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Abstract

Algorithmic stability is a classical framework for analyzing the generalization
error of learning algorithms. It predicts that an algorithm is likely to have a
small generalization error if it is insensitive to small perturbations in the training
set such as the removal or replacement of a training point. While stability has
been demonstrated for numerous well-known algorithms, this framework has
had limited success in analyses of neural networks. In this paper we study the
algorithmic stability of deep ReLU neural networks that achieve zero training error
using parameters with the smallest L2 norm, also known as the minimum-norm
interpolation, a phenomenon that can be observed in overparameterized models
trained by gradient-based algorithms. We find that such networks are stable when
they contain a (possibly small) stable sub-network, followed by a layer with a
low-rank weight matrix. The low-rank assumption is inspired by recent empirical
and theoretical results which demonstrate that training deep neural networks is
biased towards low-rank weight matrices, for minimum-norm interpolation and
weight-decay regularization. Furthermore, we present a series of experiments
supporting our finding that a trained deep neural network often consists of a stable
sub-network and several final low-rank layers.

1 Introduction

The stochastic gradient descent (SGD) family of algorithms has emerged as the go-to tool for
training machine learning models on a vast amount of data. While the generalization ability of such
algorithms is reasonably well-understood when learning involves solving convex or quasi-convex
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optimization problems, the picture is much less clear for non-convex learning problems involving
overparameterized models, such as that of training a deep neural network. Yet, the empirical
evidence strongly suggests that the generalization ability of SGD algorithms remains high despite
overparameterization in non-convex settings. These observations appear to be in conflict with the
classical learning-theoretic complexity-fit tradeoff viewpoint [Bousquet et al., 2004, Zhang et al.,
2021].

In recent years, there has been growing interest in the hypothesis that the favorable generalization
performance of optimization algorithms can be accounted for by the algorithm’s implicit bias or
inherent model capacity control. A prominent idea in this setting is that of minimum-complexity
interpolation, which states that the algorithm finds the simplest solution among those achieving zero
(or near-zero) training error. While this phenomenon is well established in the context of linear
regression (e.g. a pseudo-inverse solution to the least-squares problem recovers parameters with a
minimum L2 norm), the suggestion that it also applies to the training of a deep overparameterized
ReLU neural networks is only rather recent. In particular, it has been shown theoretically that the
gradient flow (GF) algorithm (gradient descent can be seen as a discretization of GF) asymptotically
fits an interpolating ReLU neural network with the minimum L2 norm of the parameters [Lyu and
Li, 2019, Ji and Telgarsky, 2020, Phuong and Lampert, 2020]. GF is thought to be a good proxy for
gradient descent algorithms because the approximation error introduced by discretization remains
controlled under certain regularity assumptions [Elkabetz and Cohen, 2021]. Recent works have
attempted to reconcile minimum-norm interpolation with classical generalization theories based on
the uniform convergence principle such as Rademacher complexity [Bartlett and Mendelson, 2002,
Bartlett et al., 2017]. Indeed, dimension-free bounds have provided some explanation as to why we
do not observe overfitting in the absence of label noise [Ji and Telgarsky, 2019, Telgarsky, 2022], and
observe only benign overfitting otherwise [Tsigler et al., 2020, Koehler et al., 2021, Frei et al., 2023]
(see also Section 4 for some discussion).

In this paper, we explore the generalization capabilities of minimum-norm interpolating neural
networks from the alternative viewpoint of algorithmic stability. Stable learning algorithms are
insensitive to small perturbations (e.g. removal or replacement of data points) of the training set and
generalize well under mild assumptions [Bousquet and Elisseeff, 2002, Shalev-Shwartz et al., 2010].
Moreover, stability analysis provides valuable insights beyond generalization, such as controlling the
variance of the algorithm, which is crucial for uncertainty quantification methods like bootstrapping
[Elisseeff et al., 2005]. Many algorithms have been shown to be stable, including nonparametric
predictors (e.g. nearest-neighbors) [Devroye and Wagner, 1979], minimizers of strongly convex
problems (such as the ridge regression estimator) [Bousquet and Elisseeff, 2002], GD-type algorithms
minimizing convex and smooth objectives [Hardt et al., 2016, Lei and Ying, 2020], as well as
quasi-convex objectives [Charles and Papailiopoulos, 2018, Richards and Kuzborskij, 2021].

Despite these advances, success has so far been limited in the context of neural networks. Although
several works have analyzed the stability of SGD in the non-convex setting, their results come with
significant limitations. First, vacuous bounds are typically obtained when the number of training
steps (or time) far exceeds the sample size, i.e. t ≫ n [Hardt et al., 2016, Kuzborskij and Lampert,
2018, Richards and Rabbat, 2021, Wang et al., 2023]; at the same time, for a large enough model
capacity, we expect interpolation to happen when t ≫ n. Second, strong assumptions such as
Lipschitzness of the loss function in the parameters or penalization of the objective [Hardt et al.,
2016, Kuzborskij and Lampert, 2018, Farghly and Rebeschini, 2021] are often required. Third, these
works assume parameter stability, meaning that parameters are expected to remain close (typically in
the Euclidean distance) if the training set is perturbed slightly; this is often unrealistic in the context
of neural networks since the same predictor can be expressed using very different parameters thanks
to symmetries in the weight matrices and because of non-convexity of the objective function. Finally,
these works focus on optimization aspects, which seldom reveal insight into the structural properties
of neural networks obtained by stable algorithms.

