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ABSTRACT

Positional encodings enable Transformers to incorporate sequential information,
yet their theoretical understanding remains limited to two properties: distance
attenuation and translation invariance. Because natural language lacks purely po-
sitional data, the interplay between positional and semantic information is still
underexplored. We address this gap by deconstructing the attention-logit compu-
tation and providing a structured analysis of positional encodings, categorizing
them into additive and multiplicative forms. The differing properties of these forms
lead to distinct mechanisms for capturing positional information. To probe this
difference, we design a synthetic task that explicitly requires strong integration of
positional and semantic cues. As predicted, multiplicative encodings achieve a clear
performance advantage on this task. Moreover, our evaluation reveals a hidden
training bias: an information aggregation effect in shallow layers that we term
the single-head deposit pattern. Through ablation studies and theoretical analysis,
we proved that this phenomenon is inherent in multiplicative encodings. These
findings deepen the understanding of positional encodings and call for further study
of their training dynamics.

1 INTRODUCTION

Positional Encoding (PE) (Vaswani et al., 2017; Su et al., 2024) endows Transformer architectures
with an understanding of sequence order, compensating for the permutation-invariant nature of self-
attention (Vaswani et al., 2017). This component is critical to their success in both language (Vaswani
et al., 2017) and vision (Dosovitskiy et al., 2021) tasks. The design of PE has evolved substantially,
from the additive sinusoidal embeddings (Vaswani et al., 2017) of the original Transformer to
trainable absolute embeddings (Shaw et al., 2018) and more sophisticated relative schemes like T5
biases (Raffel et al., 2020) and Rotary Positional Encoding (RoPE) (Su et al., 2024). This progression
reflects a sustained effort to enhance generalization, extend context length, and improve model
efficiency.

Different positional encodings model distance decay and translation invariance in different ways, but
these differences are difficult to observe in the face of complex data with human grammatical rules.
Current evaluation paradigms, which rely on aggregate metrics such as perplexity (Ermo et al., 2025)
or length-extrapolation benchmarks (Kazemnejad et al., 2023), document these performance differ-
ences but fail to illuminate the underlying mechanisms of how positional signals are processed (Peng
et al., 2024; Ermo et al., 2025). Therefore, theoretical research on positional encoding relies on
synthesis tasks (Zuo et al., 2025; Kazemnejad et al., 2023), but some unexplained phenomena have
emerged. For example, despite its strong theoretical properties, such as the attenuation characteristic
that supports length generalization, RoPE can underperform simpler relative PEs or even models with
no PE on certain tasks (Kazemnejad et al., 2023). This discrepancy highlights a critical gap in our
understanding:

How, precisely, do different PE schemes mediate the interaction between token content and position?

This lack of mechanistic clarity hinders both the explanation of existing performance trade-offs and
the principled design of future PE schemes.

To bridge this gap, our approach is grounded in a core principle of positional encoding: the relationship
between any two tokens should depend on their relative distance, not their absolute positions. This
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Figure 1: Schematic Overview. (Left) Our framework analyzes token decomposition and how PE
mechanisms (additive, e.g., adding Toeplitz B; multiplicative, e.g., Hadamard with relative-position
Toeplitz Ge) structure attention logits. (Right) Multiplicative coupling theoretically induces better
learning/generalization and single-head deposit patterns.

property of translation invariance is formally captured by the structure of a Toeplitz matrix, in which
all elements along any given diagonal are identical. This insight allows us to deconstruct the attention
logit calculation and propose a unified, Toeplitz-based framework for analyzing PE mechanisms
(Figure 1). In our framework, each token’s embedding is composed of a content component (what
it is) and a position component (where it is). The central idea is that these position components
collectively induce a Toeplitz structure in the final attention scores.

This framework clearly distinguishes between two primary classes of PE. Additive methods, such
as relative position biases, operate by adding a static Toeplitz matrix of position scores directly to
the attention logits. In contrast, multiplicative methods like RoPE dynamically integrate positional
information into the query and key representations. This creates a powerful content–position
interaction, where the positional influence on attention scores is conditioned on the token’s content.
While this coupling provides a significant advantage on tasks where meaning is tightly bound to
relative location, we argue that it also introduces a strong inductive bias. This bias can manifest as a
drawback, concentrating the learning of positional logic into a small, specialized subset of attention
heads.

Observations based on the theoretical framework directly triggered our experimental design: we
conduct experiments on a series of carefully designed synthetic tasks. We generate random sequences
from a small vocabulary and use labeled “anchor” tokens to define two contrasting objectives: a
position-sensitive task requiring reasoning about the relative positions of anchors, and a position-
agnostic task dependent only on token counts. This controlled setup enables us to precisely isolate
and evaluate the model’s positional reasoning capabilities. Our experiments confirm that RoPE
decisively outperforms other methods on the position-sensitive task while underperforming on the
position-agnostic one. More importantly, this setting reveals a striking artifact unique to RoPE: the
“single-head deposit pattern”, where nearly all positional processing in the shallow layers becomes
concentrated into a single attention head.

Further investigation confirms this phenomenon is unique to RoPE on tasks with strong content-
position correlation. Through rigorous ablation studies and theoretical derivation—such as injecting
absolute positional encodings or selectively applying RoPE to a subset of heads—we demonstrate
that the deposit pattern is an intrinsic property of RoPE’s multiplicative structure, not an incidental
training artifact. This finding also explains why Transformers using RoPE tend not to form the latent
positional representations observed in models with additive or no PE (Zuo et al., 2025; Kazemnejad
et al., 2023). We posit that this intense, structurally-induced specialization is a primary cause of the
gap between RoPE’s theoretical promise and its practical performance.

Our contributions can be summarized as follows:
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• We propose a unified analytical framework using Toeplitz matrices that categorizes positional
encodings into additive and multiplicative mechanisms, clarifying their distinct effects on attention
logits.

• We empirically identify and analyze RoPE’s performance paradox through targeted synthetic tasks,
revealing a unique ‘single-head deposit pattern’ where positional logic becomes highly concentrated
in shallow layers.

• We conduct a causal analysis to demonstrate that the deposit pattern is an intrinsic property of
RoPE’s multiplicative architecture, offering a mechanistic explanation for its observed performance
paradox.

2 RELATED WORK

Positional Encoding in Transformers. Positional encoding was introduced alongside the Trans-
former architecture to endow self-attention with sequence order information (Vaswani et al., 2017).
Early approaches employed learnable positional embeddings (Shaw et al., 2018), while subsequent
work integrated position biases directly into the attention logits, giving rise to relative position
encoding and its extensions (Press et al., 2022; Li et al., 2024; Chi et al., 2023; 2022; Raffel et al.,
2020; Su et al., 2024; Zhao et al., 2025). Among these, Rotary Positional Encoding (RoPE) (Su et al.,
2024) stands out by applying a multiplicative bias to the QK⊤ matrix, and has been widely adopted
in modern open-source models. Related efforts on sliding-window and length-generalization designs
are also often framed as positional encoding variants (Kiyono et al., 2021; Chen et al., 2024a;b; Ding
et al., 2024; Peng et al., 2024). Recent RoPE-based improvements include Frequency-Partitioned
Encoding (FoPE) (Ermo et al., 2025) and the Multi-head Latent Attention (MLA) mechanism in
Deepseek-V3 (Liu et al., 2024).

Mechanistic Analyses of Positional Encoding. Empirical studies have probed how Transformers
internalize positional signals. Some works demonstrate that even without explicit positional embed-
dings (NoPE), models can learn positional distinctions (Wang et al., 2024; Zuo et al., 2025; Haviv
et al., 2022; Barbero et al., 2024), occasionally outperforming PE-equipped counterparts on select
tasks (Kazemnejad et al., 2023). Explanations range from implicit causal masking (Zuo et al., 2025)
to dataset-dependent effects (Barbero et al., 2024). Other analyses document characteristic behaviors
of RoPE, such as “massive value” phenomena and rotation artifacts (Jin et al., 2025; Jonasson, 2025).

