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ABSTRACT

Out-of-distribution (OOD) detection is essential for enhancing the robustness and
security of deep learning models in unknown and dynamic data environments.
Gradient-based OOD detection methods, such as GAIA, analyse the explanation
pattern representations of in-distribution (ID) and OOD samples by examining
the sensitivity of model outputs w.r.t. model inputs, resulting in superior per-
formance compared to traditional OOD detection methods. However, we argue
that the non-zero gradient behaviors of OOD samples do not exhibit significant
distinguishability, especially when ID samples are perturbed by random noise in
high-dimensional spaces, which negatively impacts the accuracy of OOD detec-
tion. In this paper, we propose a novel OOD detection method called S & I based
on layer Splitting and gradient Integration via Adversarial Gradient Attribution.
Specifically, our approach involves splitting the model’s intermediate layers and
iteratively updating adversarial examples layer-by-layer. We then integrate the at-
tribution gradients from each intermediate layer along the attribution path from
adversarial examples to the actual input, yielding true explanation pattern repre-
sentations for both ID and OOD samples. Experiments demonstrate that our S &
I algorithm achieves state-of-the-art results, with the average FPR95 of 29.05%
(38.61%) and 37.31% on the CIFAR100 and ImageNet benchmarks, respectively.
Our code is available at: https://anonymous.4open.science/r/S-I-F6F7/

1 INTRODUCTION

Deep neural networks have achieved remarkable success in a variety of domains, including au-
tonomous driving (Chen et al., 2021) and medical diagnosis (Yadav & Jadhav, 2019). However,
their performance and reliability are strongly influenced by the assumption that the test data orig-
inates from the same distribution as the training data. In practical applications, this assumption is
frequently violated, as models often face inputs that deviate significantly from the in-distribution
(ID) training data. Such inputs, known as out-of-distribution (OOD) samples, present a major chal-
lenge for deep neural networks, which can produce overconfident yet incorrect predictions.

Therefore, performing OOD detection is essential for ensuring the safe and reliable deployment of
deep neural networks in real-world applications. Currently post-hoc OOD detection methods can
be mainly divided into three categories: output-based methods (Hsu et al., 2020; Liu et al., 2020;
Hendrycks & Gimpel, 2016; Liang et al., 2017), feature representation-based methods (Sun et al.,
2021; Sastry & Oore, 2020; Song et al., 2022) and gradient-based methods (Huang et al., 2021;
Lee & AlRegib, 2020; Igoe et al., 2022; Chen et al., 2023). Among them, output-based methods
rely on the confidence score of the model output to determine whether the input sample belongs to
the training data distribution, while feature representation-based methods detect OOD samples by
analyzing the feature vectors of the intermediate layers of the neural network. However, compared
with gradient-based methods that identify OOD samples by calculating the gradient information of
input samples w.r.t. model parameters (or a certain layer output), they are easily deceived by some
OOD samples with high output similarity or easily affected by the quality of feature representation.
Therefore, in this paper we focus on gradient-based methods.
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Figure 1: Attribution visualization. The left two images (label ’tulip’) represent the ID input sample
and its attribution map, while the right two images (label ’0’)represent the OOD input sample and
its attribution map.

As one of the mainstream gradient-based methods, the GAIA (Chen et al., 2023) algorithm investi-
gates the explanation pattern representations of ID and OOD samples from the sensitivity of model
outputs w.r.t model inputs, i.e., the attribution gradients (Simonyan, 2013). Specifically, by back-
propagating the attribution gradient ∂f(x;θ)

∂x of the model output f(x; θ) w.r.t. the input sample x
on each intermediate layer, GAIA considers input samples with a large number of non-zero attribu-
tion gradients as OOD samples. As shown in Fig. 1, we find that for OOD samples, the attribution
map often does not focus on certain key features and shows a scattered pattern, which means that
the model has no clear understanding of OOD samples. Therefore, we argue that this phenomenon
indicates that the model may have higher sensitivity (i.e., larger gradient value) to any feature under
an unseen distribution, and even some irrelevant details will get high gradient values. This char-
acteristic makes the non-zero gradient behavior of OOD samples not significantly differentiating,
especially when ID samples are subject to random noise in high-dimensional space. At this time,
the gradient fluctuation caused by small input changes of the model will make it difficult for the
gradient sensitivity to stably reflect the actual relationship between the model output and the input,
affecting the distinction between the explanation pattern representations of ID and OOD samples.

