

000 001 002 003 004 005 006 007 008 009 010 DECONSTRUCTING POSITIONAL INFORMATION: FROM ATTENTION LOGITS TO TRAINING BIASES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Positional encodings enable Transformers to incorporate sequential information,
012 yet their theoretical understanding remains limited to two properties: distance
013 attenuation and translation invariance. Because natural language lacks purely po-
014 sitional data, the interplay between positional and semantic information is still
015 underexplored. We address this gap by deconstructing the attention-logit compu-
016 tation and providing a structured analysis of positional encodings, categorizing
017 them into additive and multiplicative forms. The differing properties of these forms
018 lead to distinct mechanisms for capturing positional information. To probe this
019 difference, we design a synthetic task that explicitly requires strong integration of
020 positional and semantic cues. As predicted, multiplicative encodings achieve a clear
021 performance advantage on this task. Moreover, our evaluation reveals a hidden
022 training bias: an information aggregation effect in shallow layers that we term
023 the single-head deposit pattern. Through ablation studies and theoretical analysis,
024 we proved that this phenomenon is inherent in multiplicative encodings. These
025 findings deepen the understanding of positional encodings and call for further study
026 of their training dynamics.

027 1 INTRODUCTION

029 Positional Encoding (PE) (Vaswani et al., 2017; Su et al., 2024) endows Transformer architectures
030 with an understanding of sequence order, compensating for the permutation-invariant nature of self-
031 attention (Vaswani et al., 2017). This component is critical to their success in both language (Vaswani
032 et al., 2017) and vision (Dosovitskiy et al., 2021) tasks. The design of PE has evolved substantially,
033 from the additive sinusoidal embeddings (Vaswani et al., 2017) of the original Transformer to
034 trainable absolute embeddings (Shaw et al., 2018) and more sophisticated relative schemes like T5
035 biases (Raffel et al., 2020) and Rotary Positional Encoding (RoPE) (Su et al., 2024). This progression
036 reflects a sustained effort to enhance generalization, extend context length, and improve model
037 efficiency.

038 Different positional encodings model distance decay and translation invariance in different ways, but
039 these differences are difficult to observe in the face of complex data with human grammatical rules.
040 Current evaluation paradigms, which rely on aggregate metrics such as perplexity (Ermo et al., 2025)
041 or length-extrapolation benchmarks (Kazemnejad et al., 2023), document these performance differ-
042 ences but fail to illuminate the underlying mechanisms of how positional signals are processed (Peng
043 et al., 2024; Ermo et al., 2025). Therefore, theoretical research on positional encoding relies on
044 synthesis tasks (Zuo et al., 2025; Kazemnejad et al., 2023), but some unexplained phenomena have
045 emerged. For example, despite its strong theoretical properties, such as the attenuation characteris-
046 tic that supports length generalization, RoPE can underperform simpler relative PEs or even models with
047 no PE on certain tasks (Kazemnejad et al., 2023). This discrepancy highlights a critical gap in our
048 understanding:

049 *How, precisely, do different PE schemes mediate the interaction between token content and position?*

050 This lack of mechanistic clarity hinders both the explanation of existing performance trade-offs and
051 the principled design of future PE schemes.

052 To bridge this gap, our approach is grounded in a core principle of positional encoding: the relationship
053 between any two tokens should depend on their **relative distance**, not their absolute positions. This

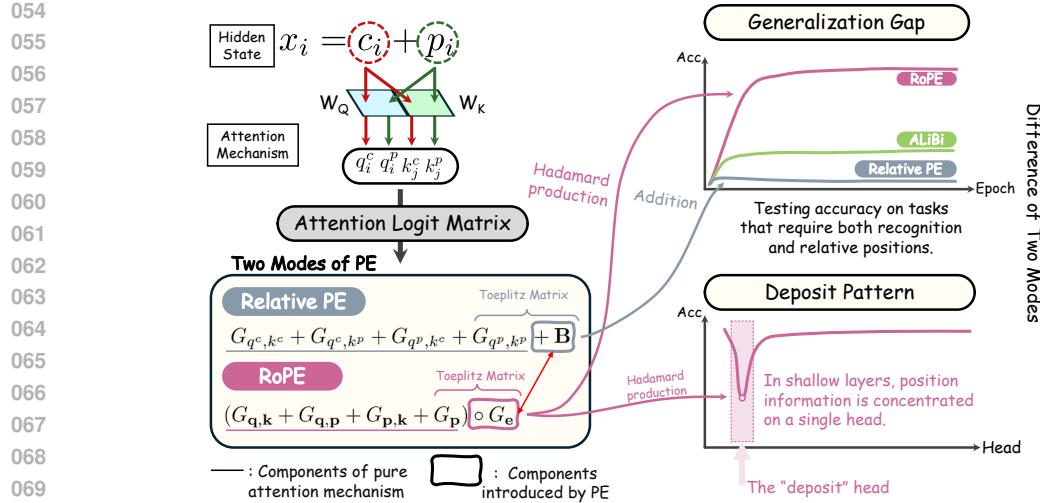


Figure 1: **Schematic Overview.** (Left) Our framework analyzes token decomposition and how PE mechanisms (additive, e.g., adding Toeplitz B ; multiplicative, e.g., Hadamard with relative-position Toeplitz G_e) structure attention logits. (Right) Multiplicative coupling theoretically induces better learning/generalization and single-head deposit patterns.

property of translation invariance is formally captured by the structure of a **Toeplitz matrix**, in which all elements along any given diagonal are identical. This insight allows us to deconstruct the attention logit calculation and propose a unified, Toeplitz-based framework for analyzing PE mechanisms (Figure 1). In our framework, each token’s embedding is composed of a **content component** (what it is) and a **position component** (where it is). The central idea is that these position components collectively induce a Toeplitz structure in the final attention scores.

This framework clearly distinguishes between two primary classes of PE. **Additive methods**, such as relative position biases, operate by adding a static Toeplitz matrix of position scores directly to the attention logits. In contrast, **multiplicative methods** like RoPE dynamically integrate positional information into the query and key representations. This creates a powerful **content–position interaction**, where the positional influence on attention scores is conditioned on the token’s content. While this coupling provides a significant advantage on tasks where meaning is tightly bound to relative location, we argue that it also introduces a strong inductive bias. This bias can manifest as a drawback, concentrating the learning of positional logic into a small, specialized subset of attention heads.

Observations based on the theoretical framework directly triggered our experimental design: we conduct experiments on a series of carefully designed synthetic tasks. We generate random sequences from a small vocabulary and use labeled “anchor” tokens to define two contrasting objectives: a **position-sensitive task** requiring reasoning about the relative positions of anchors, and a **position-agnostic task** dependent only on token counts. This controlled setup enables us to precisely isolate and evaluate the model’s positional reasoning capabilities. Our experiments confirm that RoPE decisively outperforms other methods on the position-sensitive task while underperforming on the position-agnostic one. More importantly, this setting reveals a striking artifact unique to RoPE: the **“single-head deposit pattern”**, where nearly all positional processing in the shallow layers becomes concentrated into a single attention head.

Further investigation confirms this phenomenon is unique to RoPE on tasks with strong content–position correlation. Through rigorous ablation studies and theoretical derivation—such as injecting absolute positional encodings or selectively applying RoPE to a subset of heads—we demonstrate that the deposit pattern is an **intrinsic property** of RoPE’s multiplicative structure, not an incidental training artifact. This finding also explains why Transformers using RoPE tend not to form the latent positional representations observed in models with additive or no PE (Zuo et al., 2025; Kazemnejad et al., 2023). We posit that this intense, structurally-induced specialization is a primary cause of the gap between RoPE’s theoretical promise and its practical performance.

Our contributions can be summarized as follows:

- 108 • We propose a unified analytical framework using Toeplitz matrices that categorizes positional
109 encodings into additive and multiplicative mechanisms, clarifying their distinct effects on attention
110 logits.
- 111 • We empirically identify and analyze RoPE’s performance paradox through targeted synthetic tasks,
112 revealing a unique ‘single-head deposit pattern’ where positional logic becomes highly concentrated
113 in shallow layers.
- 114 • We conduct a causal analysis to demonstrate that the deposit pattern is an intrinsic property of
115 RoPE’s multiplicative architecture, offering a mechanistic explanation for its observed performance
116 paradox.

118 2 RELATED WORK

120 **Positional Encoding in Transformers.** Positional encoding was introduced alongside the Transformer
121 architecture to endow self-attention with sequence order information (Vaswani et al., 2017).
122 Early approaches employed learnable positional embeddings (Shaw et al., 2018), while subsequent
123 work integrated position biases directly into the attention logits, giving rise to relative position
124 encoding and its extensions (Press et al., 2022; Li et al., 2024; Chi et al., 2023; 2022; Raffel et al.,
125 2020; Su et al., 2024; Zhao et al., 2025). Among these, Rotary Positional Encoding (RoPE) (Su et al.,
126 2024) stands out by applying a multiplicative bias to the QK^\top matrix, and has been widely adopted
127 in modern open-source models. Related efforts on sliding-window and length-generalization designs
128 are also often framed as positional encoding variants (Kiyono et al., 2021; Chen et al., 2024a,b; Ding
129 et al., 2024; Peng et al., 2024). Recent RoPE-based improvements include Frequency-Partitioned
130 Encoding (FoPE) (Ermo et al., 2025) and the Multi-head Latent Attention (MLA) mechanism in
131 Deepseek-V3 (Liu et al., 2024).

