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Abstract

Algorithmic stability is a classical framework for analyzing the generalization1

error of learning algorithms. It predicts that an algorithm is likely to have a2

small generalization error if it is insensitive to small perturbations in the training3

set such as the removal or replacement of a training point. While stability has4

been demonstrated for numerous well-known algorithms, this framework has5

had limited success in analyses of neural networks. In this paper we study the6

algorithmic stability of deep ReLU neural networks that achieve zero training error7

using parameters with the smallest L2 norm, also known as the minimum-norm8

interpolation, a phenomenon that can be observed in overparameterized models9

trained by gradient-based algorithms. We find that such networks are stable when10

they contain a (possibly small) stable sub-network, followed by a layer with a11

low-rank weight matrix. The low-rank assumption is inspired by recent empirical12

and theoretical results which demonstrate that training deep neural networks is13

biased towards low-rank weight matrices, for minimum-norm interpolation and14

weight-decay regularization. Furthermore, we present a series of experiments15

supporting our finding that a trained deep neural network often consists of a stable16

sub-network and several final low-rank layers.17

1 Introduction18

The stochastic gradient descent (SGD) family of algorithms has emerged as the go-to tool for19

training machine learning models on a vast amount of data. While the generalization ability of such20

algorithms is reasonably well-understood when learning involves solving convex or quasi-convex21

optimization problems, the picture is much less clear for non-convex learning problems involving22

overparameterized models, such as that of training a deep neural network. Yet, the empirical23

evidence strongly suggests that the generalization ability of SGD algorithms remains high despite24

overparameterization in non-convex settings. These observations appear to be in conflict with the25

classical learning-theoretic complexity-fit tradeoff viewpoint [Bousquet et al., 2004, Zhang et al.,26

2021].27

In recent years, there has been growing interest in the hypothesis that the favorable generalization28

performance of optimization algorithms can be accounted for by the algorithm’s implicit bias or29

inherent model capacity control. A prominent idea in this setting is that of minimum-complexity30

interpolation, which states that the algorithm finds the simplest solution among those achieving zero31

(or near-zero) training error. While this phenomenon is well established in the context of linear32

regression (e.g. a pseudo-inverse solution to the least-squares problem recovers parameters with a33

minimum L2 norm), the suggestion that it also applies to the training of a deep overparameterized34

ReLU neural networks is only rather recent. In particular, it has been shown theoretically that the35

gradient flow (GF) algorithm (gradient descent can be seen as a discretization of GF) asymptotically36
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fits an interpolating ReLU neural network with the minimum L2 norm of the parameters [Lyu and37

Li, 2019, Ji and Telgarsky, 2020, Phuong and Lampert, 2020]. GF is thought to be a good proxy for38

gradient descent algorithms because the approximation error introduced by discretization remains39

controlled under certain regularity assumptions [Elkabetz and Cohen, 2021]. Recent works have40

attempted to reconcile minimum-norm interpolation with classical generalization theories based on41

the uniform convergence principle such as Rademacher complexity [Bartlett and Mendelson, 2002,42

Bartlett et al., 2017]. Indeed, dimension-free bounds have provided some explanation as to why we43

do not observe overfitting in the absence of label noise [Ji and Telgarsky, 2019, Telgarsky, 2022], and44

observe only benign overfitting otherwise [Tsigler et al., 2020, Koehler et al., 2021, Frei et al., 2023].45

In this paper, we explore the generalization capabilities of minimum-norm interpolating neural46

networks from the alternative viewpoint of algorithmic stability. Stable learning algorithms are47

insensitive to small perturbations (e.g. removal or replacement of data points) of the training set and48

generalize well under mild assumptions [Bousquet and Elisseeff, 2002, Shalev-Shwartz et al., 2010].49

Moreover, stability analysis provides valuable insights beyond generalization, such as controlling the50

variance of the algorithm, which is crucial for uncertainty quantification methods like bootstrapping51

[Elisseeff et al., 2005]. Many algorithms have been shown to be stable, including nonparametric52

predictors (e.g. nearest-neighbors) [Devroye and Wagner, 1979], minimizers of strongly convex53

problems (such as the ridge regression estimator) [Bousquet and Elisseeff, 2002], GD-type algorithms54

minimizing convex and smooth objectives [Hardt et al., 2016, Lei and Ying, 2020], as well as55

quasi-convex objectives [Charles and Papailiopoulos, 2018, Richards and Kuzborskij, 2021].56

Despite these advances, success has so far been limited in the context of neural networks. Although57

several works have analyzed the stability of SGD in the non-convex setting, their results come with58

significant limitations. First, vacuous bounds are typically obtained when the number of training59

steps (or time) far exceeds the sample size, i.e. t ≫ n [Hardt et al., 2016, Kuzborskij and Lampert,60

2018, Richards and Rabbat, 2021, Wang et al., 2023]; at the same time, for a large enough model61

capacity, we expect interpolation to happen when t ≫ n. Second, strong assumptions such as62

Lipschitzness of the loss function in the parameters or penalization of the objective [Hardt et al.,63

2016, Kuzborskij and Lampert, 2018, Farghly and Rebeschini, 2021] are often required. Third, these64

works assume parameter stability, meaning that parameters are expected to remain close (typically in65

the Euclidean distance) if the training set is perturbed slightly; this is often unrealistic in the context66

of neural networks since the same predictor can be expressed using very different parameters thanks67

to symmetries in the weight matrices and because of non-convexity of the objective function. Finally,68

these works focus on optimization aspects, which seldom reveal insight into the structural properties69

of neural networks obtained by stable algorithms.70

Our contributions In this paper, we hypothesize that stability of deep nonlinear networks originates71

in the early layers, and is preserved throughout the subsequent layers. Specifically, we study the72

algorithmic stability of minimum-norm interpolation with deep ReLU neural networks, and identify73

sufficient conditions for stability. In particular, such interpolations of neural networks are stable if74

they contain a contiguous, stable sub-network (for instance, the few first layers), and this sub-network75

is followed by at least one low-rank weight matrix. See Fig. 1 for an illustration.76