Our contributions In this paper, we hypothesize that stability of deep nonlinear networks originates
in the early layers, and is preserved throughout the subsequent layers. Specifically, we study the
algorithmic stability of minimum-norm interpolation with deep ReLU neural networks, and identify
sufficient conditions for stability. In particular, such interpolations of neural networks are stable if
they contain a contiguous, stable sub-network (for instance, the few first layers), and this sub-network
is followed by at least one low-rank weight matrix. See Fig. 1 for an illustration.
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Figure 1: A diagram of our main result. Our main result relies on three arguments: a) the data is
expressible by a neural network with finite weight matrix norm (Assumption 1), b) the minimum-norm
interpolating ReLU neural network contains at least one layer with a low stable rank matrix (see
Lemma 1) and c) the sub-network is stable (Hypothesis 1). In this scenario, we show in Theorem 1
that the full network is also stable.

For the data-generating process, we assume the existence of a neural network with the same architec-
ture that can interpolate the data using bounded weights, although not necessarily with the minimal
norm. This implies a setting where data cannot be arbitrarily complex ensuring that weights of such a
network remain bounded as the training set grows.

Our analysis is inspired by recent theoretical and empirical findings suggesting that deep interpolating
neural networks exhibit a low-rank weight matrix structure [Frei et al., 2022, Timor et al., 2023,
Galanti et al., 2023]. Thus, the idea behind the proof is to ensure that if a stable sub-network
exists, the remaining low-rank weight matrices will preserve its stability. Our proof separates the
concepts of low-rank bias and sub-network stability into distinct phenomena. This separation enables
isolated analysis, simplifying the study of stability in neural networks to the potentially easier task of
understanding why stable sub-networks exist. Furthermore, we conduct a series of experiments in
which we observe that stable prefix sub-networks indeed occur in practice.

In our analysis we also take a step towards addressing some limitations in the literature discussed
earlier. Algorithmically, interpolating neural networks studied here can be obtained as solutions
of a GF and so, unlike previous results, our findings hold for t ≫ n and potentially t → ∞. In
contrast to existing works, the analysis does not require regularity assumptions such as Lipschitzness
or smoothness in the parameters.

Paper organization Technical preliminaries and background are provided in Section 2. The main
result is presented in Section 3 along with some supporting experiments, with the proof detailed in
Section 3.1. Additional related work is discussed in Section 4, while some additional experiments are
given in Appendix B.

2 Preliminaries

Neural networks. We consider fully-connected neural networks with ReLU activations, L layers
and uniform width d for hidden layers, no bias, and a real-valued output. In this setting, network
N : Rd0 → R is defined by weight matrices {Wℓ}1≤ℓ≤L, one matrix per layer, with Wℓ ∈ Rdℓ×dℓ−1 ,
dℓ = d for each 1 ≤ ℓ ≤ L− 1, and dL = 1. Network N computes its output on an input x ∈ Rd0

by computing a pre-activation vector hℓ and a post-activation vector yℓ for each layer ℓ starting from
y0 = x as follows, where the activation function ϕℓ is ReLU(x) = max{x, 0} applied to vectors
element-wise for every layer 1 ≤ ℓ ≤ L− 1 and ϕL is the identity function for layer L:

hℓ = Wℓ · yℓ−1 yℓ = ϕℓ(hℓ). (1)

We do not explicitly consider the bias term, however it can be modelled by appending 1 to yℓ−1.

The network’s output N(x) is given by yL ∈ R and the weights WL are referred to as the readout
weights. The collection of all parameters is denoted as θ, and we note N(·) = N( · ; θ) to emphasize
the dependency in the parameters. Network N is an instance of a neural architecture A = ⟨L, d, d0⟩
determined by the number of layers L, the width d of the hidden layers and the input dimension d0.
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In the following we use notation N1:k−1 : Rd0 → Rdk−1 to denote a neural network with parameters
{Wℓ}1≤ℓ≤k−1 obtained from N by removing all layers with ℓ > k − 1.

A useful property of ReLU is positive homogeneity: ReLU(αx) = αReLU(x) for each x ∈ R and
α ≥ 0. In particular, we have N(αx; θ) = αN(x; θ) and N(x; αθ) = αL N(x; θ).

Stable rank. The Frobenius norm of a matrix A ∈ Rp×q with singular values sj for 1 ≤ j ≤
min(p, q) is given by ∥A∥F = (

∑
j s

2
j )

1
2 . The spectral norm of A, that is ∥A∥2 is given by the largest

absolute value of its singular values. The stable rank of matrix A is defined as S(A) = ∥A∥F /∥A∥2.
In particular, matrix A has stable rank 1 if and only if its rank (defined in the usual way) is also one
[Tropp, 2015]; in this case, its singular value with largest absolute value is also the only non-zero
singular value. We will sometimes refer to the Frobenius norm of a neural network N as that of the
matrix obtained by concatenating all weight matrices of N .

Training set. A training set (X,y) consists of n examples (xi, yi) sampled i.i.d. from an unknown
distribution p on X × {−1,+1} where the input space X is an Euclidean ball of radius one. Fur-
thermore, we denote by (X(j),y(j)) the training dataset obtained from (X,y) by re-sampling j-th
example according to p independently and we note (x(j), y(j)) the new sample. Finally, we say that
N interpolates (X,y) if N(xi) = yi for each i ∈ [n].

Minimum-norm interpolating neural network. Given a neural architecture A = ⟨L, d, d0⟩ and a
training set (X,y), we assume that we have access to an algorithm T which returns the parameters
of a minimum-norm interpolating neural network instantiating A. We then denote

T (X,y) = argmin
θ

{
∥θ∥2 : ∀i ∈ [n] N(xi; θ) = yi

}
.

Finally, we denote the parameters obtained by algorithm T as θ̂ = T (X,y).

Training to interpolation and minimum-norm solutions are common assumptions which represent
idealized views of gradient-based training algorithms (in particular with weight decay) [Timor et al.,
2023, Galanti et al., 2023]. For example, in the limit of infinite training time, gradient flow on ReLU
networks converges to a minimum-norm interpolant [Lyu and Li, 2019, Ji and Telgarsky, 2020].