Toeplitz Structure and Spectral Theory. The action of positional encoding in attention can be
unified under Toeplitz-matrix representations (Böttcher & Silbermann, 2000; Grenander & Szegö,
2002; Gray, 2006; Oppenheim & Schafer, 1999). Classical results on Toeplitz spectral distributions,
including Szegő’s theorem, inform our theoretical framework. Moreover, the impact of matrix spectra
on optimization convergence is well studied in numerical linear algebra and convex optimization
contexts (Horn & Johnson, 1985; 1991; Boyd & Vandenberghe, 2004; Nesterov, 2004).

3 METHODOLOGY

3.1 PRELIMINARIES: POSITIONAL ENCODING IN ATTENTION

The Transformer attention score between a query qi at position i and a key kj at position j is
based on their inner product, q⊤i kj . Since this computation does not depend on sequence order,
Positional Encoding (PE) schemes introduce positional information by modifying either the token
representations or the attention logits.

Absolute PE (Vaswani et al., 2017) adds a position vector pi to the initial embedding ei:

hi = ei + pi.

The query and key vectors derived from hi therefore mix content and position inside the representation,
making the attention score depend on the absolute token positions.

Relative PE (Raffel et al., 2020) incorporates positional information directly into the attention logits
through a learnable distance-dependent term:

αi,j ∝ exp
(
q⊤i kj + bj−i

)
.
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A defining feature of relative PE is translation invariance: the positional contribution depends only
on the displacement j − i, not on the absolute locations of i and j. Within this family, T5 (Raffel
et al., 2020) uses a learned table indexed by (j − i), while ALiBi (Press et al., 2022) applies a fixed
slope that increases linearly with distance. Thus both are translation-invariant, but differ in whether
the distance mapping is learned (T5) or predetermined (ALiBi).

Rotary PE (RoPE) (Su et al., 2024) introduces position by rotating the query and key vectors with a
position-dependent matrix Ri. A key identity shows that the resulting inner product depends only on
the relative displacement:

(Riqi)
⊤(Rjkj) = q⊤i R

⊤
j−ikj .

Thus RoPE implements positional encoding through a structured rotation that couples content and
position via relative position, rather than through additive shifts or explicit bias terms.

3.2 A UNIFIED FRAMEWORK VIA TOEPLITZ MATRICES

To analyze these mechanisms within a common framework, we introduce two foundational assump-
tions. The first is a conceptual decomposition of token representations.

Assumption 3.1 (Representation Decomposition). Any token representation xi can be conceptually
decomposed into a position-independent content component ci and a position-dependent position
component pi, such that xi = ci + pi.

Remark 3.1. This decomposition is not a modeling constraint but a structural lens. It is supported in
two complementary ways.

(i) Absolute PE explicitly introduces a position vector pi during embedding (Vaswani et al., 2017),
indicating that the resulting representation can be separated into content and position directions.

(ii) Even in architectures without explicit PE, recent analyses show that models learn low-dimensional
positional directions (Zuo et al., 2025).

(iii) as we show in Section 5.4, ablating the absolute position vectors in trained models produces
a significantly larger accuracy drop than ablating norm-matched random vectors, confirming that
position-dependent directions pi are functionally recognized by the model.

(iv) Importantly, this is not a linear-space decomposition: we do not assume orthogonality or
projection structure. Conceptually, removing pi corresponds to subtracting a coordinate chart of a
low-dimensional positional manifold, which makes the assumption broadly applicable all positional
encodings.

This allows us to analyze how PE schemes construct or interact with the positional component pi.
The core principle uniting relative PE schemes is translation invariance: the positional component
of the attention score depends only on the relative distance j− i. This principle is perfectly embodied
by a specific matrix structure.

Definition 3.1 (Toeplitz Matrix). A matrix T is a Toeplitz matrix if its entries are constant along
each diagonal, i.e., Ti,j = ai−j for some sequence {ak}. It is defined by 2N − 1 unique values for
an N ×N matrix.

Such matrices naturally arise whenever a quantity depends only on the relative displacement j − i,
making them the canonical representation of translation-invariant positional interactions. This leads
to our second assumption, which connects the positional components of tokens to the structure of the
attention matrix.

Assumption 3.2 (Toeplitz Structure from Positional Interaction). Since the positional contribution to
attention depends only on the relative displacement j − i, the Gram matrix formed by the position-
dependent components naturally takes a Toeplitz form.

Remark 3.2. Assumption 3.2 can be viewed less as a modeling assumption and more as a working
hypothesis that captures the intended translation-invariant decay, and that the pi decomposed from
Assumption 3.1 should have such a property. This assumption could be checked by sinusoidal
absolute PEs and is explicitly enforced by construction in relative PE biases. It provides a powerful
analytical tool for understanding the structure of positional information in the attention matrix.
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Under Assumptions 3.1–3.2, the attention logits can be decomposed into interpretable content and
position interactions. Let qci , k

c
j be query/key vectors derived from content components and qpi , k

p
j be

those from position components. Let Gv,w denote the Gram matrix where (Gv,w)i,j = v⊤i wj .

For additive mechanisms (e.g., Absolute or Relative PE), the logit matrix is a sum of components:

LAdditive = Gqc,kc +Gqc,kp +Gqp,kc +Gqp,kp +B (1)

Here, B denotes the explicit relative-bias matrix used only by relative encodings such as T5 and
ALiBi. For absolute or learned absolute PEs, we instead have B = 0, and the Toeplitz positional
structure is provided solely by the term Gqp,kp . Thus, in all additive mechanisms the Toeplitz
component arises either from Gqp,kp (absolute PE) or from B (relative PE), while the cross-terms
Gqc,kp +Gqp,kc remain the only channel through which content can interact with relative position.

In contrast, multiplicative mechanisms like RoPE induce a different structure. Following its
formulation using complex numbers in Su et al. (2024), the logit matrix becomes:

LRoPE = Re {(Gqc,kc +Gqc,kp +Gqp,kc +Gqp,kp) ◦Ge} (2)

where ◦ is the Hadamard product and Ge is a Toeplitz matrix.
Remark 3.3. The complex form of RoPE is an important component of the original paper (Su et al.,
2024). This form, combined with the Abel summation, can prove an upper bound on its distance
decay. A detailed derivation of how to convert the complex RoPE form into the Toeplitz matrix
form above is provided in Appendix B. This formulation highlights that RoPE does not add position
information; instead, it modulates all content interactions through a shared position-dependent kernel.

This formal analysis reveals a critical distinction. Additive methods combine content and position
signals, but RoPE’s multiplicative structure uses a Toeplitz kernel (Ge) to modulate the entire content-
content and content-position interaction. This enables a more direct and expressive coupling, allowing
the model to learn attention patterns where the relevance of a token’s content is conditioned on its
relative position to another. This type of task cannot be achieved through pure translation invariance;
instead, it requires that a specific translation distance be directly affected by the content feedback. We
hypothesize that this powerful coupling mechanism comes with a drawback: by routing the learning
of positional dependencies through this multiplicative kernel, RoPE may create a strong inductive bias
that encourages positional specialization, concentrating this logic into a small subset of attention
heads. This hypothesis motivates the experiments in the following section.

4 EXPERIMENTS

To empirically test our hypothesis about the distinct behaviors of additive and multiplicative positional
encodings, we design two synthetic tasks. These tasks allow us to isolate the model’s ability to couple
token content with positional information in a controlled setting. We use a 6-layer Transformer
decoder as our base model and evaluate six PE configurations: Absolute (Vaswani et al., 2017),
T5 Relative Bias (Raffel et al., 2020), ALiBi (Press et al., 2022), RoPE (Su et al., 2024), NoPE
(no explicit PE) (Kazemnejad et al., 2023), and a Random initialized embedding baseline. Our
experiments are averaged over five seeds, and the variance is less than 5%. Full implementation and
training details are provided in Appendix D.

4.1 SYNTHETIC TASK DESIGN

Task 1 – Position-Sensitive: Relative Distance Classification. This task is designed to require
strong content-position coupling, the theorized strength of multiplicative mechanisms. Each input
sequence contains two unique "trigger" words drawn from a vocabulary of 1,000 tokens. The model
must predict the relative distance between them, formulated as a classification problem over binned
distances. Success requires the model to identify what the trigger words are and determine where
they are in relation to each other. We generated a dataset of 100,000 examples for this task.

