukan et al., 2020).

Dataset distillation shares many characteristics with core-
sets, however, instead of selecting subsets of the training
data distillation generates synthetic samples. Similar to
coresets, training on the synthetic samples should be faster
and result in a better performing model (Wang et al., 2018;
Zhao et al., 2021; Zhao & Bilen, 2021b; Nguyen et al.,
2021a;b; Zhou et al., 2022; Loo et al., 2022a). Dataset
distillation algorithms range from directly unrolling the
model training computation graph (Wang et al., 2018), or
approximately matching training trajectories with the full
dataset (Cazenavette et al., 2022b) As unrolling of the train-
ing comes with high memory and computation requirements,
more recent works try to approximate the unrolled compu-
tation (Zhou et al., 2022; Loo et al., 2022a; Nguyen et al.,
2021a;b). Dataset distillation has also shown promise in
applications such as continual learning (Zhou et al., 2022;
Sangermano et al., 2022), and neural architecture search
(Such et al., 2019).

Bilevel Optimization and Implicit gradients. Bilevel op-
timization problems are a class of problems where one op-
timization problem is nested inside a second optimization
problem. Formally, define the inner objective as Li and the
outer (meta) objective as Lo. Bilevel optimization problems
aim to solve:

argmin
ψ
Lo(θ∗, ψ), s.t. θ∗ ∈ argmin

θ
Li(θ, ψ)

With θ is a set of inner parameters, and ψ is a set of
outer/hyperparameters that we aim to solve for. This type
of problem arises in many deep learning fields such as hy-
perparameters optimization (Domke, 2012; Maclaurin et al.,
2015; MacKay et al., 2019), meta-learning (Finn et al., 2017;
Rajeswaran et al., 2019), and adversarial training (Szegedy
et al., 2013; Madry et al., 2017). Similarly, dataset distilla-
tion can also be framed as a bilevel optimization problem,
with θ the set of network parameters, and ψ our distilled
dataset parameters, given by the coreset images and labels
(Wang et al., 2018; Nguyen et al., 2021a; Zhou et al., 2022).

Evaluating Lo(θ∗, ψ), and evaluating meta-gradients dLo

dψ
is difficult, as it generally not only requires solving the
inner optimization problem to evaluate the outer loss but
even worse, to backpropagate through inner optimization

to compute meta-gradients. The most standard method
is Backpropagation-through-time (BPTT) (Werbos, 1988;
Rumelhart & McClelland, 1987; Werbos, 1990), which is
what Wang et al. (2018) uses for dataset distillation. Other
methods exist such as evolution strategies(Salimans et al.,
2017; Vicol et al., 2021) and equilibrium propagation (Scel-
lier & Bengio, 2016; Zucchet et al., 2021). One technique
is implicit differentiation (implicit gradients/IG methods),
which leverages the implicit function theorem (Bengio,
2000; Chen & Hagan, 1999; Rajeswaran et al., 2019). This
theorem states that if the inner object admits a unique mini-
mum and the outer objective is continuously differentiable,
then we have

∂θ∗

∂ψ
=

(
∂2Li
∂θ∂θT

)−1
∣∣∣∣∣
θ=θ∗

∂2Li
∂θ∂ψ

∣∣∣∣∣
θ=θ∗

And our full meta-gradient is given by:

dLo
dψ

=
∂Lo
∂ψ︸︷︷︸

direct grad

+
∂

∂ψ

(
∂Li
∂θ

⊺

v

)
︸ ︷︷ ︸

implicit grad

(1)

With v given by
(
∂2Li

∂θ∂θT

)−1
∂Lo

∂θ .

Neural Tangent Kernel and Network Linearization. The
Neural Tangent Kernel (NTK) is a method of analyzing
the behavior of neural networks in the infinite width limit
(Jacot et al., 2018; Arora et al., 2019b). It states that as
network width approaches infinity, with appropriate network
initialization, neural networks behave as first-order Taylor
expansion about their initialization, and are thus linear in
their weights. The corresponding kernel formulation of the
linear classifier results in the NTK, and the finite-width NTK
converges to a deterministic architecture-dependent NTK in
the infinite width limit. Networks behaving in this regime
are said to be in the kernel regime, and when the first-order
Taylor expansion is accurate, networks are said to be in lazy
training (Chizat et al., 2019). While typical neural networks
have highly non-convex loss landscapes, networks in the
NTK regime have convex loss landscapes. This convexity
has been successfully exploited for tasks such as dataset
distillation (Nguyen et al., 2021a;b; Loo et al., 2022a), and
federated learning (Yu et al., 2022).

3. Method: Reparameterized Convexified
Implicit Gradient

In this section, we step-by-step motivate and explain how
we build our reparameterized convexified Implicit Gradient
(RCIG) dataset distillation algorithm.

3.1. Implicit Gradients with Dataset Distillation. Dataset
distillation can directly be framed as bilevel optimization
by letting Lo = LT (θ), Li = LS(ψ)(θ), with LT and
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LS(ψ) being training losses of the full training set and core-
set/support set, with ψ = {XS , yS} our set of coreset im-
ages/labels.

This simple formulation leads directly to a straightforward
dataset distillation algorithm, provided that we can compute
v = H−1

S gT , with HS = ∂2Li

∂θ∂θT
and gT = ∂Lo

∂θ . This can
be done using a Neumann series, conjugate gradient meth-
ods, or the methods we discuss in Section 3, but assume
that this computation can be done for the time being. We
call this naive implicit gradient algorithm VIG (Vanilla im-
plicit gradients). We evaluate in this algorithm on MNIST,
CIFAR-10, and CIFAR-100 distilling 1, 10, and 50 images
per class (except on CIFAR-100) on a three-layer convolu-
tional network, with results shown in Table 1 (Lecun et al.,
1998; Krizhevsky, 2009). We additionally use small L2 reg-
ularization so that the Hessian inverse is properly defined.

Immediately we see that implicit gradients perform poorly,
sometimes performing worse than random images, but why?
As discussed in Vicol et al. (2022), there existing a unique
minimizer is a necessary condition for the implicit gradi-
ent theorem to hold. In contrast, deep neural networks are
highly non-convex, so we should not expect vanilla implicit
gradients to work out of the box. Furthermore, the implicit
gradient method relies heavily on computing gTSH

−1
S gT ,

with gS = ∂Li

∂θ (i.e. the support set gradient). This expres-
sion has a striking similarity to influence functions (Hampel,
1974; Koh & Liang, 2017; Basu et al., 2020), which leads
to a second interpretation of implicit-gradient based dataset
distillation as maximizing the mutual influence between our
distilled dataset and the full dataset.