132 **Mechanistic Analyses of Positional Encoding.** Empirical studies have probed how Transformers
133 internalize positional signals. Some works demonstrate that even without explicit positional embeddings
134 (NoPE), models can learn positional distinctions (Wang et al., 2024; Zuo et al., 2025; Haviv
135 et al., 2022; Barbero et al., 2024), occasionally outperforming PE-equipped counterparts on select
136 tasks (Kazemnejad et al., 2023). Explanations range from implicit causal masking (Zuo et al., 2025)
137 to dataset-dependent effects (Barbero et al., 2024). Other analyses document characteristic behaviors
138 of RoPE, such as “massive value” phenomena and rotation artifacts (Jin et al., 2025; Jonasson, 2025).

139 **Toeplitz Structure and Spectral Theory.** The action of positional encoding in attention can be
140 unified under Toeplitz-matrix representations (Böttcher & Silbermann, 2000; Grenander & Szegő,
141 2002; Gray, 2006; Oppenheim & Schafer, 1999). Classical results on Toeplitz spectral distributions,
142 including Szegő’s theorem, inform our theoretical framework. Moreover, the impact of matrix spectra
143 on optimization convergence is well studied in numerical linear algebra and convex optimization
144 contexts (Horn & Johnson, 1985; 1991; Boyd & Vandenberghe, 2004; Nesterov, 2004).

145 3 METHODOLOGY

146 3.1 PRELIMINARIES: POSITIONAL ENCODING IN ATTENTION

147 The Transformer attention score between a query q_i at position i and a key k_j at position j is
148 based on their inner product, $q_i^\top k_j$. Since this computation does not depend on sequence order,
149 Positional Encoding (PE) schemes introduce positional information by modifying either the token
150 representations or the attention logits.

151 **Absolute PE** (Vaswani et al., 2017) adds a position vector p_i to the initial embedding e_i :

$$152 \quad h_i = e_i + p_i.$$

153 The query and key vectors derived from h_i therefore mix content and position inside the representation,
154 making the attention score depend on the *absolute* token positions.

155 **Relative PE** (Raffel et al., 2020) incorporates positional information directly into the attention logits
156 through a learnable distance-dependent term:

$$157 \quad \alpha_{i,j} \propto \exp(q_i^\top k_j + b_{j-i}).$$

162 A defining feature of relative PE is *translation invariance*: the positional contribution depends only
 163 on the displacement $j - i$, not on the absolute locations of i and j . Within this family, T5 (Raffel
 164 et al., 2020) uses a learned table indexed by $(j - i)$, while ALiBi (Press et al., 2022) applies a fixed
 165 slope that increases linearly with distance. Thus both are translation-invariant, but differ in whether
 166 the distance mapping is learned (T5) or predetermined (ALiBi).

167 **Rotary PE (RoPE)** (Su et al., 2024) introduces position by rotating the query and key vectors with a
 168 position-dependent matrix R_i . A key identity shows that the resulting inner product depends only on
 169 the relative displacement:

$$(R_i q_i)^\top (R_j k_j) = q_i^\top R_{j-i}^\top k_j.$$

172 Thus RoPE implements positional encoding through a structured rotation that couples content and
 173 position via relative position, rather than through additive shifts or explicit bias terms.

175 3.2 A UNIFIED FRAMEWORK VIA TOEPLITZ MATRICES

177 To analyze these mechanisms within a common framework, we introduce two foundational assump-
 178 tions. The first is a conceptual decomposition of token representations.

179 **Assumption 3.1** (Representation Decomposition). Any token representation x_i can be conceptually
 180 decomposed into a position-independent **content component** c_i and a position-dependent **position**
 181 **component** p_i , such that $x_i = c_i + p_i$.

182 *Remark 3.1.* This decomposition is not a modeling constraint but a structural lens. It is supported in
 183 two complementary ways.

185 (i) Absolute PE explicitly introduces a position vector p_i during embedding (Vaswani et al., 2017),
 186 indicating that the resulting representation can be separated into content and position directions.

187 (ii) Even in architectures without explicit PE, recent analyses show that models learn low-dimensional
 188 positional directions (Zuo et al., 2025).

189 (iii) as we show in Section 5.4, ablating the absolute position vectors in trained models produces
 190 a significantly larger accuracy drop than ablating norm-matched random vectors, confirming that
 191 position-dependent directions p_i are functionally recognized by the model.

192 (iv) Importantly, this is *not* a linear-space decomposition: we do not assume orthogonality or
 193 projection structure. Conceptually, removing p_i corresponds to subtracting a coordinate chart of a
 194 low-dimensional positional manifold, which makes the assumption broadly applicable all positional
 195 encodings.

197 This allows us to analyze how PE schemes construct or interact with the positional component p_i .
 198 The core principle uniting relative PE schemes is **translation invariance**: the positional component
 199 of the attention score depends only on the relative distance $j - i$. This principle is perfectly embodied
 200 by a specific matrix structure.

201 **Definition 3.1** (Toeplitz Matrix). A matrix T is a Toeplitz matrix if its entries are constant along
 202 each diagonal, i.e., $T_{i,j} = a_{i-j}$ for some sequence $\{a_k\}$. It is defined by $2N - 1$ unique values for
 203 an $N \times N$ matrix.

205 Such matrices naturally arise whenever a quantity depends only on the relative displacement $j - i$,
 206 making them the canonical representation of translation-invariant positional interactions. This leads
 207 to our second assumption, which connects the positional components of tokens to the structure of the
 208 attention matrix.

209 **Assumption 3.2** (Toeplitz Structure from Positional Interaction). Since the positional contribution to
 210 attention depends only on the relative displacement $j - i$, the Gram matrix formed by the position-
 211 dependent components naturally takes a Toeplitz form.

212 *Remark 3.2.* Assumption 3.2 can be viewed less as a modeling assumption and more as a working
 213 hypothesis that captures the intended translation-invariant decay, and that the p_i decomposed from
 214 Assumption 3.1 should have such a property. This assumption could be checked by sinusoidal
 215 absolute PEs and is explicitly enforced by construction in relative PE biases. It provides a powerful
 analytical tool for understanding the structure of positional information in the attention matrix.

216 Under Assumptions 3.1–3.2, the attention logits can be decomposed into interpretable content and
 217 position interactions. Let q_i^c, k_j^c be query/key vectors derived from content components and q_i^p, k_j^p be
 218 those from position components. Let $G_{v,w}$ denote the Gram matrix where $(G_{v,w})_{i,j} = v_i^\top w_j$.
 219

220 For **additive mechanisms** (e.g., Absolute or Relative PE), the logit matrix is a sum of components:

$$221 \quad \mathbf{L}_{\text{Additive}} = G_{q^c, k^c} + G_{q^c, k^p} + G_{q^p, k^c} + G_{q^p, k^p} + \mathbf{B} \quad (1)$$

222 Here, \mathbf{B} denotes the explicit relative-bias matrix used only by relative encodings such as T5 and
 223 ALiBi. For absolute or learned absolute PEs, we instead have $\mathbf{B} = 0$, and the Toeplitz positional
 224 structure is provided solely by the term G_{q^p, k^p} . Thus, in all additive mechanisms the Toeplitz
 225 component arises either from G_{q^p, k^p} (absolute PE) or from \mathbf{B} (relative PE), while the cross-terms
 226 $G_{q^c, k^p} + G_{q^p, k^c}$ remain the only channel through which content can interact with relative position.
 227

228 In contrast, **multiplicative mechanisms** like RoPE induce a different structure. Following its
 229 formulation using complex numbers in [Su et al. \(2024\)](#), the logit matrix becomes:

$$230 \quad \mathbf{L}_{\text{RoPE}} = \text{Re} \{ (G_{q^c, k^c} + G_{q^c, k^p} + G_{q^p, k^c} + G_{q^p, k^p}) \circ G_{\mathbf{e}} \} \quad (2)$$

231 where \circ is the Hadamard product and $G_{\mathbf{e}}$ is a Toeplitz matrix.