Algorithmic stability. Algorithm A is β-uniformly ϵ-stable [Kutin and Niyogi, 2002] with respect
to a data distribution p if, for each training set (X,y) sampled from p, the following holds for i ∈ [n],
where θ̂ = A(X,y) and θ̂(i) = A(X(i),y(i)):

P
(∣∣∣N(x; θ̂)−N(x; θ̂(i))

∣∣∣ ≤ ϵ
)
≥ 1− β

where P() is taken with respect to the jointly distributed (X,y,x(i), y(i),x, y).

This notion of stability is weaker than the well-known notion of ϵ-uniform stability [Bousquet and
Elisseeff, 2002]: supX,y,x,y,i |N(x; θ̂)−N(x; θ̂(i))| ≤ ϵ, however both coincide for β = 0 almost
surely. Often, we will say that the algorithm is stable when for a fixed β, ϵ = On→∞(n−α) for some
α > 0. We will occasionally abuse terminology and speak of a stable minimum-norm interpolating
neural network N( · ; θ̂), meaning that algorithm T generating θ̂ is stable.

Stability implies generalization. Let f : R2 → [0,M ] be a fixed known loss function. Then
the risk and the empirical risk of the predictor parameterized by θ are respectively defined as
R(θ) =

∫
f(N(x; θ), y) dp(x, y) and R̂(θ) = 1

n

∑n
i=1 f(N(xi; θ), yi). It is known that if θ̂ is

generated by an ϵ-uniformly-stable algorithm A, there exist universal constants c1, c2 > 0 such that
for any δ ∈ (0, 1) [Feldman and Vondrak, 2018, Bousquet et al., 2020],

P

(
|R(θ̂)− R̂(θ̂)| ≤ c1 ln(n) ln(1/δ) ϵ+ c2 M

√
ln(1/δ)

n

)
≥ 1− δ . (2)

Hence, the gap between the population loss and empirical loss is controlled with high probability as
long as the algorithm is stable.
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3 From sub-network stability to prediction stability

In this section, we present our main result and discuss its implications. Our results depend on one
technical assumption and one main hypothesis, which we introduce next. The first assumption
concerns the complexity of the learning problem [Timor et al., 2023]:

Assumption 1 (B-admissible training set). Given a finite B > 0, we call a training set B-admissible
if there exists a neural network N of architecture ⟨L∗, d, d0⟩ for some L∗ ≥ 2 with parameters θ∗
such that N(xi; θ

∗) = yi for i ∈ [n] and its weight matrices satisfy maxk ∥W∗
k∥F ≤ B.

Under this assumption, the training set can be viewed as generated by a hypothetical teacher network
whose weight matrices have bounded norms. Note that Assumption 1 is only meaningful in learning
scenarios where data cannot be arbitrarily complex (otherwise, one can construct instances such that
B → ∞ as n → ∞).

We next define our notion of sub-network.

Definition 1 (Sub-network). Given 1 ≤ k ≤ L− 1, consider the following decomposition of weight
matrix Wk ∈ Rd×d: Wk = λkukvk

⊤ + Wϵ
k where λk > 0 is the leading eigenvalue of Wk,

uk,vk are unitary vectors, uk is the leading eigenvector of Wk and vk is the leading eigenvector of
WT

k . Then, a sub-network at position k is defined as

fk(x; θ) := v⊤
k N

1:k−1(x; θ) . (3)

Invoking the recent results from Timor et al. [2023], it is easy to see that under Assumption 1, a trained
deep network contains at least one layer with low stable rank (the proof is given in Appendix A.1).

Lemma 1. Suppose that datasets are B-admissible according to Assumption 1. Given a > 0 and
ϵ = M/n−α, for some M ≥ 0, α > 0, there exists L ≥ L∗ and 1 ≤ k ≤ L − 1 such that with
parameters θ̂ generated by algorithm T for architecture A = ⟨L, d, d0⟩, the following holds:

S(Ŵk) ≤ 1 + a ϵ . (4)

Finally, we state our key hypothesis, namely the existence of a stable sub-network.

Hypothesis 1 (β-uniformly ϵ-stable sub-network). Given β ∈ [0, 1] and ϵ = M/n−α, for some
M ≥ 0, α > 0, and L ≥ L∗, with parameters θ̂ and θ̂(i) generated by algorithm T for architecture
A = ⟨L, d, d0⟩, the following holds:

P
(∣∣∣fk(x; θ̂)− fk(x; θ̂

(i))
∣∣∣ ≤ ϵ

)
≥ 1− β .

In support of this hypothesis, we present empirical evidence in Figures 2 and 3: trained FCNs contain
sub-networks (followed by a layer with low stable rank) whose stability is on par with that of the full
network.

Now we present our main result (a complete statement is given in Theorem 1):

Main result (sketch). Let a > 0 and ϵ = n−α for some α > 0 and suppose that there exist
(B, k, L, β) such that Assumption 1, and Hypothesis 1 are satisfied. Then, assuming that sample
size satisfies n = Ω(max(aBL, BL−k+1)), there is a universal constant C > 0 such that T is
β-uniformly

C
(
1 +B2L−k+1 + aB3L−k+1

)
ϵ — stable .

The main implication of the above result is that the stability of the entire minimum-norm interpolating
neural network is controlled by the stability of its sub-network. This fact is non-trivial because since
θ̂ and θ̂(i) are different (thus in particular the deeper layers Ŵk+1, ...,ŴL and Ŵ

(i)
k+1, ...,Ŵ

(i)
L ),

there is no a priori reason to believe that they would preserve any stability that originates in early
layers. The proof requires the key assumption that the stable sub-network is followed by a layer with
a weight matrix of a low stable rank, which will preserve the signal as it propapagates into deeper
layers. While this assumption might initially seem strong, we observe it to hold in practice (Fig. 2).
Furthermore, recently Timor et al. [2023] showed that the stable rank decays roughly at the rate B

L
k
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where B can be interpreted as a problem complexity term (see Assumption 1).2 In our case, the stable
rank decay rate is assumed to be a ϵ with a free parameter a ≥ 0.