Task 2 – Position-Agnostic: Trigger Word Counting. This task serves as a control, designed to
penalize any inflexible positional bias. The model must predict the total number of occurrences of a
predefined set of 20 trigger words within a sequence, regardless of their positions. Because positional
information is a nuisance variable, an ideal model should learn to ignore it. We generated a dataset of
50,000 examples for this task.
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4.2 PERFORMANCE AND GENERALIZATION ANALYSIS

We first analyze the learning dynamics and generalization performance of each PE method on our
two tasks. The results are presented in Figures 2 and 3.

Ac
cu
ra
cy

Epoch Epoch
Figure 2: Training and test accuracy on Task 1 (Position-Sensitive). RoPE’s multiplicative coupling
enables it to significantly outperform all other methods in both convergence speed and final general-
ization.

On the Position-Sensitive Task, RoPE Excels. As predicted by our framework, RoPE (Figure 2)
demonstrates superior performance. It converges fastest and achieves the highest test accuracy with a
minimal generalization gap. This supports our theory that its multiplicative content-position coupling
is uniquely suited for tasks demanding this form of reasoning. In contrast, additive methods show
mixed results. Absolute PE performs second best, as its initial positional signal can be adapted by
subsequent layers. The Random embedding baseline learns the training set but fails to generalize, as
its non-Toeplitz structure lacks the translation invariance required to learn a general rule. Methods
like ALiBi, with its fixed and data-agnostic Toeplitz bias, struggle to adapt, while NoPE and standard
Relative PE fail entirely, lacking any mechanism to bind content to position.
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cy

Epoch Epoch
Figure 3: Training and test accuracy on Task 2 (Position-Agnostic). Strong, inflexible positional
biases like ALiBi are detrimental. RoPE’s adaptive nature allows it to perform well, nearly matching
methods with no positional bias.

On the Position-Agnostic Task, Strong Positional Biases are Detrimental. Figure 3 confirms our
second prediction: on a task where position is irrelevant, a strong positional inductive bias is harmful.
ALiBi, with its rigid, non-adaptive bias, suffers the most severe performance degradation. Conversely,
NoPE and Relative PE (which learns to attenuate its bias towards zero) perform well, as they do not
impose a counterproductive positional structure. RoPE also performs strongly, demonstrating its
adaptability; its multiplicative mechanism allows the model to learn to down-weight the positional
signal when it is not useful. Absolute PE incurs a small penalty, while the Random baseline again
overfits, learning spurious correlations between positions and counts in the training data.

4.3 EVIDENCE OF THE SINGLE-HEAD DEPOSIT PATTERN IN ROPE

Our theory suggests that RoPE’s multiplicative structure concentrates positional reasoning into a
few specialized heads. To find direct evidence for this phenomenon, we conduct a head-wise causal
ablation study on the models trained on Task 1. For each head in the network, we zero out its output
and measure the resulting drop in test accuracy. A large drop indicates that the head is critical to the
task.

The results, shown in Figure 4, provide striking confirmation of our hypothesis. In the RoPE model,
nearly all positional logic is localized to a single head in the first layer. Ablating this one head
causes a catastrophic drop in accuracy (≈60%), while ablating other heads has a negligible effect.
We term this phenomenon the “single-head deposit pattern.” Crucially, this pattern is unique to
the combination of the RoPE architecture and a position-sensitive task. As shown in Figure 4, the
pattern does not emerge in the NoPE model on the same task, nor does it appear in the RoPE model
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Figure 4: Head-wise ablation reveals a unique "Deposit Pattern" in RoPE. Each violin shows
the distribution of accuracies after ablating each head in that layer; long vertical tails correspond to
outlier heads whose removal causes a large accuracy drop. The three insets illustrate the characteristic
shapes of these distributions: a “deposit” shape with a single deep outlier (RoPE–Task 1), a flat
“average” shape (NoPE–Task 1), and a noisy “shock” shape (RoPE–Task 2). These shapes match the
contours of the main violins. Full per-head curves are provided in Appendix D.2.

trained on the position-agnostic Task 2. This confirms that the deposit pattern is not a generic artifact
of Transformer training but a direct consequence of RoPE’s multiplicative content-position coupling
mechanism. We therefore interpret the deposit pattern as a training bias rather than clean modularity,
although a full causal link to length generalization is left for future work (Appendix E).

5 ABLATION STUDIES AND MECHANISTIC INSIGHTS

The discovery of the "single-head deposit pattern" raises critical questions about the underlying
mechanics of RoPE. Is this pattern an inevitable side effect of multiplicative coupling, an efficient
specialization, or a wasteful bottleneck? To elucidate the mechanisms driving this phenomenon, we
design three targeted ablation studies, each testing a specific hypothesis.

5.1 ABLATION 1: DOES ROPE SUPPRESS LATENT POSITIONAL REPRESENTATIONS?

Hypothesis: We hypothesize that RoPE’s explicit, multiplicative positional signal is so potent that it
inhibits the model from forming its own implicit positional representations—a known capability of
standard Transformers (Zuo et al., 2025; Kazemnejad et al., 2023)—thereby causing other heads to
remain position-agnostic.

Experimental Design: To test this, we inject a redundant signal by augmenting a RoPE-equipped
Transformer with an additional Absolute PE at the input layer. This directly provides an explicit
pi component before the RoPE-enabled attention layers. We then observe if this alters the deposit
pattern.

Layer 1
Layer 2Epoch Epoch

A
cc
ur
ac
y

Head

For RoPE-Abs, Deposit Pattern disappear 
on Layer 1 and recover on Layer 2 

Task 1 Testing Accuracy Task 2 Testing Accuracy 

Figure 5: (Left) Performance of a hybrid RoPE + Absolute PE model. (Right) The deposit pattern is
initially suppressed in Layer 1 but re-emerges in deeper layers, demonstrating the strong inductive
bias of RoPE.
Results: The results, shown in Figure 5, are revealing. The explicit Absolute PE signal disrupts the
deposit pattern in the first layer, distributing positional responsibility more evenly. However, the
pattern re-emerges in deeper layers. This strongly suggests that while an initial explicit signal can
be utilized, the powerful inductive bias of RoPE’s multiplicative coupling eventually reasserts itself,
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overriding the additive signal. This confirms our hypothesis: RoPE’s mechanism is so dominant that
it suppresses the model’s tendency to form or utilize other forms of positional representation.

5.2 ABLATION 2: IS A SINGLE ROPE-ENABLED HEAD SUFFICIENT?

Hypothesis: The deposit pattern implies that for tasks like ours, a single RoPE-enabled head is
sufficient for positional reasoning, rendering additional RoPE heads redundant.

Experimental Design: We test this by systematically reducing the number of attention heads that
utilize RoPE, from all heads down to just one, with the rest operating as NoPE heads. We evaluate
performance on Task 1.

Task 1 Task 2

Head Head

Ac
cu

ra
cy

Figure 6: Performance on Task 1 when RoPE is applied to a diminishing subset of heads. Performance
remains near-optimal even with just one or two RoPE-enabled heads.

Results: As shown in Figure 6, performance on Task 1 remains near-optimal even when only one
or two heads are equipped with RoPE. This confirms that a small number of specialized heads are
indeed sufficient to capture the necessary positional information for this task. The result supports our
explanation for the deposit pattern: once one head effectively learns the content-position interaction
via the multiplicative mechanism, other heads become inert with respect to this task, as there is no
learning incentive to develop redundant positional capabilities.

5.3 ABLATION 3: CAN A HYBRID ARCHITECTURE MITIGATE INEFFICIENCY?

Hypothesis: The deposit pattern, while effective, is an inefficient use of model capacity. We
hypothesize that a hybrid architecture can mitigate this by explicitly dedicating resources, retaining
RoPE’s strengths while improving robustness.