While this interpretation of dataset distillation as influence
maximization is appealing, it also suggests that the suc-
cess of our algorithm is heavily dependent on how well
gSH

−1
S gT actually approximates influence. Recent work

(Bae et al., 2022) has shown that for deep models, these
influence functions are brittle and do not accurately esti-
mate leave-one-out retraining (which influence functions
claim to do). Bae et al. (2022) shows that this discrepancy
is partially caused by the non-convexity of deep models, as
deep models undergo a period of highly erratic optimization
behavior before only settling in approximately convex loss
region. These two findings suggest that using implicit gra-
dients to perform dataset distillation for highly non-convex
deep networks is challenging.

3.2. Convexification. The literature and our simple experi-
ments strongly suggest that our naive implicit gradients will
not work unless we are able to make our inner model exhibit
more convex behavior. One method of this is by consid-
ering the tangent space of the neural network parameters.
Specifically, we define:

fθ(x) ≈ flin,θ(x) = fθ0(x) + (θ − θ0)⊺∇θfθ0(x). (2)

We call this 1st-order Taylor approximation of learning
dynamics linearized dynamics (Fort et al., 2020; Loo et al.,
2022b; Lee et al., 2019), as opposed to standard dynamics
which corresponds to no Taylor expansion. If we fix θ0
and consider optimizing θ, this new formulation is now
strongly convex in θ, provided that some L2 regularization
is added. Seeing that at initialization, fθ0(x) ≈ 0, we then
have centered linearized training. This can be efficiently
calculated using forward-mode auto-differentiation.

This convex approximation, while fixing our non-convexity
issue, is only as useful as it is accurate. This linearization
technique corresponds to learning on top of a frozen finite-
width neural tangent kernel (NTK) (Jacot et al., 2018; Lee
et al., 2019; Aitken & Gur-Ari, 2020; Lee et al., 2020; Hanin
& Nica, 2020). For very wide neural nets, it has been shown
that neural networks approximately behave as lazy/linear
learners, with the correspondence increasing with wider
networks (Lee et al., 2019). For narrow networks, it has been
shown that networks undergo a brief period of rapid NTK
evolution before behaving approximately as lazy learners
(Fort et al., 2020; Loo et al., 2022b; Hanin & Nica, 2020).

This leads to a second implicit-gradient-based dataset distil-
lation algorithm, which we call CIG (convexified implicit
gradients). Now we replace both the inner and outer ob-
jectives from VIG with their convexified counterparts. We
show CIG’s performance in Table 1 and note that we evalu-
ate using networks under standard dynamics (i.e. the eval-
uation network is unmodified). We see that convexifica-
tion/linearization consistently improves distillation perfor-
mance. While it is interesting that convexifying the problem
improves distillation performance, the performance still falls
short in state-of-the-art distillation algorithms, which can
achieve over 65% on CIFAR-10 with 10 images per class
(Zhou et al., 2022). Next, we close this gap by reparameter-
izing the problem to enable faster convergence.

3.3. Combine Analytic Solutions and Implicit Gradients.
A key limitation of CIG is that in practice we are unable

to find the true minima of the inner problem in any feasible
amount of time. These truncated unrolls lead to bias in
implicit gradients. Because the problem is convex, we can
consider warm-starting the problem by reusing old inter-
mediate values (Vicol et al., 2022), but this still biases our
results as warm-starts are only unbiased if we achieve the
minimum every time, which we cannot feasibly do. From an
algorithmic standpoint, warm starting also leads to a trade-
off in terms of model diversity, as we are forced to reuse the
same model as opposed to instantiating new ones, which has
shown to be vital in dataset distillation (Zhou et al., 2022;
Cazenavette et al., 2022b).

To perform better optimization of the inner problem, we
exploit the structure of the neural network. Specifically, we
split the network parameters into the final layer parameters,
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Table 1. Performance of Vanilla Implicit Gradients (VIG), Convexified Implicit Gradients (CIG), and Reparameterization Covexified
Implicit Gradients (RCIG), on distilling MNIST, CIFAR-10, and CIFAR-100. Linearization/convexification improves performance on
almost all datasets, and reparameterization further improves performance to achieve state-of-the-art. (n=15)

MNIST CIFAR-10 CIFAR-100

Img/cls 1 10 50 1 10 50 1 10

Random Subset 62.73± 0.95 93.22± 0.16 97.79± 0.12 20.76± 0.49 38.43± 0.36 54.44± 0.34 6.24± 0.08 21.08± 0.11
VIG 77.42± 1.41 90.17± 0.61 91.43± 0.35 26.54± 1.20 54.61± 0.13 35.63± 0.59 17.79± 0.13 29.30± 0.13
CIG (+ Linearization) 69.23± 1.43 95.37± 0.26 95.78± 0.17 29.70± 0.95 56.48± 0.60 56.68± 0.57 19.72± 0.55 31.36± 0.23
RIG ( + Reparam) 94.80± 0.43 98.55± 0.11 98.88± 0.08 44.48± 4.33 66.16± 0.78 62.07± 4.02 18.39± 2.84 46.09± 0.23
RCIG (+ Lin + Reparam) 94.79± 0.35 98.93± 0.03 99.23± 0.03 52.75± 0.76 69.24± 0.40 73.34± 0.29 39.55± 0.16 44.14± 0.25

θF and the body parameters θB , and note that for any set-
ting of θB , we can efficiently analytically compute the
optimal θF when trained under mean squared error (MSE)
loss. Specifically, consider MSE loss with labels yS , and
let hθ0(XS) ∈ RH×|S| be the hidden layer embeddings,
with |S| the distilled dataset size and H the final layer di-
mension. We know that ∇θflin,θ = hθ0(XS). Defining
kθ0(x, x′) = hθ0(x)

Thθ0(x
′), be the associated final-layer

NTK, neural network gaussian process (NNGP) or conju-
gate kernel, we have the optimal set of final layer parameters
for our centered linearized problem is given by

θ∗F = hθ0(XS)
(
Kθ0
XS ,XS

+ λI|S|

)−1

ŷS (3)

ŷS =

(
yS − θ⊺B

∂flin,θ(XS)

∂θB

)
, (4)

where θ⊺B
∂flin,θ(XS)

∂θB
could be considered an offset which

changes the labels given by how much the body parameters
already changed. Note that without this offset, this method
of solving the optimal final layer parameters corresponds to
training using the NNGP/Conjugate kernel to convergence,
which has been used in Loo et al. (2022a) and Zhou et al.
(2022). However, these methods ignore the contribution
from the body parameters, which our method does not.