Note that while the overall stability scales linearly with the stability of the sub-network, the bound is
attenuated by a B-dependent factor. One extreme (pessimistic) case is a ≫ 0, that is when weight
matrices are sufficiently far from rank-one. Then, the factor in the worst case becomes of order
B3L. Intuitively, this occurs because, learning all perturbation matrices (Wϵ

k)k (see Definition 1)
becomes unavoidable. In another extreme case of rank-one matrices and a shallow stable sub-network
(a = 0, k = 2), we have an overall stability bound of order B2Lϵ.

In a more optimistic scenario, a is sufficiently small such that weight matrices have a stable-rank close
to one. In this case we have a dominant factor B2L−k+1, which captures the cost of training a neural
network that is deeper than the sub-network. In particular, observe that the deeper the stable sub-
network is (increasing k), the smaller the cost. For a deep stable sub-network (k = L− 1), we reach
a factor BL which is similar to dimension-free analysis of deep ReLU neural networks [Golowich
et al., 2018].

Finally, in Figure 3, we provide some empirical validation of our main hypothesis and our main
result by showing that the prediction stability of the entire network is roughly of the same order (with
respect to n) as that of the sub-network stability: this is captured by similar slopes in the log-scale,
which corresponds to −α in ϵ = n−α assumption.

Applications. The stability bound we presented can also used in some applications. In particular,
when combined with Eq. (2), it implies a high-probability bound on the generalization error:

|R(θ̂)− R̂(θ̂)| = Õ
((

1 +B2L−k+1 + aB3L−k+1
)
ϵ+

1√
n

)
.

Under assumption ϵ = n−α for α > 0, the generalization error converges 0 as n → ∞ in probability.

Finally, the stability bound can also be used to give a bound on the variance of a trained neural
network, which is not normally achievable through the uniform convergence bounds. Controlling the
variance of trained predictors is interesting in the context of uncertainty quantification (e.g., through
ensembling, as discussed in [Elisseeff et al., 2005]). In particular, Efron-Stein inequality [Boucheron
et al., 2013] implies that

Var(N(θ̂)) ≤ C2

2

(
1 +B2L−k+1 + aB3L−k+1

)2
n ϵ2 .

Once again, assuming ϵ = n−α it turns out that the variance converges to 0 asymptotically only if
α > 1/2, that is when sub-network is very stable with ϵ < 1/

√
n.

3.1 Proof of the main result

Theorem 1. Suppose that datasets are B-admissible according to Assumption 1. Let ϵ = M/n−α,
for some M ≥ 0, α > 0 and let a > 0, consider L ≥ L∗ and 1 ≤ k ≤ L−1 that satisfy (4). Suppose
that the sub-network is β-uniformly ϵ-stable according to Hypothesis 1. Then, assuming that the

sample size satisfies n ≥ max
(
a · 2MBL, 4MBL−k+1

) 1
α , T is β-uniformly ϵ′-prediction stable

with

ϵ′ = (1 + 8B2L−k+1) ϵ+ 2a
(
BL +B2L−k+1ϵ+ 4B3L−k+1

)
ϵ .

The proof relies on Lemmas 1 to 3, shown Appendix A. First, we discuss high-level proof ideas.

Some proof ideas For simplicity consider a rank-one case (a = 0). The key Lemma 2 shows
that if a deep ReLU network interpolates the data, then the prediction done at the rank-one layer
is maintained throughout the rest of the layers. Consider a decomposition Wk = λkukv

⊤
k , where

vk defines a hyperplane which separates inputs in the feature space of the previous layer given by
N1:k−1( · , θ̂). Then, multiplication by λkuk and the propagation through all subsequent layers is just
a rescaling of the predictions to fit the labels. In other words, the sign of fk(x) = v⊤

k N
1:k−1(x, θ̂)

2In fact, they showed a slightly stronger upper bound on the harmonic mean: k∑k
j=1(1/S(Ŵj))

≤ B
L
k .
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Figure 2: Stability of sub-networks and stable rank of the layers. We trained an 8-layer FCN on a
uniformly drawn 104 MNIST sample by minimizing a mean square error (MSE) loss to near zero,
classifying the first 5 classes as −1 and others as 1. We performed multiple trials, where each trial is
with identical initialization and a different portion of the training set is replaced for each trial. The
error bars are 1 standard deviation of the trial. Using the models, we measured the sign stability (left),
i.e. |sign(fk(x; θ̂)) − sign(fk(x; θ̂

(i)))|, stability (middle), and the stable rank of weight matrix
(right) for each sub-network fk for 2 ≤ k ≤ 7. The horizontal dotted lines are the (sign) stability of
the full network. For the details of the experiment, link to our code, and additional experiments on
Fashion-MNIST, see Appendix B.
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Figure 3: Stability as a function of number of data points We followed the same setting as in
Fig. 2 while varying training data set sizes. Both the sign stability (left) and stability (middle) of
sub-networks (blue and orange) decay at a rate similar to that of the full network (green). The stable
rank of weight matrices (right) also decreases as a function of n, suggesting that Lemma 1 holds in
the large n limit. Observe that the slopes for the sub-networks and the full network are similar which
validates that the respective stabilities have the same dependency in n (Theorem 1).

for each x already determines the final output and the prediction is done at the sub-network level (see
Fig. 6 in Appendix B for further discussion).