232 *Remark 3.3.* The complex form of RoPE is an important component of the original paper ([Su et al., 2024](#)). This form, combined with the Abel summation, can prove an upper bound on its distance
 233 decay. A detailed derivation of how to convert the complex RoPE form into the Toeplitz matrix
 234 form above is provided in [Appendix B](#). This formulation highlights that RoPE does not add position
 235 information; instead, it *modulates* all content interactions through a shared position-dependent kernel.
 236

237 This formal analysis reveals a critical distinction. Additive methods combine content and position
 238 signals, but RoPE’s multiplicative structure uses a Toeplitz kernel ($G_{\mathbf{e}}$) to modulate the *entire* content-
 239 content and content-position interaction. This enables a more direct and expressive coupling, allowing
 240 the model to learn attention patterns where the relevance of a token’s content is conditioned on its
 241 relative position to another. This type of task cannot be achieved through pure translation invariance;
 242 instead, it requires that a specific translation distance be directly affected by the content feedback. We
 243 hypothesize that this powerful coupling mechanism comes with a drawback: by routing the learning
 244 of positional dependencies through this multiplicative kernel, RoPE may create a strong inductive bias
 245 that encourages **positional specialization**, concentrating this logic into a small subset of attention
 246 heads. This hypothesis motivates the experiments in the following section.

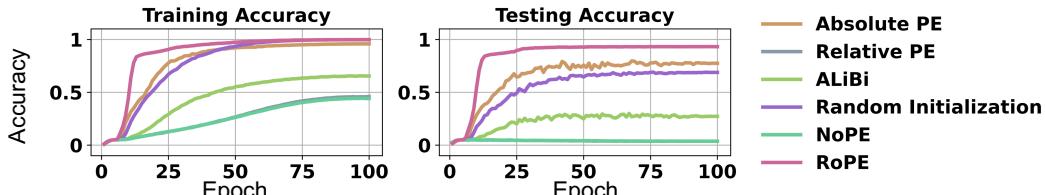
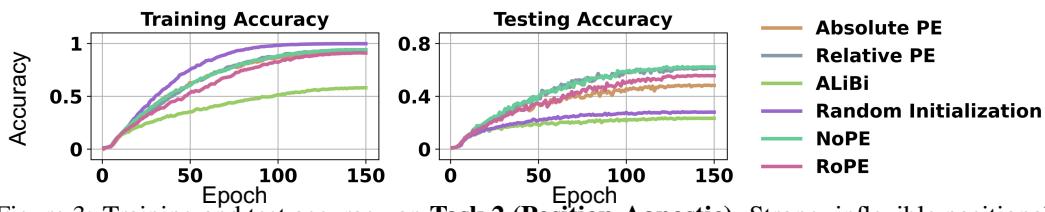
247 4 EXPERIMENTS

248 To empirically test our hypothesis about the distinct behaviors of additive and multiplicative positional
 249 encodings, we design two synthetic tasks. These tasks allow us to isolate the model’s ability to couple
 250 token content with positional information in a controlled setting. We use a 6-layer Transformer
 251 decoder as our base model and evaluate six PE configurations: Absolute ([Vaswani et al., 2017](#)),
 252 T5 Relative Bias ([Raffel et al., 2020](#)), ALiBi ([Press et al., 2022](#)), RoPE ([Su et al., 2024](#)), NoPE
 253 (no explicit PE) ([Kazemnejad et al., 2023](#)), and a Random initialized embedding baseline. Our
 254 experiments are averaged over five seeds, and the variance is less than 5%. Full implementation and
 255 training details are provided in [Appendix D](#).
 256

257 4.1 SYNTHETIC TASK DESIGN

258 **Task 1 – Position-Sensitive: Relative Distance Classification.** This task is designed to require
 259 strong content-position coupling, the theorized strength of multiplicative mechanisms. Each input
 260 sequence contains two unique “trigger” words drawn from a vocabulary of 1,000 tokens. The model
 261 must predict the relative distance between them, formulated as a classification problem over binned
 262 distances. Success requires the model to identify *what* the trigger words are and determine *where*
 263 they are in relation to each other. We generated a dataset of 100,000 examples for this task.
 264

265 **Task 2 – Position-Agnostic: Trigger Word Counting.** This task serves as a control, designed to
 266 penalize any inflexible positional bias. The model must predict the total number of occurrences of a
 267 predefined set of 20 trigger words within a sequence, regardless of their positions. Because positional
 268 information is a nuisance variable, an ideal model should learn to ignore it. We generated a dataset of
 269 50,000 examples for this task.

270 4.2 PERFORMANCE AND GENERALIZATION ANALYSIS
271272 We first analyze the learning dynamics and generalization performance of each PE method on our
273 two tasks. The results are presented in Figures 2 and 3.
274275
276 Figure 2: Training and test accuracy on **Task 1 (Position-Sensitive)**. RoPE’s multiplicative coupling
277 enables it to significantly outperform all other methods in both convergence speed and final general-
278 ization.
279280 **On the Position-Sensitive Task, RoPE Excels.** As predicted by our framework, RoPE (Figure 2)
281 demonstrates superior performance. It converges fastest and achieves the highest test accuracy with a
282 minimal generalization gap. This supports our theory that its multiplicative content-position coupling
283 is uniquely suited for tasks demanding this form of reasoning. In contrast, additive methods show
284 mixed results. Absolute PE performs second best, as its initial positional signal can be adapted by
285 subsequent layers. The Random embedding baseline learns the training set but fails to generalize, as
286 its non-Toeplitz structure lacks the translation invariance required to learn a general rule. Methods
287 like ALiBi, with its fixed and data-agnostic Toeplitz bias, struggle to adapt, while NoPE and standard
288 Relative PE fail entirely, lacking any mechanism to bind content to position.
289290
291 Figure 3: Training and test accuracy on **Task 2 (Position-Agnostic)**. Strong, inflexible positional
292 biases like ALiBi are detrimental. RoPE’s adaptive nature allows it to perform well, nearly matching
293 methods with no positional bias.
294295 **On the Position-Agnostic Task, Strong Positional Biases are Detrimental.** Figure 3 confirms our
296 second prediction: on a task where position is irrelevant, a strong positional inductive bias is harmful.
297 ALiBi, with its rigid, non-adaptive bias, suffers the most severe performance degradation. Conversely,
298 NoPE and Relative PE (which learns to attenuate its bias towards zero) perform well, as they do not
299 impose a counterproductive positional structure. RoPE also performs strongly, demonstrating its
300 adaptability; its multiplicative mechanism allows the model to learn to down-weight the positional
301 signal when it is not useful. Absolute PE incurs a small penalty, while the Random baseline again
302 overfits, learning spurious correlations between positions and counts in the training data.
303312 4.3 EVIDENCE OF THE SINGLE-HEAD DEPOSIT PATTERN IN ROPE
313314 Our theory suggests that RoPE’s multiplicative structure concentrates positional reasoning into a
315 few specialized heads. To find direct evidence for this phenomenon, we conduct a head-wise causal
316 ablation study on the models trained on Task 1. For each head in the network, we zero out its output
317 and measure the resulting drop in test accuracy. A large drop indicates that the head is critical to the
318 task.
319320 The results, shown in Figure 4, provide striking confirmation of our hypothesis. **In the RoPE model,**
321 **nearly all positional logic is localized to a single head in the first layer.** Ablating this one head
322 causes a catastrophic drop in accuracy ($\approx 60\%$), while ablating other heads has a negligible effect.
323 We term this phenomenon the “**single-head deposit pattern**.” Crucially, this pattern is unique to
324 the combination of the RoPE architecture and a position-sensitive task. As shown in Figure 4, the
325 pattern does not emerge in the NoPE model on the same task, nor does it appear in the RoPE model

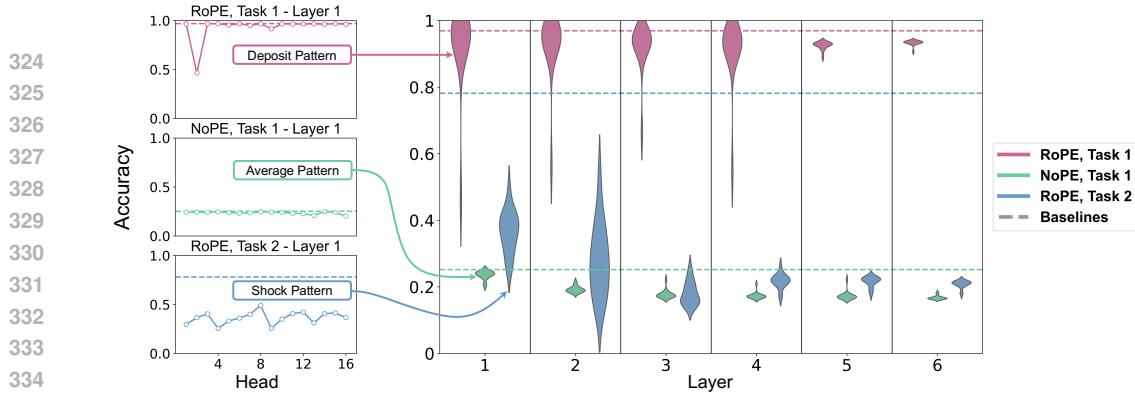


Figure 4: **Head-wise ablation reveals a unique "Deposit Pattern" in RoPE.** Each violin shows the distribution of accuracies after ablating each head in that layer; long vertical tails correspond to outlier heads whose removal causes a large accuracy drop. The three insets illustrate the characteristic shapes of these distributions: a "deposit" shape with a single deep outlier (RoPE–Task 1), a flat "average" shape (NoPE–Task 1), and a noisy "shock" shape (RoPE–Task 2). These shapes match the contours of the main violins. Full per-head curves are provided in Appendix D.2.

trained on the position-agnostic Task 2. This confirms that the deposit pattern is not a generic artifact of Transformer training but a direct consequence of RoPE’s multiplicative content-position coupling mechanism. We therefore interpret the deposit pattern as a training bias rather than clean modularity, although a full causal link to length generalization is left for future work (Appendix E).