Given that we can solve for the optimal θF given θB , we now
reparameterize our problem so that we only learn θB, and
automatically compute θF . Specifically, our parameterized
inner and outer objectives then become:

Lrep
i (θB) = LS(ψ)(θB , θ∗F (θB , ψ)), and (5)

Lrep
o (θB , ψ) = Lplatt,T (θB , θ∗F (θB , ψ), τ). (6)

We additionally add L2 regularization to the inner objective
λ
2 (θ

⊺
BθB + θ∗F (θB)

⊺θ∗F (θB)). For the outer objective, we
adopt the same Platt scaling loss with a learnable tempera-
ture parameter τ used in (Loo et al., 2022a), as it has shown
to be highly effective in dataset distillation settings. At a
high level, the Platt scaling loss replaces the MSE loss with
Lplatt = xent(ŷ/τ, y), with ŷ our predictions, τ the learn-
able temperature parameter and y the true labels and xent
the cross entropy function.

Thus, our final meta-gradient is:

dLrep
o

dψ
=

∂Lrep
o

∂ψ︸ ︷︷ ︸
direct grad

+
∂

∂ψ

(
∂Lrep

i

∂θB

⊺

v

)
︸ ︷︷ ︸

implicit grad

,

with v = H rep,−1
S grep

T , with H rep
S =

∂2Lrep
i

∂θB∂θTB
and grep

T =

∂Lrep
o

∂θB
. Unlike CIG, this reparameterized version has a non-

zero contribution from the direct gradient, as ψ is used to
compute the optimal set of θF . When using an MSE-loss as
opposed to the Platt-loss, this direct gradient corresponds to
the FRePo (Zhou et al., 2022) loss, evaluated using the per-
turbed labels given in Equation (4), thus we could consider
our algorithm to be a generalization of FRePo to consider
the body parameters as well as the final layer parameters.

Finally, noting that neural networks undergo a period of
rapid kernel evolution early in training (Fort et al., 2020;
Hanin & Nica, 2020; Loo et al., 2022b), it is important to
not only use the initialization finite-width NTK but also the
evolved NTK. Thus we adopt the same technique used in
Zhou et al. (2022), where we have a pool of partially trained
models. We fix this pool to contain m = 30 models and
set the max number of training steps of these models to be
K = 100, in line with Zhou et al. (2022). Next, we discuss
computing v = H rep,−1

S grep
T .

3.4. Hessian-inverse Vector Computation. To compute
implicit gradients, we need to compute v = H rep,−1

S grep
T .

As H has dimension P × P , where P is the parameter
dimension, this cannot be done exactly. Thus, it is typical to
approximate v using methods such as conjugate gradients
(Martens, 2010) or the Neumann series (Agarwal et al.,
2016; Koh & Liang, 2017). The method we use is closely
related to the Neumann series. We note that v is a minimizer
of the following loss:

LH−1 = (Hv − g)⊺H−1(Hv − g), (7)

which has gradients w.r.t v as Hv − g. Thus we perform
stochastic gradient descent (SGD) on this objective using an
optimizer such as Adam for nH−1 gradient steps. Note that
using SGD on this objective corresponds to the Neumann
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Algorithm 1 Reparam Convexified Implicit Gradients

Input: Training set and labels T , inner, Hessian-inverse
and distilled dataset learning rates αinner, αH−1 , αS
Initialize: Initialize distilled dataset and labels S with
parameters ψ = {XS , yS , τ}
Initialize: Initialize a model poolM with m randomly
initialized models {θi}mi=1

while not converged do
Sample a random model from the pool: θi ∼M
Sample a training batch from the training set:
{XT , yT } ∼ T
Perform ninner optimization steps on inner objective
Lrep
i given by Equation (5) to obtain θ∗i with linearized

dynamics
Perform nH−1 optimization steps on Equation (7) to
obtain v
Compute direct gradient gdirect =

∂Lrep
o

∂ψ , with Lrep
o given

by Equation (6)
Compute implicit gradient gimplicit =

∂
∂ψ

(
∂Lrep

i

∂θB

⊺
v
)

Update the distilled dataset: ψ ← ψ − αS(gdirect +
gimplicit)
Train the model θi on the current distilled dataset S for
one step using standard dynamics
Reinitialize the model θi if it has been updated for
more than K steps.

end while

series method of computing Hessian-inverse vector prod-
ucts. Hessian-vector products can be efficiently computed
using the Perlmutter trick (Pearlmutter, 1994). For the inner
optimization objective, we perform ninner optimization steps
and then nH−1 optimization steps on Equation (7). This
leads to the Reparameterized Convexified Implicit Gradients
(RCIG) algorithm, with pseudo-code given in Algorithm 1.

Complexity Analysis. Let our coreset size be |S|, training
batch size be |B|, and our network parameter have dimen-
sion P . One training iteration, per Algorithm 1 contains
three main steps: optimizing the inner objective, computing
the Hessian-inverse vector product, and computing the meta-
gradient. Optimizing the inner objective takes O(ninner|S|)
time, as it requires a full forward pass of the coreset at each
training iteration to compute Equation (5). Likewise, com-
puting the Hessian-inverse vector product takesO(nH−1 |S|)
time, as we perform nH−1 optimization steps on Equa-
tion (7). Computing the direct gradient and implicit gra-
dient also costs O(|S|) time, giving a total time complexity
of O((ninner + nH−1)|S|). The memory requirements of
inner optimization and Hessian inverse computation are con-
stant in ninner and nH−1 , as we do not retain intermediate
computations, so the total memory consumption is O(P ).

3.6. Bias-free subsampling. One limitation of RCIG
compared to CIG is that when optimizing the inner objective,
we need to compute ∇θB (LS(ψ)(θB , θ∗F (θB)), which we
know from Equation (3), depends on the entire training set
XS , yS . Thus, we cannot use stochastic gradient descent as
we can with CIG, as leaving out elements of XS would lead
to biased gradients. Likewise, when computing H rep,−1

S grep
T ,

we need to compute Hessian-vector products, which again
rely on all of XS , yS . This, combined with the fact that
linearization, in general, incurs a doubling of memory cost,
makes direct implementation of RCIG difficult for very
large support sets (for example CIFAR-100 with 50 images
per class). Here, we present a simple technique for getting
unbiased gradients without incurring the full memory cost.

When computing these gradients, we note that the gradient
contribution from each of the XS elements is interchange-
able, implying that when performing the backward pass,
the gradients computing through the nodes associated with
hθ0(xi), are all unbiased estimates of the gradient when
computed through all nodes hθ0(XS). This means that
rather than computing the backward pass through all nodes,
we can compute a backward pass through only some of
the hθ0(XS) nodes, provided that prior to those nodes the
backward pass, the whole computation is stored. Note that
from a memory perspective, computing hθ0(XS) is not ex-
pensive, but requires storing the computation graph leading
to that point for the backward pass is expensive. Thus, by
randomly dropping parts of this computation graph we can
save substantial memory. The important note is that during
the backward pass, we still need accurate gradients leading
into hθ0 , meaning that we still need to full forward pass so
that we can compute θ∗F .