Next, in Lemma 3, we show that if a deep ReLU network is a minimum-norm interpolant of the
data, the intermediate prediction of data points at the sub-network level must have substantial margin
γ. Intuitively, if the margin were infinitesimally small, this would require a large contribution in
(one of the weights of) the subsequent layers to compensate and yield an output of order 1, which is
forbidden by the fact that the network has minimum norm.
Lemma 2. Consider a subnetwork fk as defined in Definition 1. Then, there exists a bounded
function b( · ; θ), and C+

θ , C+
θ > 0 (independent from the input), such that, for all x ∈ Rd0 the

following is true:

1. If fk(x; θ) > 0, then N(x) + b(x; θ) · ϵ = C+
θ · fk(x; θ) .

2. If fk(x; θ) ≤ 0, then N(x) + b(x; θ) · ϵ = C−
θ · fk(x; θ) .

3. For all x ∈ Rd0 , |b(x; θ)| ≤ a
(∏L

j=1 ∥Wj∥2
)

.

4.
∥∥Wϵ

k N1:k−1(x)
∥∥ ≤ a ϵ

∏k
j=1 ∥Wj∥2 .
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Lemma 3. Consider a subnetwork fk as defined in Definition 1. Suppose that datasets are B-
admissible according to Assumption 1. Let θ̂ = T (X,y) and θ̂(i) = T (X(i),y(i)) and assume that

|yi| ≥ 1 for all i ∈ [n]. Then, assuming that the sample size satisfies n ≥
(
2 ·M · a ·BL

) 1
α , for any

γ ≤ 1/(2 ·BL−k+1), and µ ≥ Bk−1,

γ ≤
∣∣∣fk(xi; θ̂) · yi

∣∣∣ ≤ µ (∀i ∈ [n]).

Proof of Theorem 1. In the following let (x, y) be the point replacing the ith example in the training
set (X,y) and so by interpolation we have y = N(x; θ̂(i)).

By Lemma 2 there exist Cθ̂, Cθ̂(i) independent from the input and b( · ; θ̂), b( · ; θ̂(i)) such that

N(x; θ̂) + b(x; θ̂) · ϵ = Cθ̂ · fk(x; θ̂) , N(x; θ̂(i)) + b(x; θ̂(i)) · ϵ = Cθ̂(i) · fk(x; θ̂(i)) . (5)
Observe that,∣∣∣N(x; θ̂)−N(x; θ̂(i))

∣∣∣− ∣∣∣(b(x; θ̂)− b(x; θ̂(i))
)
· ϵ
∣∣∣

≤
∣∣∣N(x; θ̂)−N(x; θ̂(i)) + (b(x; θ̂)− b(x; θ̂(i))) · ϵ

∣∣∣
≤
∣∣∣Cθ̂ · fk(x; θ̂)− Cθ̂ · fk(x; θ̂

(i))
∣∣∣+ ∣∣∣Cθ̂ · fk(x; θ̂

(i))− Cθ̂(i) · fk(x; θ̂(i))
∣∣∣

≤
∣∣Cθ̂

∣∣ · ∣∣∣fk(x; θ̂)− fk(x; θ̂
(i))
∣∣∣+ ∣∣∣fk(x; θ̂(i))∣∣∣ · ∣∣Cθ̂ − Cθ̂(i)

∣∣
≤
∣∣Cθ̂

∣∣ · ϵ+ ∣∣∣fk(x; θ̂(i))∣∣∣ · ∣∣Cθ̂ − Cθ̂(i)

∣∣ (By sub-network stability assumption)

≤
∣∣Cθ̂

∣∣ · ϵ+ µ ·
∣∣Cθ̂ − Cθ̂(i)

∣∣ . (By Lemma 3)
First note that by Lemma 2,

|b(x; θ̂)| ≤ a

L∏
j=1

∥Ŵj∥2 ≤ aBL =: b

where ∥Ŵj∥2 ≤ B comes as in the first part of the proof of Lemma 3. Similarly, |b(x; θ̂(i))| ≤ b.
Then, ∣∣∣(b(x; θ̂)− b(x; θ̂(i))

)
· ϵ
∣∣∣ ≤ 2 a ϵBL .

Now, the idea is to use Eq. (5) to control |Cθ̂| and to control |Cθ̂ − Cθ̂(i) | in terms of difference of
sub-network predictions and invoke sub-network stability once again. W.l.o.g., let i ̸= 1 and so

Cθ̂ =
N(x1; θ̂) + b(x1; θ̂) · ϵ

fk(x1; θ̂)
=

y1 + b(x1; θ̂) · ϵ
fk(x1; θ̂)

,

Cθ̂(i) =
N(x1; θ̂

(i)) + b(x1; θ̂
(i)) · ϵ

fk(x1; θ̂(i))
=

y1 + b(x1; θ̂
(i)) · ϵ

fk(x1; θ̂(i))
.

So, by Lemma 2 and Lemma 3 (with γ defined therein),

|Cθ̂| ≤
|y1|+ b · ϵ
|fk(x1; θ̂)|

≤ |y1|+ b · ϵ
γ

.

Now we turn our attention to the gap:∣∣Cθ̂ − Cθ̂(i)

∣∣ = ∣∣∣∣∣y1 + b(x1; θ̂) · ϵ
fk(x1; θ̂)

− y1 + b(x1; θ̂
(i)) · ϵ

fk(x1; θ̂(i))

∣∣∣∣∣
≤ |y1|

∣∣∣∣∣fk(x1; θ̂)− fk(x1; θ̂
(i))

fk(x1; θ̂) · fk(x1; θ̂(i))

∣∣∣∣∣+
∣∣∣∣∣ b(x1; θ̂)

fk(x1; θ̂)
− b(x1; θ̂

(i))

fk(x1; θ̂(i))

∣∣∣∣∣ · ϵ
(a)

≤ |y1| · ϵ∣∣∣fk(x1; θ̂) · fk(x1; θ̂(i))
∣∣∣ + b · ϵ∣∣∣fk(x1; θ̂) · fk(x1; θ̂(i))

∣∣∣
(b)

≤ 2 (|y1|+ b) ϵ

(γ − ϵ)2+ + γ2 − ϵ2
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where in step (a) we used the assumption that sub-network is ϵ-stable and Lemma 2, while step (b)
amounts to lower-bounding the denominator, and deferred till the end of the proof.