Experimental Design: To explore this, we evaluate the Multi-Latent Attention (MLA) architecture
from DeepSeek (Liu et al., 2024). MLA formalizes a hybrid approach by creating parallel pathways
for position-agnostic and position-sensitive processing within a single head. Formally, the query-key
inner product is structured as a concatenation of a NoPE component and a RoPE component:

⟨qi, kj⟩ = ⟨(WUQxi ; RiWURxi), (WUKxj ; RjWURxj)⟩, (3)
where ( ; ) denotes vector concatenation and the projection matrices for each pathway are distinct.
This structure ensures that each attention head computes both a NoPE-style and a RoPE-style
logit simultaneously. Interpreted through our theoretical framework, this mechanism effectively
modifies the logit matrix by creating a weighted combination of a standard content matrix and a
RoPE-modulated one:

LMLA_complex = (Gq,k +Gq,p +Gp,k +Gp) ◦ (αGe + I). (4)
This prevents the purely multiplicative signal from dominating and encourages a more distributed
representation of position. We replaced our standard attention with the MLA module and evaluated it
on both tasks.

Layer

A
cc
ur
ac
y

Figure 7: Head-wise ablation violin plot under MLA.

Method Task 1 Task 2
MLA 88.34 97.41
RoPE 92.64 69.43
NoPE 3.51 77.69

Table 1: MLA performance comparison
on the two tasks.
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Results: The MLA architecture successfully mitigates the deposit pattern. Figure 7 shows that no
single head is indispensable, and positional responsibility is diffused across the model. Furthermore,
Table 1 shows that MLA nearly matches RoPE’s performance on Task 1 while dramatically improving
on Task 2. This demonstrates that by preventing over-specialization, the hybrid model achieves a
more robust balance.

5.4 ABLATION 4: WHERE DO ADDITIVE AND MULTIPLICATIVE PES STORE POSITIONAL
INFORMATION?

Hypothesis. Given the decomposition xi = ci + pi (Assumption 3.1), we ask whether different PE
mechanisms retain an explicit positional direction pi in the activations, or whether this information
is absorbed into the query–key parameterization. Our hypothesis is that additive PEs preserve
activation-level pi, while RoPE rapidly suppresses it.

Experimental Design. For each layer ℓ, we ablate either (1) the fixed positional vectors pi (Absolute
PE) or (2) norm-matched random vectors, and measure test accuracy. A larger drop under pi-removal
indicates that the model relies on an explicit positional direction. For RoPE, we repeat the same
intervention on the hybrid Absolute+RoPE model (Section 5.1), where pi is added only at the
embedding layer.

Absolute PE Absolute PE + RoPE

Figure 8: Layer-wise ablation of absolute positional vectors versus norm-matched random vectors.
Left: Absolute PE shows consistently larger drops under pi-removal, confirming that additive PEs
preserve explicit positional directions in the activations. Right: For Absolute+RoPE, this difference
vanishes after Layer 2, indicating that RoPE suppresses activation-level positional directions and
shifts positional structure into the attention parameterization.
Results. Fig. 8 shows a clear contrast: (1) For Absolute PE, removing pi causes a consistently
larger accuracy drop than removing norm-matched random vectors, indicating that additive PEs
preserve explicit positional directions in the activations; (2) For Absolute+RoPE, this difference
disappears after Layer 2, showing that RoPE suppresses activation-level positional directions and
shifts positional information into the query–key parameterization.

Summary. Additive PEs store position in explicit activation directions pi, whereas RoPE rapidly
eliminates these directions and embeds positional structure in the frequency-modulated parameters.
This is why the structure of MLA can eliminate this phenomenon.

6 THEORETICAL ANALYSIS OF THE DEPOSIT PATTERN

The empirical discovery of the "single-head deposit pattern" in RoPE (Su et al., 2024) invites a formal
theoretical explanation. In this section, we provide a mathematical argument demonstrating that
this phenomenon is an inherent consequence of RoPE’s design. We analyze the gradient signal for
the relative distance classification task (Task 1). Let (is, js) be the positions of the trigger words
for a sample s, with the task being to predict the relative distance ds := |js − is|. The algebraic
intuition behind our proof is this: for a sample labeled |i− j|, the optimization rewards the distance
signal |i− j| and penalizes other distance signals. For addition, the reward and penalty are always
antagonistic because the position bias lacks context information. However, for multiplication, the
penalty is attenuated by frequency, making the reward cumulative. This accumulation ultimately
leads to an initial top-level bias in the gradient signal, which is amplified by backpropagation. As a
comparison with RoPE, we also analyze ALiBi Press et al. (2022) on this task.

Our analysis relies on the following idealized assumptions, which are empirically plausible in the
context of early training.
Assumption 6.1 (Formal Setup for Gradient Analysis).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(A1) Jacobian Stability. Each inter-layer Jacobian J (l) has singular values bounded in [1 −
αl, 1 + αl] for αl ∈ (0, 1), consistent with architectures using pre-normalization.

(A2) Monotone Anchor Path. For each sample s, there is an "anchor" row us where the
gradient signal is positively correlated with the target token’s value vector. Formally,
⟨∂ℓs/∂Y (h,L)

us,: , V
(h,L)
js,:

⟩ ≥ η(h)s > 0. This formalizes that a basic learning signal exists.

(A3) Projection Separability (for ALiBi). The projection matrices WQ,WK ,WV are such that
kerWQ ∩ kerWK ̸⊂ kerWV . This is a generic condition in overparameterized models.

Our analysis demonstrates a fundamental difference in how RoPE and ALiBi structure the gradient
signal for relative position tasks.
Proposition 6.1 (RoPE Gradient Seed Coherence). Under Assumption (A2), the aggregated anchor
gradient for RoPE, H(h)

L (d), has a deterministic lower bound. A strictly positive seed (H(h)
L (d) > 0)

is guaranteed if the learning signal is sufficiently strong to satisfy the condition a
(h)
∗ (d) η

(h)
∗ (d) >

C(h)χL.

Proposition 6.2 (ALiBi Gradient Cancellation). Under Assumptions (A3), for any empirical distance
distribution µ̂N , there exists a batch of samples realizing µ̂N such that the aggregated anchor gradient
for ALiBi vanishes for all heads and distances: H(h)

L (d) ≡ 0.

The existence of a non-cancellable seed in RoPE is the starting point. The following theorem shows
how this seed inevitably leads to the deposit pattern.
Theorem 6.1 (Exponential Amplification and Specialization). Let U be the subspace of gradient
directions corresponding to the positive RoPE seeds from Proposition 6.1. The signal-to-noise ratio
of the gradient within this subspace is amplified exponentially during backpropagation. Crucially,
the margin between the gradient signal for the dominant head and that of the second-dominant head
also grows exponentially.

Marginl ≥ MarginL

L−1∏
k=l

γk, where each gain factor γk > 1. (5)

Implication. Theorem 6.1 provides the theoretical basis for the single-head deposit pattern. Even a
minuscule initial advantage for one head in learning the position-sensitive task (a non-zero MarginL)
becomes exponentially magnified as gradients propagate to lower layers. This dynamic strongly
incentivizes the optimizer to allocate the entire task of positional reasoning to that single head,
as its parameters receive a disproportionately larger learning signal, thus explaining the observed
specialization. The detailed proofs for these results are provided in Appendix C.

7 CONCLUSION AND LIMITATIONS

In this work, we introduced a novel framework that leverages spectral theory to deconstruct how posi-
tional encoding (PE) mechanisms operate within the Transformer attention matrix. We demonstrated
that this framework provides a powerful lens, allowing us to predict learning dynamics and uncover
previously hidden processing patterns. Our primary discovery, the "single-head deposit pattern"
in RoPE, serves as a clear mechanistic explanation for the observed paradoxes in its performance.
By identifying the distinct signatures of additive and multiplicative coupling, our analysis not only
diagnoses the cause of this over-specialization but also points toward a solution. The success of a
hybrid architecture validates our theory and suggests that controlled mixing of positional signals
is a promising strategy for achieving both spectral stability and robust, distributed representations.
Furthermore, we exploit gradient flow to verify that this is an intrinsic property of the RoPE.

