
Rethinking Negative Pairs in Code Search

Haochen Li1 Xin Zhou2 Luu Anh Tuan1 Chunyan Miao1

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore

{haochen003, xin.zhou, anhtuan.luu, ascymiao}@ntu.edu.sg

Abstract

Recently, contrastive learning has become a key
component in fine-tuning code search models
for software development efficiency and effec-
tiveness. It pulls together positive code snippets
while pushing negative samples away given
search queries. Among contrastive learning,
InfoNCE is the most widely used loss function
due to its better performance. However, the
following problems in negative samples of In-
foNCE may deteriorate its representation learn-
ing: 1) The existence of false negative samples
in large code corpora due to duplications. 2).
The failure to explicitly differentiate between
the potential relevance of negative samples. As
an example, a bubble sorting algorithm exam-
ple is less “negative” than a file saving func-
tion for the quick sorting algorithm query. In
this paper, we tackle the above problems by
proposing a simple yet effective Soft-InfoNCE
loss that inserts weight terms into InfoNCE.
In our proposed loss function, we apply three
methods to estimate the weights of negative
pairs and show that the vanilla InfoNCE loss
is a special case of Soft-InfoNCE. Theoreti-
cally, we analyze the effects of Soft-InfoNCE
on controlling the distribution of learnt code
representations and on deducing a more pre-
cise mutual information estimation. We fur-
thermore discuss the superiority of proposed
loss functions with other design alternatives.
Extensive experiments demonstrate the effec-
tiveness of Soft-InfoNCE and weights estima-
tion methods under state-of-the-art code search
models on a large-scale public dataset consist-
ing of six programming languages. Source
code is available at https://github.com/
Alex-HaochenLi/Soft-InfoNCE.

1 Introduction

Code search is a common activity in software devel-
opment that can boost the productivity of software
developers (Nie et al., 2016; Shuai et al., 2020).
Code search models can retrieve code fragments
relevant to a given query from code bases (Grazia

Query Posi�ve Code Nega�ve Code

Figure 1: Contrastive learning pushes away negative
pairs in the representation space. Left: Existing works
treat negative pairs equally. Right: Negative pairs
should be pushed away according to their similarity
with the query. A thicker arrow means that this sample
is more negative than others.

and Pradel, 2022). To train or fine-tune code search
models, contrastive learning has become a key com-
ponent in learning discriminative representations
of queries and codes as it pushes apart negative
query-code pairs and pulls together positive pairs
(Shi et al., 2022a; Li et al., 2022a). InfoNCE
(Van den Oord et al., 2018) is a representative
choice of contrastive learning loss that considers
the other in-batch samples as negative pairs given
a query (Huang et al., 2021).1

Although InfoNCE is effective in code search,
we argue it is sub-optimal at discriminating code
samples as it suffers from the following problems.
First, the existence of false negatives in code bases.
Lopes et al. (2017); Allamanis (2019) finds that
code duplications are common in large code corpus,
which means that many negative pairs are in fact
false negatives. Training with false negative pairs
may deteriorate code representation learning. Sec-
ond, the setting of InfoNCE ignores the potential
relevance of negative codes (Li et al., 2022c). For
example, for a given query asking about quick sort-

1We conduct a survey to demonstrate the dominant adop-
tion of InfoNCE. See Appendix A for details.

https://github.com/Alex-HaochenLi/Soft-InfoNCE
https://github.com/Alex-HaochenLi/Soft-InfoNCE

ing algorithms, among negative codes the bubble
sorting algorithm is expected to be retrieved before
file-saving functions, but the current training proce-
dure cannot model this relationship explicitly. The
InfoNCE loss just treats all negative codes equally,
as shown in Fig.1. In fact, the false negative can-
cellation is a special case of modeling potential
relevance, where the former only considers poten-
tial relevance as binary while the latter focus on
describing it in a continuous field. Although some
methods (Huynh et al., 2022; Chen et al., 2022; Li
et al., 2022c) are proposed to solve these two prob-
lems, they are all applied during model pre-training.
In model fine-tuning stage, they still use InfoNCE
loss. As a result, our aforementioned two problems
are still largely unexplored in model fine-tuning
stage.

In this work, we first revisit the commonly used
InfoNCE loss and explain why it cannot model po-
tential relations among codes explicitly. Then we
present Soft-InfoNCE to handle this problem, by
simply inserting a weight term into the denominator
of InfoNCE loss. We also propose three methods
to estimate the weight terms and compare them
empirically. To justify the effect of Soft-InfoNCE
loss, we theoretically analyze its properties with
regard to representation distribution and mutual in-
formation estimation. Our analysis indicates that
the inserted weight encourages negative pairs to ap-
proximate a given distribution and reduces bias in
the estimation of mutual information by leveraging
importance sampling. Moreover, we prove that the
proposed Soft-InfoNCE loss upper bounds other
loss function designs like Binary Cross Entropy
and weighted InfoNCE loss. We also relate existing
false negative cancellation methods and our meth-
ods. Finally, we demonstrate the effectiveness of
the proposed Soft-InfoNCE loss by evaluating it on
several pre-training models across six large-scale
datasets. Additional ablation studies also validate
our theoretical analysis empirically.

In summary, our contributions of this work are
as follows:

• We propose a novel contrastive loss, Soft-
InfoNCE, that models the potential relations
among negative pairs explicitly by simply in-
serting a weight term to the vanilla InfoNCE
loss.

• We conduct theoretical analysis to show that
Soft-InfoNCE loss can control the distribu-
tion of learnt representations and reduce the

bias in mutual information estimation. We
also prove the superiority of Soft-InfoNCE
loss over other choices of design and reach a
conclusion that previous false negative cancel-
lation works can be considered as a special
case of our proposed methods by discussing
the relation.

• We apply Soft-InfoNCE loss on several code
search models and evaluate them on the public
CodeSearchnet dataset with six programming
languages. Extensive experiment results ver-
ify the validity of our theoretical analysis and
the effectiveness of our method.

2 Preliminaries

Code search aims at retrieving the most relevant
code fragments for a given query. During train-
ing, we take the comment of code as a query and
maximize the similarities between the query and its
associated code. Meanwhile, we minimize the sim-
ilarities between negative pairs that are generated
by In-Batch Negative (Huang et al., 2021) strat-
egy. Given a code distribution C = {xi}Ki=1 and
a comment distribution Q = {yi}Ki=1, where xi is
a code fragment and yi is its corresponding query,
K is the size of the dataset, a Siamese encoder
g : C ∪Q → H is used to map codes and queries
to a shared representation space H. Thus, we ob-
tain two representation sets, Hc = {g(xi)}Ki=1 and
Hq = {g(yi)}Ki=1.