Putting all together we have∣∣∣N(x; θ̂)−N(x; θ̂(i))
∣∣∣ ≤ 2 · b · ϵ+ 1 + b · ϵ

γ
· ϵ+ µ · 2 (1 + b) ϵ

(γ − ϵ)2+ + γ2 − ϵ2
.

Now, let’s require ϵ ≤ γ/2: By assumption we have that ϵ = (M/n)α and so our requirement is
equivalent to n ≥ ((2M)/γ)

1
α . In overall, this gives∣∣∣N(x; θ̂)−N(x; θ̂(i))

∣∣∣ ≤ (2b+ 1)ϵ+
b

γ
ϵ2 + 2 (1 + b)

µ

γ2
ϵ .

We conclude by using the bounds on γ and µ in Lemma 3, and the one on b which comes by Lemma 2.

Proof of step (b) By Lemma 3 we have that
∣∣∣fk(x; θ̂(i))∣∣∣ ≥ γ. Now, given the above, the fact that

the sub-network is ϵ-stable, and triangle inequality we have

ϵ ≥
∣∣∣fk(x; θ̂)− fk(x; θ̂

(i))
∣∣∣ ≥ ∣∣∣fk(x; θ̂(i))∣∣∣− ∣∣∣fk(x; θ̂)∣∣∣ ≥ γ −

∣∣∣fk(x; θ̂)∣∣∣ .
This gives (

fk(x; θ̂)− fk(x; θ̂
(i))
)2

≤ ϵ2

⇐⇒ fk(x; θ̂)
2 + fk(x; θ̂

(i))2 − ϵ2 ≤ 2 fk(x; θ̂) · fk(x; θ̂(i))

=⇒
(γ − ϵ)2+ + γ2 − ϵ2

2
≤ fk(x; θ̂) · fk(x; θ̂(i)) .

4 Additional related work

Algorithmic stability The stability of interpolating kernel least-squares has been studied by
Rangamani et al. [2023] who established a connection to stability of the pseudo-inverse, which
is indeed a minimum-norm interpolation, and which is in turn controlled by the smallest non-zero
eigenvalue of the kernel matrix. In this paper we look into a rather different setting of interpolation
with neural networks rather than kernel machines, and provide sufficient conditions for such stability.

Recently, Schliserman and Koren [2022] analyzed the performance of gradient descent type methods
on convex learning problems given linearly separable data. The setting of our paper can be interpreted
as noise-free labels and so in case of classification, we have separability as well, however the decision
boundary can be non-linear (as we can conclude from Assumption 1).

Neural collapse Recently, a phenomenon called neural collapse (NC) [Papyan et al., 2020, Han
et al., 2021] has been observed where the post-activations (and weights of a final layer) of a well-
trained neural network, appear to be clustered in a low-dimensional subspace. Theoretical studies on
the cause of NC mostly rely on unconstrained feature models [Fang et al., 2021, Mixon et al., 2022]
where the product of two matrices is trained under gradient flow: the two matrices train to a low-rank
structure where their ranks equal the dimension of the outputs.

Lottery ticket hypothesis The existence of a small good neural network within a large deep neural
network has been proposed before as a prominent hypothesis in neural network learning. In particular
the lottery ticket hypothesis [Frankle and Carbin, 2018] posits that deep neural networks contain
small sub-networks which could be trained in isolation and lead to comparable performance, and that
these sub-networks happen to be favored by standard initializations The lottery ticket hypothesis has
however only been analyzed in some restricted settings [Frankle et al., 2020, Malach et al., 2020,
Orseau et al., 2020, Sakamoto and Sato, 2022]. It is still an active area of theoretical research. In this
paper we explore a related concept, where the quality of the sub-network is captured by its stability,
which establishes a link to analysis of the generalization error.
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Benign overfitting. One prominent line of recent work that tries to explain the success of deep
learning is benign overfitting [Tsigler et al., 2020, Koehler et al., 2021]. The idea behind benign
overfitting is that even in the presence of low-to-moderate noise, interpolating predictors are able to
achieve performance that is close to the noise rate (in other words, some inductive bias is present in
the interpolation procedure). In particular, these works study this phenomenon through analysis of
the excess risk of interpolants (such as linear interpolants in high dimension). The key idea behind
these analyses is that minimum-norm interpolation is a sufficient condition for benign overfitting.
On the other hand, it is also well-known that uniform stability is sufficient for uniform convergence
and so one can show that the excess risk has correct asymptotic behavior (convergence to the noise
rate) [Shalev-Shwartz et al., 2010].

These theories appear to be at odds in a general sense. However, minimal-norm interpolation can still
be uniformly stable in a restricted sense, for instance, when the problem is well-conditioned (on the
subspace) [Rangamani et al., 2023].

In this work, we argue that the existence of a uniformly stable subnetwork is sufficient for the stability
of the entire neural network. However, such a subnetwork might not be uniformly stable everywhere,
but only on some ‘nice’ problems (such as separable classification problems). A deeper understanding
of this is left to determining whether and when the subnetwork is stable.

5 Conclusions, limitations, and future work

In this work, we have studied sufficient conditions for algorithmic stability in minimum-norm
interpolating deep ReLU neural networks. This study opens up several interesting avenues for future
research. One of the sufficient conditions we examined is the existence of a stable sub-network, which
we did not prove theoretically and which remains an open question. In related areas, such as the
lottery ticket hypothesis, the existence of a well-performing sub-network has been shown theoretically,
which might inspire the use of similar techniques to prove the existence of a stable sub-network.
Finally, an interesting open question is bridging the gap between the stability of minimum-norm
interpolation in neural networks under GF and actual optimization algorithms, such as SGD. While
there are several promising directions, a complete picture incorporating stability analysis might
require additional arguments [Poggio et al., 2020, Elkabetz and Cohen, 2021].