Thus, we propose running a full forward pass on the whole
support set, but stop gradients for a random subset of
hθ0(XS), only allowing the backward pass through the
complementary subset of size nsubset < |S|, with |S| the
distilled dataset size. A more detailed description and for-
mal justification for this technique are present in Oktay et al.
(2021). Schematically, this is shown in Figure 4. We use this
technique whenever the coreset size exceeds 1000 images.

4. Experimental Results
In this section, we present our comprehensive experimen-
tal evaluation of our method, RCIG, compared to modern
baselines using a diverse series of benchmarks and tasks.

4.1. Results on Standard Benchmarks. We first ran RCIG
on six standard benchmarks tests including MNIST (10
classes) (Lecun et al., 1998), Fashion-MNIST (10 classes)
(Xiao et al., 2017), CIFAR-10 (10 classes), CIFAR-100 (10
classes) (Krizhevsky, 2009), Tiny-ImageNet (200 classes)
(Le & Yang, 2015), and Caltech Birds 2011 (200 classes)
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Table 2. Distillation performance of RCIG and six baseline distillation algorithms on six benchmark datasets. RCIG attains the highest
accuracy on 13/16 of these benchmarks, with the largest gains in the 1 Img/Cls category. (n=15)

Img/Cls DSA DM KIP RFAD MTT FRePo RCIG Full Dataset

MNIST
1 88.7± 0.6 89.9± 0.8 90.1± 0.1 94.4± 1.5 91.4± 0.9 93.0± 0.4 94.7± 0.5
10 97.9± 0.1 97.6± 0.1 97.5± 0.0 98.5± 0.1 97.3± 0.1 98.6± 0.1 98.9± 0.0 99.6± 0.0
50 99.2± 0.1 98.6± 0.1 98.3± 0.1 98.8± 0.1 98.5± 0.1 99.2± 0.0 99.2± 0.0

F-MNIST
1 70.6± 0.6 71.5± 0.5 73.5± 0.5 78.6± 1.3 75.1± 0.9 75.6± 0.3 79.8± 1.1
10 84.8± 0.3 83.6± 0.2 86.8± 0.1 87.0± 0.5 87.2± 0.3 86.2± 0.2 88.5± 0.2 93.5± 0.1
50 88.8± 0.2 88.2± 0.1 88.0± 0.1 88.8± 0.4 88.3± 0.1 89.6± 0.1 90.2± 0.2

CIFAR-10
1 36.7± 0.8 31.0± 0.6 49.9± 0.2 53.6± 1.2 46.3± 0.8 46.8± 0.7 53.9± 1.0
10 53.2± 0.8 49.2± 0.8 62.7± 0.3 66.3± 0.5 65.3± 0.7 65.5± 0.4 69.1± 0.4 84.8± 0.1
50 66.8± 0.4 63.7± 0.5 68.6± 0.2 71.1± 0.4 71.6± 0.2 71.7± 0.2 73.5± 0.3

CIFAR-100
1 16.8± 0.2 12.2± 0.4 15.7± 0.2 26.3± 1.1 24.3± 0.3 28.7± 0.1 39.3± 0.4
10 32.3± 0.3 29.7± 0.3 28.3± 0.1 33.0± 0.3 40.1± 0.4 42.5± 0.2 44.1± 0.4 56.2± 0.3
50 42.8± 0.4 43.6± 0.4 - - 47.7± 0.2 44.3± 0.2 46.7± 0.3

T-ImageNet 1 6.6± 0.2 3.9± 0.2 - - 8.8± 0.3 15.4± 0.3 25.6± 0.3
37.6± 0.410 - 12.9± 0.4 - - 23.2± 0.2 25.4± 0.2 29.4± 0.2

CUB-200 1 1.3± 0.1 1.6± 0.1 - - 2.2± 0.1 12.4± 0.2 12.1± 0.2
20.5± 0.310 4.5± 0.3 4.4± 0.2 - - - 16.8± 0.1 15.7± 0.3

(Welinder et al., 2010), with performances reported in Ta-
ble 2. We compare RCIG to six baseline dataset distilla-
tion algorithms including Differentiable Siamese Augmen-
tation (DSA) (Zhao & Bilen, 2021b), Distribution Matching
(DM) (Zhao & Bilen, 2021a), Kernel-Inducing-Points (KIP)
(Nguyen et al., 2021b), Random Feature Approximation
(RFAD) (Loo et al., 2022a), Matching Training Trajecto-
ries (MTT) (Cazenavette et al., 2022b), and neural Feature
Regression with Pooling (FRePo) (Zhou et al., 2022).

Our method establishes the new state-of-the-art performance
in 13 out of 16 of these benchmark tasks, sometimes with a
significant margin. We see the greatest performance gains in
datasets that have many classes, with few images per class.
In CIFAR-100 with one image per class, we are able to
achieve 39.3± 0.4%, compared to the previous state of the
art 28.7± 0.4%, which is equivalent to 37% improvement
over SOTA. Similarly, in Tiny-ImageNet with one image
per class, we achieve 25.6± 0.3% compared to the previous
state-of-the-art 15.4 ± 0.3%, which is an improvement of
66% over SOTA. For CUB-200, we notice that we under-
perform compared to FRePo. Noting the relatively small
training set size (5,994), compared to the number of classes
(200), we observed that our algorithm tended to overfit to
the training set, as with 10 images per class, we observed
that we would achieve 100% training classification accuracy.
A solution to this would have been to apply data augmenta-
tion during dataset distillation, however, to keep our method
simple we applied no augmentation.

RCIG outperforms SOTA methods even with larger support
sizes with a good margin. However, the performance gain is
not as significant as in the case of smaller support sets. For
example, we see a performance gain of 14% going from 1
to 10 classes in Tiny-ImageNet over SOTA. We hypothesize
that this is because minimizing the inner objective is harder
when the dataset is larger, and likely would require a lower

learning rate and more inner steps to converge.