We calculate the similarities between query-code
pairs by dot product or cosine distance. And we
optimize the distribution of representations by con-
trastive learning. Several loss functions are pro-
posed for this objective (Mikolov et al., 2013;
Weinberger and Saul, 2009; Hadsell et al., 2006).
Among them, InfoNCE loss (Van den Oord et al.,
2018) is dominantly adopted by recent code search
models due to its better performance than others.
We denote qi ∈ Hq and ci ∈ Hc as representa-
tions of queries and codes, respectively. For a given
batch of data, we could generate 1 positive pair and
N − 1 negative pairs for each query, where N is
the batch size. The InfoNCE loss can be described
as:

L = −E

[
log

exp(qi · ci)
exp(qi · ci) +

∑N
j ̸=i exp(qi · cj)

]
(1)

where (qi, cj) are positive pairs when i = j and
negative pairs otherwise. Here we adopt the dot
product as the measurement of similarity.

3 Our Method

3.1 Revisiting InfoNCE Loss

We reformulate Eq.(1) to:

L = −E [qi · ci]

+ E

log
exp(qi · ci) +

N∑
j ̸=i

exp(qi · cj)

 .

(2)
As discovered by (Wang and Isola, 2020), the

two terms correspond to two objectives of con-
trastive learning. The first term can be expressed
as the alignment of positive pairs that pulls posi-
tive instances together. The second term enforces
uniform distribution of negative pairs because it
pushes all negative pairs apart.

However, we argue that negative pairs should
not be distributed uniformly. In other words, unla-
beled data may also share some similarities with the
given query. Suppose we have a query “How to im-
plement a bubble sorting algorithm in Python?”, al-
though both a quick sorting algorithm and a file sav-
ing function are considered to be negative results,
quick sorting is expected to be retrieved before file
saving since it is more relevant to the query. More-
over, Lopes et al. (2017); Allamanis (2019) find
that code duplication is common in code corpora
which means that there are many false negative
examples during training. In conclusion, negative
samples in a batch should not be treated equally, as
illustrated in Fig.1.

3.2 Soft-InfoNCE Loss

To address the aforementioned problems, we pro-
pose Soft-InfoNCE loss by simply inserting a
weight term wij into the original format, which
can be described as:

L = − 1

N

N∑
i=1

[
log

exp(qi · ci)
exp(qi · ci) +

∑N
j ̸=i wij exp(qi · cj)

]
,

(3)

wij =
β − α · simij

β − α
N−1

∑N
j ̸=i simij

, (4)

where simij ∈ [0, 1],
∑N

j ̸=i simij = 1, and α, β
are hyper-parameters. simij is the similarity score

between query qi and code cj . The numerator in
Eq.(4) puts smaller weights on less negative codes,
and the denominator is a normalization factor to
make sure

∑N
j ̸=iwij = N − 1, which is the same

value as in the vanilla InfoNCE loss. Now we
can derive that the gradients of negative pairs are
proportionally related to wij :

∂L
∂ exp (qi · cj)

=
wij

N
∑N

j=1wij exp (qi · cj)
. (5)

Note that wij = 1 in this equation when i = j. The
vanilla InfoNCE loss is a special case of Eq.(3),
which sets all wij as 1. Models may learn implicit
relationships between a query and different nega-
tive samples under the vanilla InfoNCE loss, but
we argue that modeling this relationship explicitly
by wij has a positive influence on learning better
representations.

Then comes the estimation of similarity score
simij . The ideal solution is using human-
annotated labels. However, there are no existing
datasets and it is challenging to label all the pos-
sible negative pairs since the number of them in-
creases quadratically with the number of positive
pairs (e.g., 100 positive pairs can generate 9900
negative pairs). Thus, we employ the following
approaches to estimate the similarity scores simij

and empirically analyze and compare them in Sec-
tion 6.

BM25. BM25 is an enhanced version of TF-
IDF, which matches certain terms in codes with the
given query.

SimCSE. Unsupervised SimCSE (Gao et al.,
2021) is a recently proposed method that has out-
standing performance on sentence similarity tasks.
We measure the similarity between a query and un-
labeled code indirectly by measuring that between
the query and code’s positive query. The assump-
tion behind this is that a query and its positive
code are exactly matched so that they are perfectly
aligned in the representation space.

Trained Model. Models that are trained with
vanilla InfoNCE loss on datasets may have certain
capabilities to correctly predict the similarity.

Note that for the last two estimation methods, we
load and freeze their pre-trained parameters during
training. After calculating the similarity scores, we
normalize the results with Softmax function with
temperature t to satisfy

∑N
j ̸=i simij = 1.

4 Justification

In this section, we analyze the properties of Soft-
InfoNCE loss and compare it with related works
to justify its effectiveness. Recall that the opti-
mization objective of vanilla InfoNCE loss can be
divided into two parts, alignment and uniformity.
The insertion of wij only has an influence on the
second term. Thus, for simplicity, we analyze the
second term in this section, which is:

Lunif =
1

N

N∑
i=1

[
log
(
exp(qi · ci)+

N∑
j ̸=i

wij · exp(qi · cj)
)]

.

(6)

4.1 Effect on Representation Distribution

Intuitively, we can control the distribution of nega-
tive samples by setting different weights. Here we
theoretically prove that Soft-InfoNCE loss upper
bounds the KL divergence between the predicted
similarity of negative pairs and simij .

Theorem 1 For a batch of query representations
{qi}Ni=1, code representations {ci}Ni=1, and similar-
ity scores Si = {simj}Nj ̸=i, we have:

Lunif ≥ 1

N(βN − α− 1)

N∑
i=1

β N∑
j ̸=i

logPθ(cj |qi)

+ αKL(Si|Pθ(cj |qi))

]
+ const.w.r.t. Si.,

(7)
where N is batch size, Pθ(cj |qi) is predicted simi-
larity between query qi and code cj by model θ.

Proof of Theorem 1 is presented in Appendix
B.1. We can observe that in addition to the original
objective which minimizes the predicted similar-
ity scores of negative pairs, the second term en-
courages the similarity distribution to fit the given
distribution Si. When we set α = β = 1 and
simij = 1

N−1 , it becomes the vanilla InfoNCE
loss hence all wij = 1. This could also be used
as an explanation for the uniformity objective of
vanilla InfoNCE loss.

4.2 Effect on Mutual Information Estimation

It has already been proved that optimizing InfoNCE
loss improves the lower bounds of mutual informa-
tion for a positive pair (Van den Oord et al., 2018).