For the data-generating process, we assume the existence of a neural network with the same architec-77

ture that can interpolate the data using bounded weights, although not necessarily with the minimal78

norm. This implies a setting where data cannot be arbitrarily complex ensuring that weights of such a79

network remain bounded as the training set grows.80

Our analysis is inspired by recent theoretical and empirical findings suggesting that deep interpolating81

neural networks exhibit a low-rank weight matrix structure [Frei et al., 2022, Timor et al., 2023,82

Galanti et al., 2023]. Thus, the idea behind the proof is to ensure that if a stable sub-network83

exists, the remaining low-rank weight matrices will preserve its stability. Our proof separates the84

concepts of low-rank bias and sub-network stability into distinct phenomena. This separation enables85

isolated analysis, simplifying the study of stability in neural networks to the potentially easier task of86

understanding why stable sub-networks exist. Furthermore, we conduct a series of experiments in87

which we observe that stable prefix sub-networks indeed occur in practice.88

In our analysis we also take a step towards addressing some limitations in the literature discussed89

earlier. Algorithmically, interpolating neural networks studied here can be obtained as solutions90

of a GF and so, unlike previous results, our findings hold for t ≫ n and potentially t → ∞. In91
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Figure 1: A diagram of our main result. Our main result relies on three assumptions: a) the data is
expressible by a network with finite norm (Assumption 1), b) the minimum-norm interpolating ReLU
neural network contains at least one layer with a low stable rank matrix (??) and c) the sub-network
is stable (Hypothesis 1). Under these three assumptions, we show in Theorem 1 that the full network
is also stable.

contrast to existing works, the analysis does not require regularity assumptions such as Lipschitzness92

or smoothness in the parameters.93

2 Preliminaries94

Neural networks. We consider fully-connected neural networks with ReLU activations, L layers95

and uniform width d for hidden layers, no bias, and a real-valued output. In this setting, network96

N : Rd0 → R is defined by weight matrices {Wℓ}1≤ℓ≤L, one matrix per layer, with Wℓ ∈ Rdℓ×dℓ−1 ,97

dℓ = d for each 1 ≤ ℓ ≤ L− 1, and dL = 1. Network N computes its output on an input x ∈ Rd098

by computing a pre-activation vector hℓ and a post-activation vector yℓ for each layer ℓ starting from99

y0 = x as follows, where the activation function ϕℓ is ReLU(x) = max{x, 0} applied to vectors100

element-wise for every layer 1 ≤ ℓ ≤ L− 1 and ϕL is the identity function for layer L:101

hℓ = Wℓ · yℓ−1 yℓ = ϕℓ(hℓ). (1)

We do not explicitly consider the bias term, however it can be modelled by appending 1 to yℓ−1.102

The network’s output N(x) is given by yL ∈ R and the weights WL are referred to as the readout103

weights. The collection of all parameters is denoted as θ, and we note N(·) = N( · ; θ) to emphasize104

the dependency in the parameters. Network N is an instance of a neural architecture A = ⟨L, d, d0⟩105

determined by the number of layers L, the width d of the hidden layers and the input dimension d0.106

In the following we use notation N1:k−1 : Rd0 → Rdk−1 to denote a neural network with parameters107

{Wℓ}1≤ℓ≤k−1 obtained from N by removing all layers with ℓ > k − 1.108

A useful property of ReLU is positive homogeneity: ReLU(αx) = αReLU(x) for each x ∈ R and109

α ≥ 0. In particular, we have N(αx; θ) = αN(x; θ) and N(x; αθ) = αL N(x; θ).110

Stable rank. The Frobenius norm of a matrix A ∈ Rp×q with singular values sj for 1 ≤ j ≤111

min(p, q) is given by ∥A∥F = (
∑

j s
2
j )

1
2 . The spectral norm of A, that is ∥A∥2 is given by the largest112

absolute value of its singular values. The stable rank of matrix A is defined as S(A) = ∥A∥F /∥A∥2.113

In particular, matrix A has stable rank 1 if and only if its rank (defined in the usual way) is also one114

[Tropp, 2015]; in this case, its singular value with largest absolute value is also the only non-zero115

singular value. We will sometimes refer to the Frobenius norm of a neural network N as that of the116

matrix obtained by concatenating all weight matrices of N .117

Training set. A training set (X,y) consists of n examples (xi, yi) sampled i.i.d. from an unknown118

distribution p on X × {−1,+1} where the input space X is an Euclidean ball of radius one. Fur-119

thermore, we denote by (X(j),y(j)) the training dataset obtained from (X,y) by re-sampling j-th120

example according to p independently and we note (x(j), y(j)) the new sample. Finally, we say that121

N interpolates (X,y) if N(xi) = yi for each i ∈ [n].122
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Minimum-norm interpolating neural network. Given a neural architecture A = ⟨L, d, d0⟩ and a123

training set (X,y), we assume that we have access to an algorithm T which returns the parameters124

of a minimum-norm interpolating neural network instantiating A. We then denote125

T (X,y) = argmin
θ

{
∥θ∥2 : ∀i ∈ [n] N(xi; θ) = yi

}
.