5 ABLATION STUDIES AND MECHANISTIC INSIGHTS

The discovery of the "single-head deposit pattern" raises critical questions about the underlying mechanics of RoPE. Is this pattern an inevitable side effect of multiplicative coupling, an efficient specialization, or a wasteful bottleneck? To elucidate the mechanisms driving this phenomenon, we design three targeted ablation studies, each testing a specific hypothesis.

5.1 ABLATION 1: DOES ROPE SUPPRESS LATENT POSITIONAL REPRESENTATIONS?

Hypothesis: We hypothesize that RoPE’s explicit, multiplicative positional signal is so potent that it inhibits the model from forming its own implicit positional representations—a known capability of standard Transformers (Zuo et al., 2025; Kazemnejad et al., 2023)—thereby causing other heads to remain position-agnostic.

Experimental Design: To test this, we inject a redundant signal by augmenting a RoPE-equipped Transformer with an additional Absolute PE at the input layer. This directly provides an explicit p_i component before the RoPE-enabled attention layers. We then observe if this alters the deposit pattern.

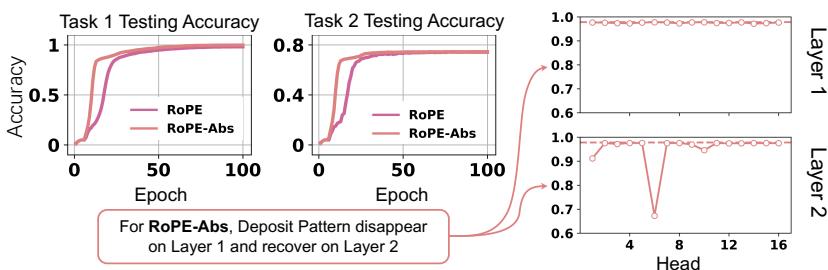


Figure 5: **(Left)** Performance of a hybrid RoPE + Absolute PE model. **(Right)** The deposit pattern is initially suppressed in Layer 1 but re-emerges in deeper layers, demonstrating the strong inductive bias of RoPE.

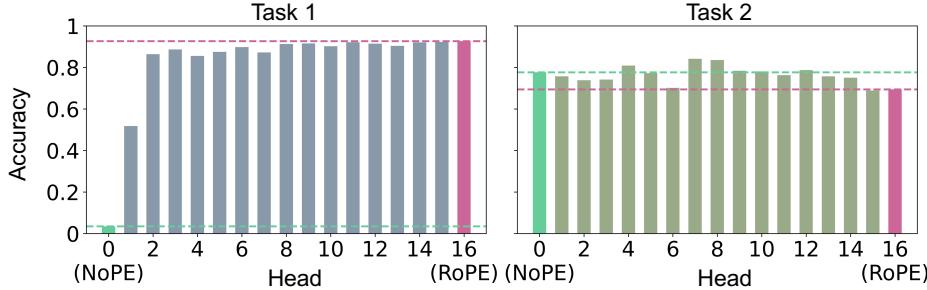
Results: The results, shown in Figure 5, are revealing. The explicit Absolute PE signal disrupts the deposit pattern in the first layer, distributing positional responsibility more evenly. However, the pattern **re-emerges** in deeper layers. This strongly suggests that while an initial explicit signal can be utilized, the powerful inductive bias of RoPE’s multiplicative coupling eventually reasserts itself,

378 overriding the additive signal. This confirms our hypothesis: RoPE’s mechanism is so dominant that
 379 it suppresses the model’s tendency to form or utilize other forms of positional representation.
 380

381 5.2 ABLATION 2: IS A SINGLE ROPE-ENABLED HEAD SUFFICIENT?

383 **Hypothesis:** The deposit pattern implies that for tasks like ours, a single RoPE-enabled head is
 384 sufficient for positional reasoning, rendering additional RoPE heads redundant.

385 **Experimental Design:** We test this by systematically reducing the number of attention heads that
 386 utilize RoPE, from all heads down to just one, with the rest operating as NoPE heads. We evaluate
 387 performance on Task 1.



398 Figure 6: Performance on Task 1 when RoPE is applied to a diminishing subset of heads. Performance
 399 remains near-optimal even with just one or two RoPE-enabled heads.

400 **Results:** As shown in Figure 6, performance on Task 1 remains near-optimal even when only one
 401 or two heads are equipped with RoPE. This confirms that a small number of specialized heads are
 402 indeed sufficient to capture the necessary positional information for this task. The result supports our
 403 explanation for the deposit pattern: once one head effectively learns the content-position interaction
 404 via the multiplicative mechanism, other heads become inert with respect to this task, as there is no
 405 learning incentive to develop redundant positional capabilities.

406 5.3 ABLATION 3: CAN A HYBRID ARCHITECTURE MITIGATE INEFFICIENCY?

408 **Hypothesis:** The deposit pattern, while effective, is an inefficient use of model capacity. We
 409 hypothesize that a hybrid architecture can mitigate this by explicitly dedicating resources, retaining
 410 RoPE’s strengths while improving robustness.

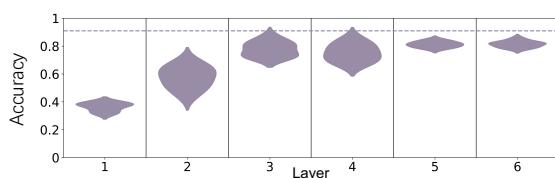
412 **Experimental Design:** To explore this, we evaluate the **Multi-Latent Attention (MLA)** architecture
 413 from DeepSeek (Liu et al., 2024). MLA formalizes a hybrid approach by creating parallel pathways
 414 for position-agnostic and position-sensitive processing within a single head. Formally, the query-key
 415 inner product is structured as a concatenation of a NoPE component and a RoPE component:

$$\langle q_i, k_j \rangle = \langle (W_{UQ}x_i ; R_i W_{UR}x_i), (W_{UK}x_j ; R_j W_{UR}x_j) \rangle, \quad (3)$$

417 where $(;)$ denotes vector concatenation and the projection matrices for each pathway are distinct.
 418 This structure ensures that each attention head computes both a NoPE-style and a RoPE-style
 419 logit simultaneously. Interpreted through our theoretical framework, this mechanism effectively
 420 modifies the logit matrix by creating a weighted combination of a standard content matrix and a
 421 RoPE-modulated one:

$$L_{MLA_complex} = (G_{q,k} + G_{q,p} + G_{p,k} + G_p) \circ (\alpha G_e + I). \quad (4)$$

423 This prevents the purely multiplicative signal from dominating and encourages a more distributed
 424 representation of position. We replaced our standard attention with the MLA module and evaluated it
 425 on both tasks.



431 Figure 7: Head-wise ablation violin plot under MLA.

Method	Task 1	Task 2
MLA	88.34	97.41
RoPE	92.64	69.43
NoPE	3.51	77.69

432 Table 1: MLA performance comparison
 433 on the two tasks.

Results: The MLA architecture successfully mitigates the deposit pattern. Figure 7 shows that no single head is indispensable, and positional responsibility is diffused across the model. Furthermore, Table 1 shows that MLA nearly matches RoPE’s performance on Task 1 while dramatically improving on Task 2. This demonstrates that by preventing over-specialization, the hybrid model achieves a more robust balance.

5.4 ABLATION 4: WHERE DO ADDITIVE AND MULTIPLICATIVE PEs STORE POSITIONAL INFORMATION?

Hypothesis. Given the decomposition $x_i = c_i + p_i$ (Assumption 3.1), we ask whether different PE mechanisms retain an explicit positional direction p_i in the activations, or whether this information is absorbed into the query–key parameterization. Our hypothesis is that additive PEs preserve activation-level p_i , while RoPE rapidly suppresses it.

Experimental Design. For each layer ℓ , we ablate either (1) the fixed positional vectors p_i (Absolute PE) or (2) norm-matched random vectors, and measure test accuracy. A larger drop under p_i -removal indicates that the model relies on an explicit positional direction. For RoPE, we repeat the same intervention on the hybrid Absolute+RoPE model (Section 5.1), where p_i is added only at the embedding layer.