Figure 2: Algorithm flowchart. It can be seen that the gradient distribution of OOD samples inves-
tigated by GAIA tends to exhibit non-zero values. We argue that the abnormal gradients induced
by noise in the input data cause feature components that should be predicted as ID to be incorrectly
classified as OOD, resulting in irregular gradient distributions. By performing multiple adversarial
attacks to analyze the feature distribution shifts from ID adversarial samples to OOD input samples,
we can progressively identify high-confidence non-zero gradients, thereby obtaining the true expla-
nation pattern representations denoted by the shaded regions.

In this paper, to address this shortcoming, for the first time, we investigate the explanation pattern
representation of ID and OOD samples from the perspective of adversarial attacks (Kurakin et al.,
2018). Specifically, we introduce adversarial examples to artificially add perturbations to input sam-
ples. Then, we use adversarial examples as baselines and gradually integrating the adversarial gra-
dient ∂L(f(xi;θ))

∂xi
of the loss function over the model output L(f(xi; θ)) w.r.t the i-th iteration adver-
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sarial example xi along the attribution path from the baseline to the actual input, thereby smoothing
the volatility of the attribution gradient and reflecting the true explanation pattern representation.

Besides, it is worth emphasizing that traditional gradient-based methods such as GAIA assume that
the influence of each intermediate layer of the model on the input features is uniform and linearly cu-
mulative. In fact, the sensitivity of intermediate features in different layers to the input may be highly
heterogeneous, with early layers focusing on low-level edge or texture information and later layers
focusing on high-level semantic features. In deeper neural networks, this may introduce unstable
gradient explosions or cumulative errors in inter-layer features, reducing the representation accu-
racy of the explained pattern. To address this problem, we introduce the concept of layer splitting
for the first time. Assuming that the neural network has a total of l intermediate layers, we split the
current j-th intermediate layer from the subsequent (j+1 ∼ l)-th intermediate layer while updating
the adversarial example layer by layer. Based on these insights, we propose a novel OOD detection
method called S & I based on layer Splitting and gradient Integration via Adversarial Gradient At-
tribution. Comprehensive experiments on both CIFAR100 benchmark and large-scale ImageNet-1K
benchmark validate the effectiveness of our S & I algorithm. Fig. 2 shows the algorithm flowchart.

Our key contributions are summarized as follows:

• Given the observation that the attribution gradients of OOD samples are not significantly
distinguishable, in order to reduce the abnormal gradient fluctuations caused by random
noise in ID samples in high-dimensional space, we first introduce adversarial examples to
artificially add perturbations to the input samples for OOD detection, thereby reflecting
ture explanation pattern representations.

• We, for the first time, propose the concept of layer splitting and adversarial attribution gra-
dient integration for OOD detection. By decomposing intermediate layers and iteratively
updating adversarial examples layer-by-layer, we integrate the attribution gradients of each
iteration along the attribution path from adversarial examples to the actual input sample.
We also give the theoretical proof of our S & I algorithm in our paper.

• Experiments demonstrate that our S & I algorithm achieves SOTA results, with the average
FPR95 of 29.05% (38.61%) and 37.31% on the CIFAR100 and ImageNet benchmarks,
respectively. We have also open-sourced the relevant code.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Given a deep neural network f with parameters θ, for a supervised task, the output of the network
for the input sample space X can be expressed as f(X; θ;Y ). Here Y represents the label space,
and in the following we omit Y for convenience. The goal of out-of-distribution (OOD) detection is
to identify input data that comes from a distribution different from the training data. Let xin ∈ X
represents the in-distribution (ID) samples, and xout ∈ X represents the OOD samples. Typically,
there is no intersection between the label sets yin ∈ Y and yout ∈ Y for ID and OOD samples.
Taking an image classification task as an example, since the model f has never seen OOD data
xout during training, it tends to produce overconfident predictions for such inputs. Based on this
characteristic, OOD detection can be formulated as a binary classification problem as follows:

Binary Classifier =

{
OOD , if Ω(X) ≥ ξ

ID , if Ω(X) < ξ
(1)

Here ξ represents the threshold for distinguishing OOD and ID samples, and Ω(X) is the confidence
score function for the binary classification. We consider input samples x with confidence scores
greater than or equal to ξ as OOD samples xout.

2.2 FROM GRADIENT-BASED ATTRIBUTION TO ADVERSARIAL ATTACK

In general, for an image classification interpretation task, the objective of gradient-based attribution
is to determine an attribution value Ars ∈ RR×S×K that reflects the importance of each feature
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component x
(rs)

within the input sample x ∈ RR×S×K w.r.t. the model output f(x; θ). Here S and

R represent the width and height of the k-th channel input sample. f(x; θ) typically represents the
predicted labels of the image, expressed as confidence scores for each class.