Finally, we denote the parameters obtained by algorithm T as θ̂ = T (X,y).126

Training to interpolation and minimum-norm solutions are common assumptions which represent127

idealized views of gradient-based training algorithms (in particular with weight decay) [Timor et al.,128

2023, Galanti et al., 2023]. For example, in the limit of infinite training time, gradient flow on ReLU129

networks converges to a minimum-norm interpolant [Lyu and Li, 2019, Ji and Telgarsky, 2020].130

Algorithmic stability. Algorithm A is β-uniformly ϵ-stable [Kutin and Niyogi, 2002] with respect131

to a data distribution p if, for each training set (X,y) sampled from p, the following holds for i ∈ [n],132

where θ̂ = A(X,y) and θ̂(i) = A(X(i),y(i)):133

P
(∣∣∣N(x; θ̂)−N(x; θ̂(i))

∣∣∣ ≤ ϵ
)
≥ 1− β

where P() is taken with respect to the jointly distributed (X,y,x(i), y(i),x, y).134

This notion of stability is weaker than the well-known notion of ϵ-uniform stability [Bousquet and135

Elisseeff, 2002]: supX,y,x,y,i |N(x; θ̂)−N(x; θ̂(i))| ≤ ϵ, however both coincide for β = 0 almost136

surely. Often, we will say that the algorithm is stable when for a fixed β, ϵ = On→∞(n−α) for some137

α > 0. We will occasionally abuse terminology and speak of a stable minimum-norm interpolating138

neural network N( · ; θ̂), meaning that algorithm T generating θ̂ is stable.139

Stability implies generalization. Let f : R2 → [0,M ] be a fixed known loss function. Then140

the risk and the empirical risk of the predictor parameterized by θ are respectively defined as141

R(θ) =
∫
f(N(x; θ), y) dp(x, y) and R̂(θ) = 1

n

∑n
i=1 f(N(xi; θ), yi). It is known that if θ̂ is142

generated by an ϵ-uniformly-stable algorithm A, there exist universal constants c1, c2 > 0 such that143

for any δ ∈ (0, 1) [Feldman and Vondrak, 2018, Bousquet et al., 2020],144

P

(
|R(θ̂)− R̂(θ̂)| ≤ c1 ln(n) ln(1/δ) ϵ+ c2 M

√
ln(1/δ)

n

)
≥ 1− δ . (2)

Hence, the gap between the population loss and empirical loss is controlled with high probability as145

long as the algorithm is stable.146

3 From sub-network stability to prediction stability147

In this section, we present our main result and discuss its implications. Our results depend on one148

technical assumption and one main hypothesis, which we introduce next. The first assumption149

concerns the complexity of the learning problem [Timor et al., 2023]:150

Assumption 1 (B-admissible training set). Given a finite B > 0, we call a training set B-admissible151

if there exists a neural network N of architecture ⟨L∗, d, d0⟩ for some L∗ ≥ 2 with parameters θ∗152

such that N(xi; θ
∗) = yi for i ∈ [n] and its weight matrices satisfy maxk ∥W∗

k∥F ≤ B.153

Under this assumption, the training set can be viewed as generated by a hypothetical teacher network154

whose weight matrices have bounded norms. Note that Assumption 1 is only meaningful in learning155

scenarios where data cannot be arbitrarily complex (otherwise, one can construct instances such that156

B → ∞ as n → ∞).157

We next define our notion of sub-network.158

Definition 1 (Sub-network). Given 2 ≤ k ≤ L− 1, consider the following decomposition of weight159

matrix Wk ∈ Rd×d: Wk = λkukvk
⊤ + W′

k where λk > 0 is the leading eigenvalue of Wk,160

uk,vk are unitary vectors, uk is the leading eigenvector of Wk and vk is the leading eigenvector of161

WT
k . Then, a sub-network at position k is defined as162

fk(x; θ) := v⊤
k N

1:k−1(x; θ) . (3)
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Invoking the recent results from Timor et al. [2023], it is easy to see that under Assumption 1, a163

trained deep network contains at least one layer with low stable rank.164

Lemma 1. Suppose that datasets are B-admissible according to Assumption 1. Given a > 0 and165

ϵ = M/n−α, for some M ≥ 0, α > 0, there exists L > L∗ and 1 ≤ k ≤ L − 1 such that with166

parameters θ̂ generated by algorithm T for architecture A = ⟨L, d, d0⟩, the following holds:167

S(Ŵk) ≤ 1 + a ϵ . (4)

Finally, we state our main hypothesis, namely the existence of a stable sub-network.168

Hypothesis 1 (β-uniformly ϵ-stable sub-network). Given β ∈ [0, 1] and ϵ = M/n−α, for some169

M ≥ 0, α > 0, and L > L∗, there exists 2 ≤ k ≤ L − 1 such that with parameters θ̂ and θ̂(i)170

generated by algorithm T for architecture A = ⟨L, d, d0⟩, the following holds:171

P
(∣∣∣fk(x; θ̂)− fk(x; θ̂

(i))
∣∣∣ ≤ ϵ

)
≥ 1− β .

In support of this hypothesis, we present empirical evidence in Figures 2 and 3: trained FCNs contain172

sub-networks whose stability is on par with that of the full network.173

Now we present our main result (a complete statement is given in Theorem 1):174

Main result (sketch). Let a > 0 and ϵ = n−α for some α > 0 and suppose that there exist175

(B, k, L, β) such that Assumption 1, and Hypothesis 1 are satisfied. Then, assuming that sample176

size satisfies n = Ω(max(aBL, BL−k+1)), there is a universal constant C > 0 such that T is177

β-uniformly178

C
(
1 +B2L−k+1 + aB3L−k+1

)
ϵ — stable .