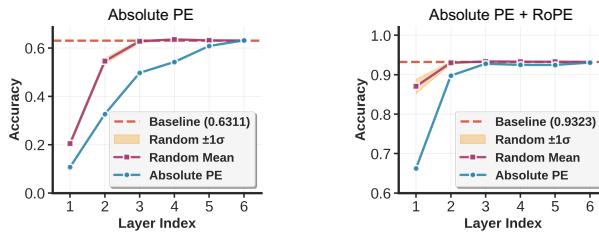


Figure 8: Layer-wise ablation of absolute positional vectors versus norm-matched random vectors. Left: Absolute PE shows consistently larger drops under p_i -removal, confirming that additive PEs preserve explicit positional directions in the activations. Right: For Absolute+RoPE, this difference vanishes after Layer 2, indicating that RoPE suppresses activation-level positional directions and shifts positional structure into the attention parameterization.

Results. Fig. 8 shows a clear contrast: (1) For Absolute PE, removing p_i causes a consistently larger accuracy drop than removing norm-matched random vectors, indicating that additive PEs preserve explicit positional directions in the activations; (2) For Absolute+RoPE, this difference disappears after Layer 2, showing that RoPE suppresses activation-level positional directions and shifts positional information into the query–key parameterization.

Summary. Additive PEs store position in explicit activation directions p_i , whereas RoPE rapidly eliminates these directions and embeds positional structure in the frequency-modulated parameters. This is why the structure of MLA can eliminate this phenomenon.

6 THEORETICAL ANALYSIS OF THE DEPOSIT PATTERN

The empirical discovery of the "single-head deposit pattern" in RoPE (Su et al., 2024) invites a formal theoretical explanation. In this section, we provide a mathematical argument demonstrating that this phenomenon is an inherent consequence of RoPE’s design. We analyze the gradient signal for the relative distance classification task (Task 1). Let (i_s, j_s) be the positions of the trigger words for a sample s , with the task being to predict the relative distance $d_s := |j_s - i_s|$. The algebraic intuition behind our proof is this: for a sample labeled $|i - j|$, the optimization rewards the distance signal $|i - j|$ and penalizes other distance signals. For addition, the reward and penalty are always antagonistic because the position bias lacks context information. However, for multiplication, the penalty is attenuated by frequency, making the reward cumulative. This accumulation ultimately leads to an initial top-level bias in the gradient signal, which is amplified by backpropagation. As a comparison with RoPE, we also analyze ALiBi (Press et al., 2022) on this task.

Our analysis relies on the following idealized assumptions, which are empirically plausible in the context of early training.

Assumption 6.1 (Formal Setup for Gradient Analysis).

486 (A1) **Jacobian Stability.** Each inter-layer Jacobian $J^{(l)}$ has singular values bounded in $[1 -$
 487 $\alpha_l, 1 + \alpha_l]$ for $\alpha_l \in (0, 1)$, consistent with architectures using pre-normalization.
 488

489 (A2) **Monotone Anchor Path.** For each sample s , there is an "anchor" row u_s where the
 490 gradient signal is positively correlated with the target token's value vector. Formally,
 491 $\langle \partial \ell_s / \partial Y_{u_s,:}^{(h,L)}, V_{j_s,:}^{(h,L)} \rangle \geq \eta_s^{(h)} > 0$. This formalizes that a basic learning signal exists.
 492

493 (A3) **Projection Separability (for ALiBi).** The projection matrices W_Q, W_K, W_V are such that
 494 $\ker W_Q \cap \ker W_K \not\subset \ker W_V$. This is a generic condition in overparameterized models.
 495

495 Our analysis demonstrates a fundamental difference in how RoPE and ALiBi structure the gradient
 496 signal for relative position tasks.

497 **Proposition 6.1** (RoPE Gradient Seed Coherence). *Under Assumption (A2), the aggregated anchor*
 498 *gradient for RoPE, $H_L^{(h)}(d)$, has a deterministic lower bound. A strictly positive seed ($H_L^{(h)}(d) > 0$)*
 499 *is guaranteed if the learning signal is sufficiently strong to satisfy the condition $a_*^{(h)}(d) \eta_*^{(h)}(d) >$*
 500 *$C^{(h)} \chi_L$.*

502 **Proposition 6.2** (ALiBi Gradient Cancellation). *Under Assumptions (A3), for any empirical distance*
 503 *distribution $\hat{\mu}_N$, there exists a batch of samples realizing $\hat{\mu}_N$ such that the aggregated anchor gradient*
 504 *for ALiBi vanishes for all heads and distances: $H_L^{(h)}(d) \equiv 0$.*

506 The existence of a non-cancellable seed in RoPE is the starting point. The following theorem shows
 507 how this seed inevitably leads to the deposit pattern.

508 **Theorem 6.1** (Exponential Amplification and Specialization). *Let \mathcal{U} be the subspace of gradient*
 509 *directions corresponding to the positive RoPE seeds from Proposition 6.1. The signal-to-noise ratio*
 510 *of the gradient within this subspace is amplified exponentially during backpropagation. Crucially,*
 511 *the margin between the gradient signal for the dominant head and that of the second-dominant head*
 512 *also grows exponentially.*

$$513 \quad \text{Margin}_l \geq \text{Margin}_L \prod_{k=l}^{L-1} \gamma_k, \quad \text{where each gain factor } \gamma_k > 1. \quad (5)$$

517 **Implication.** Theorem 6.1 provides the theoretical basis for the single-head deposit pattern. Even a
 518 minuscule initial advantage for one head in learning the position-sensitive task (a non-zero Margin_L)
 519 becomes exponentially magnified as gradients propagate to lower layers. This dynamic strongly
 520 incentivizes the optimizer to allocate the entire task of positional reasoning to that single head,
 521 as its parameters receive a disproportionately larger learning signal, thus explaining the observed
 522 specialization. The detailed proofs for these results are provided in Appendix C.

523 7 CONCLUSION AND LIMITATIONS

526 In this work, we introduced a novel framework that leverages spectral theory to deconstruct how positi-
 527 onal encoding (PE) mechanisms operate within the Transformer attention matrix. We demonstrated
 528 that this framework provides a powerful lens, allowing us to predict learning dynamics and uncover
 529 previously hidden processing patterns. Our primary discovery, the "single-head deposit pattern"
 530 in RoPE, serves as a clear mechanistic explanation for the observed paradoxes in its performance.
 531 By identifying the distinct signatures of additive and multiplicative coupling, our analysis not only
 532 diagnoses the cause of this over-specialization but also points toward a solution. The success of a
 533 hybrid architecture validates our theory and suggests that controlled mixing of positional signals
 534 is a promising strategy for achieving both spectral stability and robust, distributed representations.
 535 Furthermore, we exploit gradient flow to verify that this is an intrinsic property of the RoPE.

536 **Limitations:** Firstly, the connection we hypothesize between the deposit pattern and RoPE's known
 537 struggles with length extrapolation requires direct empirical validation. Secondly, future work should
 538 probe the limits of these positional mechanisms on more complex, algorithmic tasks such as sequence
 539 reversal or Dyck language recognition. However, most of these tasks are beyond the capabilities of
 transformers, so more complex controlled analysis is a serious challenge for future work.

540 REFERENCES

541 Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Veličković.
 542 Round and round we go! what makes rotary positional encodings useful? *arXiv preprint*
 543 *arXiv:2410.06205*, 2024. 3

545 Albrecht Böttcher and Bernd Silbermann. *Analysis of Toeplitz Matrices*. Springer, 2000. 3

546 Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
 547 3, 13, 14

549 Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. CLEX: Continuous
 550 length extrapolation for large language models. In *The Twelfth International Conference on Learn-*
 551 *ing Representations*, 2024a. URL <https://openreview.net/forum?id=wXpSidPpc5>.
 552 3

553 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. LongloRA:
 554 Efficient fine-tuning of long-context large language models. In *Int. Conf. Learn. Represent. (ICLR)*,
 555 2024b. 3

557 Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized
 558 relative positional embedding for length extrapolation. *Advances in Neural Information Processing*
 559 *Systems*, 2022. 3

560 Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and Peter Ramadge. Dissecting transformer
 561 length extrapolation via the lens of receptive field analysis. In *Association of Computational*
 562 *Linguistics (ACL)*, 2023. 3, 25

563 Yiran Ding, Li Lyra Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
 564 and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. *arXiv preprint*
 565 *arXiv:2402.13753*, 2024. 3

567 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 568 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 569 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 570 In *Int. Conf. Learn. Represent. (ICLR)*, 2021. 1

571 Hua Ermo, Jiang Che, Lv Xingtai, Zhang Kaiyan, Ding Ning, Sun Youbang, Qi Biqing, Fan Yuchen,
 572 Zhu Xuekai, and Zhou Bowen. Fourier position embedding: Enhancing attention's periodic
 573 extension for length generalization. In *Int. Conf. Mach. Learn. (ICML)*, 2025. 1, 3, 24, 25