One approach to understanding how a model makes decisions is to pinpoint the minimal feature
changes that either weaken or strengthen its current prediction. This requires that the feature modifi-
cations remain limited, so as not to distort the semantic content of the original sample. Consequently,
the challenge of interpretation can be reformulated as identifying the most influential features that
affect the model’s decision, while ensuring the changes remain within certain constraints.

Attribution gradients calculation Currently, commonly employed gradient-based attribution al-
gorithms, such as Integrated Gradients (IG) (Sundararajan et al., 2017) and Boundary-based Inte-
grated Gradients (BIG) (Wang et al., 2021), utilize gradient information ∂f(x;θ)

∂x to represent local
changes for calculating importance scores. If we denote the importance of each feature component
in the input sample calculated by IG as AIG

rs , then the integration process of IG can be expressed as
Eq. 2:

AIG
rs (x) = ( x

(rs)
− x′

(rs)
)×

T∑
i=1

∂f
(
x′ + i

T × (x− x′)
)

∂ x
(rs)

× 1

T
(2)

where rs = 1, 2, ..., RS represents the rs-th feature component in the input sample x. The gradient

of the model output w.r.t. the rs-th feature component is denoted by
∂f(x′+ i

T ×(x−x′))
∂ x
(rs)

. In this

context, x′ denotes the baseline sample, typically represented by a black image or a zero embedding
vector in image or text models. From Eq. 2, we can see IG divides the integration path (x− x′) into
T equidistant intervals to compute AIG

rs (x). In GAIA (Chen et al., 2023), the authors argue that the

attribution gradients g =
∂f(x′+ i

T ×(x−x′))
∂ x
(rs)

related to the input samples are the key gradients for

OOD detection. Moreover, input samples x exhibiting non-zero attribution gradients across most
feature components x

(rs)
are highly likely to be OOD samples.

Accuracy loss of attribution gradients However, both attribution algorithm IG or attribution-
based OOD detection algorithm GAIA set the baseline sample x′ as a black image, i.e., x′ = 0. It
is worth noting that for tasks of varying scales, the selection of baseline points is complex and often
ad-hoc. Additionally, using black images as baselines can make it difficult to preserve the original
semantic information. In this regard, adversarial attacks (Kurakin et al., 2018)—capable of altering
model decisions with minimal perturbations—can generate adversarial examples that are highly
similar to the original images, relying solely on input samples and the model. Therefore, employing
adversarial examples as baselines for attribution retains semantic information and eliminates the
need for a specific baseline selection method. We believe that using adversarial examples with
semantics similar to the original sample as the baseline can improve the accuracy of attribution
gradient calculations, a concept that has already been demonstrated in several SOTA attribution
algorithms (Pan et al., 2021; Zhu et al., 2024b;a). The accuracy of attribution gradients is crucial
for attribution-based OOD detection, as it significantly influences the distribution of the attribution
gradients.

2.3 DEFINITION OF ADVERSARIAL ATTACKS

Given a deep neural network f and an original input sample x ∈ RR×S×K , for a standard image
classification task, where the true label corresponding to x is t ∈ yin, the objective of adversarial
attacks is to generate an adversarial example xadv by adding perturbations to x. These perturbations
are designed to mislead the model into making incorrect predictions while maintaining the semantic
similarity to the original input. In this scenario, the label of the adversarial example is manipulated
to be t′. It is important to note that, according to the characteristic of adversarial attacks, the label
t′ is manipulated by the model during training, and therefore, t′ still belongs to the ID label set yin.
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Generally, T iterations are required to obtain the optimal adversarial sample. The attack process can
be described as follows:

xi = xi−1 + η · sign
(
∇xi−1L(f(xi−1); θ)

)
s.t. f(xi; θ) = t′ ̸= t (3)

where η denotes the learning rate, i = 1, 2, . . . , T , x0 = x, and xadv = xT . The sign(·) function
indicates the direction of the update for the adversarial example. To ensure that the perturbations
added do not alter the semantic information of the original sample, we constrain the magnitude of
these perturbations as follows:

∥xadv − x∥2 ≤ ϵ (4)

where ∥·∥2 represents the L2 norm and ϵ denotes the maximum allowable perturbation. It is clear that
the iteration of adversarial samples can be interpreted as a gradient ascent process that maximizes
the loss function associated with the original label (thereby misleading the model’s predictions)
while simultaneously minimizing the perturbations applied to the input sample, in accordance with
the requirements of the interpretation challenge. In the next section, we will introduce how we
incorporate adversarial attacks into attribution to explore the distributional characteristics of ID and
OOD samples.