Since the optimal value for exp(q · c) is given by
p(c|q)
p(c) , the derivation can be described as follows:

L = −E log

 p(ci|qi)
p(ci)

p(ci|qi)
p(ci)

+
∑N

j ̸=i
p(cj |qi)
p(cj)

= E log

1 + p(ci)

p(ci|qi)

N∑
j ̸=i

p(cj |qi)
p(cj)

 (8)

≈ E log

[
1 +

p(ci)

p(ci|qi)
(N − 1) E

cj∈Cneg

p(cj |qi)
p(cj)

]
(9)

≥ E log

[
p(ci)

p(ci|qi)
N

]
= −I(qi, ci) + logN,

where Cneg is the whole set of negative codes
for the given query qi. A key step in the above
derivation is the approximation from Eq.(8) to
Eq.(9). In Eq.(8) we calculate the sum of p(cj |qi)

p(cj)

in a batch to estimate that of the whole negative
set. As Van den Oord et al. (2018) mentioned,
Eq.(8) becomes more accurate when N increases.
By adding a constant term log(N − 1), it would
be clearer that InfoNCE loss builds a Monte-Carlo
estimation sampling from a uniform distribution:

L+ log(N − 1)

= −E log

 p(ci|qi)
p(ci)

1
N−1

p(ci|qi)
p(ci)

+ 1
N−1

∑N
j ̸=i

p(cj |qi)
p(cj)

(10)

Incorporating wij in Eq.(10) reduces estimation
bias since it can be considered as using an impor-
tance sampling strategy, resulting in more precise
estimation. Specifically, we want to estimate the
expectation of p(cj |qi)

p(cj)
according to a real distribu-

tion between the query qi and negative codes cj in
the context of code search. However, the negative
codes in a batch are randomly sampled which fol-
lows a uniform distribution. To bridge this gap and
get an unbiased estimator, importance sampling is
adopted by inserting a weight term wij . We denote
the uniform distribution as p and the real distribu-
tion as q. Thus, calculating expectations based on
q could be derived from p:

Ecj∼q

[
p(cj |qi)
p(cj)

]
= Ecj∼p

[
p(cj |qi)
p(cj)

· q(cj)
p(cj)

]

Ecj∼q

[
p(cj |qi)
p(cj)

]
=

1

N − 1

N∑
j ̸=i

p(cj |qi)
p(cj)

If we take both α and β as 1 in Eq.(4), we have:

Ecj∼p

[
p(cj |qi)
p(cj)

· q(cj)
p(cj)

]
=

(N − 1)(1− simij)

N − 2

N∑
j ̸=i

p(cj |qi)
p(cj)

(11)

And we could find that q(cj) =
1−simij

N−2 , which
is inversely proportional to simij . This property is
in line with our intuition that we should consider
true negatives more when approximating the whole
negative set. As we know, importance sampling
provides more accurate estimates when the sam-
pling distribution is closer to the real distribution.
We hypothesize that for a given query, the major-
ity of codes share a low similarity, which makes it
suitable to use the Softmax function to normalize
simij . We will empirically discuss this hypothesis
in Section 6.

4.3 Relation with Other Loss Functions
In this part, we connect Soft-InfoNCE loss with
other loss functions by analyzing them theoretically.
Besides, in Section 6 we report their comparative
evaluation results empirically.

Binary Cross Entropy Loss. We may con-
sider simij as soft labels and hence use Binary
Cross-Entropy (BCE) loss to train the model. The
probability in BCE is calculated by exp(qi·ci)∑N

j=1 exp(qi·cj)
.

While Soft-InfoNCE loss upper bounds the KL di-
vergence, BCE lower bounds it, which is described
in Theorem 2.

Theorem 2 For a batch of query representations
{qi}Ni=1, code representations {ci}Ni=1, and similar-
ity scores Si = {simj}Nj ̸=i, we have:

LBCE ≤ − 1

N2

N∑
i=1

 N∑
j ̸=i

log(1− Pθ(cj |qi))

+KL(Si|Pθ(cj |qi)) + const.w.r.t. Si

]
,

(12)
where N is batch size, Pθ(cj |qi) is predicted simi-
larity between query qi and code cj by model θ.

Proof of Theorem 2 is presented in Appendix
B.2. In general, minimizing an upper bound leads
to better performance compared with lower bounds.

Weighted InfoNCE Loss. Another choice is
using weighted InfoNCE loss. We take simij as
weights, which can be described as:

LW = −E

[
simij · log

exp(qi · ci)∑N
j=1 exp(qi · cj)

]
.

(13)
Note that we set the weight simii for the positive
pair as 1.

Proposition 1 Soft-InfoNCE loss upper bounds
weighted InfoNCE loss:

LSoft ≥ LW + logPθ(ci|qi)

+
∑
i ̸=j

N − 1− simij

N − 2
logPθ(cj |qi). (14)

The equilibrium satisfies when all code fragments
in the batch are actually false negatives.

The proof of Proposition 1 is presented in Ap-
pendix B.3. Without loss of generalization, our
proof is deduced based on one query, however, it
also holds for a batch of queries. From the above
proposition, we can find that Soft-InfoNCE loss
LSoft upper bounds Weighted InfoNCE loss LW .
Thus, one would expect LSoft to be the superior
loss function.

KL Divergence Regularization. As proved in
Theorem 1, a KL divergence term that measures
the similarity between the given distribution S and
predicted distribution Pθ is incorporated during the
optimization implicitly. We try to explicitly add a
KL divergence regularization term to the vanilla
InfoNCE loss and compare its performance with
our proposed loss empirically.

4.4 Relation with False Negative Cancellation
Recently, several works focus on eliminating the
effect of false negative samples by first detecting
those samples and then removing them from the
negative sets. Though these detection methods
are different among tasks, their cancellation op-
erations share the same principle. That is, false
negatives are removed from the denominator of the
InfoNCE loss. It can be considered as a special
case of our proposed Soft-InfoNCE loss, which
sets the weights wij of false negatives as 0 while
others remain 1. False negative cancellation meth-
ods are effective in classification or unsupervised

pre-training tasks since they only need to consider
whether negative samples belong to the same class
or not. However, in the context of a similarity-
based retrieval task, models are required to dis-
criminate negative samples by continuous values.
In Section 6, we report an empirical comparison
between cancellation methods and ours.

5 Experimental Setup

In this section, we elaborate on the evaluated
dataset, baselines, and our implementation details.

Datasets. We use a large-scale benchmark
dataset CodeSearchNet (CSN) (Husain et al.,
2019) to evaluate the effectiveness of Soft-
InfoNCE loss which contains six programming lan-
guages including Ruby, Python, Java, Javascript,
PHP, and Go. The dataset is widely used in pre-
vious studies (Feng et al., 2020; Guo et al., 2021,
2022) and the statistics are shown in Appendix
C.1. For the training set, it contains positive-only
query-code pairs while for the validation and test
sets the model attempts to retrieve true code frag-
ments from a fixed codebase. We follow (Guo et al.,
2021) to filter out low-quality examples. The per-
formance is measured by the widely adopted the
Mean Reciprocal Rank (MRR) which is the aver-
age of reciprocal ranks of the true code fragment
for a given query. It can be calculated as:

MRR =
1

|Q|

|Q|∑
i=1

1

Ranki
, (15)

where Ranki is the rank of the true code fragment
for the i-th given query Q.

Baselines. We apply Soft-InfoNCE loss on sev-
eral code search models: CodeBERT is a bi-modal
pre-trained model pre-trained on mask language
modeling and replaced token detection (Feng et al.,
2020). Note that in this work we refer CodeBERT
to the siamese network architecture described in
the original paper. GraphCodeBERT incorporates
the structure information of codes and further de-
velops two structure-based pre-training tasks: node
alignment and data flow edge prediction (Guo et al.,
2021). UniXCoder unifies understanding and gen-
eration pre-training tasks to enhance code repre-
sentation leveraging cross-model contents like Ab-
stract Syntax Trees (Guo et al., 2022).

