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Abstract

Transfer learning for Bayesian optimisation has generally assumed a strong similarity be-
tween optimisation tasks, with at least a subset having similar optimal inputs. This as-
sumption can reduce computational costs, but it is violated in a wide range of optimisation
problems where transfer learning may nonetheless be useful. We replace this assumption
with a weaker one only requiring the shape of the optimisation landscape to be similar, and
analyse the recent method Prior Learning for Bayesian Optimisation — PLeBO — in this
setting. By learning priors for the hyperparameters of the Gaussian process surrogate model
we can better approximate the underlying function, especially for few function evaluations.
We validate the learned priors and compare to a breadth of transfer learning approaches,
using synthetic data and a recent air pollution optimisation problem as benchmarks. We
show that PLeBO and prior transfer find good inputs in fewer evaluations.
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1. Introduction

Our goal in Bayesian optimisation (BO) is to find high-performing input values using few
function evaluations. A powerful approach is to transfer knowledge from previous optimisa-
tion tasks. For example, when optimising many similar problems we can choose to disregard
input ranges that consistently yield suboptimal outputs. Within the BO framework there
are many ways of transferring knowledge (Bai et al., 2023), for instance through a shared
model (Swersky et al., 2013), through the initial input values which we evaluate (Feurer
et al., 2015), or through limiting the search space (Perrone et al., 2019). In this paper
we develop the idea of prior transfer further, and introduce an extension to a recent prior
transfer method (Hellan et al., 2022), which we call Prior Learning for BO (PLeBO).

Direct transfer: Most transfer learning for Bayesian optimisation rests on the assump-
tion that inputs that are optimal for (some of) the tuning tasks will also be near-optimal
for the new test task. For instance, a common technique is to evaluate a few good input
values from previous tasks on a new task before doing Bayesian optimisation.

Prior transfer: An alternative to direct transfer is to assume only that the optimisation
tasks have similar response surfaces, i.e. the shapes of their optimisation landscapes. A
simple example is to assume that all optimisation tasks can be modelled using a single
shared set of Gaussian process (GP) hyperparameter (HP) values, as is done in Wang et al.



HELLAN, Lucas AND GODDARD

(2022). Another approach is to learn a feature transformation which is applied to the input
to the GP before the covariance kernel. This is done in Few-Shot BO, an example of deep
kernel learning where a neural network is used for this feature transformation (Wistuba and
Grabocka, 2021). Hand-crafted HP priors can also be seen as prior transfer: with PLeBO
we automate this process. Miiller et al. (2023) also learn HP priors from related data, but
pick the best from a randomly sampled set instead of learning a posterior distribution.

Fig. 1 illustrates the difference between direct and prior transfer in two idealised settings.
In the top row the optima for the tuning and test tasks coincide, and only direct transfer is
able to perform useful transfer. In the bottom row the optima are far apart but the shapes
are the same. In this setting prior transfer works perfectly while direct transfer does not
work at all. For direct transfer we use a strategy where we evaluate the best point from the
tuning data. We illustrate prior transfer with a method where we assume the shapes are
identical — in practice we just assume the GP hyperparameters are similar.
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Figure 1: Comparison of direct and prior transfer. In the top row the past and new tasks
share optima but have different shapes. In the bottom row they instead have the same
shape. Direct transfer works well for shared optima, prior transfer for shared shapes.

Most work on Bayesian optimisation and transfer learning has been applied to hyperpa-
rameter optimisation for machine learning (HPO), e.g. Feurer et al. (2015); Perrone et al.
(2019); Wistuba and Grabocka (2021). Extending the range of applications motivates the
development of new methods, as assumptions that make sense for one application do not
necessarily make sense for a different application. For HPO we can expect similar learning
rates to work well for the same model trained on different data sets. But in the air pollution
context we do not expect the same coordinates in different cities to be the most polluted —
e.g. three kilometres north of the city centre. Therefore, we expect prior transfer to work
well in situations unsuited to direct transfer, such as air pollution monitoring.