3 LAYER SPLITTING AND ADVERSARIAL ATTRIBUTION GRADIENT
INTEGRATION FOR OOD DETECTION

3.1 ZERO IMPORTANCE VERIFICATION UNDER THE ADVERSARIAL ATTACK

In this subsection, we first give a mathematical proof of zero importance verification under the
adversarial attack. Our goal is to proof that, when adversarial examples are used as the baseline, the
attribution gradients of each feature component x

(rs)
still tend to be zero for ID samples, indicating

zero importance. In the GAIA (Chen et al., 2023) scenario, we can express the model output f(x; θ)
w.r.t the true label t using a higher-order Taylor expansion under the zero baseline (balck image):

f(x; θ) = f(0; θ) +

P∑
p=1

RS∑
rs=1

1

p!

∂pf(x; θ)

∂ x
(rs)

p
x

(rs)

p +
1

2!

∂2f(x; θ)

∂ x
(1)

∂ x
(2)

x
(1)

x
(2)

+ ...+Rp(x) (5)

where ∂pf(x;θ)
∂ x
(rs)

p represents the p-th order derivative of output f(x; θ) w.r.t the feature component x
(rs)

.

∂2f(x;θ)
∂ x
(1)

∂ x
(2)

represents the second-order mixed partial derivative of f(x; θ). Rp(x) is the remainder after

Taylor expansion. Then we can get the following label output change, i.e., the absolute value of the
attribution for the input sample x:

|A(x)| = |f(x; θ)− f(0; θ)| =

∣∣∣∣∣∣
P∑

p=1

RS∑
rs=1

1

p!

∂pf(x; θ)

∂ x
(rs)

p
x

(rs)

p +
1

2!

∂2f(x; θ)

∂ x
(1)

∂ x
(2)

x
(1)

x
(2)

+ ...+Rp(x)

∣∣∣∣∣∣
(6)

According to the description of the sensitivity axiom in GAIA and IG (Sundararajan et al., 2017),
we can get the following theorem:

Theorem 1: An attribution method adheres to the Sensitivity Axiom if, for any input and baseline
that differ in a single feature and produce different predictions, the feature with the difference must
be assigned a non-zero attribution.

Since GAIA demonstrates that OOD samples typically exhibit overconfident predictions, we can as-
sert that the label output change for OOD samples |f(xout; θ)− f(0; θ)| is, to some extent, greater
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than that |f(xin; θ)− f(0; θ)| for ID samples. Then we can get |A(xin)| < |A(xout)| in common
cases. This is intuitive because the feature components of ID samples typically match the distribu-
tion of the training data, resulting in a smaller contribution to the predictions and relatively lower
attribution values. According to Theorem 1, the attribution for features that do not influence the
model predictions is zero, indicating zero importance. Therefore, the smaller attribution of ID sam-
ples |A(xin)| =

∑RS
rs=1 |Ars(xin)| imply that the gradient polynomials associated with the feature

components xin
(rs)

in the higher-order Taylor expansion have a higher occurrence of zero gradients.

Proposition 1: For a feature component x
(rs)

∈ x that is to be attributed, if ∂f(x;θ)
∂ x
(rs)

is zero through-

out the entire attribution process, then |Ars(x)|=0. In this case, the input sample x with a higher
prevalence of zero-valued ∂f(x;θ)

∂ x
(rs)

yield smaller attribution |A(x)| =
∑RS

rs=1 |Ars(x)|, indicating an

ID sample xin.

Proof 1: It is known from advanced calculus that if ∂f(x;θ)
∂ x
(rs)

= 0, then its p-th partial derivative

∂pf(x;θ)
∂ x
(rs)

p = 0. Consequently, due to the chain rule of gradients, its p-th mixed partial derivative

∂pf(x;θ)
∂ x
(1)

∂ x
(2)

...∂ x
(p)

= 0. From Eq. 6, |Ars(x)| = 0 always holds.

In the adversarial attack scenario, instead of using f(0; θ), we use f(xadv; θ) as the baseline. At this
time, Eq. 6 is transformed into:

|A(x)| = |f(x; θ)− f(xadv; θ)|

=

∣∣∣∣∣∣
P∑

p=1

RS∑
rs=1

1

p!