The main implication of the above result is that the stability of the entire minimum-norm interpolating179

neural network is controlled by the stability of its sub-network. This fact is non-trivial: since θ̂ and180

θ̂(i) are different (thus in particular the deeper layers Ŵk+1, ...,ŴL and Ŵ
(i)
k+1, ...,Ŵ

(i)
L ), there is181

no a priori reason to believe that they would preserve any stability that originates in early layers.182

The proof requires the key observation that the stable sub-network is followed by a layer with a183

weight matrix of a low stable rank, which will preserve the signal as it propapagates into deeper184

layers. While this assumption might initially seem strong, we observe it to hold in practice (Fig. 2).185

Furthermore, recently Timor et al. [2023] showed that the stable rank decays roughly at the rate B
L
k .1186

In our case, the stable rank decay rate is assumed to be a ϵ with a free parameter a ≥ 0.187

Note that while the overall stability scales linearly with the stability of the sub-network, the bound188

is attenuated by a B-dependent factor. One extreme (pessimistic) case is a ≫ 0, that is when189

weight matrices are sufficiently far from rank-one. Then, the factor in the worst case becomes190

of order B3L. Intuitively, this occurs because, learning all perturbation matrices (Wϵ
k)k (see ??)191

becomes unavoidable. In another extreme case of rank-one matrices and a shallow stable sub-network192

(a = 0, k = 2), we have an overall stability bound of order B2Lϵ.193

In a more optimistic scenario, a is sufficiently small such that weight matrices have a stable-rank close194

to one. In this case we have a dominant factor B2L−k+1, which captures the cost of training a neural195

network that is deeper than the sub-network. In particular, observe that the deeper the stable sub-196

network is (increasing k), the smaller the cost. For a deep stable sub-network (k = L− 1), we reach197

a factor BL which is similar to dimension-free analysis of deep ReLU neural networks [Golowich198

et al., 2018].199

Finally, in Figure 3, we provide some empirical validation of our main hypothesis and our main200

result by showing that the prediction stability of the entire network is roughly of the same order (with201

respect to n) as that of the sub-network stability: this is captured by similar slopes in the log-scale,202

which corresponds to −α in ϵ = n−α assumption.203

4 Conclusions, limitations, and future work204

In this work, we have studied sufficient conditions for algorithmic stability in minimum-norm205

interpolating deep ReLU neural networks. This study opens up several interesting avenues for future206

1In fact, they showed a slightly stronger upper bound on the harmonic mean: k∑k
j=1(1/S(Ŵj))

≤ B
L
k .
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Figure 2: Stability of sub-networks and stable rank of the layers. We trained an 8-layer FCN on a
uniformly drawn 104 MNIST sample by minimizing a mean square error (MSE) loss to near zero,
classifying the first 5 classes as −1 and others as 1. We performed multiple trials, where each trial is
with identical initialization and a different portion of the training set is replaced for each trial. The
error bars are 1 standard deviation of the trial. Using the models, we measured the sign stability (left),
i.e. |sign(fk(x; θ̂)) − sign(fk(x; θ̂

(i)))|, stability (middle), and the stable rank of weight matrix
(right) for each sub-network fk for 2 ≤ k ≤ 7. The horizontal dotted lines are the (sign) stability of
the full network. For the details of the experiment, link to our code, and additional experiments on
Fashion-MNIST, see Appendix E.
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Figure 3: Stability as a function of number of data points We followed the same setting as in
Fig. 2 while varying training data set sizes. Both the sign stability (left) and stability (middle) of
sub-networks (blue and orange) decay at a rate similar to that of the full network (green). The stable
rank of weight matrices (right) also decreases as a function of n, suggesting that ?? holds in the large
n limit. Observe that the slopes for the sub-networks and the full network are similar which validates
that the respective stabilities have the same dependency in n (Theorem 1).

research. One of the sufficient conditions we examined is the existence of a stable sub-network, which207

we did not prove theoretically and which remains an open question. In related areas, such as the208

lottery ticket hypothesis, the existence of a well-performing sub-network has been shown theoretically,209

which might inspire the use of similar techniques to prove the existence of a stable sub-network.210

Finally, an interesting open question is bridging the gap between the stability of minimum-norm211

interpolation in neural networks under GF and actual optimization algorithms, such as SGD. While212

there are several promising directions, a complete picture incorporating stability analysis might213

require additional arguments [Poggio et al., 2020, Elkabetz and Cohen, 2021].214

One possible limitation of our analysis is that the stability bound involves a B-dependent factor which215

scales as B2L−k+1 in the best case. For the case k = L− 1, it might be possible to achieve a better216

factor BL which would be in line with Rademacher complexity analysis [Golowich et al., 2018].217

Even though we empirically validate that our assumptions hold for bias-free FCNs trained on some218

datasets, whether the condition holds in larger architectures trained on more complex datasets requires219

more empirical exploration. In the future, we aim to extend our results to more complex scenarios220

and empirically explore the limit in which deep neural networks satisfy our assumptions.221
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A Applications of the main result.335

The stability bound we presented can also used in some applications. In particular, when combined336

with Eq. (2), it implies a high-probability bound on the generalization error:337

|R(θ̂)− R̂(θ̂)| = Õ
((

1 +B2L−k+1 + aB3L−k+1
)
ϵ+

1√
n

)
.

Under assumption ϵ = n−α for α > 0, the generalization error converges 0 as n → ∞ in probability.338

Finally, the stability bound can also be used to give a bound on the variance of a trained neural339

network, which is not normally achievable through the uniform convergence bounds. Controlling the340

variance of trained predictors is interesting in the context of uncertainty quantification (e.g., through341

ensembling, as discussed in [Elisseeff et al., 2005]). In particular, Efron-Stein inequality [Boucheron342

et al., 2013] implies that343

Var(N(θ̂)) ≤ C2

2

(
1 +B2L−k+1 + aB3L−k+1

)2
n ϵ2 .