An earlier version of PLeBO was presented as part of Hellan et al. (2022). Here we
improve on the method and compare it to other transfer learning approaches. We also
provide code for a new and simpler implementation, and analyse the quality of the resulting
priors. We show the advantage of prior transfer over direct transfer on both synthetic and
real-world data, the latter being air pollution measurements.
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2. Bayesian optimisation

Bayesian optimisation (Garnett, 2023) is a blackbox optimisation technique, which utilises
a surrogate model, typically a Gaussian process, to model the underlying optimisation task
and come up with informed choices of input values. It is particularly suited to problems
with a complex unknown structure, where we do not know the gradients, and which are
expensive to evaluate. Gaussian processes (Rasmussen and Williams, 2006) are probabilistic
machine learning models which are popular in the regime of small data. They are defined
by their choice of mean and covariance functions. The former is often set to zero (De Ath
et al., 2020), while the latter comes with hyperparameters that need to be set. For instance,

the RBF kernel krpp(7) = O'z exp <—"2?2" ) has two hyperparameters: the lengthscale [ and

the signal variance o2. The former defines how quickly the function changes, the latter how
large its absolute values are. We also need an acquisition function, which uses the surrogate
model to determine the next sampling location. We use expected improvement (EI, Jones
et al. (1998)) unless otherwise noted.

The problems we want to optimise in Bayesian optimisation are of the form x* =
argmax,, f(x). To fit the hyperparameters of the Gaussian process we use the marginal log
likelihood. A simple approach is to use gradient descent, possibly including a prior term on
the hyperparameters. Alternatively, we can approximate the posterior distribution of the
hyperparameters, for instance using Markov chain Monte Carlo (MCMC) (Lalchand and
Rasmussen, 2020). Then we take the uncertainty of our hyperparameters into account in
our model. With transfer learning we assume access to historical evaluations of other tasks,
changing the problem to #} = argmax, fj(x) | {{Zn, Yni b AN where n indexes tasks,
1 indexes samples and N,, is the number of sample evaluations for task n.

3. PLeBO

The PLeBO method is an example

of prior transfer, intended to work / \ Prior

even with a small amount of tuning 77 parameters

data. We assume a hierarchical struc-

ture where each optimisation task has \

its own set of GP hyperparameters 6,

and these hyperparameters come from > )

a shared distribution . The method 91 ) 0 N 0 j GP hyper-
parameters

has two parts: in the preprocessing
step, we use MCMC to learn 6 and
71 given observations D, and then
sample new values of 8 based on 7 to Y

generate a set of candidate hyperpa- My: Dj : sni;;?ots

rameters. In the optimisation phase ]
we use importance weighting to fit \ Tuning data j Test data
these candidates to the observed test S 7
data D;. This structure is illustrated Figure 2: Hierarchical structure and inference in
in Fig. 2. PLeBO.
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Formally, the structure is p(n, 0, D) = p(m)p(6lm)p(D|6) = p(m) I, p(0lm)p(Dnl61).
The modelling distributions can be chosen separately for each hyperparameter, we use
gamma distributions p(@|n) = I'(0;n). That means we need to learn N sets of 8,, and 2k
parameters of 1, where k is the dimensionality of 8,, and NN is the number of tuning tasks.
For simplicity, we restrict ourselves to 2 HPs in 0,,, so learn 4 parameters of . We also
need to choose the number H of candidate samples; we use 200 to get a good approximation
to taking the expectation given 1, but future work should explore reducing H.

Preprocessing: We learn distributions for the surrogate model hyperparameters, using
Markov chain Monte Carlo to collect samples from the distributions of n and 8. We replace
Hellan et al.’s (2022) custom-built implementation with a new one (https://github.com/
sighellan/plebo) based on NumPyro (Phan et al., 2019) and using the NUTS (Hoffman
and Gelman, 2014) sampler. It is more stable and makes modelling changes, e.g. changing
p(0|m), much simpler. As the sampling chains do not always find samples with non-zero
likelihood we run multiple chains in parallel before a simple filtering postprocessing step.

Optimising: We use the Candidate samples within the optimisation loop to calcu-
late the acquisition function, a;(z) ~ Zh Lwp, al (x,05°Y) where wy, = p(D:ji|0}3Land),
W = Zthl wy, and af(‘) is the base acquisition function, for which we use EI. At each
optimisation step we calculate the likelihood of every hyperparameter candidate, and use it
to weight the corresponding base acquisition function. More details are in Appendix A.2.