∂pf(x; θ)

∂ x
(rs)

p
(xadv
(rs)

− x
(rs)

)p

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

2!

∂2f(x; θ)

∂(xadv
(1)

− x
(1)

)∂(xadv
(2)

− x
(2)

)
(xadv

(1)
− x

(1)
)(xadv

(2)
− x

(2)
)

∣∣∣∣∣∣∣
+ ...+ |Rp(xadv − x)|

(7)

Proposition 2: When the baseline sample is an adversarial sample, if the gradient ∂f(x;θ)
∂ x
(rs)

satisfies

the conditions in Proposition 1, then the attribution gradients of each feature component x
(rs)

still

tend to be zero for ID samples.

Proof 2: After adversarial attacks, the label t′ of the adversarial sample still belongs to the ID label
set yin. Additionally, adversarial samples possess the characteristic that require iterative training
within the neural network. Therefore, adversarial samples can be regarded as ID samples in our
opinion. Assume that the input sample x ∈ xin, then neither f(x; θ) nor f(xadv; θ) exhibits overly
confidence in this case. We can get a low-level |A(x)|, which means that the input sample x has
a higher prevalence of zero-valued ∂f(x;θ)

∂ x
(rs)

. When the input sample x ∈ xout, then f(xadv; θ)

will exhibit overly confidence. In this case, we can demonstrate that |f(xout; θ)− f(xadv; θ)| >
|f(xin; θ)− f(xadv; θ)|, indicating a higher prevalence of non-zero gradients for OOD samples.

3.2 S & I ALGORITHM

3.2.1 ADVERSARIAL ATTRIBUTION GRADIENT INTEGRATION

From Sec. 3.1, it can be concluded that the key to OOD detection lies in obtaining the distribution of
attribution gradients. For the input sample x, we perform Eq. 3 to update adversarial examples. To
integrate the attribution gradients we need, we apply the first-order Taylor approximation to expand
the loss function and incorporate the gradient information along the attribution path from x0 to xT :
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L (f (xi)) = L (f (xi−1)) +
∂L (f (xi−1))

∂xi−1
(xi − xi−1) + o

T∑
i=1

L (f (xi)) =

T−1∑
i=0

L (f (xi)) +

T−1∑
i=0

∂L (f (xi))

∂xi
(xi+1 − xi)

A = L (f (xT ))−L (f (x0)) =

T−1∑
i=0

∂L (f (xi))

∂xi
(xi+1 − xi)

=

T−1∑
i=0

△xi ⊙ g(xi) =

T∑
i=1

△xi−1 ⊙ g(xi−1)

(8)

Here o and θ is omitted for convenience. And △xi−1 = xi−xi−1, g(xi−1) =
∂L(f(x))
∂xi−1

. It is obvious
that Eq. 8 satisfies Theorem 1. However, there is a problem with Eq. 8. Since the neural network has
l intermediate layers, we cannot use the union parameters θ of the neural network when performing
gradient ascent on the j-th layer. In fact, we use the parameters θ(j+1)∼l of the (j+1) ∼ l-th layers
to update the adversarial examples. Unlike GAIA, which assumes that each intermediate layer of
the model has a uniform impact on the feature map, our purpose is to distinguish the sensitivity of
intermediate feature maps on different layers to the model input. Therefore, we first introduce the
concept of layer splitting to deeply investigate the distribution of attribution gradients.

3.2.2 LAYER SPLITTING

Specifically, assuming that the dimension of the sample space is RR×S×K , we will use the following
formula to update the adversarial example xjk

i with predicted label y on the k-th channel, j-th layer:

xjk
i = xjk

i−1 + η · sign

∂L
(
f
(j+1)∼l
y

(
xjk
i−1; θ

(j+1)∼l
))

∂xjk
i−1

 (9)

where xjk
0 = xjk. And we can get △xjk

i−1 = xjk
i −xjk

i−1, g(xjk
i−1) =

∂L(f(j+1)∼l
y (xjk

i−1;θ
(j+1)∼l))

∂xjk
i−1

. To

compute attribution of the rs-th feature component on xjk, we then transform Eq. 8 into:

Ajk
rs =

T∑
i=1

△xjk
i−1
(rs)

⊙ g(xjk
i−1
(rs)

) (10)

From Proposition 2, it can be deduced that if the attribution gradient g(xjk
i−1
(rs)