575 Robert M Gray. Toeplitz and circulant matrices: A review. *Foundations and Trends® in Communica-*
 576 *tions and Information Theory*, 2(3-4):155–239, 2006. 3

577 Ulf Grenander and Gabor Szegö. *Toeplitz Forms and Their Applications*. AMS, 2002. 3, 14, 15

579 Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models
 580 without positional encodings still learn positional information. In *Findings of the Association for*
 581 *Computational Linguistics: EMNLP 2022*, 2022. 3, 21

582 Roger A Horn and Charles R Johnson. *Matrix Analysis*. Cambridge University Press, 1985. 3

584 Roger A Horn and Charles R Johnson. *Topics in Matrix Analysis*. Cambridge University Press, 1991.
 585 3

586 Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruixiang Tang, Mengnan Du, Zirui Liu, and
 587 Yongfeng Zhang. Massive values in self-attention modules are the key to contextual knowledge
 588 understanding. In *Int. Conf. Mach. Learn. (ICML)*, 2025. 3, 14, 25

589 André Jonasson. Rotary outliers and rotary offset features in large language models. *arXiv preprint*
 590 *arXiv:2503.01832*, 2025. 3

592 Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
 593 The impact of positional encoding on length generalization in transformers. *Advances in Neural*
 594 *Information Processing Systems*, 2023. 1, 2, 3, 5, 7, 21, 25

594 Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Kentaro Inui. SHAPE: Shifted absolute position
 595 embedding for transformers. In *Proceedings of the 2021 Conference on Empirical Methods in*
 596 *Natural Language Processing*, 2021. 3

597

598 Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
 599 Shanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
 600 relative positions improves long context transformers. In *Int. Conf. Learn. Represent. (ICLR)*, 2024.
 601 3

602 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 603 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 604 *arXiv:2412.19437*, 2024. 3, 8

605 Yurii Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*. Springer, 2004. 3

606

607 Alan V Oppenheim and Ronald W Schafer. *Discrete-Time Signal Processing*. Prentice Hall, 1999. 3

608

609 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
 610 dow extension of large language models. In *The Twelfth International Conference on Learning*
 611 *Representations*, 2024. 1, 3

612 Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
 613 input length extrapolation. In *Int. Conf. Learn. Represent. (ICLR)*, 2022. 3, 4, 5, 9

614

615 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 616 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 617 transformer. *Journal of Machine Learning Research*, 2020. 1, 3, 4, 5

618 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
 619 *arXiv preprint arXiv:1803.02155*, 2018. 1, 3

620

621 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 622 transformer with rotary position embedding. *Neurocomputing*, 2024. 1, 3, 4, 5, 9, 14

623

624 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 625 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 626 *systems*, 30, 2017. 1, 3, 4, 5

627

628 Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang, and Xiaoling
 629 Wang. Length generalization of causal transformers without position encoding. In *Findings of the*
 630 *Association for Computational Linguistics: ACL 2024*, 2024. 3

631

632 Jianbo Zhao, Taiyu Ban, Zhihao Liu, Hangning Zhou, Xiyang Wang, Qibin Zhou, Hailong Qin,
 633 Mu Yang, Lei Liu, and Bin Li. Droke: Directional rotary position embedding for efficient agent
 634 interaction modeling. *arXiv preprint arXiv:2503.15029*, 2025. 3

635

636 Chunsheng Zuo, Pavel Guerzhoy, and Michael Guerzhoy. Position information emerges in causal
 637 transformers without positional encodings via similarity of nearby embeddings. In *Proceedings of*
 638 *the 31st International Conference on Computational Linguistics*, 2025. 1, 2, 3, 4, 7, 25

639

640

641

642

643

644

645

646

647

ACKNOWLEDGMENT OF LLM USAGE

During the preparation of this manuscript, large language models (LLMs) were employed in a limited and auxiliary capacity. Specifically, their usage was restricted to the following three aspects: (1) checking grammar and expression at the sentence level, thereby providing local linguistic refinement; (2) performing global polishing after the draft was completed, ensuring that the overall exposition conforms to idiomatic English usage; and (3) improving the readability of the proof details presented in the appendix.

At no stage were LLMs used for generating research ideas, developing arguments, or modifying the substantive content of this work. Their sole role was to assist in enhancing clarity and effectiveness of communication.

A NOTATIONS LIST

The notations used throughout this article are summarized in Table 2.

Table 2: Some important notations used in this paper.

Notation	Description
x_i	Real vector in \mathbb{R}^{2n}
\mathbf{x}_i	Complex vector in \mathbb{R}^n
c	Content label for a token or a hidden activation
p	Position label for a token or a hidden activation
e_i	Absolute position encoding for i
b or \mathbf{B}	The bias decided by the relative position encoding
R_i	The rotary matrix for position i of RoPE
$G_{u,v}$	The gram matrix for the vector columns $\{v_i\}, \{u_i\}$
\mathbf{L}	Logit value of attention layer
$T_N(a)$	Toeplitz Matrix for $a_i, i = -N, \dots, N$

B DETAILED METHOD ANALYSIS

In this section of the appendix, we provide detailed theoretical analysis and derivations supporting the non-trivial conclusions presented in the main text. Our analysis relies on idealized proofs that simplify the complex optimization dynamics of neural networks, aiming to reveal a theoretical explanation for the observed experimental phenomena. While the actual simulation and analysis of non-convex optimization in full Transformer models is extremely difficult, this theoretical framework offers valuable insights into the underlying principles.

Our analysis is predicated on a core theoretical link regarding the role of spectral properties in learning. We rely on the established principle that favorable spectral properties of matrices involved in optimization—such as a more contracted eigenvalue spectrum (tighter bounds) or a smaller spectral norm—correlate with faster and more stable convergence of learning algorithms. Building upon this, our theoretical framework posits that the rapid and stable convergence of the positional coupling function, driven by these favorable spectral properties, will lead to a specific phenomenon during training: the localization of this function within a limited set of attention heads in shallow layers, resulting in the empirically observed deposit pattern [Boyd & Vandenberghe \(2004\)](#).

Proposition B.1 (RoPE Logit Form): This proposition formally derives the mathematical form of the Rotary Positional Encoding (RoPE) attention logit as presented in the main text (Equation 9), showing how RoPE's rotation mechanism translates into a specific inner product structure involving content and relative positional information. We would prove that

$$\mathbf{L}_{\text{BoPE complex}} = (G_{\mathbf{q},\mathbf{k}} + G_{\mathbf{q},\mathbf{p}} + G_{\mathbf{p},\mathbf{k}} + G_{\mathbf{p}}) \circ G_{\mathbf{e}}.$$

702 We use the formula in [Su et al. \(2024\)](#) that a logit value of i and j in $\mathbf{L}_{\text{RoPE_complex}}$ is
 703

$$704 \sum_{k=0}^{d/2-1} \mathbf{q}_i^{(t)} \mathbf{k}_j^{(t)} e^{i(i-j)\theta_t},$$

$$705$$

$$706$$

707 and there are t_1 and t_2 that
 708

$$709 \left(\sum_{k=0}^{d/2-1} \mathbf{q}_i^{(t)} \mathbf{k}_j^{(t)} \right) e^{i(i-j)\theta_{t_1}} \leq \sum_{k=0}^{d/2-1} \mathbf{q}_i^{(t)} \mathbf{k}_j^{(t)} e^{i(i-j)\theta_t} \leq \left(\sum_{k=0}^{d/2-1} \mathbf{q}_i^{(t)} \mathbf{k}_j^{(t)} \right) e^{i(i-j)\theta_{t_2}},$$

$$710$$

$$711$$

712 Due to continuity and the mean value theorem, there exists t_{i-j} that
 713

$$714 \sum_{k=0}^{d/2-1} \mathbf{q}_i^{(t)} \mathbf{k}_j^{(t)} e^{i(i-j)\theta_t} = \left(\sum_{k=0}^{d/2-1} \mathbf{q}_i^{(t)} \mathbf{k}_j^{(t)} \right) e^{i(i-j)\theta_{t_{i-j}}} = \mathbf{q}_i \mathbf{k}_j e^{i(i-j)\theta_{t_{i-j}}}.$$

$$715$$

$$716$$

717 Then we can use $e^{i(i-j)\theta_{t_{i-j}}}$ to generate G_e to finish our proof.
 718

719 **Proposition B.2 (Logit Expressiveness):** This proposition analyzes and demonstrates the higher
 720 degree of freedom and expressive power of the RoPE attention logit form (Equation 9) compared to
 721 the non-RoPE additive logit form (Equation 8). It highlights why RoPE’s structure is theoretically
 722 better suited to capture the complex content-relative positional relationships required by tasks like
 723 Task 1.