Limitations: Firstly, the connection we hypothesize between the deposit pattern and RoPE’s known
struggles with length extrapolation requires direct empirical validation. Secondly, future work should
probe the limits of these positional mechanisms on more complex, algorithmic tasks such as sequence
reversal or Dyck language recognition. However, most of these tasks are beyond the capabilities of
transformers, so more complex controlled analysis is a serious challenge for future work.
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ACKNOWLEDGMENT OF LLM USAGE

During the preparation of this manuscript, large language models (LLMs) were employed in a limited
and auxiliary capacity. Specifically, their usage was restricted to the following three aspects: (1)
checking grammar and expression at the sentence level, thereby providing local linguistic refinement;
(2) performing global polishing after the draft was completed, ensuring that the overall exposition
conforms to idiomatic English usage; and (3) improving the readability of the proof details presented
in the appendix.

At no stage were LLMs used for generating research ideas, developing arguments, or modifying the
substantive content of this work. Their sole role was to assist in enhancing clarity and effectiveness
of communication.

A NOTATIONS LIST

The notations used throughout this article are summarized in Table 2.

Table 2: Some important notations used in this paper.

Notation Description

xi Real vector in R2n

xi Complex vector in Rn

c Content label for a token or a hidden activation
p Position label for a token or a hidden activation
ei Absolute position encoding for i
b or B The bias decided by the relative position encoding
Ri The rotary matrix for position i of RoPE
Gu,v The gram matrix for the vector columns {vi}, {ui}
L Logit value of attention layer
TN (a) Toeplitz Matrix for ai, i = −N, ..., N

B DETAILED METHOD ANALYSIS

In this section of the appendix, we provide detailed theoretical analysis and derivations supporting the
non-trivial conclusions presented in the main text. Our analysis relies on idealized proofs that simplify
the complex optimization dynamics of neural networks, aiming to reveal a theoretical explanation
for the observed experimental phenomena. While the actual simulation and analysis of non-convex
optimization in full Transformer models is extremely difficult, this theoretical framework offers
valuable insights into the underlying principles.

Our analysis is predicated on a core theoretical link regarding the role of spectral properties in
learning. We rely on the established principle that favorable spectral properties of matrices involved
in optimization—such as a more contracted eigenvalue spectrum (tighter bounds) or a smaller spectral
norm—correlate with faster and more stable convergence of learning algorithms. Building upon this,
our theoretical framework posits that the rapid and stable convergence of the positional coupling
function, driven by these favorable spectral properties, will lead to a specific phenomenon during
training: the localization of this function within a limited set of attention heads in shallow layers,
resulting in the empirically observed deposit pattern Boyd & Vandenberghe (2004).

Proposition B.1 (RoPE Logit Form): This proposition formally derives the mathematical form of
the Rotary Positional Encoding (RoPE) attention logit as presented in the main text (Equation 9),
showing how RoPE’s rotation mechanism translates into a specific inner product structure involving
content and relative positional information. We would prove that

LRoPE_complex = (Gq,k +Gq,p +Gp,k +Gp) ◦Ge.
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We use the fomula in Su et al. (2024) that a logit value of i and j in LRoPE_complex is

d/2−1∑
k=0

q
(t)
i kj

(t)ei(i−j)θt ,

and there are t1 and t2 that

(

d/2−1∑
k=0

q
(t)
i kj

(t))ei(i−j)θt1 ≤
d/2−1∑
k=0

q
(t)
i kj

(t)ei(i−j)θt ≤ (

d/2−1∑
k=0

q
(t)
i kj

(t))ei(i−j)θt2 ,

Due to continuity and the mean value theorem, there exists ti−j that

d/2−1∑
k=0

q
(t)
i kj

(t)ei(i−j)θt = (

d/2−1∑
k=0

q
(t)
i kj

(t))ei(i−j)θti−j = qikje
i(i−j)θti−j .

Then we can use ei(i−j)θti−j to generate Ge to finish our proof.

Proposition B.2 (Logit Expressiveness): This proposition analyzes and demonstrates the higher
degree of freedom and expressive power of the RoPE attention logit form (Equation 9) compared to
the non-RoPE additive logit form (Equation 8). It highlights why RoPE’s structure is theoretically
better suited to capture the complex content-relative positional relationships required by tasks like
Task 1.

Task 1 is directly related to the following optimization problem:

For −i ≤ s ≤ d− s and constant C1 and C2,

1. Relative Position Encoding

< qi, kj > +bi−j > C1 > C2 >< qi+s, kj+s > +bi−j ,

2. RoPE

Re{< qi,kj > ei(i−j)θti−j} > C1 > C2 > Re{< qi+s,kj+s > ei(i−j)θti−j}.

It is easy to verify that the solution space of RoPE is much larger than that of Relative Position
Encoding. This can be considered from the following two aspects. First, the expression of RoPE can
make the key-value pairs with a fixed distance meet the requirements as long as the angle distribution
meets the requirements, while the expression of Relative Position Encoding requires a more stringent
angle distribution because the bias has no significant effect. Second, RoPE actually only needs a
significant angle to easily meet the conditions, which actually corresponds to the cause of Massive
Value described in Jin et al. (2025).

The emergence of the deposit pattern may share a common theoretical origin: the spectral properties
of the attention logit matrix. Gradient-based optimization is known to be more stable for matrices
with tightly clustered eigenvalues (Boyd & Vandenberghe, 2004). As suggested by Szegő’s theo-
rem (Grenander & Szegö, 2002), the multiplicative interaction in RoPE is theorized to contract the
eigenvalue spectrum of the positional component more effectively than additive methods.

Proposition B.3 (Spectral Contraction): This proposition formally proves the spectral property
claimed in the main text. By applying theorems like Szegő’s theorem and inequalities concerning the
Hadamard product, it demonstrates that the Toeplitz matrix structure associated with multiplicative
coupling (as in RoPE) has a more desirable eigenvalue spectrum (e.g., more compact or tighter
bounds) compared to Toeplitz structures associated with additive coupling mechanisms.

The structure of the attention logit matrix L, particularly the properties of its Toeplitz or Toeplitz-like
components, provides crucial insights into the stability and dynamics of positional information
processing. The width of the eigenvalue spectrum often has a great impact on the optimization
process.

For Toeplitz matrices, classical results such as Szegő’s theorem connect matrix structure to asymptotic
eigenvalue distributions. We recall a relevant form below:
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Theorem B.1 (Szegő’s Theorem on Eigenvalue Distribution (From Grenander & Szegö (2002))). Let

TN (a) be an N ×N Toeplitz matrix with (TN (a))i,j = ai−j , and let a(eiθ) =
∞∑

k=−∞

ake
ikθ be its

symbol. If a(eiθ) is real-valued and continuous, then the eigenvalues λ(N)
j of TN (a) asymptotically

fill the interval [min a(eiθ),max a(eiθ)] as N → ∞.

Applying this theorem and related spectral analysis techniques to the Toeplitz structures induced by
various PE mechanisms:

• In Non-RoPE methods, the Toeplitz components Gqp,kp and B contribute additively to the
logit, and their spectral ranges are determined by their respective coefficient sequences.

• In RoPE, the complex logit involves a Hadamard product with the Toeplitz matrix Ge. This
multiplicative interaction theoretically contracts the eigenvalue range relative to additive
compositions, resulting in tighter spectral bounds.

We simplify the proposition into the following: Let W,E be N×N positive definite Toeplitz matrices.
Then the eigenvalue spectrum of the Hadamard product W ◦ E is more compact than W .

Here, each element of E is a complex number with a membrane length of 1. We can directly use
Schur’s inequality to prove that the membrane length of the eigenvalue of W ◦E must be less than or
equal to the membrane length of the eigenvalue of W .

However, a strict comparison requires citation of Szegő’s Theorem B.1 on Eigenvalue Distribution
Grenander & Szegö (2002). So let us calculate the generating function (sign function) corresponding
to W ◦ E and W respectively.