) of the feature compo-

nent xjk
i−1
(rs)

on the j-th layer and the k-th channel tends to be non-zero, then the feature component

tends to be OOD. Therefore, we need to compute the non-zero density of input sample xjk to obtain
the non-zero expectation. Here, following the conditions set by GAIA-Z, when the label space Y is
relatively small, such as in CIFAR100 (Krizhevsky et al., 2009), we can derive the expectation:

E
[
ϵ|xjk

]
=

1

R× S × T

∣∣∣∣∣
{
xjk
i−1
(rs)

|g(xjk
i−1
(rs)

) ̸= 0

}∣∣∣∣∣ (11)

When the labe space Y is relatively large, such as ImageNet (Deng et al., 2009), it is time-consuming
to calculate the non-zero density for each label in the dataset. Following the conditions set by GAIA-
A, assuming that the network feature extraction function is Ψ(·), we can get the last l-th layer input
xl
i−1 = Ψ(xi−1; θ). Considering the gradient matrix on the l-th layer, k-th channel input sample

xlk
i−1 and the j-th layer, k-th channel input sample xjk

i−1, we get:

7
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▽xjk
i−1 =

∂xlk
i−1

∂xjk
i−1

▽xlk
i−1 =

∂(0.9∗
∑

ym∈Y (log softmax(f l
ym(xlk

i−1;θ
l))))

∂xlk
i−1

(12)

where Y = {ym|ym ∈ Y }. It is worth noting that unlike GAIA, we only take the top-N% outputs
(here top-90%) when integrating the outputs of each label to remove the influence of redundant
channels in the last layer. Then we can get the expectation w.r.t. xjk:

E
[
ϵ|xjk

]
=

∣∣∣ 1
R×S×T

∑T
i=1

∑
Gjk

i−1∈▽xjk
i−1

(Gjk
i−1)

∣∣∣∣∣∣ 1
Rl×Sl×T

∑T
i=1

∑
Glk

i−1∈▽xlk
i−1

(Glk
i−1)

∣∣∣ 1
2

(13)

where Rl and Sl represent the height and width of the last l-th layer input sample, respectively. G
represents a gradient component in the gradient matrix. Finally, we can get the overall OOD score:

τ =

√√√√ l∑
j=1

K∑
k=1

(E [ϵ|xjk])
2 (14)

where K is the maximum number of channels among all l intermediate layers. We use E
[
ϵ|xjk

]
in

Eq. 11 and Eq. 13 respectively at different levels of label space Y . Alg. 1 shows our pseudocode.

Algorithm 1 S & I
Input: Input sample x, model f with parameters θ, number of layers l, number of iterations T ,

number of channels K, image height R, image width S, loss function L, learning rate η.
Output: OOD score τ

1: Initalize : xjk
0 = xjk

2: for i = 1 → T do
3: for j = 1 → l − 1 do
4: Perform adversarial attack by Eq. 9 to get △xjk

i−1 and g(xjk
i−1)

5: Back-propagate adversarial attribution gradients by Eq. 10 or Eq. 12.
6: Calculate E

[
ϵ|xjk

]
by Eq. 11 or Eq. 13 depending on the label space Y = {ym|ym ∈ Y }.

7: Calculate the overall OOD score τ by Eq. 14.
8: end for
9: end for

10: return OOD score τ

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and models: We followed the experimental setup of GAIA (Chen et al., 2023) and con-
ducted extensive experiments. Specifically, on the CIFAR100 benchmark, we used CIFAR10 as ID
datasets (Krizhevsky et al., 2009). We select SVHN (Netzer et al., 2011), TinyImageNet (Liang
et al., 2017), LSUN (Yu et al., 2015), Places (Zhou et al., 2017) and Textures (Cimpoi et al.,
2014) as OOD datasets. The corresponding backbone models are ResNet34 (He et al., 2016) and
WRN40 (Zagoruyko, 2016). On the ImageNet benchmark, we use ImageNet as our ID dataset (Deng
et al., 2009). We also selected iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010),
Places (Zhou et al., 2017) and Textures (Cimpoi et al., 2014) as OOD datasets. The correspond-
ing backbone model is the pre-trained Google BiT-S (Kolesnikov et al., 2020).
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Baselines and evaluation metrics: We selected various post-hoc OOD detection methods as our
baselines. Among them, MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2017), Energy-
based framework (Liu et al., 2020) are output-based methods. ReAct (Sun et al., 2021) and Rank-
feat (Song et al., 2022) are feature representation-based methods. GradNorm (Huang et al., 2021)
and GAIA (Chen et al., 2023) are gradient-based methods. Here GAIA is our main competitive
baseline. We use FPR95 (false positive rate at 95% true positive rate) and AUROC (area under the
receiver operating characteristic curve) as our evaluation metrics (Chen et al., 2023).