724 Task 1 is directly related to the following optimization problem:

725 For $-i \leq s \leq d - s$ and constant C_1 and C_2 ,

727 1. Relative Position Encoding

$$728 \langle q_i, k_j \rangle + b_{i-j} > C_1 > C_2 > \langle q_{i+s}, k_{j+s} \rangle + b_{i-j},$$

$$729$$

730 2. RoPE

$$731 \mathbf{Re}\{\langle q_i, k_j \rangle e^{i(i-j)\theta_{t_{i-j}}}\} > C_1 > C_2 > \mathbf{Re}\{\langle q_{i+s}, k_{j+s} \rangle e^{i(i-j)\theta_{t_{i-j}}}\}.$$

$$732$$

733 It is easy to verify that the solution space of RoPE is much larger than that of Relative Position
 734 Encoding. This can be considered from the following two aspects. First, the expression of RoPE can
 735 make the key-value pairs with a fixed distance meet the requirements as long as the angle distribution
 736 meets the requirements, while the expression of Relative Position Encoding requires a more stringent
 737 angle distribution because the bias has no significant effect. Second, RoPE actually only needs a
 738 significant angle to easily meet the conditions, which actually corresponds to the cause of Massive
 739 Value described in [Jin et al. \(2025\)](#).

740 The emergence of the deposit pattern may share a common theoretical origin: the **spectral properties**
 741 of the attention logit matrix. Gradient-based optimization is known to be more stable for matrices
 742 with tightly clustered eigenvalues ([Boyd & Vandenberghe, 2004](#)). As suggested by Szegő’s theorem
 743 ([Grenander & Szegő, 2002](#)), the multiplicative interaction in RoPE is theorized to contract the
 744 eigenvalue spectrum of the positional component more effectively than additive methods.

745 **Proposition B.3 (Spectral Contraction):** This proposition formally proves the spectral property
 746 claimed in the main text. By applying theorems like Szegő’s theorem and inequalities concerning the
 747 Hadamard product, it demonstrates that the Toeplitz matrix structure associated with multiplicative
 748 coupling (as in RoPE) has a more desirable eigenvalue spectrum (e.g., more compact or tighter
 749 bounds) compared to Toeplitz structures associated with additive coupling mechanisms.

750 The structure of the attention logit matrix \mathbf{L} , particularly the properties of its Toeplitz or Toeplitz-like
 751 components, provides crucial insights into the stability and dynamics of positional information
 752 processing. The width of the eigenvalue spectrum often has a great impact on the optimization
 753 process.

754 For Toeplitz matrices, classical results such as Szegő’s theorem connect matrix structure to asymptotic
 755 eigenvalue distributions. We recall a relevant form below:

756 **Theorem B.1** (Szegő’s Theorem on Eigenvalue Distribution (From [Grenander & Szegő \(2002\)](#))). Let
 757 $T_N(a)$ be an $N \times N$ Toeplitz matrix with $(T_N(a))_{i,j} = a_{i-j}$, and let $a(e^{i\theta}) = \sum_{k=-\infty}^{\infty} a_k e^{ik\theta}$ be its
 758 symbol. If $a(e^{i\theta})$ is real-valued and continuous, then the eigenvalues $\lambda_j^{(N)}$ of $T_N(a)$ asymptotically
 759 fill the interval $[\min a(e^{i\theta}), \max a(e^{i\theta})]$ as $N \rightarrow \infty$.
 760

761 Applying this theorem and related spectral analysis techniques to the Toeplitz structures induced by
 762 various PE mechanisms:

763

- 764 • In Non-RoPE methods, the Toeplitz components $G_{qp,kp}$ and \mathbf{B} contribute additively to the
 765 logit, and their spectral ranges are determined by their respective coefficient sequences.
- 766 • In RoPE, the complex logit involves a Hadamard product with the Toeplitz matrix G_e . This
 767 multiplicative interaction theoretically contracts the eigenvalue range relative to additive
 768 compositions, resulting in tighter spectral bounds.

769 We simplify the proposition into the following: Let W, E be $N \times N$ positive definite Toeplitz matrices.
 770 Then the eigenvalue spectrum of the Hadamard product $W \circ E$ is more compact than W .
 771

772 Here, each element of E is a complex number with a membrane length of 1. We can directly use
 773 Schur’s inequality to prove that the membrane length of the eigenvalue of $W \circ E$ must be less than or
 774 equal to the membrane length of the eigenvalue of W .
 775

776 However, a strict comparison requires citation of Szegő’s Theorem **B.1** on Eigenvalue Distribution
 777 [Grenander & Szegő \(2002\)](#). So let us calculate the generating function (sign function) corresponding
 778 to $W \circ E$ and W respectively.

779

$$\text{Symble}(W \circ E)(\theta) = \sum_{i=-N+1}^{N-1} w_i e^{i(i\theta_i + i\theta)} = \sum_{i=0}^{N-1} 2\text{Re}\{w_i\} \cos(i\theta_i + i\theta)$$

$$\text{Symble}(W)(\theta) = \sum_{i=-N+1}^{N-1} w_i e^{i(i\theta)} = \sum_{i=0}^{N-1} 2\text{Re}\{w_i\} \cos(i\theta)$$

780 We will use the following lemma to prove that the range of the above formula must be smaller than
 781 that of the following formula, and thus Szegő’s Theorem shows that its eigenvalue spectrum is more
 782 compact.
 783

784 **Lemma B.1** (Amplitude bound and phase–alignment criterion). *Fix an integer $N \geq 1$ and non-
 785 negative weights $w_i \geq 0$. Define*

786

$$f(\theta) := \sum_{i=0}^{N-1} 2w_i \cos(i\theta_i + i\theta), \quad g(\theta) := \sum_{i=0}^{N-1} 2w_i \cos(i\theta), \quad \theta \in \mathbb{R}.$$

787 *Then*

$$\max_{\theta \in \mathbb{R}} |f(\theta)| \leq \max_{\theta \in \mathbb{R}} |g(\theta)| = 2 \sum_{i=0}^{N-1} w_i.$$

788 *Equality holds iff all phase offsets coincide modulo 2π :*

789

$$\theta_0 \equiv \theta_1 \equiv \dots \equiv \theta_{N-1} \pmod{2\pi}.$$

800 *Consequently the peak-to-peak range of g (width $4 \sum_i w_i$) never falls below that of f , and both
 801 ranges coincide only under complete phase alignment.*

802 *Proof.* Denote

803

$$P(z) := \sum_{i=0}^{N-1} c_i z^i, \quad c_i := w_i e^{i\theta_i}, \quad Q(z) := \sum_{i=0}^{N-1} w_i z^i, \quad |z| = 1.$$

810 **Upper bound.** For any $|z| = 1$ the triangle inequality gives
 811

$$812 \quad |P(z)| \leq \sum_{i=0}^{N-1} |c_i| = \sum_{i=0}^{N-1} w_i.$$

813 Hence
 814

$$815 \quad |f(\theta)| = 2|\Re P(e^{i\theta})| \leq 2|P(e^{i\theta})| \leq 2 \sum_{i=0}^{N-1} w_i = |g(0)|.$$

816 Conversely, $|\cos(i\theta)| \leq 1$ implies $|g(\theta)| \leq 2 \sum_i w_i$ for every θ , while $g(0) = 2 \sum_i w_i$ shows that
 817 this bound is attained, so $\max_{\theta} |g(\theta)| = 2 \sum_i w_i$. Combining the two yields the desired inequality.
 818

819 **Equality case.** Suppose $\max_{\theta} |f(\theta)| = 2 \sum_i w_i$. Then at some θ^* both previous inequalities are
 820 tight:
 821

$$822 \quad |P(e^{i\theta^*})| = \sum_i w_i, \quad |\Re P(e^{i\theta^*})| = |P(e^{i\theta^*})|.$$

823 The first equality forces $**$ all terms in the sum for P to share a common phase $**$, i.e. $e^{i(\theta_i+i\theta^*)}$ is the
 824 same for every i ; the second forces this common phase to be 0 or π , which does not affect alignment.
 825 Thus

$$826 \quad \theta_i + i\theta^* \equiv \theta_0 \pmod{2\pi} \quad \forall i \implies \theta_i \equiv \theta_0 \pmod{2\pi} \quad \forall i.$$

827 Conversely, if all θ_i are equal, choosing $\theta = -\theta_0$ gives $f(-\theta_0) = g(0) = 2 \sum_i w_i$, so equality is
 828 achieved.
 829

830 The lemma follows. □
 831

832 C DETAILED PROOFS FOR THEORETICAL ANALYSIS

833 This appendix provides the detailed proofs for the propositions and theorems presented in Section 6.
 834

835 C.1 PRELIMINARIES AND NOTATION

836 We consider a Transformer with L layers and H heads. For a batch of N samples, (i_s, j_s) are the
 837 token positions for sample s , and $d_s = |j_s - i_s|$ is the relative distance. The empirical measure of
 838 distances is $\hat{\mu}_N(d) := \frac{1}{N} \sum_{s=1}^N \mathbf{1}\{|j_s - i_s| = d\}$. The attention mechanism is defined by $S^{(h,l)} =$
 839 $Q^{(h,l)} K^{(h,l)\top} / \sqrt{d_h}$, $A^{(h,l)} = \text{softmax}_{\text{row}}(S^{(h,l)})$, and $Y^{(h,l)} = A^{(h,l)} V^{(h,l)}$. We use the following
 840 constant, derived from bounded operator norms and loss gradients:
 841

$$842 \quad C^{(h)} := \|W_O\|_2 \|V^{(h,L)}\|_2 \sup_s \|\partial \ell_s / \partial y\|_2. \quad (6)$$