Symble(W ◦ E)(θ) =

N−1∑
i=−N+1

wie
i(iθi+iθ) =

N−1∑
i=0

2Re{wi} cos(iθi + iθ)

Symble(W )(θ) =

N−1∑
i=−N+1

wie
i(iθ) =

N−1∑
i=0

2Re{wi}cos(iθ)

We will use the following lemma to prove that the range of the above formula must be smaller than
that of the following formula, and thus Szegő’s Theorem shows that its eigenvalue spectrum is more
compact.

Lemma B.1 (Amplitude bound and phase–alignment criterion). Fix an integer N ≥ 1 and non-
negative weights wi ≥ 0. Define

f(θ) :=

N−1∑
i=0

2wi cos
(
iθi + iθ

)
, g(θ) :=

N−1∑
i=0

2wi cos(iθ), θ ∈ R.

Then

max
θ∈R

∣∣f(θ)∣∣ ≤ max
θ∈R

∣∣g(θ)∣∣ = 2

N−1∑
i=0

wi.

Equality holds iff all phase offsets coincide modulo 2π:

θ0 ≡ θ1 ≡ · · · ≡ θN−1 (mod 2π).

Consequently the peak-to-peak range of g (width 4
∑
i

wi) never falls below that of f , and both

ranges coincide only under complete phase alignment.

Proof. Denote

P (z) :=

N−1∑
i=0

ciz
i, ci := wie

iθi , Q(z) :=

N−1∑
i=0

wiz
i, |z| = 1.
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Upper bound. For any |z| = 1 the triangle inequality gives

|P (z)| ≤
N−1∑
i=0

|ci| =

N−1∑
i=0

wi.

Hence

|f(θ)| = 2
∣∣ℜP (eiθ)

∣∣ ≤ 2
∣∣P (eiθ)

∣∣ ≤ 2

N−1∑
i=0

wi =
∣∣g(0)∣∣.

Conversely,
∣∣cos(iθ)∣∣ ≤ 1 implies |g(θ)| ≤ 2

∑
i

wi for every θ, while g(0) = 2
∑
i

wi shows that

this bound is attained, so max
θ

|g(θ)| = 2
∑
i

wi. Combining the two yields the desired inequality.

Equality case. Suppose max
θ

|f(θ)| = 2
∑
i

wi. Then at some θ⋆ both previous inequalities are

tight: ∣∣P (eiθ
⋆

)
∣∣ = ∑

i

wi,
∣∣ℜP (eiθ

⋆

)
∣∣ = ∣∣P (eiθ

⋆

)
∣∣.

The first equality forces **all terms in the sum for P to share a common phase**, i.e. ei(θi+iθ⋆) is the
same for every i; the second forces this common phase to be 0 or π, which does not affect alignment.
Thus

θi + iθ⋆ ≡ θ0 (mod 2π) ∀i =⇒ θi ≡ θ0 (mod 2π) ∀i.

Conversely, if all θi are equal, choosing θ = −θ0 gives f(−θ0) = g(0) = 2
∑
i

wi, so equality is

achieved.

The lemma follows.

C DETAILED PROOFS FOR THEORETICAL ANALYSIS

This appendix provides the detailed proofs for the propositions and theorems presented in Section 6.

C.1 PRELIMINARIES AND NOTATION

We consider a Transformer with L layers and H heads. For a batch of N samples, (is, js) are the
token positions for sample s, and ds = |js − is| is the relative distance. The empirical measure of

distances is µ̂N (d) :=
1

N

N∑
s=1

1{|js − is| = d}. The attention mechanism is defined by S(h,l) =

Q(h,l)K(h,l)⊤/
√
dh, A(h,l) = softmaxrow(S

(h,l)), and Y (h,l) = A(h,l)V (h,l). We use the following
constant, derived from bounded operator norms and loss gradients:

C(h) := ∥WO∥2 ∥V (h,L)∥2 sup
s

∥∂ℓs/∂y∥2. (6)

We also denote the row sharpness as χL := max
i

∥A(h,L)
i,: ∥2 and the minimum anchor attention as

a
(h)
∗ (d) := inf

s: ds=d
A

(h,L)
us,js

.

C.2 SOFTMAX GRADIENT CALCULUS

Lemma C.1 (Row-softmax Gradient Identity). For any layer l, head h, sample s, and row i,

∂ℓs

∂S
(h,l)
i,j

= A
(h,l)
i,j

(
Λ
(h,l)
i,j − ⟨Λ(h,l)

i,: , A
(h,l)
i,: ⟩

)
, (7)

where Λ(h,l) := (∂ℓs/∂Y
(h,l))V (h,l)⊤.
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Proof. The result follows from the chain rule. The Jacobian of a row-wise softmax is Ji =
diag(Ai,:)−Ai,:A

⊤
i,:. The upstream gradient is ∂ℓ/∂A = (∂ℓ/∂Y )V ⊤. Combining these yields the

identity.

Lemma C.2 (Quantitative Anchor Gain). Let j⋆ be an anchor column for row i. Let Ji be the softmax
Jacobian for row i. For the canonical basis vector ej⋆ , we have:

∥Pej⋆ J
⊤
i ej⋆∥2 = Ai,j⋆(1−Ai,j⋆) and ∥P(ej⋆ )⊥ J⊤

i ej⋆∥2 ≤ Ai,j⋆(1−Ai,j⋆). (8)

Proof. A direct computation gives J⊤
i ej⋆ = Ai,j⋆ej⋆ − Ai,j⋆Ai,:. The component along ej⋆

is Ai,j⋆(1 − Ai,j⋆). The squared norm of the orthogonal component is A2
i,j⋆

∑
k ̸=j⋆

A2
i,k ≤

A2
i,j⋆(

∑
k ̸=j⋆

Ai,k)
2 = A2

i,j⋆(1−Ai,j⋆)
2. Taking square roots yields the result.

C.3 PROOF OF PROPOSITION 6.1 (ROPE TOP-LAYER SEED)

Proof. From Lemma C.1, for a sample s with anchor us and target js:
∂ℓs

∂S
(h,L)
us,js

= A
(h,L)
us,js

(
Λ
(h,L)
us,js

− ⟨Λ(h,L)
us,: , A(h,L)

us,: ⟩
)
. (9)

By Assumption (A3), the first term Λ
(h,L)
us,js

= ⟨∂ℓs/∂Y (h,L)
us,: , V

(h,L)
js,:

⟩ ≥ η(h)s . For the second term,
Cauchy-Schwarz and the definition of C(h) yield:

|⟨Λus,:, Aus,:⟩| ≤ ∥Λus,:∥2 ∥Aus,:∥2 ≤ ∥∂ℓs/∂Yus,:∥2 ∥V (h,L)∥2 χL ≤ C(h)χL. (10)

Combining these, and using A
(h,L)
us,js

≤ 1:

∂ℓs

∂S
(h,L)
us,js

≥ A
(h,L)
us,js

η(h)s −A
(h,L)
us,js

C(h)χL ≥ a
(h)
∗ (ds)η

(h)
∗ (ds)− C(h)χL. (11)

Summing over all samples s with ds = d to get H(h)
L (d) gives the result:

H
(h)
L (d) ≥ N µ̂N (d)

(
a
(h)
∗ (d) η

(h)
∗ (d)− C(h)χL

)
. (12)

This is strictly positive if the learning signal term a∗η∗ outweighs the interference term CχL.

C.4 PROOF OF PROPOSITION 6.2 (ALIBI CANCELLATION)

Proof. We provide a constructive proof. Fix a distance bucket d and partition its samples Sd into
pairs (s, s′). For each pair, we construct their token embeddings to achieve cancellation.

1. Identical Attention Matrix: By (A3), choose t such that WQt = WKt = 0 and WV t ̸= 0.
For a base token embedding x0, set the anchor token embedding for sample s to be xs =
x0 + t and for s′ to be xs′ = x0 − t. All other token embeddings are identical for s and
s′. Since the query and key projections of t are zero, all dot products qi · kj are identical
for both samples. As ALiBi adds the same bias bh(j − i), the scores S(h,L) and attention
matrices A(h,L) are identical for s and s′.