Table 1: Experimental result on CIFAR100 benchmark. Here backbone models are ResNet34 and
WRN40. The lower the FPR95, the better the performance, with AUROC behaves inversely. All
values are percentages and the best value is bolded.

SVHN LSUN TinyImageNet Places Textures AVG
Dataset/Model Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 85.69 74.8 83.87 73.7 78.05 77.11 86.4 72.65 82.09 74.79 83.22 74.61
ODIN 86.21 74.13 83.58 72.81 75.21 79.31 87.19 70.61 82 74.76 82.84 74.32
Energy 87.55 73.91 84.38 72.58 73.46 79.83 88.53 70.17 82.54 74.69 83.29 74.24

GradNorm 71.08 62.5 18.99 94.06 68.35 64.57 69.62 53.13 35.56 78.99 52.72 70.65
Rankfeat 92.94 65.55 90.84 70.65 87.46 74.98 90.78 72.68 86.74 73.99 89.75 71.57

React 93.15 80.88 82.3 79.63 73.02 79.88 86.07 77.9 79.01 80.54 80.83 79.77
GAIA 15.73 97.06 33.33 94.18 63.85 89.17 16.78 97.17 15.82 97.09 29.1 94.93

CIFAR100
/ResNet34

Our 15.68 97.06 33.29 94.18 63.71 89.17 16.73 97.17 15.82 97.09 29.05 94.93
MSP 83.27 77.83 82.68 76.92 82.05 75.36 87.07 72.3 84.73 73.53 83.96 75.19
ODIN 83.44 79.85 76.68 80.32 76.91 77.84 85.81 72.5 83.42 74.95 81.25 77.09
Energy 84.58 79.7 76.32 80.45 76.77 77.9 86.13 72.35 83.95 74.83 81.55 77.05

GradNorm 65.2 65.62 55.7 82.81 100 4.55 98.73 14.4 77.78 44.05 79.48 42.29
Rankfeat 99.97 15.4 98.79 34.34 99.04 36.01 99.71 22.18 99.47 22.49 99.4 26.08

React 94.11 67.95 87.02 67.13 88.66 65.39 89.75 64.31 89.91 63.88 89.89 65.73
GAIA 15.19 97.19 37.97 91.59 87.06 73.42 25.64 95.26 27.29 94.05 38.63 90.3

CIFAR100
/WRN40

Our 15.19 97.19 37.95 91.59 87.01 73.42 25.63 95.26 27.27 94.05 38.61 90.3

4.2 EXPERIMENTAL RESULT

Experiments on CIFAR100 benchmark: In Tab. 1, we evaluate the OOD detection performance
of our S & I algorithm and other baselines on the CIFAR100 benchmark. Since CIFAR100 is a small
label space dataset, we use Eq. 11 to obtain the OOD score. Experimental results show that our S &
I algorithm achieves the best performance compared with other post-hoc OOD detection methods.
Specifically, our method achieves the lowest average FPR95 of 29.05% and 38.61% on ResNet34
and WRN40 models, respectively. For the representative output-based method ODIN, our method
achieves 65.15% and 52.47% FPR95 reduction on ResNet34 and WRN40 models, respectively. At
the same time, our method achieves 67.63% and 45.24% FPR95 reduction on the ResNet34 model
compared with the feature representation-based method Rankfeat and gradient-based method Grad-
Norm, respectively. For the AUROC evaluation metric, our method achieved the highest average
AUC of 94.93% on the ResNet34 model. It can be noticed that compared with the main competitive
baseline GAIA, our method did not achieve a particularly large improvement on CIFAR100. We be-
lieve that this is because the feature distinction between classes in small label space datasets is low,
and adversarial attacks may not be able to effectively amplify the difference between ID samples
and OOD samples. For the ImageNet-1K dataset with a large label space, we can use adversarial
attacks to gradually identify OOD samples with high confidence scores, so the improvement is more
obvious. We will verify this in the next subsection.