Once again, assuming ϵ = n−α it turns out that the variance converges to 0 asymptotically only if344

α > 1/2, that is when sub-network is very stable with ϵ < 1/
√
n.345

B Proof of the main result346

Theorem 1. Suppose that datasets are B-admissible according to Assumption 1. Let ϵ = M/n−α,347

for some M ≥ 0, α > 0 and let a > 0, consider L > L′ and 2 ≤ k ≤ L− 1 that satisfy (4). Suppose348

that the sub-network is β-uniformly ϵ-stable according to Hypothesis 1. Then, assuming that the349

sample size satisfies n ≥ max
(
a · 2MBL, 4MBL−k+1

) 1
α , T is β-uniformly ϵ′-prediction stable350

with351

ϵ′ = (1 + 8B2L−k+1) ϵ+ 2a
(
BL +B2L−k+1ϵ+ 4B3L−k+1

)
ϵ .

The proof relies on Lemmas 1, 2 and 3, shown Appendix D. First, we discuss high-level proof ideas.352

Some proof ideas For simplicity consider a rank-one case (a = 0). The key Lemma 2 shows353

that if a deep ReLU network interpolates the data, then the prediction done at the rank-one layer354

is maintained throughout the rest of the layers. Consider a decomposition Wk = λkukv
⊤
k , where355

vk defines a hyperplane which separates inputs in the feature space of the previous layer given by356

N1:k−1( · , θ̂). Then, multiplication by λkuk and the propagation through all subsequent layers is just357

a rescaling of the predictions to fit the labels. In other words, the sign of fk(x) = v⊤
k N

1:k−1(x, θ̂)358

for each x already determines the final output and the prediction is done at the sub-network level (see359

Fig. 6 in Appendix E for further discussion).360

Next, in Lemma 3, we show that if a deep ReLU network is a minimum-norm interpolant of the361

data, the intermediate prediction of data points at the sub-network level must have substantial margin362

γ. Intuitively, if the margin were infinitesimally small, this would require a large contribution in363

(one of the weights of) the subsequent layers to compensate and yield an output of order 1, which is364

forbidden by the fact that the network has minimum norm.365

Lemma 2. Suppose that there exist k ≤ L−1 and ϵ ≥ 0 that satisfy ??. Then, there exists a bounded366

function b( · ; θ), and C+
θ , C+

θ > 0 (independent from the input), such that, for all x ∈ Rd0 the367

following is true:368

1. If fk(x; θ) > 0, then N(x) + b(x; θ) · ϵ = C+
θ · fk(x; θ) .369

2. If fk(x; θ) ≤ 0, then N(x) + b(x; θ) · ϵ = C−
θ · fk(x; θ) .370

3. For all x ∈ Rd0 , |b(x; θ)| ≤ a
(∏L

j=1 ∥Wj∥2
)

.371

4.
∥∥Wϵ

k N1:k−1(x)
∥∥ ≤ a ϵ

∏k
j=1 ∥Wj∥2 .372
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Lemma 3. Suppose that datasets are B-admissible according to Assumption 1. Suppose that there373

exist k ≤ L − 1 and ϵ = M/n−α, for some M ≥ 0, α > 0, that satisfy ??. Let θ̂ = T (X,y) and374

θ̂(i) = T (X(i),y(i)) and assume that |yi| ≥ 1 for all i ∈ [n]. Then, assuming that the sample size375

satisfies n ≥
(
2 ·M · a ·BL

) 1
α , for any γ ≤ 1/(2 ·BL−k+1), and µ ≥ Bk−1,376

γ ≤
∣∣∣fk(xi; θ̂) · yi

∣∣∣ ≤ µ (∀i ∈ [n]).

Proof of Theorem 1. In the following let (x, y) be the point replacing the ith example in the training377

set (X,y) and so by interpolation we have y = N(x; θ̂(i)).378

By Lemma 2 there exist Cθ̂, Cθ̂(i) independent from the input and b( · ; θ̂), b( · ; θ̂(i)) such that379

N(x; θ̂) + b(x; θ̂) · ϵ = Cθ̂ · fk(x; θ̂) , N(x; θ̂(i)) + b(x; θ̂(i)) · ϵ = Cθ̂(i) · fk(x; θ̂(i)) . (5)
Observe that,380 ∣∣∣N(x; θ̂)−N(x; θ̂(i))

∣∣∣− ∣∣∣(b(x; θ̂)− b(x; θ̂(i))
)
· ϵ
∣∣∣

≤
∣∣∣N(x; θ̂)−N(x; θ̂(i)) + (b(x; θ̂)− b(x; θ̂(i))) · ϵ

∣∣∣
≤
∣∣∣Cθ̂ · fk(x; θ̂)− Cθ̂ · fk(x; θ̂

(i))
∣∣∣+ ∣∣∣Cθ̂ · fk(x; θ̂

(i))− Cθ̂(i) · fk(x; θ̂(i))
∣∣∣

≤
∣∣Cθ̂

∣∣ · ∣∣∣fk(x; θ̂)− fk(x; θ̂
(i))
∣∣∣+ ∣∣∣fk(x; θ̂(i))∣∣∣ · ∣∣Cθ̂ − Cθ̂(i)

∣∣
≤
∣∣Cθ̂

∣∣ · ϵ+ ∣∣∣fk(x; θ̂(i))∣∣∣ · ∣∣Cθ̂ − Cθ̂(i)

∣∣ (By sub-network stability assumption)

≤
∣∣Cθ̂

∣∣ · ϵ+ µ ·
∣∣Cθ̂ − Cθ̂(i)

∣∣ . (By Lemma 3)
First note that by Lemma 2,381

|b(x; θ̂)| ≤ a

L∏
j=1

∥Ŵj∥2 ≤ aBL =: b

where ∥Ŵj∥2 ≤ B comes as in the first part of the proof of Lemma 3. Similarly, |b(x; θ̂(i))| ≤ b.382

Then,383 ∣∣∣(b(x; θ̂)− b(x; θ̂(i))
)
· ϵ
∣∣∣ ≤ 2 a ϵBL .