4.2. Cross-architecture generalization. A desirable prop-
erty of distilled datasets is the ability to transfer well to
unseen training architectures. Here we evaluate the transfer-
ability of RCIG’s distilled datasets for CIFAR-10 10 images
per class. Following prior work (Zhao & Bilen, 2021b;a;
Cazenavette et al., 2022b; Zhou et al., 2022), we evaluate
our models on the ResNet-18 (He et al., 2015), VGG11
(Simonyan & Zisserman, 2014), and AlexNet (Krizhevsky
et al., 2012). Additionally, we consider various normaliza-
tion layers such as using no normalization (NN), Batch Nor-
malization (BN) (Ioffe & Szegedy, 2015), and Instance Nor-
malization (IN). Default normalization (DN) refers to the
evaluation architecture used in the respective paper, which
is the same as the training architecture, except for FRePo,
which trains with BN and evaluates with NN. RCIG Typ-
ically trains with NN and evaluates with NN, but we also
consider training with BN. Table 3 summarizes the results.
We see that RCIG can achieve high transferability, in par-
ticular when we use BN during training. We hypothesize
that using BN during training helps ensure that magnitudes
of distilled images remain similar to real images, allow-
ing for wider generalizability, although future work should
investigate the role of normalization during training further.

4.3. Experiments with ImageNet Datasets. We next con-
sidered higher-resolution subsets. Consistent with Zhou
et al. (2022) and Cazenavette et al. (2022b), we consider
two ImageNet subsets: ImageNette and ImageWoof, both
subsets of ImageNet with 10 classes each with resolutions
of 128 × 128 (Howard, 2020). On these two datasets, we
see that RCIG outperforms the baselines substantially in the
1 image per class setting, but only performs similarly to the
previous state-of-the-art with more images. To evaluate how
well RCIG scales to more complex label spaces, we also
consider the full ImageNet-1K dataset with 1000 classes,
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Table 3. Performance of CIFAR-10 10 Img/Cls distilled datasets evaluated on different network architectures. Default Normalization
(DN) refers to the test architecture used in reported results in the respective papers. RCIG-distilled datasets achieve high accuracy across a
variety of datasets, particularly when BatchNorm (BN) is used during training. * - see footnote3 (n=15)

Training
Architecture

Evaluation Architecture

Conv-DN Conv-NN ResNet-DN ResNet-BN VGG-BN AlexNet

DSA Conv-IN 53.2± 0.8 36.4± 1.5 42.1± 0.7 34.1± 1.4 46.3± 1.3 34.0± 2.3
DM Conv-IN 49.2± 0.8 35.2± 0.5 36.8± 1.2 35.5± 1.3 41.2± 1.8 34.9± 1.1
MTT Conv-IN 64.4± 0.9 41.6± 1.3 49.2± 1.1 42.9± 1.5 46.6± 2.0 34.2± 2.6
KIP Conv-NTK 62.7± 0.3 58.2± 0.4 49.0± 1.2 45.8± 1.4 30.1± 1.5 57.2± 0.4
FRePo Conv-BN 65.5± 0.4 65.5± 0.4 54.4± 0.8∗ 52.4± 0.7∗ 55.4± 0.7∗ 61.6± 0.2∗

RCIG Conv-NN 69.1± 0.4 69.1± 0.4 51.3± 1.7 49.7± 1.4 46.2± 1.8 60.8± 1.8
RCIG Conv-BN 66.0± 0.6 66.0± 0.6 54.4± 1.1 54.8± 1.1 55.4± 1.1 62.1± 0.8

Table 4. Distillation performance for ImageNet subsets. RCIG attains the highest performance in the single image per class category on
all benchmarks. In particular, RCIG doubles the performance of the state-of-the-art in the ImageNet 1 Img/Cls setting. (n=15)

ImageNette (128x128) ImageWoof (128x128) ImageNet (64x64)

Img/Cls 1 10 1 10 1 2

Random Subset 23.5± 4.8 47.4± 2.4 14.2± 0.9 27.0± 1.9 1.1± 0.1 1.4± 0.1
MTT 47.7± 0.9 63.0± 1.3 28.6± 0.8 35.8± 1.8 - -
FRePo 48.1± 0.7 66.5± 0.8 29.7± 0.6 42.2± 0.9 7.5± 0.3 9.7± 0.2

RCIG 53.0± 0.9 65.0± 0.7 33.9± 0.6 42.2± 0.7 15.6± 0.2 16.6± 0.1

resized to 64 × 64 (Russakovsky et al., 2014). With one
image per class, our algorithm doubles the performance
of the previous SOTA, achieving 15.6± 0.2%.

4.4. Ablation: Number of Optimization Steps. To run
RCIG, we require two key hyperparameters, the number
of inner optimization steps, ninner, and the number of steps
used to compute the Hessian-inverse-vector product, nH−1 .
These two hyperparameters play a critical role in the fidelity
of all implicit gradient methods. ninner controls the quality of
the inner optimization procedure, with larger ninner resulting
in better approximations of the true minimum. Likewise,
nH−1 controls the accuracy of our approximation of v =
H−1gT . In previous sections, we fixed ninner = nH−1 = 20
for all datasets/experiments for simplicity. In this section,
we study the effect of both these critical parameters on the
runtime and accuracy of the algorithm.

Specifically, for CIFAR-100 1 Img/Cls, CIFAR-10 1
Img/Cls, and CIFAR-10 10 Img/Cls, we rerun our algo-
rithm with ninner, nH−1 ∈ {0, 2, 5, 10, 20, 30}, and report
the resulting runtime per iteration in Figure 1 and accuracy
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Figure 1. The effect of ninner and nH−1 on the computation time
for CIFAR-100 1 Img/Cls, and CIFAR-10 with 1 and 10 Img/Cls.
The green star denotes the hyperparameter configuration used
throughout the paper (ninner = 20, nH−1 = 20).

in Figure 2, with the green stars, indicate our chosen hyper-
parameter configuration ninner = nH−1 = 20, and red circle
in Figure 2 indicating the case where ninner = nH−1 = 0.
From Figure 1, we see that runtime is linear in both ninner
and nH−1 , in line with our expectations. This has a large im-
pact on the runtime of the algorithm, as for CIFAR-100 with
1 Img/Cls, the runtime per iteration is from 150ms to 760ms
per iteration with the largest hyperparameter configurations.

In terms of accuracy, we see from Figure 2, running in-
ner optimization provides a clear performance benefit,
only if we take into account the implicit gradient. The
ninner = nH−1 = 0 (baseline) configuration achieves rela-
tively high performance, and as discussed in Section 3, this
corresponds to the same algorithm as FRePo (provided that
we use an MSE rather than Platt outer loss) and uses infor-
mation from only the last layer. This method only leverages
the information in the final layer weights and only has the di-
rect gradient component in Equation (1). If we set ninner > 0
but nH−1 = 0, we see a clear performance drop compared
to the baseline configuration, as it corresponds to ignoring
the implicit gradient. However, adding a small number of
Hessian Inverse steps (as few as 2) allows methods with
ninner > 0, to exceed the base configuration’s performance.
When ninner is small, larger nH−1 values hurt performance,
as the implicit gradient formula only makes sense provided
that we are at a minimum, which is not the case when ninner
is small. Finally, we observe that ninner = 2 sees very poor
performance in general.