One possible limitation of our analysis is that the stability bound involves a B-dependent factor which
scales as B2L−k+1 in the best case. For the case k = L− 1, it might be possible to achieve a better
factor BL which would be in line with Rademacher complexity analysis [Golowich et al., 2018].

Even though we empirically validate that our assumptions hold for bias-free FCNs trained on some
datasets, whether the condition holds in larger architectures trained on more complex datasets requires
more empirical exploration. In the future, we aim to extend our results to more complex scenarios
and empirically explore the limit in which deep neural networks satisfy our assumptions.
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A Omitted proofs

A.1 Proof of Lemma 1

Invoking Theorem 4 in Timor et al. [2023], we have that θ̂ obtained by algorihtm T for architecture
A = ⟨L, d, d0⟩ verifies:

L∑L
k=1

(
S(Ŵk))

)−1 ≤ B
L∗
L

thus

1

L

L∑
k=1

(
S(Ŵk))

)−1

≥ 1

B
L∗
L

Since the quantity on the left is an average, there must exist 1 ≤ k ≤ L such that(
S(Ŵk))

)−1

≥ 1

B
L∗
L

(6)

thus

S(Ŵk)) ≤ B
L∗
L .

By setting L ≥ L∗ log(B)
log(1+a·ϵ) , we ensure that:

S(Ŵk)) ≤ 1 + a · ϵ .

We note Ŵk = λkukv
T
k + Ŵϵ

k its decomposition following Definition 1.

A.2 Proof of Lemma 2

Throughout the proof we drop dependence on θ, e.g. N(x) ≡ N(x; θ).

Introduce

b(x) :=
1

ϵ
·
(
Nk+1:L

(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))

−N(x)
)

and we can thus write:

N(x) + b(x) · ϵ = Nk+1:L
(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))

.

Showing statement 1. First consider the case when v⊤
k N

1:k−1(x) > 0. Now, using the fact that
ReLU is positively-homogeneous,

ReLU
(
λkukv

⊤
k N

1:k−1(x)
)
= v⊤

k N
1:k−1(x) · ReLU(λkuk)

Therefore, using positive-homogeneity once again,

N(x) = Nk+1:L
(
v⊤
k N

1:k−1(x) · ReLU(λkuk)
)
− b(x) · ϵ

= v⊤
k N

1:k−1(x) ·Nk+1:L (ReLU(λkuk))︸ ︷︷ ︸
C+

− b(x) · ϵ

where we note that C+ can take a different sign since C+ = W⊤
LN

k+1:L−1 (ReLU(λkuk)).

Showing statement 2. Now, considering an alternative case v⊤
k N

1:k−1(x) ≤ 0, positive-
homogeneity once again gives

ReLU
(
λkukv

⊤
k N

1:k−1(x)
)
= −v⊤

k N
1:k−1(x) · ReLU(−λkuk)

and so

N(x) = Nk+1:L
(
−v⊤

k N
1:k−1(x) · ReLU(−λkuk)

)
− b(x) · ϵ

= v⊤
k N

1:k−1(x) ·
(
−Nk+1:L (ReLU(−λkuk))

)︸ ︷︷ ︸
C−

−b(x) · ϵ .
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Showing statement 3 and 4. It suffices to prove that for any input x ∈ Rd0 ,∣∣N(x)−Nk+1:L
(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))∣∣ ≤ a ϵBL .

By 1-Lipschitzness of ReLU, we have:

∥ReLU
(
Wk N1:k−1(x)

)
− ReLU

(
λkukv

⊤
k N

1:k−1(x)
)
∥

≤ ∥Wϵ
k N1:k−1(x)∥

≤ ∥Wϵ
k∥F ∥N1:k−1(x)∥

≤ a ϵ ∥Wk∥F ∥N1:k−1(x)∥ .

where the last inequality comes by the following observation:
S(Wk) ≤ 1 + a ϵ =⇒ ∥Wϵ

k∥F ≤ a ϵ ∥Wk∥F .

At the same time, note that by 1-Lipschitzness of ReLU, and Cauchy-Schwartz inequality we have
that for any z, z′ ∈ Rdk ,

|Nk+1:L(z)−Nk+1:L(z′)| ≤ ∥z− z′∥
L∏

j=k+1

∥Wj∥F .

Combining the above we have∣∣N(x)−Nk+1:L
(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))∣∣

=
∣∣Nk+1:L

(
ReLU

(
Wk N1:k−1(x)

))
−Nk+1:L

(
ReLU

(
λkukv

⊤
k N

1:k−1(x)
))∣∣

≤

 L∏
j=k

∥Wj∥F

 · a · ϵ ∥N1:k−1(x)∥

≤

 L∏
j=1

∥Wj∥F

 · a · ϵ

where the last inequality comes by Cauchy-Schwartz inequality, realizing that ReLU(|x|) = |x|, and
the fact that ∥x∥ ≤ 1. □

A.3 Proof of Lemma 3

We will require the following:

Lemma 4 (Timor et al. [2023, Lemma 14]). Let θ̂ = T (X,y). Then, for every 1 ≤ i < j ≤ L we
have ∥Ŵi∥F = ∥Ŵj∥F .

First, notice that N(·, θ̂) is a minimum-norm interpolant and so Lemma 4, the weight matrices Ŵℓ

have the same norm and thus verify:

∥Ŵℓ∥2F =
1

L

L∑
ℓ=1

∥Ŵℓ∥2F ≤ 1

L

L∑
ℓ=1

∥W∗
ℓ∥2F ≤ 1

L
· L ·B2

which gives us ∥Ŵℓ∥F ≤ B.