Now, the idea is to use Eq. (5) to control |Cθ̂| and to control |Cθ̂ − Cθ̂(i) | in terms of difference of384

sub-network predictions and invoke sub-network stability once again. W.l.o.g., let i ̸= 1 and so385

Cθ̂ =
N(x1; θ̂) + b(x1; θ̂) · ϵ

fk(x1; θ̂)
=

y1 + b(x1; θ̂) · ϵ
fk(x1; θ̂)

,

Cθ̂(i) =
N(x1; θ̂

(i)) + b(x1; θ̂
(i)) · ϵ

fk(x1; θ̂(i))
=

y1 + b(x1; θ̂
(i)) · ϵ

fk(x1; θ̂(i))
.

So, by Lemma 2 and Lemma 3 (with γ defined therein),386

|Cθ̂| ≤
|y1|+ b · ϵ
|fk(x1; θ̂)|

≤ |y1|+ b · ϵ
γ

.

Now we turn our attention to the gap:387 ∣∣Cθ̂ − Cθ̂(i)

∣∣ = ∣∣∣∣∣y1 + b(x1; θ̂) · ϵ
fk(x1; θ̂)

− y1 + b(x1; θ̂
(i)) · ϵ

fk(x1; θ̂(i))

∣∣∣∣∣
≤ |y1|

∣∣∣∣∣fk(x1; θ̂)− fk(x1; θ̂
(i))

fk(x1; θ̂) · fk(x1; θ̂(i))

∣∣∣∣∣+
∣∣∣∣∣ b(x1; θ̂)

fk(x1; θ̂)
− b(x1; θ̂

(i))

fk(x1; θ̂(i))

∣∣∣∣∣ · ϵ
(a)

≤ |y1| · ϵ∣∣∣fk(x1; θ̂) · fk(x1; θ̂(i))
∣∣∣ + b · ϵ∣∣∣fk(x1; θ̂) · fk(x1; θ̂(i))

∣∣∣
(b)

≤ 2 (|y1|+ b) ϵ

(γ − ϵ)2+ + γ2 − ϵ2
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where in step (a) we used the assumption that sub-network is ϵ-stable and Lemma 2, while step (b)388

amounts to lower-bounding the denominator, and deferred till the end of the proof.389

Putting all together we have390 ∣∣∣N(x; θ̂)−N(x; θ̂(i))
∣∣∣ ≤ 2 · b · ϵ+ 1 + b · ϵ

γ
· ϵ+ µ · 2 (1 + b) ϵ

(γ − ϵ)2+ + γ2 − ϵ2
.

Now, let’s require ϵ ≤ γ/2: By assumption we have that ϵ = (M/n)α and so our requirement is391

equivalent to n ≥ ((2M)/γ)
1
α . In overall, this gives392 ∣∣∣N(x; θ̂)−N(x; θ̂(i))

∣∣∣ ≤ (2b+ 1)ϵ+
b

γ
ϵ2 + 2 (1 + b)

µ

γ2
ϵ .

We conclude by using the bounds on γ and µ in Lemma 3, and the one on b which comes by Lemma 2.393

Proof of step (b) By Lemma 3 we have that
∣∣∣fk(x; θ̂(i))∣∣∣ ≥ γ. Now, given the above, the fact that394

the sub-network is ϵ-stable, and triangle inequality we have395

ϵ ≥
∣∣∣fk(x; θ̂)− fk(x; θ̂

(i))
∣∣∣ ≥ ∣∣∣fk(x; θ̂(i))∣∣∣− ∣∣∣fk(x; θ̂)∣∣∣ ≥ γ −

∣∣∣fk(x; θ̂)∣∣∣ .
This gives396 (

fk(x; θ̂)− fk(x; θ̂
(i))
)2

≤ ϵ2

⇐⇒ fk(x; θ̂)
2 + fk(x; θ̂

(i))2 − ϵ2 ≤ 2 fk(x; θ̂) · fk(x; θ̂(i))

=⇒
(γ − ϵ)2+ + γ2 − ϵ2

2
≤ fk(x; θ̂) · fk(x; θ̂(i)) .

397

C Additional related work398

Algorithmic stability The stability of interpolating kernel least-squares has been studied by399

Rangamani et al. [2023] who established a connection to stability of the pseudo-inverse, which400

is indeed a minimum-norm interpolation, and which is in turn controlled by the smallest non-zero401

eigenvalue of the kernel matrix. In this paper we look into a rather different setting of interpolation402

with neural networks rather than kernel machines, and provide sufficient conditions for such stability.403

Recently, Schliserman and Koren [2022] analyzed the performance of gradient descent type methods404

on convex learning problems given linearly separable data. The setting of our paper can be interpreted405

as noise-free labels and so in case of classification, we have separability as well, however the decision406

boundary can be non-linear (as we can conclude from Assumption 1).407

Neural collapse Recently, a phenomenon called neural collapse (NC) [Papyan et al., 2020, Han408

et al., 2021] has been observed where the post-activations (and weights of a final layer) of a well-409

trained neural network, appear to be clustered in a low-dimensional subspace. Theoretical studies on410

the cause of NC mostly rely on unconstrained feature models [Fang et al., 2021, Mixon et al., 2022]411

where the product of two matrices is trained under gradient flow: the two matrices train to a low-rank412

structure where their ranks equal the dimension of the outputs.413

Lottery ticket hypothesis The existence of a small good neural network within a large deep neural414

network has been proposed before as a prominent hypothesis in neural network learning. In particular415

the lottery ticket hypothesis [Frankle and Carbin, 2018] posits that deep neural networks contain416

small sub-networks which could be trained in isolation and lead to comparable performance, and that417

these sub-networks happen to be favored by standard initializations The lottery ticket hypothesis has418

however only been analyzed in some restricted settings [Frankle et al., 2020, Malach et al., 2020,419