Implementation Details. For all the settings re-
lated to model architectures, we follow the original
paper. For hyper-parameter settings that affect the

calculation of Soft-InfoNCE loss, we provide im-
plementation details in Appendix C.2. For BM25
estimation, we merely measure similarity based on
in-batch data. For trained model estimation, we
train the same model of each studied model follow-
ing the training settings of the original paper on
different programming languages separately until
convergence. For SimCSE estimation, we first ini-
tialize the model with the HuggingFace released
parameters2 and then train it following the default
setting of the original paper. Note that we col-
lect all the natural language queries from different
programming language training sets to boost per-
formance on SimCSE unsupervised learning. The
training epoch is set to 30 for all studied models.
Experiments described in this paper are running
with 3 random seeds 1234, 12345, and 123456. All
experiments meet p<0.01 of significance tests ex-
cept for the results of GraphCodeBERT and UniX-
Coder on the Go dataset. Experiments are con-
ducted on a GeForce RTX A6000 GPU.

6 Results

In this section, we first show the overall perfor-
mance of three weight estimation approaches when
applying Soft-InfoNCE loss. Then, we empirically
compare our proposed method with other choices
of loss functions and false negative cancellation
methods. Finally, we conduct an ablation study to
analyze the effect of hyper-parameters.

Overall Results. The results in Table 1 reveal
that baseline models equipped with Soft-InfoNCE
loss can gain an overall 1%-2% performance im-
provement in MRR over that of InfoNCE loss
across six programming languages. The consis-
tent improvements observed in all three estima-
tion approaches demonstrate the effectiveness of
our proposed Soft-InfoNCE loss in code search.
Time efficiency comparison is also performed in
Appendix D.1.

Comparison among Estimation Approaches.
As shown in Table 1, trained-model estimation sig-
nificantly outperforms the other two methods on
CodeBERT, while all estimation approaches im-
prove on the other two models to a similar extent.
Among them, SimCSE is the most robust one con-
cerning model types.

2https://huggingface.co/sentence-transformers/
msmarco-distilbert-dot-v5

https://huggingface.co/sentence-transformers/msmarco-distilbert-dot-v5
https://huggingface.co/sentence-transformers/msmarco-distilbert-dot-v5

Model Loss Estimator Ruby Python Java JavaScript PHP Go

CodeBERT

InfoNCE - 0.648 0.636 0.663 0.594 0.615 0.878

Soft-InfoNCE
BM25 0.660 0.664 0.682 0.600 0.621 0.882
Trained Model 0.682 0.675 0.682 0.615 0.631 0.898
SimCSE 0.666 0.668 0.670 0.607 0.623 0.887

GraphCodeBERT

InfoNCE - 0.705 0.690 0.691 0.647 0.648 0.896

Soft-InfoNCE
BM25 0.730 0.697 0.698 0.652 0.655 0.892
Trained Model 0.719 0.692 0.692 0.653 0.648 0.889
SimCSE 0.721 0.700 0.702 0.656 0.657 0.894

UniXCoder

InfoNCE - 0.740 0.720 0.726 0.684 0.676 0.915

Soft-InfoNCE
BM25 0.753 0.728 0.733 0.693 0.684 0.916
Trained Model 0.753 0.728 0.731 0.694 0.682 0.915
SimCSE 0.753 0.726 0.731 0.699 0.684 0.913

Table 1: Results of different weight estimation approaches under MRR.

0 2000 4000 6000 8000 10000
Sample

0

20

40

60

80

Si
m

ila
rit

y
Sc

or
e

BM25
SimCSE
CodeBERT
GraphCodeBERT
UniXCoder

0 1 2 3 4 5 6
Sample

0.0

0.4

0.8

1.2

1.6

W
ei

gh
t

BM25
SimCSE
CodeBERT
GraphCodeBERT
UniXCoder

Figure 2: Similarity estimations by different approaches
for a random batch of samples in CSN-Python.

In Fig.2, we take a random batch of samples
from CSN-Python to analyze the difference among
estimation approaches. From the left figure, we
can find that predicted similarity scores roughly
follow a softmax distribution, per our hypothesis.
As for the right one, we can see that compared with
other estimation methods, BM25 generates simi-
lar weights for the majority of negative samples.
This is because BM25 calculates similarities only
based on keyword matching and for most negative
codes there is no keyword overlapping at all. While
for neural model based methods, they can capture
latent semantic similarities. Considering the esti-
mated weights of samples from trained models in
the right panel of Fig. 2, we find that some weights
that are predicted by the three models are similar
while others are not, or even contradictory with
each other.

To better understand the differences among these
estimation methods, we perform case studies for
the eight samples in the right panel of Fig. 2 in
Appendix D.2. From the case study, we find that

there are contradictory predictions when we use
InfoNCE-tuned code search models to predict wij .
This phenomenon indicates that although existing
code search models could find true code snippets
well, they cannot recognize potential relevance
among negative codes, which is the core motivation
for proposing Soft-InfoNCE. Kindly note that in
this paper we do not investigate estimation methods
fully but mainly focus on the effectiveness of Soft-
InfoNCE, as discussed in the ‘Limitations’ Section.

Comparison with Other Loss Functions. Ta-
ble 2 shows the overall performance of different
loss functions. In Table 5, we also give the de-
tailed results for each programming language. For
the calculation of these loss functions, we follow
the definition described in Sec.4.3. Note that for
KL regularization we set the weights of the origi-
nal loss and regularization term as 1.3 and 0.7 to
fairly compare with Soft-InfoNCE loss, and we
use SimCSE estimation for all experiments. We
can see significant drops of MRR compared with
Soft-InfoNCE loss, which is in agreement with our
theoretical analysis. We think those three loss func-
tions somewhat improve the mutual information
of negative pairs. Take weighted InfoNCE as an
example. Though weights for negative pairs are
only at around 0.03, optimizing negative pairs still
lower bounds the mutual information with a con-
stant logN according to Eqn.9. It makes feature
vectors distribute closer and hence hard to distin-
guish each other, which makes the performance
even worse than InfoNCE. The analysis also works
for BCE and KL regularization, which try to im-

Loss CodeBERT GraphCodeBERT UniXCoder

BCE 0.641 0.679 0.686
W-InfoNCE 0.639 0.674 0.714
KL Reg. 0.648 0.688 0.716

Ours 0.687 0.722 0.751

Table 2: Overall performance of different loss function
designs on six programming languages under MRR. “W-
InfoNCE” stands for weighted InfoNCE loss and “KL
Reg.” stands for KL regularization.

Methods MRR Methods MRR

Top-K
1 0.685

Dynamic
Threshold

0.7 0.689
3 0.681 0.5 0.688
5 0.680 0.3 0.688

Table 3: Performance of false negative cancellation
methods applied to GraphCodeBERT on CSN-Python.

prove the similarity between a query and negative
codes as well. Therefore, we argue negative pairs
should not be placed at the numerator of InfoNCE.