4.5. Application: Privacy Preservation. Membership in-
ference attacks (MIA) (Shokri et al., 2016) try to determine
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Table 5. AUC of five MIA attack strategies for neural networks trained on distilled data. (n=25)

Test Acc (%) Attack AUC

Threshold LR MLP RF KNN

Real 99.2± 0.1 0.99± 0.01 0.99± 0.00 1.00± 0.00 1.00± 0.00 0.97± 0.00
Subset 96.8± 0.2 0.52± 0.00 0.50± 0.01 0.53± 0.01 0.55± 0.00 0.54± 0.00
DSA 98.5± 0.1 0.50± 0.00 0.51± 0.00 0.54± 0.00 0.54± 0.01 0.54± 0.01
DM 98.3± 0.0 0.50± 0.00 0.51± 0.01 0.54± 0.01 0.54± 0.01 0.53± 0.01
FRePo 98.5± 0.1 0.52± 0.00 0.51± 0.00 0.53± 0.01 0.52± 0.01 0.51± 0.01
RCIG 98.9± 0.0 0.49± 0.00 0.50± 0.00 0.53± 0.00 0.53± 0.00 0.52± 0.00

36
37
38
39
40
41

Ac
cu

ra
cy

 (%
)

(Z
oo

m
ed

 in
)

CIFAR-100 1/Cls

48

50

52

54

Ac
cu

ra
cy

 (%
)

(Z
oo

m
ed

 in
)

CIFAR-10 1/Cls

66

67

68

69

70

Ac
cu

ra
cy

 (%
)

(Z
oo

m
ed

 in
)

CIFAR-10 10/Cls

Inner Opt Steps
30
20
10
5
2
0

0 10 20 30
Hessian Inverse Steps

30

35

40

Ac
cu

ra
cy

 (%
)

0 10 20 30
Hessian Inverse Steps

45

50

55
Ac

cu
ra

cy
 (%

)

0 10 20 30
Hessian Inverse Steps

50

60

70

Ac
cu

ra
cy

 (%
)

Figure 2. The effect of ninner and nH−1 on the distillation accuracy for CIFAR-100 1 Img/Cls, and CIFAR-10 with 1 and 10 Img/Cls. The
green star denotes the hyperparameter configuration used throughout the paper (ninner = 20, nH−1 = 20), while the red circle denotes
using no implicit gradients and only direct gradients. The top row is the same as the bottom row except zoomed in. There is a clear
advantage to using more inner optimization steps, provided that we account for the implicit gradient (nH−1 > 0)
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Figure 3. Test accuracy and MLP Attack AUC for models trained
on distilled data. Training on distilled data is not vulnerable to
MIA attacks while training on real data leaks information

whether a particular example was used to train a machine
learning model. As training data can contain sensitive user
information, it is critical that adversaries cannot infer what
these training examples were. There exist many methods to
defend against these attacks, such as adding gradient noise
during training (Abadi et al., 2016), or strategic regulariza-
tion (Nasr et al., 2018). Recently it has been shown that
Dataset Distillation is a viable empirical defense strategy
(Dong et al., 2022)4, as training neural networks on dis-
tilled data in practice resists membership inference attacks
queried on the original training set.

Here we verify that RCIG also works as a viable defense
strategy. We repeat the experimental procedure of Zhou
et al. (2022) and distill 10000 images of MNIST or Fashion-

4see Carlini et al. (2022) for a more careful discussion

MNIST to 500 images. We run five (Threshold, Logistic-
Regression (LR), Multi-Layered Perceptron (MLP), Ran-
dom Forest (RF), and K-nearest-neighbor (KNN) attacks
from Tensorflow-Privacy on neural networks trained on
these 500 distilled images. We report the AUC of these
attacks and resulting test accuracy in Table 5 after training
for 16k iterations. More experimental details are in Ap-
pendix. We see that RCIG achieves the highest accuracy of
all the dataset distillation approaches, but remains resistant
to the five attack strategies.

5. Discussions, Limitations, and Conclusion
In this paper, we presented RCIG, a dataset distillation al-
gorithm based on implicit gradients, which achieved state-
of-the-art performance on a wide variety of benchmarks. To
derive our method, we first considered implicit gradients,
then showed that linearizing the inner objective to make
the problem convex improves performance, owing to the
non-convexity of deep neural networks. Then we show
that exploiting the neural network structure lets us more
quickly converge to near-optimal solutions. We verified the
efficiency of our approach on a wide variety of datasets,
obtaining 15.6% accuracy on ImageNet with 1 image per
class, doubling the performance of prior art.

While our approach performs well, as discussed, our method
can overfit on datasets with fewer training samples such
as CUB-200. Future work could look at mitigating this
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overfitting issue. As we presented in Section 3, and showed
in practice in Appendix A, we can scale our algorithm to
larger datasets without increasing the memory footprint by
subsampling the backward pass. This method is still limited
as it still requires a full forwards pass on the full distilled
dataset. Future work can look at removing this limitation.
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A. Memory Requirements and Subsampling Ablation
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Figure 4. Our proposed subsampling scheme. First, we perform a full forwards pass using all distilled images in (a). Typically, one
performs a backward pass to all distilled images (b), but this requires retaining the entire computation graph which is expensive for large
coresets. Instead, we backpropagate only through to nsubset < |S| distilled images (c), using values computed using the full forward pass.
Due to the exchangeability of the coreset images, this results in unbiased gradients.

In Section 3, we claimed that we can obtain unbiased gradient estimates by performing a full forward pass on the entire
distilled dataset, and only performing a backward pass on a subset. Here we verify this claim by varying the subset size,
nsubset for the backward pass. We test this for CIFAR-100 with 50 images per class, which results in the largest number
of distilled images at 5000 of all the experiments in Section 4. In Section 4, we set nsubset to be 2000, 40% of the full
dataset, but here we let nsubset ∈ {200, 500, 1000, 2000, 5000}, and measure the resulting memory consumption, wall clock
time, and resulting accuracy in Figure 5, distilling for 4000 iterations. We see that larger nsubset consumes significantly
more memory, and that wall clock time is linear in nsubset. Despite this, accuracy is only slightly affected, moving from
45.9 ± 0.4% to 47.3 ± 0.3 for nsubset = 200, and nsubset = 5000, respectively, despite nsubset = 5000 requiring 26.7Gb
compared to nsubset = 200’s 10.0Gb. The small performance drop could be due to increased gradient variance associated
with the estimator, or that the effective number of dataset updates is fewer for small nsubset, as only a subset of distilled
images is updated per iteration.
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Figure 5. The effect of nsubset on memory consumption, wall clock time, and accuracy on CIFAR-100 with 50 Img/Cls. Memory
consumption increases significantly with larger nsubset and time per iteration is approximately linear in the nsubset. In contrast, nsubset, has
minimal effect on distillation accuracy.