Orseau et al., 2020, Sakamoto and Sato, 2022]. It is still an active area of theoretical research. In this420

paper we explore a related concept, where the quality of the sub-network is captured by its stability,421

which establishes a link to analysis of the generalization error.422
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D Omitted proofs423

D.1 Proof of Lemma 1424

Invoking Theorem 4 in Timor et al. [2023], we have that θ̂ obtained by algorihtm T for architecture425

A = ⟨L, d, d0⟩ verifies:426

L∑L
k=1

(
S(Ŵk))

)−1 ≤ B
L∗
L

thus427

1

L

L∑
k=1

(
S(Ŵk))

)−1

≥ 1

B
L∗
L

Since the quantity on the left is an average, there must exist 1 ≤ k ≤ L such that428 (
S(Ŵk))

)−1

≥ 1

B
L∗
L

(6)

thus429

S(Ŵk)) ≤ B
L∗
L .

By setting L ≥ L∗ log(B)
log(1+a·ϵ) , we ensure that:430

S(Ŵk)) ≤ 1 + a · ϵ .

We note Ŵk = λkukv
T
k + Ŵϵ

k its decomposition following Definition 1.431

D.2 Proof of Lemma 2432

Throughout the proof we drop dependence on θ, e.g. N(x) ≡ N(x; θ).433

Introduce434

b(x) :=
1

ϵ
·
(
Nk+1:L

(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))

−N(x)
)

and we can thus write:435

N(x) + b(x) · ϵ = Nk+1:L
(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))

.

Showing statement 1. First consider the case when v⊤
k N

1:k−1(x) > 0. Now, using the fact that436

ReLU is positively-homogeneous,437

ReLU
(
λkukv

⊤
k N

1:k−1(x)
)
= v⊤

k N
1:k−1(x) · ReLU(λkuk)

Therefore, using positive-homogeneity once again,438

N(x) = Nk+1:L
(
v⊤
k N

1:k−1(x) · ReLU(λkuk)
)
− b(x) · ϵ

= v⊤
k N

1:k−1(x) ·Nk+1:L (ReLU(λkuk))︸ ︷︷ ︸
C+

− b(x) · ϵ

where we note that C+ can take a different sign since C+ = W⊤
LN

k+1:L−1 (ReLU(λkuk)).439

Showing statement 2. Now, considering an alternative case v⊤
k N

1:k−1(x) ≤ 0, positive-440

homogeneity once again gives441

ReLU
(
λkukv

⊤
k N

1:k−1(x)
)
= −v⊤

k N
1:k−1(x) · ReLU(−λkuk)

and so442

N(x) = Nk+1:L
(
−v⊤

k N
1:k−1(x) · ReLU(−λkuk)

)
− b(x) · ϵ

= v⊤
k N

1:k−1(x) ·
(
−Nk+1:L (ReLU(−λkuk))

)︸ ︷︷ ︸
C−

−b(x) · ϵ .
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Showing statement 3 and 4. It suffices to prove that for any input x ∈ Rd0 ,443 ∣∣N(x)−Nk+1:L
(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))∣∣ ≤ a ϵBL .

By 1-Lipschitzness of ReLU, we have:444

∥ReLU
(
Wk N1:k−1(x)

)
− ReLU

(
λkukv

⊤
k N

1:k−1(x)
)
∥

≤ ∥Wϵ
k N1:k−1(x)∥

≤ ∥Wϵ
k∥F ∥N1:k−1(x)∥

≤ a ϵ ∥Wk∥F ∥N1:k−1(x)∥ .

where the last inequality comes by the following observation:445

S(Wk) ≤ 1 + a ϵ =⇒ ∥Wϵ
k∥F ≤ a ϵ ∥Wk∥F .

At the same time, note that by 1-Lipschitzness of ReLU, and Cauchy-Schwartz inequality we have446

that for any z, z′ ∈ Rdk ,447

|Nk+1:L(z)−Nk+1:L(z′)| ≤ ∥z− z′∥
L∏

j=k+1

∥Wj∥F .

Combining the above we have448 ∣∣N(x)−Nk+1:L
(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))∣∣

=
∣∣Nk+1:L

(
ReLU

(
Wk N1:k−1(x)

))
−Nk+1:L

(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))∣∣

≤

 L∏
j=k

∥Wj∥F

 · a · ϵ ∥N1:k−1(x)∥

≤

 L∏
j=1

∥Wj∥F

 · a · ϵ

where the last inequality comes by Cauchy-Schwartz inequality, realizing that ReLU(|x|) = |x|, and449

the fact that ∥x∥ ≤ 1. □450

D.3 Proof of Lemma 3451

We will require the following:452

Lemma 4 (Timor et al. [2023, Lemma 14]). Let θ̂ = T (X,y). Then, for every 1 ≤ i < j ≤ L we453

have ∥Ŵi∥F = ∥Ŵj∥F .454

First, notice that N(·, θ̂) is a minimum-norm interpolant and so Lemma 4, ≤ e
k−1
2 BL−k+1. the455

weight matrices Ŵℓ have the same norm and thus verify:456

∥Ŵℓ∥2F =
1

L

L∑
ℓ=1

∥Ŵℓ∥2F ≤ 1

L

L∑
ℓ=1

∥W∗
ℓ∥2F ≤ 1

L
· L ·B2

which gives us ∥Ŵℓ∥F ≤ B.457

Proof of a lower bound. Using the fact that N(xi; θ̂) = yi and assumption that |yi| ≥ 1 for each458

i, we have:459

1 ≤ |yi| = |N(xi; θ̂)|

=
∣∣∣Nk+1:L

(
ReLU

(
λ̂kûkv̂

⊤
k N1:k−1(x) + Ŵϵ

k N
1:k−1(x)