4. Experiments

We consider both a synthetic benchmark and real-world air pollution data (Copernicus,
2018). To simplify analysis we use the RBF kernel and limit ourselves to two hyperparame-
ters: the lengthscale and the signal variance. Our base metric is the best observed Value at

each iteration ¢, normalised by the max value of the task, yr(r]lgx r( - maXY Nsmrt w / ymax

where Y(] ) e Are the observations and Ngtapt is the number of starting evaluations.
We compare PLeBO to a collection of baselines with no, direct and prior transfer:
e No transfer

— RandomSearch: Randomly select the inputs at each iteration.

— BoTorch: Default settings from the BoTorch library (Balandat et al., 2020).
EI: BO without transfer using expected improvement (Jones et al., 1998).

— UCB: BO without transfer using upper confidence bound (Srinivas et al., 2012).

e Direct transfer

— DirectTrans: Shared GP for past and new tasks. Cap at 100 past evaluations.
— Initial: First evaluate the best point from each previous task, then do EI.

e Prior transfer

— PLeBO: The new prior learning method detailed in Section 3.

— TruePLeBO: Using EI with the true hyperparameters (only for synthetic data).
— Gamma: Use the mean prior 1 from PLeBO in gradient descent for the HPs.
Shared: A single set of HPs learned from the tuning tasks (Wang et al., 2022).

The synthetic benchmark allows us to evaluate the extracted priors. We use the
same hierarchical model as in PLeBO, see Fig. 2. We use GPs with RBF kernels and a


https://github.com/sighellan/plebo
https://github.com/sighellan/plebo

DATA-DRIVEN PRIOR LEARNING FOR BAYESIAN OPTIMISATION

known low level of noise. We define gamma distributions on the two hyperparameters: the
lengthscale [ ~ T'(5,0.01), and the signal variance o2 ~ I'(2,2). We use the shape, scale
parameterisation of I'(-). We generate a set of 10 tuning optimisation tasks and 100 test
tasks. The tuning tasks have 20 evaluations each, and we start the test tasks with ten
known evaluations. The tasks are discretised to match the other benchmarks. See Fig. 3.

Direct synth Synth Strong Selection

Figure 3: Example optimisation tasks. The left column shows the standard assumption
that optima are near each other. Stars indicate optima and blue crosses missing values.

We also use two air pollution benchmarks: the satellite optimisation tasks used in
Hellan et al. (2020). Each task comes from a snapshot of NOg air pollution levels taken
from the Sentinel-5P satellite of the Copernicus programme (Copernicus, 2018). The two
benchmarks come from grouping the snapshots based on the maximum pollution present.
The Strong benchmark consists of 50 test tasks and 10 tuning tasks of similar problems. The
Selection benchmark consists of 100 test tasks and 10 tuning tasks with maximal pollution
levels at the middle of those of the test tasks. It therefore checks whether prior transfer
still works if the task distributions change between the tuning and test data. The data has
been preprocessed by log transform and standardisation, see Hellan et al. (2020).

5. Results and Discussion

Fig. 4 compares the performance of PLeBO to the other methods. We see that the transfer
methods generally find good input values in fewer iterations. EI only does slightly worse
than PLeBO. This highlights the difficulty of prior transfer, as we still need to explore
the search space. We also see that prior transfer requires fewer iterations than direct
transfer. The differences are smaller among the prior transfer methods. PLeBO is better
than Shared and Gamma on the synthetic and Strong benchmarks, but for the Selection
benchmark Shared works best. That TruePLeBO works best on the synthetic data supports
our intuition that the optimisation can be sped up by better surrogate model HP estimates.

To validate PLeBO we also analyse the inferred priors. In Appendix A.4 we compare the
inferred and true values for n and €. While the true and estimated priors are not identical
they are similar, and an exact reconstruction could not be expected from only 10 tuning
tasks. We also analysed the fits on the individual tasks: the true and inferred values had
very similar likelihoods, and sometimes the inferred values had higher likelihood.
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Figure 4: Performance compared to PLeBO at same iteration (above zero is improvement),
mean + one standard error. J is the number of test tasks. The top row compares PLeBO
to no transfer, the middle to direct transfer and the bottom row to prior transfer methods.