B. Privacy Preservation: Membership Inference Attacks. More details.
For the non-member examples we use the test set of 10k images so that an AUC of 0.5 effectively means that the attack is
a random guess. Additionally, we plot the MLP attack AUC and accuracy as a function of training iteration. We report
baselines of using the original training set (real), a random subset of 500 images, and the DSA, DM, FRePo dataset
distillation algorithms. We also report results on Fashion-MNIST in Figure 6 and Table 6. Results for baseline algortihms
are taken from Zhou et al. (2022). We also show the resulting curves for CIFAR-10 and CIFAR-100 for RCIG compared to
the real dataset baselines. In this two more complex datasets, there is a better advantage to training with distilled data at a
given privacy budget.
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Figure 6. Test accuracy and MLP Attack AUC for models trained on distilled data for Fashion-MNIST. Training on distilled data is not
vulnerable to MIA attacks while training on real data leaks information

Table 6. AUC of five MIA attack strategies for neural networks trained on distilled data on Fashion-MNIST. (n=25)

Test Acc (%) Attack AUC

Threshold LR MLP RF KNN

Real 89.7± 0.2 0.99± 0.01 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00
Subset 81.1± 0.7 0.53± 0.01 0.51± 0.01 0.52± 0.01 0.52± 0.01 0.53± 0.00
DSA 87.0± 0.1 0.51± 0.00 0.51± 0.01 0.51± 0.01 0.52± 0.01 0.51± 0.01
DM 87.3± 0.1 0.52± 0.00 0.51± 0.01 0.50± 0.01 0.52± 0.01 0.51± 0.01
FRePo 87.6± 0.2 0.52± 0.00 0.53± 0.01 0.53± 0.01 0.53± 0.01 0.52± 0.00
RCIG 86.7± 0.3 0.50± 0.01 0.50± 0.01 0.50± 0.01 0.50± 0.01 0.50± 0.00

C. Implementation details
Libraries and Hardware. Code is implemented using the libraries JAX, Optax, and Flax (Bradbury et al., 2018; Babuschkin
et al., 2020; Heek et al., 2020). We use a mix of Nvidia Titan RTXs with 24Gb, RTX 4090s with 24Gb, and Quadro RTX
A6000s with 48Gb VRAM. The training time per iteration plots in Figure 1 and Figure 5 are run on an RTX 4090.

Optimizers, Hyperparameter selection. For the λ L2 regularization term, for depth 3 models we used λ = 0.0005× |S|,
for depth 4 we use λ = 0.005× |S| and depth 5 we use λ = 0.05× |S|. We did not find that this had a major impact in
terms of performance, but Hessian-Inverse computation could be unstable if it is too low.

For the coreset optimizer, we use Adabelief (Zhuang et al., 2020) optimizer with learning rate 0.003 for the coreset images
and labels, and a learning rate of 0.03 for log τ , the Platt scaling loss temperature. For inner optimization and Hessian
inverse computation, we use Adam optimizer (Kingma & Ba, 2015), with learning rates αinner and αH−1 , we perform a
small tuning round before beginning coreset optimization. We increase both learning rates as high as possible such that the
optimization of loss of the inner problem and Hessian ivnerse loss (Equation (7)) are monotonically decreasing (this is done
automatically). During the course of training if we observe that either loss diverges, we reduce the corresponding learning
rate by 10%. In general these learning rates should be as high as possible such that optimization is stable.

Dataset Preprocessing. We use the same ZCA regularization with regularization strength λ = 0.1 as Zhou et al. (2022) for
RGB datasets and standard preprocessing for grayscale datasets.

Subsampling. As discussed in Section 3 and Appendix A, we can run out of memory for very large datasets. We use
subsampling with batch sizes of 2000 for CIFAR-100 with 50 img/cls, and 500 for Tiny-ImageNet 10 img/cls and resized
ImageNet. In general this should be as large as possible that fits in the memory.

Evaluation. During evaluation, we train neural networks for 1000 iterations if |S| = 10, otherwise for 2000 iterations. We
used Adam optimizer with a learning rate of 0.0001. In line with prior work (Zhou et al., 2022), we use a learning rate
schedule with 500 iterations of linear warm up following be a cosine decay. During testing evaluation we either use no data
augmentation, or we use flip, color, crop, rotate, translate and cutout data augmentation for RGB datasets, or crop, rotate,
translate, cutout for grayscale ones. This is the same procedure used in prior work.

Models. Unless otherwise stated, we used the same Convolutional network used in Zhou et al. (2022), which doubles the
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Figure 7. Test accuracy and MLP Attack AUC for models trained on distilled data for CIFAR-10 (left) and CIFAR-100 (right).

number of convolutional filters for every layer. For datasets of resolution 32× 32 or 28× 28, we use depth 3, for datasets of
resolution 64× 64 (Tiny-ImageNet, Resized ImageNet), we use depth 4, for 128× 128 we use depth 5, in line with prior
work. We do not use normalization during training, unless otherwise stated. For models of depth 3, during training with
replaced with ReLUs with softplus activations with temperature 60, this did not make a major difference in the final result
but sped up convergence, as it allows the gradients to be smoother as opposed to a step function. During evaluation we used
standard ReLUs.

Initialization We initialize distilled datasets with samples from the original dataset. We note that for the high resolution
datasets, the distilled images still resemble their initializations (see Appendix E). For low resolution datasets, we typically
found that random noise initialization slowed convergence speed, but did not significantly affect the final result. However, for
high resolution datasets, performance is harmed with noise initialization. For example, for ImageWoof on 10 ipc, we found
that performance drops from 42.2± 0.7% with real image initialization to 38.5± 0.6% with random noise initialization.
Better initialization strategies could be the subject of future work.

Miscellaneous. We use the same flipping strategy employed in Zhou et al. (2022) to avoid the mirroring effect for RGB
datasets. We use this whenever |S| ≤ 1000. For MNIST 50 img/cls and Fashion-MNIST 50 img/cls, we use 64-bit
computation when computing the matrix inverse in Equation (3), as we found otherwise it would be unstable. Note that the
network forward pass and everything else is still 32-bit. Every other dataset uses the default 32-bit. For Tables 1 to 4 we
repeat distillation for 3 independent coreset initializations, and evaluate each on five networks (15 total evaluations). For
MIA results, we perform distillation on 5 independents chunks of the dataset, and evaluate on 5 models for each (25 total
evaluations).