Comparison with False Negative Cancellation
Methods. We apply two types of false negative
cancellation methods and evaluate their perfor-
mance, as shown in Table 3. The first type involves
removing top-K similar negatives. We observe that
performance decreases when more negative sam-
ples are removed because sometimes there are no
false negative samples in the batch. Hence, re-
moving top-k negatives directly may accidentally
remove hard negative samples. The other option is
the dynamic threshold. It takes negative samples
that have similarities greater than certain ratios of
the positive sample as false negatives. Besides hav-
ing the same drawbacks as the top-k method, it is
also hard to determine an appropriate ratio. Thus,
there are slight drops when applying the dynamic
threshold. While using Soft-InfoNCE can achieve
a MRR of 0.700 which is better than the result in
Table 3, we argue that setting a weight on negatives
would be less risky than removing them directly.

Effect of α and β. α and β control the weights
of two terms in Theorem 1, one for minimizing pre-
dicted similarities and the other for KL divergence,
which contradicts each other to some extent. To bal-
ance training, we performed empirical experiments
to guide the setting of these two hyper-parameters,
as shown in Fig.3. Note that we follow α+β

2 = 1
to make Soft-InfoNCE fall on the same scale as the

1.1 1.2 1.3 1.4 1.5 1.6
0.693
0.694
0.695
0.696
0.697
0.698
0.699
0.700

M
RR

0 1 2 3 4 5 6
Sample id

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

W
ei

gh
t

=1.2, =0.8
=1.3, =0.7
=1.4, =0.6
=1.5, =0.5
=1.6, =0.4

Figure 3: MRR and estimated weights under different α
and β settings on GraphCodeBERT over CSN-Python.

original InfoNCE loss. The left part of Fig.3 shows
that the performance of Soft-InfoNCE is relatively
stable with different settings and α = 1.3, β = 0.7
reaches its best performance. Besides, since α and
β are incorporated into the calculation of weights,
they also have effects on weights estimation. As
shown in the right part of Fig.3, the increasing of
α makes the weights more distinct.

7 Related Works

Code Search Models. There are mainly three
stages in the development of code search mod-
els. Traditional information retrieval techniques
match keywords between queries and code frag-
ments (Hill et al., 2011; Yang and Huang, 2017;
Satter and Sakib, 2016; Lv et al., 2015; Van Nguyen
et al., 2017). Since natural language and program-
ming language have different syntax rules, they
often suffer from vocabulary mismatch problems
(McMillan et al., 2011). Then, with the popularity
of neural networks, several methods are proposed
to better capture the semantics of both queries and
codes (Gu et al., 2021; Cambronero et al., 2019;
Gu et al., 2018; Husain et al., 2019). Generally,
they are encoded by neural encoders into a shared
representation space. Recently, transformer-based
pre-trained models significantly outperformed pre-
vious methods. CodeBERT (Feng et al., 2020) is
pre-trained via masked language modeling and re-
placed token detection. GraphCodeBERT (Guo
et al., 2021) leverages data flow as additional infor-
mation to model the relationship among variables.
UniXCoder (Guo et al., 2022) is a model that can
support understanding and generation tasks at the
same time. This allows it to further boost perfor-
mance by using the pre-training tasks (e.g. unidi-
rectional language modeling, denoising objective)
both. In this work, we mainly consider pre-trained
models due to their better performance.

False Negatives in Unsupervised Contrastive

Learning. The false negative problem in unsu-
pervised contrastive learning has been studied by
some researchers. Since in contrastive learning
we automatically consider other in-batch examples
as negatives, we may sample false negatives dur-
ing training, which results in discarding semantic
information and slow convergence. Several ap-
proaches are proposed to detect those false neg-
atives. The key insight behind these detection
methods is that false negative examples are sim-
ilar to positive ones. Huynh et al. (2022) calculates
the similarity between multiple views of images
to distinguish false negatives and true hard nega-
tives. Chen et al. (2022) leverages the property
that similar instances are closer in the representa-
tion space to incrementally detect false negatives
in vision tasks. Zhou et al. (2022) uses another
external model to measure the similarity of two
sentence representations and selects pairs whose
similarity scores are higher than the threshold as
negative pairs. In code representation pre-training,
Li et al. (2022c) handles it in an iteratively adver-
sarial manner. However, the false negative problem
in the fine-tuning of code search is not investigated
yet, and it also suffers due to code duplication in
code corpora as mentioned by Lopes et al. (2017);
Allamanis (2019). The above-mentioned works
can be seen as a special case of the proposed Soft-
InfoNCE loss.

8 Conclusion

In this work, we revisit the commonly used In-
foNCE loss in code search and analyze its draw-
back during fine-tuning. By simply inserting
weight terms, we propose Soft-InfoNCE to model
the potential relation of negative codes explicitly.
We further theoretically analyze its effect on rep-
resentation distribution, mutual information esti-
mation, and superiority over other loss functions
and false negative cancellation methods. We evalu-
ate our Soft-InfoNCE loss on several datasets and
models. Experiment results demonstrate the effec-
tiveness of our approach, and justify the theoretical
analysis.

Acknowledgement

We thank the anonymous reviewers for their helpful
comments and suggestions. This research is sup-
ported by Alibaba-NTU Singapore Joint Research
Institute (JRI), Nanyang Technological University,
Singapore.

Limitations

There are mainly three limitations of this work.
First, we propose and evaluate three methods to
estimate similarity scores simij by using BM25,
trained models and SimCSE. Since we mainly fo-
cus on the justification of Soft-InfoNCE loss itself
in this work, the estimation methods are not fully in-
vestigated. Which method is better? Are there any
other more efficient and precise estimation meth-
ods? We leave this as our future work. Second,
in this work, we aim to show and justify the effec-
tiveness of Soft-InfoNCE over InfoNCE. For the
efficiency of the two, since there is an additional
step to estimate the weight of each negative pair,
the training time-cost of Soft-InfoNCE is greater
than InfoNCE. We compare them in Table 8 and
leave improving the efficiency of Soft-InfoNCE as
our future work. Third, as we claimed in the paper,
this work focuses on the order of negative codes
for a given query. However, the widely adopted
benchmarks only consist of binary labels, positive
and negative. As a result, we could only demon-
strate its effectiveness by indirectly showing that it
can help models learn better representations.

References
Miltiadis Allamanis. 2019. The adverse effects of code

duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages
143–153.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-
supervised contrastive learning for code retrieval and
summarization via semantic-preserving transforma-
tions. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 511–521.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learning
met code search. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, pages 964–974.

Tsai-Shien Chen, Wei-Chih Hung, Hung-Yu Tseng,
Shao-Yi Chien, and Ming-Hsuan Yang. 2022. In-
cremental false negative detection for contrastive
learning. In The Tenth International Conference on
Learning Representations.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,

Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics, pages 1536–1547.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Luca Di Grazia and Michael Pradel. 2022. Code search:
A survey of techniques for finding code. ACM Com-
puting Surveys (CSUR).

Jian Gu, Zimin Chen, and Martin Monperrus. 2021.
Multimodal representation for neural code search. In
2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 483–
494.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. In 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering, pages
933–944.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7212–
7225.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In 9th International Conference on
Learning Representations.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
volume 2, pages 1735–1742.