Experiments on ImageNet benchmark: In Tab. 2, we evaluate the OOD detection performance
of our S & I algorithm and other baselines on the ImageNet benchmark. Since ImageNet is a
large label space dataset, we use Eq. 13 to obtain the OOD score. Experimental results show that
our S & I algorithm achieves the best performance compared with other post-hoc OOD detection
methods. Specifically, our method achieves the lowest average FPR95 of 37.31% on the backbone
model BiT-S model. At the same time, our method also achieves the highest AUROC of 91.84%.
For the representative output-based method ODIN, our method achieves an FPR95 reduction of
48.88%. At the same time, our method achieves an FPR95 reduction of 6% and 31.79% compared
with the feature representation-based method Rankfeat and the gradient-based method GradNorm,
respectively. Notably, compared with the main competitive baseline GAIA, our method obtains a
2.66% FPR95 reduction, demonstrating the excellent performance on large label space datasets.
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Table 2: Experimental result on ImageNet benchmark. Here backbone model is BiT-S. The lower
the FPR95, the better the performance, with AUROC behaves inversely. All values are percentages
and the best value is bolded.
Methods iNaturalist Textures SUN Places AVG

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 63.93 87.57 82.66 74.45 80.24 78.22 81.43 76.71 77.06 79.24
ODIN 62.69 89.36 81.31 76.3 71.67 83.92 76.27 80.67 72.99 82.56
Energy 64.91 88.48 80.87 75.79 65.33 85.32 73.02 81.37 71.03 82.74

GradNorm 50.03 90.33 61.42 81.07 46.48 89.03 60.86 84.82 54.7 86.3
Rankfeat 46.54 81.49 27.88 92.18 38.26 88.34 46.06 89.33 39.69 87.84

React 44.52 91.81 52.71 90.16 62.66 87.83 70.73 76.85 57.66 86.67
GAIA 29.49 93.51 40.46 92.69 34.88 92.42 48.48 88.04 38.33 91.67

Our 28.59 93.67 39.17 92.9 33.78 92.58 47.72 88.21 37.31 91.84

5 RELATED WORK

In this paper, we focus on post-hoc OOD detection methods as they can perform OOD detection after
the model is deployed without retraining the model or accessing the original training data. Among
them, output-based methods rely on the confidence score of the model output to determine whether
the input sample belongs to the training data distribution, which is common in OOD detection based
on the maximum softmax probability (MSP) (Hendrycks & Gimpel, 2016). Liang et al. proposed
the ODIN algorithm, which utilizes temperature scaling and random perturbations to differentiate
the softmax score distributions of ID and OOD samples (Liang et al., 2017). In order to explore the
applicability of ODIN in different scenarios, Hus et al. proposed a confidence score decomposition
approach and an improved input preprocessing approach based on the existing ODIN algorithm (Hsu
et al., 2020). Liu et al. proposed a unified OOD detection framework based on energy scores to re-
place the traditional softmax score, thereby reducing the effect of overconfident output for softmax
scores when inputting OOD samples (Liu et al., 2020). Considering the problem that output-based
methods have poor discrimination effect in high-dimensional feature space, feature representation-
based methods detect OOD samples by capturing structural information in feature space. Sun et al.
proposed the ReAct (Sun et al., 2021) algorithm based on the analysis of the internal activation pat-
tern of the model to reduce the overconfidence of neural networks on OOD samples. By removing
the rank-1 matrix consisting of the largest singular value and its corresponding singular vector in the
feature matrix, Song et al. proposed the Rankfeat (Song et al., 2022) algorithm for OOD detection.
Gradient-based methods are dedicated to analyzing the gradient information of input samples rela-
tive to model parameters (or output of a certain layer) (Huang et al., 2021; Lee & AlRegib, 2020;
Igoe et al., 2022). Chen et al. proposed the state-of-the-art GAIA (Chen et al., 2023) algorithm to
investigate the different representations of attribution gradients (Simonyan, 2013) on ID and OOD
samples for the first time. We further explore the true explanatory pattern representations by layer
splitting and adversarial attribution gradient integration to enhance the accuracy of OOD detection.

6 CONCLUSION

In this paper, we contend that non-zero gradient behaviors of OOD samples lack sufficient differ-
entiation, particularly when ID samples are perturbed by random noise in high-dimensional spaces,
which hampers the accuracy of OOD detection. To tackle this issue, we propose the S & I algo-
rithm. Specifically, we first split the model’s intermediate layers and iteratively update adversarial
examples layer-by-layer. The attribution gradients of each intermediate layer along the attribution
path from adversarial examples to the actual input are integrated to obtain true explanation pattern
representations for ID and OOD samples. Experimental results demonstrate that our S & I algorithm
achieves superior performance compared to SOTA post-hoc OOD detection methods. The results
highlight the effectiveness of S & I algorithm in enhancing the robustness of OOD detection method
in dynamic data environments, paving the way for more secure applications in real-world scenarios.
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