PLeBO is computationally more expensive than the baselines. Its preprocessing step
has a variable runtime due to the NUTS sampler. The runtime was 9 minutes for the
synthetic, and 2.6-3.4 hours for the air pollution benchmarks on a standard desktop. The
preprocessing is only done once, so a higher computational expense can be tolerated. In the
optimisation step we replace gradient descent with calculating the acquisition function for
each of H candidate HP sets. This scales as O(H (i + Ngtart)?). On average, PLeBO takes
about 6.7 seconds per optimisation step, compared to 0.13 seconds for EI. For very expensive
optimisation tasks this is still only a fraction of the total cost, e.g. when installing an air
pollution sensor. Runtimes for all methods are given in Appendix A.3. PLeBO’s runtime
can be adjusted through H based on the available budget and task evaluation speed.

We have presented an improved prior transfer method, PLeBO, and evaluated it on a
real-world benchmark for air pollution monitoring. We showed that the generated priors
align with the tuning data, and can be exploited on new tasks. The approach is modular,
and is not tied to a specific acquisition function. While more general, prior transfer is also
weaker than direct transfer as we do not learn about the optima directly: we showed some
improvement over EI, but not a massive difference. Future work should attempt to exploit
the correct HP choices more, and evaluate PLeBO on a wider range of benchmarks.
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Appendix A. Supplementary material
A.1 Ethics statement

The work uses no personal data and the goal of the application is to reduce the impact of
air pollution on human health. The authors have no ethical concerns.

A.2 PLeBO optimisation step

Algorithm 1 gives the procedure for calculating the acquisition function which is followed at
each optimisation step. This is also expressed in Eq. (1), which shows how this corresponds
to the expected acquisition function when drawing the hyperparameters from their posterior
distribution. D;.y is the set of tuning observations. D:ji is the test observations available
at iteration 1.

Algorithm 1 PLeBO acquisition calculation
Given 94, ’D:ji, X, al(")
a, W+ 0,0
for hinl,...,H do
w e (D05
a < a+wa(X,050)

W« W4+w
end for
Return a/W
1 H
ai(x) = E  [af(w, 65 ~ W > wp al(x, 057, 07 ~ p(05m) (1)
p(ezand|D1:N7Djl) he=1

A.3 Runtime

Table 1 gives the runtime for the preprocessing step of PLeBO for each benchmark. For the
air pollution benchmarks we use 100 evaluations from each of the tuning tasks. Table 2 gives
the mean duration of each optimisation step for all the considered methods. We see that
PLeBO is much slower than the other methods. But for expensive optimisation tasks, where
each step corresponds to e.g. installing a pollution sensor or training a neural network, this
cost is negligible. We have capped the number of past evaluations available to DirectTrans
at 100, otherwise it would be much slower than the listed times.

The optimisation step of PLeBO scales as O(H (i + Ngtart)®), as opposed to
O(Ngraa(i + Ngtart)?) for EI where Ngrad is the number of gradient steps (Rasmussen and
Williams, 2006, p. 19). H is a hyperparameter of the method which we can adjust to balance
computational cost with the quality of the posterior estimate of the GP hyperparameters.
At one extreme we could set H to 1, which should give a similar runtime to Shared.
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Benchmark Preprocessing time

Synthetic 9 min 11 sec
Strong 2 h 38 min
Selection 3 h 22 min

Table 1: PLeBO preprocessing times.

Method Synthetic Strong Selection

RandomSearch 0.006 0.005 0.005
BoTorch 0.20 0.31 0.27
EI 0.16 0.11 0.11
UCB 0.17 0.11 0.11
DirectTrans 1.35 1.20 1.20
Initial 0.16 0.10 0.11
PLeBO 6.73 6.60 6.89
TruePLeBO 0.05 - -
Gamma 0.18 0.13 0.12
Shared 0.05 0.04 0.04

Table 2: Mean durations in seconds of an optimisation step.

A.4 Prior quality

Fig. 5 compares the true and inferred values of n and @ for the lengthscale and signal
variance. The learned distributions are more peaked than the true ones, but are similar
and reasonable approximations given that we only use 10 tuning tasks.
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Figure 5: Comparing true and inferred hyperparameter priors for the synthetic benchmark.
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