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011.
Improving source code search with natural language
phrasal representations of method signatures. In 2011
26th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 524–527.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqa: 20, 000+ web queries for code search
and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 5690–
5700.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Tri Huynh, Simon Kornblith, Matthew R. Walter,
Michael Maire, and Maryam Khademi. 2022. Boost-
ing contrastive self-supervised learning with false
negative cancellation. In IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages
986–996.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence em-
beddings from pre-trained language models. arXiv
preprint arXiv:2011.05864.

Haochen Li, Chunyan Miao, Cyril Leung, Yanxian
Huang, Yuan Huang, Hongyu Zhang, and Yanlin
Wang. 2022a. Exploring representation-level aug-
mentation for code search. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 4924–4936.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2022b. Coderetriever:
Unimodal and bimodal contrastive learning. arXiv
preprint arXiv:2201.10866.

Xiaonan Li, Daya Guo, Yeyun Gong, Yun Lin, Ye-
long Shen, Xipeng Qiu, Daxin Jiang, Weizhu Chen,
and Nan Duan. 2022c. Soft-labeled contrastive pre-
training for function-level code representation. arXiv
preprint arXiv:2210.09597.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaib-
hav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani,
and Jan Vitek. 2017. Déjàvu: a map of code du-
plicates on github. Proc. ACM Program. Lang.,
1(OOPSLA):84:1–84:28.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang,
Dongmei Zhang, and Jianjun Zhao. 2015. Code-
how: Effective code search based on api understand-
ing and extended boolean model (e). In 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering, pages 260–270.

Collin McMillan, Mark Grechanik, Denys Poshyvanyk,
Qing Xie, and Chen Fu. 2011. Portfolio: finding
relevant functions and their usage. In Proceedings
of the 33rd International Conference on Software
Engineering, pages 111–120.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-
aochen Li. 2016. Query expansion based on crowd
knowledge for code search. IEEE Transactions on
Services Computing, 9(5):771–783.

Abdus Satter and Kazi Sakib. 2016. A search log mining
based query expansion technique to improve effec-
tiveness in code search. In 2016 19th International
Conference on Computer and Information Technol-
ogy, pages 586–591.

Ensheng Shi, Wenchao Gub, Yanlin Wang, Lun Du,
Hongyu Zhang, Shi Han, Dongmei Zhang, and Hong-
bin Sun. 2022a. Enhancing semantic code search
with multimodal contrastive learning and soft data
augmentation. arXiv preprint arXiv:2204.03293.

Yucen Shi, Ying Yin, Zhengkui Wang, David Lo, Tao
Zhang, Xin Xia, Yuhai Zhao, and Bowen Xu. 2022b.
How to better utilize code graphs in semantic code
search? In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 722–733.

Zejian Shi, Yun Xiong, Xiaolong Zhang, Yao Zhang,
Shanshan Li, and Yangyong Zhu. 2022c. Cross-
modal contrastive learning for code search. In 2022
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 94–105.

Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin
Xia, and Yan Lei. 2020. Improving code search with
co-attentive representation learning. In Proceedings
of the 28th International Conference on Program
Comprehension, pages 196–207.

Weisong Sun, Chunrong Fang, Yuchen Chen, Guan-
hong Tao, Tingxu Han, and Quanjun Zhang. 2022.
Code search based on context-aware code translation.
arXiv preprint arXiv:2202.08029.

Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv e-prints, pages arXiv–1807.

Thanh Van Nguyen, Anh Tuan Nguyen, Hung Dang
Phan, Trong Duc Nguyen, and Tien N Nguyen.
2017. Combining word2vec with revised vector
space model for better code retrieval. In 2017
IEEE/ACM 39th International Conference on Soft-
ware Engineering Companion, pages 183–185.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In International
Conference on Machine Learning, pages 9929–9939.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang.
2021. Syncobert: Syntax-guided multi-modal con-
trastive pre-training for code representation. arXiv
preprint arXiv:2108.04556.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022.
Code-mvp: Learning to represent source code from
multiple views with contrastive pre-training. arXiv
preprint arXiv:2205.02029.

Kilian Q Weinberger and Lawrence K Saul. 2009. Dis-
tance metric learning for large margin nearest neigh-
bor classification. Journal of machine learning re-
search, 10(2).

Yangrui Yang and Qing Huang. 2017. Iecs: Intent-
enforced code search via extended boolean model.
Journal of Intelligent & Fuzzy Systems, 33(4):2565–
2576.

Kun Zhou, Beichen Zhang, Xin Zhao, and Ji-Rong Wen.
2022. Debiased contrastive learning of unsupervised
sentence representations. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6120–
6130.

A Survey on the adoption of InfoNCE loss

To show the dominant adoption of InfoNCE, we
conduct a survey on recent code search studies. We
collect the papers on top-tier conferences3 from
2020 and then filter out researches that focus on
model training, as shown in Table 4. As we can
see, among 16 papers there are only 3 papers that
use other loss functions for training.

Model InfoNCE

RoBERTa (code) (Feng et al., 2020) !

CodeBERT (Feng et al., 2020) !

GraphCodeBERT (Guo et al., 2021) !

UniXCoder (Guo et al., 2022) !

SyncoBERT (Wang et al., 2021) !

SCodeR (Li et al., 2022c) !

CoCoSoDa (Shi et al., 2022a) !

CodeRetriever (Li et al., 2022b) !

RACS (Li et al., 2022a) !

CrossCS (Shi et al., 2022c) !

Code-MVP (Wang et al., 2022) !

cpt-code (Neelakantan et al., 2022) !

Corder (Bui et al., 2021) !

TranCS (Sun et al., 2022) !

CoCLR (Huang et al., 2021) %

CQIL (Gu et al., 2021) %

GSMM (Shi et al., 2022b) %

Table 4: The adoption of InfoNCE loss on the training
of recent code search models.

3Specifically, venues ranked A or B under the section of
Artificial Intelligence and Software Engineering in the CCF
ranking: https://ccf.atom.im/.

https://ccf.atom.im/

B Proof

B.1 Proof of Theorem 1

Lunif

=
1

N

N∑
i=1

[
log
[
exp(qi · ci)

+
N∑
j ̸=i

wij · exp(qi · cj)
]]

(16)

≥ 1

N

N∑
i=1

log
 N∑

j ̸=i

β − α · simij

β − α
N−1

∑N
j ̸=i simij

· exp(qi · cj)

]]
(17)

≥ 1

N

N∑
i=1

log
 N∑

j ̸=i

β − α · simij

β − α
N−1

∑N
j ̸=i simij

· exp(qi · cj)

]]
− 1

N

N∑
i=1

log(N − 1)

=
1

N

N∑
i=1

log N∑
j ̸=i

β − α · simij

βN − α− 1
exp(qi · cj)

≥ 1

N

N∑
i=1

N∑
j ̸=i

β − α · simij

βN − α− 1
log exp(qi · cj)

(18)