C.1. FRePo Code Error

We noted in Table 3 that we achieved different results on FRePo (Zhou et al., 2022) using their public code repository. Addi-
tionally we found a bug where in line 202-203 in https://github.com/yongchao97/FRePo/blob/master/
script/eval.py, where their code sets all evaluation normalization layers to no normalization. The corrected results
are in Table 3.

D. Additional Results
D.1. Training Curves

In Figure 8, we report the test accuracy as a function of distillation wall clock time for RCIG and other algorithms at
distilling CIFAR-100 with 1 IPC. RCIG quickly exceeds the performance of other algorithms within 100s. This experiment
was run on a RTX 4090. In order to account for the stronger GPU and make our times comparable to those in Zhou et al.
(2022) we increase all measured times by 40%. We also show the memory requirements of RCIG in Figure 8. RCIG
typically requires more memory than other methods due to linearization, but memory requirements do not scale with the
number of inner optimization steps or unroll steps.
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Figure 8. Test accuracy vs. wall clock time for CIFAR-100 distillation with 1 IPC, with linear (left) and log (center) axes, and the memory
consumption of RCIG (right) at different model widths. We use w = 128 for all other experiments in the paper.

D.2. Total Training Time

In Table 7 we report the total training time for or algorithm on the benchmarks. These experiments were run on Quadro RTX
A6000s with 48Gb memory. This memory requirement is not necessary as we can reduce the memory consumption using
the techniques described in Section 3 and Appendix A. There is high variance associated with the training times because
some of the GPUs were run with reduced power limits.

D.3. Evaluation with/without data augmentation

In Table 8 we report the evaluation accuracy of our algorithm when applying no data augment or data augmentation during
test time. We observe that for large distilled datasets (|S| > 200), data augmentation seems to help, but hinders performance
for smaller ones.

E. Distilled Dataset Visualization
Here we show the resulting distilled dataset made by RCIG.

0 1 2 3 4

MNIST 1 Img/Cls

5 6 7 8 9

Figure 9. RCIG distilled dataset on MNIST with 1 Img/Cls
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Img/Cls Total Training Time (h) Time per iter (s) Training iterations

MNIST
1 0.67± 0.01 0.16± 0.00 15000

10 1.25± 0.03 0.45± 0.01 10000
50 2.75± 0.00 1.98± 0.00 5000

F-MNIST
1 0.67± 0.01 0.16± 0.00 15000

10 1.25± 0.03 0.45± 0.01 10000
50 2.67± 0.06 1.92± 0.04 5000

CIFAR-10
1 0.74± 0.00 0.18± 0.00 15000

10 1.82± 0.07 0.65± 0.02 10000
50 4.09± 0.20 2.94± 0.14 5000

CIFAR-100
1 1.88± 0.07 0.68± 0.03 10000

10 8.55± 0.08 6.15± 0.06 5000
50 11.21± 0.65 10.09± 0.58 4000

T-ImageNet 1 7.78± 0.00 5.60± 0.00 5000
10 6.43± 0.46 11.58± 0.82 2000

CUB-200 1 2.75± 0.69 0.99± 0.25 10000
10 9.58± 3.22 17.24± 5.80 2000

ImageNette 1 5.05± 0.23 3.03± 0.14 6000
10 12.62± 0.03 15.15± 0.04 3000

ImageWoof 1 4.78± 0.00 2.87± 0.00 6000
10 11.02± 0.02 13.22± 0.02 3000

ImageNet 1 4.75± 0.34 8.55± 0.61 2000
2 6.87± 0.38 12.37± 0.69 2000

Table 7. Total runtime of RCIG (n=3)

18



Dataset Distillation with Convexified Implicit Gradients

Img/Cls No Data Augmentation With Data Augmentation

MNIST
1 94.7± 0.5 92.7± 0.8

10 98.9± 0.0 98.7± 0.1
50 99.1± 0.1 99.2± 0.0

F-MNIST
1 79.8± 1.1 70.5± 3.5

10 88.5± 0.2 86.7± 0.2
50 90.2± 0.2 88.7± 0.2

CIFAR-10
1 53.9± 1.0 50.9± 1.5

10 69.1± 0.4 66.4± 1.0
50 73.5± 0.3 72.6± 0.4

CIFAR-100
1 39.3± 0.4 36.7± 0.3

10 44.1± 0.4 43.5± 0.3
50 45.5± 0.4 46.7± 0.3

T-ImageNet 1 25.6± 0.3 24.2± 0.2
10 27.4± 0.3 29.4± 0.2

CUB-200 1 11.2± 0.4 12.1± 0.2
10 14.3± 0.3 15.7± 0.3

ImageNette 1 53.0± 0.9 47.2± 1.2
10 65.0± 0.7 63.9± 0.8

ImageWoof 1 33.9± 0.6 27.0± 2.1
10 42.2± 0.7 40.2± 0.6

ImageNet 1 14.6± 0.2 15.6± 0.2
2 15.9± 0.1 16.6± 0.1

Table 8. Evaluation result of RCIG with or without using data augmentation. For large distilled datasets (|S| > 200), data augmentation
seems to help, but hinders performance for smaller ones.
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Figure 10. RCIG distilled dataset on MNIST with 10 Img/Cls

T-shirt/top Trouser Pullover Dress Coat

Fashion-MNIST 1 Img/Cls

Sandal Shirt Sneaker Bag Ankle boot

Figure 11. RCIG distilled dataset on Fashion-MNIST with 1 Img/Cls
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Figure 12. RCIG distilled dataset on Fashion-MNIST with 10 Img/Cls

airplane automobile bird cat deer

CIFAR-10 1 Img/Cls

dog frog horse ship truck

Figure 13. RCIG distilled dataset on CIFAR-10 with 10 Img/Cls
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airplane airplane airplane airplane airplane

CIFAR-10 10 Img/Cls
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Figure 14. RCIG distilled dataset on CIFAR-10 with 10 Img/Cls
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airplane airplane airplane airplane airplane

CIFAR-10 10 Img/Cls (With BatchNorm)

airplane airplane airplane airplane airplane
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truck truck truck truck truck truck truck truck truck truck

Figure 15. RCIG distilled dataset on CIFAR-10 with 10 Img/Cls (Trained using BatchNorm)
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Figure 16. RCIG distilled dataset on CIFAR-100 with 1 Img/Cls
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Figure 17. RCIG distilled dataset on Tiny-ImageNet with 1 Img/Cls
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Figure 18. RCIG distilled dataset on ImageWoof with 1 Img/Cls
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Figure 19. RCIG distilled dataset on ImageNette with 1 Img/Cls
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