2. Flipped Gradient Signal: Since WV t ̸= 0, the value vector at the anchor row us is flipped:
V (h,L)
us,: (s′) ≈ V (h,L)

us,: (s)− 2WV t. By appropriate choice of x0, this can be made an exact
sign flip. This implies that the term Λ(h,L)

us,: (s′) = −Λ(h,L)
us,: (s).

3. Pairwise Cancellation: Applying Lemma C.1 to the anchor edge (us, js) for both samples,
we find their respective gradients are equal and opposite, summing to zero. Repeating this
for all pairs makes H(h)

L (d) = 0.
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C.5 PROOF OF THEOREM 6.1 (EXPONENTIAL AMPLIFICATION)

Let U be the subspace spanned by gradient directions corresponding to the seed-positive buckets. Let
g(l) be the gradient vector at layer l, so g(l) = J (l)⊤g(l+1).
Lemma C.3 (Layerwise Directional Advantage). Under the assumptions, there exists βl ≥ 0 such
that for any v ̸= 0,

∥PUJ
(l)⊤v∥2

∥PU⊥J (l)⊤v∥2
≥ 1− αl

1 + αl
(1 + βl). (13)

The gain βl is lower-bounded by a term proportional to the summed strength of the positive seeds
from Proposition 6.1.

Proof. The Jacobian J (l) is decomposed into the within-attention part O(l) and the rest of the block
R(l). By (A1), the R(l) part contributes the factor (1− αl)/(1 + αl). The gain βl arises from O(l).
Lemma C.2 establishes a directional gain for the anchor component within the softmax Jacobian.
When composed with the value projection and the upstream gradient from (A2), the anchor direction
receives a coherent signal. Aggregating over the anchor rows in subspace U yields a net directional
advantage, which extends from the basis vectors of U to any vector v by a convexity argument.

Proof of Theorem 6.1. Applying Lemma C.3 to the backpropagation recurrence g(l) = J (l)⊤g(l+1):

SNRl =
∥PUJ

(l)⊤g(l+1)∥2
∥PU⊥J (l)⊤g(l+1)∥2

≥ γl ·
∥PUg

(l+1)∥2
∥PU⊥g(l+1)∥2

= γl · SNRl+1. (14)

Iterating this inequality from layer L − 1 down to l yields the exponential product. The same
multiplicative logic applies to the vector components corresponding to the top two heads within the
subspace U , proving margin amplification.

C.6 REMARK: CONCEPTUAL LINK TO CONVOLUTION KERNELS

It is helpful to conceptually frame the aggregated gradient H(h)
L (d) as a discrete convolution. If we

define the empirical distribution of distances as a signal µ̂N , and the expected gradient contribution
for a given relative distance ∆ as a "deposit kernel" κ(h)(∆), then the total aggregated gradient is
their convolution: H(h)

L = N(µ̂N ∗ κ(h)).

From this perspective, our proof demonstrates a key difference in the structure of these implicit
kernels:

• For RoPE, the kernel κ(h)(∆) has a trigonometric structure due to the rotational mechanism.
This structure is analogous to a positive-definite kernel, which resists being driven to zero
and ensures a positive "seed" is deposited.

• For ALiBi, the kernel κ(h)(∆) is merely affine (linear plus a constant). This simple struc-
ture allows for exact cancellation when convolved with a symmetric distance distribution,
explaining why no seed is guaranteed.

This intuitive framing aligns with the rigorous proof and reinforces the conclusion that the deposit
pattern is an inherent property of RoPE’s multiplicative design.

D SUPPORT EXPERIMENT

D.1 EXPERIMENT SETUP

All experiments were performed on a single NVIDIA RTX 4090.

The experimental parameter settings of non-MLA are shown in Table 3, and the experimental
parameter settings of MLA are shown in Table 4.
Remark D.1. Note that all our experiments used dropout, so the deposit pattern is not a phenomenon
that can be improved by ordinary dropout.

Since Task 2 did not have a position effect, our subsequent experiments were all on Task 1.
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Setting Value
Vocabulary size (vocab_size) 574
Model dimension (dmodel) 256
Feed-forward dimension (dff ) 512
Number of attention heads (num_heads) 16
Number of decoder layers (num_layers) 6
Dropout rate 0.1
Maximum sequence length (max_len) 128
Positional encoding types tested nope, absolute, alibi, relative, random, rope
Number of epochs 100 (Task 1);150 (Task 2)
Batch size 512 or 1024
Optimizer AdamW (lr=1e-4, betas=(0.98, 0.9), weight_decay=1e-5)
Learning-rate scheduler Cosine schedule with warm-up (6% of total steps)
Loss function Cross-entropy
Train/Test split 70% / 30%
Random seed 0,42,70,113,130

Table 3: Hyperparameters and settings (PE).

Setting Value
Vocabulary size (vocab_size) 574
Model hidden dimension (dmodel) 256
Feed-forward dimension (dff ) 512
Number of logical MLA heads (num_heads) 16 (8 in fact)
Compression dimension (dcompress) 128
Number of decoder layers (num_layers) 6
Dropout rate 0.1
Maximum sequence length (max_len) 128
Positional embedding Rotary (RoPE)
Number of epochs 100 (Task 1); 150 (Task 2)
Batch size 1024
Optimizer AdamW (lr=1e-4, betas=(0.98, 0.9), weight_decay=1e-5)
Learning-rate scheduler Cosine warm-up (6% of total steps)
Loss function Cross-entropy
Train/Test split 70% / 30%
Random seed 0,42,70,113,130

Table 4: Hyperparameters and settings (MLA).

D.2 COMPLETE VISUALIZATION OF LAYER-BY-LAYER HEAD ABLATION

For completeness, we provide the full layer-by-layer head ablation results for the RoPE models
trained on Task 1. These figures expand upon the summary violin plots in Fig. 4, showing the
per-head accuracy after zeroing out each attention head at every layer.

How to read the plots. Each subplot corresponds to one Transformer layer, and each point plots the
test accuracy after ablating a single head. Large vertical drops indicate heads whose removal severely
harms performance, revealing where positional reasoning is concentrated. Flat curves indicate heads
that contribute minimally and whose ablation produces no measurable degradation.

6-layer RoPE model. Figure 9 shows the full ablation for the 6-layer model. The first layer contains
a single dominant head whose ablation causes a large accuracy collapse, while all remaining heads
exhibit near-flat profiles across layers. This fine-grained visualization matches the condensed “deposit
pattern” presented in the main text.
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Figure 9: Full head-ablation curves for the 6-layer RoPE model on Task 1. Each subplot shows
the test accuracy after ablating a single attention head in the corresponding layer. A single head in
Layer 1 produces a catastrophic accuracy drop, while all other heads across all layers induce only
minor changes. This confirms that RoPE concentrates positional reasoning into one early-layer head,
even in shallower architectures.

8-layer RoPE model. Figure 10 reports the same analysis for an 8-layer RoPE model. Despite
the increased depth, the pattern is qualitatively identical: a single early-layer head carries almost all
positional reasoning, and deeper layers show only small, noise-level fluctuations across heads. This
demonstrates that the deposit pattern is not sensitive to depth and remains stable across architectures.

Summary. These complete ablation maps confirm that the deposit pattern is a robust and highly
localized effect: RoPE consistently routes positional reasoning into one head in the earliest layers,
with all other heads acting effectively position-agnostic for this task.

D.3 EXPERIMENTS OF HEAD ABLATION ON OTHER PE METHODS

In this subsection, we use violin plots to show the ablation experiment results of Alibi, Absolute PE,
and Relative PE.

In Figure 11, we can find that the position information of relative position encoding and ALiBi are
scattered, while the absolute position encoding has some significant heads and some insignificant
heads in the shallow layer, and the whole is oscillating.
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Figure 10: Full head-ablation curves for the 8-layer RoPE model on Task 1. The same localization
pattern reappears at larger depth: a unique critical head in Layer 1 causes a large accuracy collapse,
and all remaining heads across Layers 2–8 have negligible impact. The persistence of this topology
across depth demonstrates the stability and robustness of the RoPE deposit pattern.