≥ 1

N

N∑
i=1

N∑
j ̸=i

β − α · simij

βN − α− 1
log exp(qi · cj)

− 1

N

N∑
i=1

N∑
j ̸=i

β − α · simij

βN − α− 1
log

N∑
j ̸=i

exp(qi · cj)

(19)

=
1

N

N∑
i=1

N∑
j ̸=i

β − α · simij

βN − α− 1
logPθ(cj |qi)

=
1

N(βN − α− 1)

N∑
i=1

N∑
j ̸=i

(β − αsimij)

· logPθ(cj |qi) (20)

=
1

N(βN − α− 1)

N∑
i=1

β N∑
j ̸=i

logPθ(cj |qi)

+ αKL(Si|Pθ(cj |qi)) + α
N∑
j ̸=i

simij log simij

]
We drive from Eq.(16) to Eq.(17) by ignor-

ing the result of positive pair that is always

greater than 0. By subtracting a constant term
1
N

∑N
i=1 log(N−1) and applying Jensen’s Inequal-

ity, we get Eq.(18). Then, we subtract Eq.(18)
from 1

N

∑N
i=1

∑N
j ̸=i

β−α·simij

βN−α−1 log
∑N

j ̸=i exp(qi ·
cj). According to previous studies (Li et al., 2020;
Zhou et al., 2022), transformer-based models learn
an anisotropic embedding space which means that
nearly any dot product of two representations is
greater than 0. We also find similar phenomena in
the context of code search models. Thus, the in-
equality in Eq.(19) holds in most cases. To further
satisfy the condition, we clamp the dot product re-
sults that are less than 0 to be 0. Finally, by turning
the subtraction outside the logarithms into division
inside it, we get the probability Pθ(cj |qi) that refers
to the similarity of qi and cj . Therefore, we reach
the conclusion in Theorem 1. And we could find
that the constant term is:

1

N(βN − α− 1)

N∑
i=1

α N∑
j ̸=i

simij log simij

which is related to Si = {simij}Nj ̸=i.

B.2 Proof of Theorem 2
The proof only discusses the effect of BCE loss
for negative pairs. For the optimization of Positive
pairs, BCE loss is equal to Soft-InfoNCE loss.

LBCE

= − 1

N2

N∑
i=1

N∑
j=1

[
simij · log

exp(qi · cj)∑N
j ̸=i exp(qi · cj)

+ (1− simij) · log

(
1− exp(qi · cj)∑N

j ̸=i exp(qi · cj)

)]

= − 1

N2

N∑
i=1

N∑
j=1

[
log(1− Pθ(cj |qi))

+ simij · log
exp(qi · cj)

− exp(qi · cj) +
∑N

j ̸=i exp(qi · cj)

]
(21)

≤ − 1

N2

N∑
i=1

N∑
j=1

[
log(1− Pθ(cj |qi))

+ simij · log(Pθ(cj |qi))

]
(22)

=
1

N2

N∑
i=1

[
−

N∑
j=1

log(1− Pθ(cj |qi))

Model Ruby Python Java JavaScript PHP Go Overall

CodeBERT
-BCE 0.603 0.615 0.639 0.555 0.572 0.863 0.641
-Weighted InfoNCE 0.608 0.609 0.634 0.553 0.566 0.861 0.639
-KL Regularization 0.615 0.623 0.643 0.557 0.586 0.861 0.648
-Soft-InfoNCE 0.666 0.668 0.670 0.607 0.623 0.887 0.687

GraphCodeBERT
-BCE 0.705 0.648 0.669 0.571 0.597 0.883 0.679
-Weighted InfoNCE 0.695 0.633 0.655 0.608 0.588 0.865 0.674
-KL Regularization 0.691 0.658 0.677 0.620 0.611 0.869 0.688
-Soft-InfoNCE 0.721 0.700 0.702 0.656 0.657 0.894 0.722

UniXCoder
-BCE 0.721 0.666 0.669 0.571 0.608 0.883 0.686
-Weighted InfoNCE 0.729 0.689 0.697 0.649 0.623 0.894 0.714
-KL Regularization 0.729 0.692 0.699 0.659 0.637 0.882 0.716
-Soft-InfoNCE 0.753 0.726 0.731 0.699 0.684 0.913 0.751

Table 5: Results of different loss functions on six programming languages under MRR.

+KL(Si|Pθ(cj |qi)) +
N∑
j ̸=i

simij log simij

]

By removing the − exp(qi · cj) in the denomina-
tor of the second term in Eq.(21), the inequality to
Eq.(22) holds. Therefore, we reach the conclusion
in Theorem 2. And we could find that the constant
term is:

1

N2

N∑
i=1

N∑
j ̸=i

simij log simij

which is related to Si = {simij}Nj ̸=i.

B.3 Proof of Proposition 1

LW − LSoft

= −
N∑
j=1

simij · log
exp(qi · cj)∑N
j=1 exp(qi · cj)

+ log
exp(qi · ci)∑N

j=1wij exp(qi · cj)

= −
N∑
j=1

simij · log
exp(qi · cj)∑N
j=1 exp(qi · cj)

− log

exp(qi · ci) + N∑
j ̸=i

wij · exp(qi · cj)

+ log exp(qi · ci) (23)

≤ −
N∑
j=1

simij · log
exp(qi · cj)∑N
j=1 exp(qi · cj)

−
N∑
j ̸=i

wij · log exp(qi · cj) (24)

= −
N∑
j=1

simij · log exp(qi · cj)

+ 2 log

N∑
j=1

exp(qi · cj)

−
N∑
j ̸=i

(N − 1)(1− simij)

N − 2
log exp(qi · cj)

= −
N∑
j ̸=i

N − 1− simij

N − 2
log exp(qi · cj)

+ 2 log
N∑
j=1

exp(qi · cj)− log exp(qi · ci)

= −
N∑
j ̸=i

N − 1− simij

N − 2
logPθ(cj |qi)

− logPθ(ci|qi)

We derive Eq.(24) from Eq.(23) by first ignoring
exp(qi · ci) within the logarithm and then applying
Jensen’s Inequality. Therefore, we get:

LSoft ≥ LW + logPθ(ci|qi)

+
∑
i ̸=j

N − 1− simij

N − 2
logPθ(cj |qi)

The equilibrium satisfies when all code fragments
in the batch are actually positives and the model
perfectly predicts them.

C Experiment Settings

C.1 Dataset Statistics

The dataset statistics of CodeSearchNet are shown
in Table 6.

Language Training Validation Test Codebase

Ruby 24,927 1,400 1,261 4,360
Python 251,820 13,914 14,918 43,827
Java 164,923 5,183 10,955 40,347
JavaScript 58,025 3,885 3,291 13,981
PHP 241,241 12,982 14,014 52,660
Go 167,288 7,325 8,122 28,120

Table 6: CodeSearchNet dataset statistics.

C.2 Hyper-parameter Settings

The settings of α and β are shown in Table 7. The
settings of α and β in BM25 are different because
we calculate BM25 scores only based on in-batch
data, which results in similar scores for negative
pairs. Thus, to better distinguish negative pairs, we
set higher α compared with the other two estima-
tion methods. And t is used to tune the distribution
of negative similarity scores simij similar to soft-
max distribution, which is in accordance with our
hypothesis. Note that all the calculated weights wij

are clamped to be greater than 0.1.