Proof of a lower bound. Using the fact that N(xi; θ̂) = yi and assumption that |yi| ≥ 1 for each
i, we have:

1 ≤ |yi| = |N(xi; θ̂)|

=
∣∣∣Nk+1:L

(
ReLU

(
λ̂kûkv̂

⊤
k N1:k−1(x) + Ŵϵ

k N
1:k−1(x)

))∣∣∣
(a)

≤
∣∣∣ReLU(λ̂kûkv̂

⊤
k N1:k−1(x) + Ŵϵ

k N1:k−1(x)
)∣∣∣ L∏

ℓ=k+1

∥Ŵℓ∥2

(b)

≤
(∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ∥ûk∥|λ̂k|+
∥∥∥Ŵϵ

k N
1:k−1(xi; θ̂)

∥∥∥) L∏
ℓ=k+1

∥Ŵℓ∥F
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where steps (a), (b) comes by the Cauchy-Schwartz inequality and the fact that ReLU(|x|) = |x|.
Thus,

1

BL−k
≤
∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ∥ûk∥|λ̂k|+
∥∥∥Ŵϵ

k N
1:k−1(xi; θ̂)

∥∥∥ (7)

Furthermore by Lemma 2,∥∥∥Ŵϵ
k N

1:k−1(xi; θ̂)
∥∥∥ ≤ a ϵ

k∏
j=1

∥Wϵ
k∥2 ≤ a ϵBk .

By assumption of the Lemma we have n ≥
(
2M aBL

) 1
α , and therefore ϵ = M

nα ≤ 1
2·a·BL , which

gives us that: ∥∥∥Ŵϵ
k N

1:k−1(xi; θ̂)
∥∥∥ ≤ 1

2BL−k
.

Plugged into Eq. (7), and using the fact that |λ̂k| ≤ ∥Ŵk∥2 ≤ ∥Ŵk∥F ≤ B and using that ∥ûk∥ = 1,
we have: ∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ≥ 1

2BL−k+1
.

Proof of an upper bound. Similarly, using the Cauchy-Schwartz inequality,

|fk(x; θ̂)| =
∣∣∣v̂⊤

k N
1:k−1(xi; θ̂)

∣∣∣ ≤ ∥v̂k∥∥xi∥
k−1∏
ℓ=1

∥Ŵℓ∥F ≤ Bk−1 .

□

B Experiments

Code The code for our experiment is available at https://anonymous.4open.science/r/
stability_min_norm_ALT

Dataset We used binarized MNIST [LeCun et al., 1998] and Fashion-MNIST [Xiao et al., 2017]
datasets where we assigned target value −1 for the first 5 classes and 1 for all other classes. The
images were flattened to 1-dimensional vectors.

Architecture For the experiment, we used a bias-free FCN with a width of 100 and a depth of
8. The model had a scalar output, in which MSE loss was used to classify between labels with
output values −1 (first 5 classes) and 1 (latter 5 classes). The weight matrix Wk was initialized with
Gaussian distribution with standard deviation 1/

√
Nk−1.

Training All models were trained with Adam [Kingma and Ba, 2015] at a learning rate of 0.001
until it reached over 99% training accuracy. We used a weight decay of 0.005 to obtain a minimum
norm solution. At epochs 60 and 120, we divided the learning rate and weight decay by 5.

Stability To calculate the stability, we prepared 5 models with identical architectures and initial-
ization trained on 10, 000 mutually exclusive data points from MNIST. For all models, we perform
SVD on the weight matrix of the kth layer (Wk) to obtain the largest right eigenvector vk and the
subnetwork fk (Eq. (3)). Because the output of subnetworks can vary up to a scale, we normalize the
subnetwork such that

∑
x∈TEST fk(x; θ

(i))2 = 1.

The stability was measured by the absolute difference of the fk on the test set.3

Stability ≈ 1

4

5∑
i=2

∑
x∈TEST

|fk(x; θ(1))− fk(x; θ
(i))|.

3The empirical vk may contain a global sign difference; we took the smallest stability obtained from −vk
and vk.
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Figure 4: Stability of subnetworks and stable rank of the layers (Fashion-MNIST). We repeat the
experiment of Fig. 2, but on Fashion-MNIST dataset. In agreement with the experiment for MNIST,
FCN contains stable subnetwork and low-rank layers.
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Figure 5: Stability as a function of data points (Fashion-MNIST) We repeat the experiment of
Fig. 3, but on Fashion-MNIST dataset. As n increases, the stability of the subnetwork f6 (orange) is
similar to the stability of the whole network (green) and the stable rank of W6 also converges to 1.

Likewise, the sign stability was assessed by the occurrences of identical labels.

Sign stability :=
1

4

5∑
i=2

∑
x∈TEST

|sign(fk(x; θ(1)))− sign(fk(x; θ
(i)))|.

Computing resource Our experiments require a few minutes to 2 hours of training on a GPU
(RTX 3070 8GB) depending on the number of data points. All experiments require less than 3 GB
of memory. Experiments with a few data points were trained on CPU cluster which contains the
following CPUs: Intel(R) Core(TM) i5-7500, i7-9700K, i7-8700; and Intel(R) Xeon(R) Silver 4214R,
Gold 5220R, Silver 4310, Gold 6226R, E5-2650 v2, E5-2660 v3, E5-2640 v4, Gold 5120, Gold 6132.

B.1 Additional experiments

In Figs. 4 and 5, we repeat the experiments for Figs. 2 and 3 for Fashion-MNIST and obtain equivalent
results. In Fig. 6, we plot the performance of the sub-networks in Fig. 4.
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Figure 6: Layer compression. Using the models trained for Fig. 2, we send the output of the kth

layer to an auxiliary linear layer, which is trained using Adam over 200 epochs. We measure the test
error (left) and the test loss (right), which resembles the stability in Fig. 2.

18


	Introduction
	Preliminaries
	From sub-network stability to prediction stability
	Proof of the main result

	Additional related work
	Conclusions, limitations, and future work
	Omitted proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Experiments
	Additional experiments