The similarities among NoPE, Relative PE, and ALiBi are consistent with previous studies on how
NoPE obtains position information through causal masks Kazemnejad et al. (2023); Haviv et al.
(2022).

D.4 SOME EXPERIMENTS ON PARTIAL ROPE

It is foreseeable that MLA can fully alleviate the deposit pattern at the expense of a little generalization
ability. We also conducted some ablation experiments in the experiments of RoPE for some heads
and NoPE for some heads. Interestingly, we found that the most significant deposit pattern is not
necessarily in the first layer, but may be in the second or third layer. In some cases, the first layer
does not even have a deposit pattern. We can imagine that this is the effect of using NoPE attention
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Ac
cu
ra
cy

Head Layer

Figure 11: Ablation experiments on other PE methods.

heads in deeper layers. This inspires us that the way the FFN affects the position encoding is far
more complicated than we imagined. We give the partial ablation line graph of the first k heads doing
RoPE layer l below.

Figure 12: k = 2, l = 1, 2.

Figure 13: k = 3, l = 1, 2.

D.5 WHY POSITION EMBEDDING COMPLEX?

We conclude this section by explaining why understanding positional encodings is difficult and almost
impossible to decouple.

We first give our conclusion that the position component in the token comes from manifold embedding
rather than subspace decomposition, which means that extracting the position component requires us
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Figure 14: k = 5, l = 1, 3.

Figure 15: k = 6, l = 1, 2.

to have an algorithm to solve the changes in the position manifold. In an extremely ideal case, we
can use the Levinson–Durbin algorithm in signal processing to recursively solve it through the value
of the Toeplitz matrix. However, extracting a Toeplitz matrix from a general matrix is not unique, and
we cannot determine whether the extracted Toeplitz matrix truly represents the position information.

This conclusion comes from a very simple observation: the position embedding of absolute position
encoding is not orthogonal to word embedding. Therefore, there is no subspace decomposition that
can completely separate the two components.

If we denote f as a continuous embedding from S1 ⊗ S1... ⊗ S1 to Rn, and g as a continuous
embedding from R+ to S1 ⊗ S1...⊗ S1, then the essence of absolute position encoding is actually
f(g(i)). In other words, the explicit position encoding that we can understand is essentially a
manifold embedding.

The general method of dealing with manifold embeddings requires a specific embedding mapping.
For general positional encodings, this mapping is not solvable, so it is almost impossible to decouple
the positional encoding.

E RELATIONSHIP TO LENGTH GENERATION

Here, we give a more detailed qualitative statement to describe our thinking on the relationship
between deposit patterns and length generation.

Why the deposit pattern reflects a training bias rather than modularity. Although the deposit
pattern superficially resembles a form of head-level modularity, our evidence suggests that it is
instead a training-induced bias specific to RoPE’s multiplicative structure. First, multiplicative PE
suppresses activation-level positional directions (Section 5.4), causing early-layer heads to compete
for the positional signal. Once a single head captures the content–position interaction, RoPE’s strong
inductive bias quickly eliminates positional gradients for the other heads, preventing them from
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Figure 16: k = 13, l = 1, 2.

Figure 17: k = 15, l = 2, 4.

acquiring similar capabilities. This is fundamentally different from deliberate modularization: the
specialization emerges not because the model decomposes the task across heads, but because the
training dynamics collapse positional reasoning into the earliest head that happens to align with the
RoPE kernel.

Second, the deposit head does not learn a general positional module; it learns a narrow set of frequency
bands that are amplified by RoPE’s rotation mechanism. As noted in Ermo et al. (2025), only a subset
of frequencies is sufficiently trained, and their influence is later propagated through feed-forward
mixing. This leads to a compressed, low-rank representation of positional structure, which is efficient
for the training distribution but fragile outside it.

Taken together, the deposit pattern is better interpreted as a training bias toward early collapse of
positional responsibility, rather than evidence for a stable or interpretable modular decomposition of
positional reasoning. RoPE’s multiplicative interaction creates a “winner-takes-all” dynamic, where
one head monopolizes positional information not because the architecture encourages modularity, but
because the optimization process and frequency structure favor such collapse.

Further evidence from tasks beyond pairwise position reasoning. RoPE enables efficient pair-
wise position–content coupling but does not equip the model with the compositional machinery
needed for length-generalizing tasks that require combining several positional relations. To test
whether the deposit head learned by RoPE represents a reusable “positional module,” we designed
a family of tasks requiring the model to combine multiple pairwise distances (e.g., predicting the
sum of several trigger-word distances). Despite the task being a straightforward extension of our
synthetic setup, all RoPE-based models failed to generalize beyond the training length, even when
the training accuracy was near-perfect. In contrast to the pairwise distance task—where positional
responsibility collapses into a single head—the multi-trigger task requires the model to compose
several independent positional relations, a capability that is architecturally challenging for standard
Transformers.
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This observation aligns with prior findings on tasks such as Dyck languages, context-free composition,
and stack-like dependencies (e.g., Chi et al. (2023)): Transformers struggle when a task requires
retrieving, combining, or manipulating multiple positional relations simultaneously. The failure
of RoPE to generalize in our multi-trigger setting therefore does not indicate a lack of training or
capacity, but rather reveals that the single-head deposit behavior does not constitute a modular or
compositional positional representation. Instead, the deposit head encodes a narrow, task-specific
mapping tied to the training distribution, and—unlike a true module—it cannot be recombined or
composed when the task demands multiple positional deductions.

Taken together, these results reinforce that the deposit pattern reflects a training-induced collapse
of positional responsibility rather than the emergence of a reusable module. RoPE enables efficient
pairwise position–content coupling but does not equip the model with the compositional machinery
needed for length-generalizing tasks that require combining several positional relations.

More than one study has shown that transformer’s understanding of position information starts from
the first layer Zuo et al. (2025); Chi et al. (2023); Kazemnejad et al. (2023). The key to successful
length generalization is that responses to relative position information within the training length can
be naturally transferred to a longer length (test length). Therefore, the lower the coupling between
location and content, the better the scalability. If the coupling degree is high, it is necessary to learn
the coupling mode. At the same time, Deposit Patterns shows that only some frequency bands are
fully trained during training like Ermo et al. (2025). These frequency bands are passed through the
fully connected layer, spreading the influence to most of the frequency bands in the deep layer, which
means that in fact only specific relative position differences are considered by the training process, so
the length generalization ability is drastically affected.

Relationship with massive value in RoPE. Recent empirical studies have reported that Trans-
formers trained with RoPE often develop a small number of extremely high-norm rows in WQ and
WK (Jin et al., 2025), a behavior not observed under additive positional encodings. Although this
phenomenon is not the focus of our work, the Toeplitz formulation naturally explains its underlying
mechanism.

RoPE mixes content and position multiplicatively through a frequency-indexed Toeplitz kernel Ge.
In our formulation, each logit entry takes the form

⟨qi, kj⟩RoPE = ⟨qi, kj⟩ ◦ (Ge)i−j ,

where (Ge)i−j is a complex rotation encoding relative displacement. Importantly, each frequency
band of RoPE corresponds to a fixed Toeplitz diagonal, and gradients flowing through that diagonal
are accumulated entirely on the rows of WQ,WK associated with the same frequency.

This creates a “frequency bottleneck”:

• if a particular diagonal of the Toeplitz kernel becomes predictive early in training,
• then its associated frequency bands receive disproportionately large gradient flow,
• causing the corresponding rows of WQ,WK to grow rapidly in norm,
• while other frequencies remain under-trained.

Thus the massive-value rows arise as a direct consequence of gradient concentration onto a small
subset of Toeplitz diagonals, not from instability of the optimization process. Additive PEs do not
exhibit this effect because their position signal enters only through additive pi–based cross-terms, so
no frequency-indexed diagonals receive concentrated multiplicative amplification.

Under our unified framework, the massive-value phenomenon is therefore a natural by-product
of RoPE’s multiplicative structure, in which positional information is stored directly in selected
frequency bands of WQ,WK rather than in explicit activation-level positional vectors.
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