Estimation Methods α β t

BM25 1.5 0.5 1.0
SimCSE 1.3 0.7 0.1
Trained Model 1.3 0.7 5.0

Table 7: α, β and t of different estimation methods.

Loss Time per batch

InfoNCE 0.75s

Soft-InfoNCE
-BM25 0.77s
-SimCSE 0.81s
-Trained Model 0.98s

Table 8: Training time efficiency comparison of In-
foNCE and Soft-InfoNCE.

D Detailed Experimental Results

D.1 Efficiency Comparison between
Soft-InfoNCE and InfoNCE

To compare the time efficiency, we take CodeBERT
as an example, and calculate time cost per batch
based on the average value of 30 epochs, using the
same batch size for training. The results shown
in Table 8 reveal that the implementation of Soft-
InfoNCE has a negligible increase in time over-
head while improving performance. As discussed
in Limitations, we aim to show and justify the ef-
fectiveness of Soft-InfoNCE over InfoNCE in this
work and we leave the efficiency improvement of
Soft-InfoNCE as our future work.

D.2 Case Study

We think that it would be beneficial to see a more
detailed analysis. Thus, we analyze the eight exam-
ples in the right part of Fig.2 in detail. We first list
out all eight examples. The natural language de-
scription is written in the caption above each code
snippet.

The positive example is the first one and the left
seven examples are negative ones.
Listing 1: Extracts encoded genotype data from binary
formatted file.

def extract_genotypes(self , bytes):
genotypes = []
for b in bytes:

for i in range(0, 4):
v = ((b>>(i*2)) & 3)
genotypes.append(self.geno_conversions[

v])
return genotypes [0: self.ind_count]

Listing 2: Gets the SasLogicalInterconnects API client.

def sas_logical_interconnects(self):
if not self.__sas_logical_interconnects:

self.__sas_logical_interconnects =
SasLogicalInterconnects(self.
__connection)

return self.__sas_logical_interconnects

Listing 3: Read the specified number of bytes from the
stream.

def read_bytes(self , length) -> bytes:
value = self.stream.read(length)
return value

Listing 4: Copy a full directory structure.

def copy_tree(src , dst , symlinks=False , ignore =[]):
names = os.listdir(src)
if not os.path.exists(dst):

os.makedirs(dst)
errors = []
for name in names:

if name in ignore:
continue

srcname = os.path.join(src , name)
dstname = os.path.join(dst , name)
try:

if symlinks and os.path.islink(srcname)
:
linkto = os.readlink(srcname)
os.symlink(linkto , dstname)

elif os.path.isdir(srcname):
copy_tree(srcname , dstname ,

symlinks , ignore)
else:

copy_file(srcname , dstname)
except (IOError , os.error) as exc:

errors.append ((srcname , dstname , str(
exc)))

except CTError as exc:
errors.extend(exc.errors)

if errors:
raise CTError(errors)

Listing 5: A memoizing recursive Fibonacci to exercise
RPCs.

def memoizing_fibonacci(n):
if n <= 1:

raise ndb.Return(n)
key = ndb.Key(FibonacciMemo , str(n))
memo = yield key.get_async(ndb_should_cache=False

)
if memo is not None:

assert memo.arg == n
logging.info(’memo hit: %d -> %d’, n, memo.

value)
raise ndb.Return(memo.value)

logging.info(’memo fail: %d’, n)
a = yield memoizing_fibonacci(n - 1)
b = yield memoizing_fibonacci(n - 2)
ans = a + b
memo = FibonacciMemo(key=key , arg=n, value=ans)
logging.info(’memo write: %d -> %d’, n, memo.

value)
yield memo.put_async(ndb_should_cache=False)
raise ndb.Return(ans)

Listing 6: Enrich the SKOS relations according to
SKOS semantics, including subproperties of broader
and symmetric related properties.

def enrich_relations(rdf , enrich_mappings ,
use_narrower , use_transitive):
1. first enrich mapping relationships (

because they affect regular ones)

if enrich_mappings:
infer.skos_symmetric_mappings(rdf)
infer.skos_hierarchical_mappings(rdf ,

use_narrower)

2. then enrich regular relationships

related <-> related
infer.skos_related(rdf)

broaderGeneric -> broader + inverse
narrowerGeneric

for s, o in rdf.subject_objects(SKOSEXT.
broaderGeneric):
rdf.add((s, SKOS.broader , o))

broaderPartitive -> broader + inverse
narrowerPartitive

for s, o in rdf.subject_objects(SKOSEXT.
broaderPartitive):
rdf.add((s, SKOS.broader , o))

infer.skos_hierarchical(rdf , use_narrower)

transitive closure: broaderTransitive and
narrowerTransitive

if use_transitive:
infer.skos_transitive(rdf , use_narrower)

else:

transitive relationships are not wanted ,
so remove them

for s, o in rdf.subject_objects(SKOS.
broaderTransitive):
rdf.remove ((s, SKOS.broaderTransitive ,

o))
for s, o in rdf.subject_objects(SKOS.

narrowerTransitive):
rdf.remove ((s, SKOS.narrowerTransitive ,

o))

infer.skos_topConcept(rdf)

Listing 7: Retrieves all running tunnels for a specific
user.

def get_tunnels(self):
method = ’GET’
endpoint = ’/rest/v1/{}/ tunnels ’.format(self.

client.sauce_username)
return self.client.request(method , endpoint)

Listing 8: power down the OpenThreadWpan.

def powerDown(self):
print ’%s call powerDown ’ % self.port
if self.__sendCommand(WPANCTL_CMD + ’setprop

Daemon:AutoAssociateAfterReset false’)[0]
!= ’Fail’:
time.sleep (0.5)
if self.__sendCommand(WPANCTL_CMD + ’reset’

)[0] != ’Fail’:
self.isPowerDown = True
return True

else:
return False

else:
return False

As we could see, the positive query could be
summarized as extracting data from a binary file.
For SimCSE and BM25, the estimated weights are
calculated based on the natural language descrip-
tions of positive codes and negative codes. The
second negative example contains tokens like “read
from” and “bytes”, which makes it perform like
reading data from a file as well. Thus, BM25 and
SimCSE consider it as the most similar negative
sample hence predicting a small weight. However,
the natural language description is deceptive. The
code of the second negative example in fact reads
bytes not based on a file directory but on a given
number. On the contrary, since weights that are pre-
dicted by trained models are calculated by the posi-
tive query and negative codes, real potential false
negative samples are captured like the third nega-
tive code. We also find that there are cases where
BM25 and SimCSE perform better than trained
models when the code snippets are too long and
complicated which makes it hard for trained mod-
els to capture the main purpose of the code.

D.3 Comparison with Other Loss Functions
Table 5 shows detailed results on each program-
ming language. Table 2 calculates the aver-
age value of different programming languages to
demonstrate the overall performance.