))∣∣∣
(a)

≤
∣∣∣ReLU(λ̂kûkv̂

⊤
k N1:k−1(x) + Ŵϵ

k N1:k−1(x)
)∣∣∣ L∏

ℓ=k+1

∥Ŵℓ∥2

(b)

≤
(∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ∥ûk∥|λ̂k|+
∥∥∥Ŵϵ

k N
1:k−1(xi; θ̂)

∥∥∥) L∏
ℓ=k+1

∥Ŵℓ∥F
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where steps (a), (b) comes by the Cauchy-Schwartz inequality and the fact that ReLU(|x|) = |x|.460

Thus,461

1

BL−k
≤
∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ∥ûk∥|λ̂k|+
∥∥∥Ŵϵ

k N
1:k−1(xi; θ̂)

∥∥∥ (7)

Furthermore by Lemma 2,462 ∥∥∥Ŵϵ
k N

1:k−1(xi; θ̂)
∥∥∥ ≤ a ϵ

k∏
j=1

∥Wϵ
k∥2 ≤ a ϵBk .

By assumption of the Lemma we have n ≥
(
2M aBL

) 1
α , and therefore ϵ = M

nα ≤ 1
2·a·BL , which463

gives us that:464 ∥∥∥Ŵϵ
k N

1:k−1(xi; θ̂)
∥∥∥ ≤ 1

2BL−k
.

Plugged into Eq. (7), and using the fact that |λ̂k| ≤ ∥Ŵk∥2 ≤ ∥Ŵk∥F ≤ B and using that ∥ûk∥ = 1,465

we have:466 ∣∣∣v̂⊤
k N

1:k−1(xi; θ̂)
∣∣∣ ≥ 1

2BL−k+1
.

Proof of an upper bound. Similarly, using the Cauchy-Schwartz inequality,467

|fk(x; θ̂)| =
∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ≤ ∥v̂k∥∥xi∥
k−1∏
ℓ=1

∥Ŵℓ∥F ≤ Bk−1 .

□468

E Experiments469

Code The code for our experiment is available at https://anonymous.4open.science/r/470

stability_min_norm_neurips2024471

Dataset We used binarized MNIST [LeCun et al., 1998] and Fashion-MNIST [Xiao et al., 2017]472

datasets where we assigned target value −1 for the first 5 classes and 1 for all other classes. The473

images were flattened to 1-dimensional vectors.474

Architecture For the experiment, we used a bias-free FCN with a width of 100 and a depth of475

8. The model had a scalar output, in which MSE loss was used to classify between labels with476

output values −1 (first 5 classes) and 1 (latter 5 classes). The weight matrix Wk was initialized with477

Gaussian distribution with standard deviation 1/
√

Nk−1.478

Training All models were trained with Adam [Kingma and Ba, 2015] at a learning rate of 0.001479

until it reached over 99% training accuracy. We used a weight decay of 0.005 to obtain a minimum480

norm solution. At epochs 60 and 120, we divided the learning rate and weight decay by 5.481

Stability To calculate the stability, we prepared 5 models with identical architectures and initial-482

ization trained on 10, 000 mutually exclusive data points from MNIST. For all models, we perform483

SVD on the weight matrix of the kth layer (Wk) to obtain the largest right eigenvector vk and the484

subnetwork fk (Eq. (3)). Because the output of subnetworks can vary up to a scale, we normalize the485

subnetwork such that
∑

x∈TEST fk(x; θ
(i))2 = 1.486

The stability was measured by the absolute difference of the fk on the test set.2487

Stability ≈ 1

4

5∑
i=2

∑
x∈TEST

|fk(x; θ(1))− fk(x; θ
(i))|.

2The empirical vk may contain a global sign difference; we took the smallest stability obtained from −vk
and vk.
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Figure 4: Stability of subnetworks and stable rank of the layers (Fashion-MNIST). We repeat the
experiment of Fig. 2, but on Fashion-MNIST dataset. In agreement with the experiment for MNIST,
FCN contains stable subnetwork and low-rank layers.
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Figure 5: Stability as a function of data points (Fashion-MNIST) We repeat the experiment of
Fig. 3, but on Fashion-MNIST dataset. As n increases, the stability of the subnetwork f6 (orange) is
similar to the stability of the whole network (green) and the stable rank of W6 also converges to 1.

Likewise, the sign stability was assessed by the occurrences of identical labels.488

Sign stability :=
1

4

5∑
i=2

∑
x∈TEST

|sign(fk(x; θ(1)))− sign(fk(x; θ
(i)))|.

Computing resource Our experiments require a few minutes to 2 hours of training on a GPU489

(RTX 3070 8GB) depending on the number of data points. All experiments require less than 3 GB490

of memory. Experiments with a few data points were trained on CPU cluster which contains the491

following CPUs: Intel(R) Core(TM) i5-7500, i7-9700K, i7-8700; and Intel(R) Xeon(R) Silver 4214R,492

Gold 5220R, Silver 4310, Gold 6226R, E5-2650 v2, E5-2660 v3, E5-2640 v4, Gold 5120, Gold 6132.493

E.1 Additional experiments494

In Figs. 4 and 5, we repeat the experiments for Figs. 2 and 3 for Fashion-MNIST and obtain equivalent495

results. In Fig. 6, we plot the performance of the sub-networks in Fig. 4.496
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Figure 6: Layer compression. Using the models trained for Fig. 2, we send the output of the kth

layer to an auxiliary linear layer, which is trained using Adam over 200 epochs. We measure the test
error (left) and the test loss (right), which resembles the stability in Fig. 2.
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