843 We also denote the row sharpness as $\chi_L := \max_i \|A_{i,:}^{(h,L)}\|_2$ and the minimum anchor attention as
 844 $a_*^{(h)}(d) := \inf_{s: d_s=d} A_{u_s, j_s}^{(h,L)}$.
 845

846 C.2 SOFTMAX GRADIENT CALCULUS

847 **Lemma C.1** (Row-softmax Gradient Identity). *For any layer l , head h , sample s , and row i ,*

$$848 \quad \frac{\partial \ell_s}{\partial S_{i,j}^{(h,l)}} = A_{i,j}^{(h,l)} \left(\Lambda_{i,j}^{(h,l)} - \langle \Lambda_{i,:}^{(h,l)}, A_{i,:}^{(h,l)} \rangle \right), \quad (7)$$

849 where $\Lambda^{(h,l)} := (\partial \ell_s / \partial Y^{(h,l)}) V^{(h,l)\top}$.
 850

864 *Proof.* The result follows from the chain rule. The Jacobian of a row-wise softmax is $J_i =$
 865 $\text{diag}(A_{i,:}) - A_{i,:}A_{i,:}^\top$. The upstream gradient is $\partial\ell/\partial A = (\partial\ell/\partial Y)V^\top$. Combining these yields the
 866 identity. \square

867 **Lemma C.2 (Quantitative Anchor Gain).** *Let j^* be an anchor column for row i . Let J_i be the softmax
 868 Jacobian for row i . For the canonical basis vector e_{j^*} , we have:*

$$870 \quad \|P_{e_{j^*}} J_i^\top e_{j^*}\|_2 = A_{i,j^*}(1 - A_{i,j^*}) \quad \text{and} \quad \|P_{(e_{j^*})^\perp} J_i^\top e_{j^*}\|_2 \leq A_{i,j^*}(1 - A_{i,j^*}). \quad (8)$$

872 *Proof.* A direct computation gives $J_i^\top e_{j^*} = A_{i,j^*}e_{j^*} - A_{i,j^*}A_{i,:}$. The component along e_{j^*}
 873 is $A_{i,j^*}(1 - A_{i,j^*})$. The squared norm of the orthogonal component is $A_{i,j^*}^2 \sum_{k \neq j^*} A_{i,k}^2 \leq$
 874

$$875 \quad A_{i,j^*}^2 \left(\sum_{k \neq j^*} A_{i,k} \right)^2 = A_{i,j^*}^2 (1 - A_{i,j^*})^2. \text{ Taking square roots yields the result.} \quad \square$$

878 C.3 PROOF OF PROPOSITION 6.1 (ROPE TOP-LAYER SEED)

879 *Proof.* From Lemma C.1, for a sample s with anchor u_s and target j_s :

$$880 \quad \frac{\partial\ell_s}{\partial S_{u_s,j_s}^{(h,L)}} = A_{u_s,j_s}^{(h,L)} \left(\Lambda_{u_s,j_s}^{(h,L)} - \langle \Lambda_{u_s,:}^{(h,L)}, A_{u_s,:}^{(h,L)} \rangle \right). \quad (9)$$

881 By Assumption (A3), the first term $\Lambda_{u_s,j_s}^{(h,L)} = \langle \partial\ell_s/\partial Y_{u_s,:}, V_{j_s,:}^{(h,L)} \rangle \geq \eta_s^{(h)}$. For the second term,
 882 Cauchy-Schwarz and the definition of $C^{(h)}$ yield:

$$883 \quad |\langle \Lambda_{u_s,:}, A_{u_s,:} \rangle| \leq \|\Lambda_{u_s,:}\|_2 \|A_{u_s,:}\|_2 \leq \|\partial\ell_s/\partial Y_{u_s,:}\|_2 \|V^{(h,L)}\|_2 \chi_L \leq C^{(h)} \chi_L. \quad (10)$$

884 Combining these, and using $A_{u_s,j_s}^{(h,L)} \leq 1$:

$$885 \quad \frac{\partial\ell_s}{\partial S_{u_s,j_s}^{(h,L)}} \geq A_{u_s,j_s}^{(h,L)} \eta_s^{(h)} - A_{u_s,j_s}^{(h,L)} C^{(h)} \chi_L \geq a_*^{(h)}(d_s) \eta_*^{(h)}(d_s) - C^{(h)} \chi_L. \quad (11)$$

886 Summing over all samples s with $d_s = d$ to get $H_L^{(h)}(d)$ gives the result:

$$887 \quad H_L^{(h)}(d) \geq N \hat{\mu}_N(d) \left(a_*^{(h)}(d) \eta_*^{(h)}(d) - C^{(h)} \chi_L \right). \quad (12)$$

888 This is strictly positive if the learning signal term $a_* \eta_*$ outweighs the interference term $C \chi_L$. \square

889 C.4 PROOF OF PROPOSITION 6.2 (ALIBI CANCELLATION)

890 *Proof.* We provide a constructive proof. Fix a distance bucket d and partition its samples \mathcal{S}_d into
 891 pairs (s, s') . For each pair, we construct their token embeddings to achieve cancellation.

- 903 **1. Identical Attention Matrix:** By (A3), choose t such that $W_Q t = W_K t = 0$ and $W_V t \neq 0$.
 904 For a base token embedding x_0 , set the anchor token embedding for sample s to be $x_s =$
 905 $x_0 + t$ and for s' to be $x_{s'} = x_0 - t$. All other token embeddings are identical for s and
 906 s' . Since the query and key projections of t are zero, all dot products $q_i \cdot k_j$ are identical
 907 for both samples. As ALiBi adds the same bias $b_h(j - i)$, the scores $S^{(h,L)}$ and attention
 908 matrices $A^{(h,L)}$ are identical for s and s' .
- 909 **2. Flipped Gradient Signal:** Since $W_V t \neq 0$, the value vector at the anchor row u_s is flipped:
 910 $V_{u_s,:}^{(h,L)}(s') \approx V_{u_s,:}^{(h,L)}(s) - 2W_V t$. By appropriate choice of x_0 , this can be made an exact
 911 sign flip. This implies that the term $\Lambda_{u_s,:}^{(h,L)}(s') = -\Lambda_{u_s,:}^{(h,L)}(s)$.
- 912 **3. Pairwise Cancellation:** Applying Lemma C.1 to the anchor edge (u_s, j_s) for both samples,
 913 we find their respective gradients are equal and opposite, summing to zero. Repeating this
 914 for all pairs makes $H_L^{(h)}(d) = 0$.

917

 \square

918 C.5 PROOF OF THEOREM 6.1 (EXPONENTIAL AMPLIFICATION)
919920 Let \mathcal{U} be the subspace spanned by gradient directions corresponding to the seed-positive buckets. Let
921 $g^{(l)}$ be the gradient vector at layer l , so $g^{(l)} = J^{(l)\top} g^{(l+1)}$.922 **Lemma C.3** (Layerwise Directional Advantage). *Under the assumptions, there exists $\beta_l \geq 0$ such
923 that for any $v \neq 0$,*

924
$$\frac{\|P_{\mathcal{U}} J^{(l)\top} v\|_2}{\|P_{\mathcal{U}^\perp} J^{(l)\top} v\|_2} \geq \frac{1 - \alpha_l}{1 + \alpha_l} (1 + \beta_l). \quad (13)$$

925

926 The gain β_l is lower-bounded by a term proportional to the summed strength of the positive seeds
927 from Proposition 6.1.928 *Proof.* The Jacobian $J^{(l)}$ is decomposed into the within-attention part $\mathcal{O}^{(l)}$ and the rest of the block
929 $\mathcal{R}^{(l)}$. By (A1), the $\mathcal{R}^{(l)}$ part contributes the factor $(1 - \alpha_l)/(1 + \alpha_l)$. The gain β_l arises from $\mathcal{O}^{(l)}$.
930 Lemma C.2 establishes a directional gain for the anchor component within the softmax Jacobian.
931 When composed with the value projection and the upstream gradient from (A2), the anchor direction
932 receives a coherent signal. Aggregating over the anchor rows in subspace \mathcal{U} yields a net directional
933 advantage, which extends from the basis vectors of \mathcal{U} to any vector v by a convexity argument. \square
934935 936 *Proof of Theorem 6.1.* Applying Lemma C.3 to the backpropagation recurrence $g^{(l)} = J^{(l)\top} g^{(l+1)}$:

937
$$\text{SNR}_l = \frac{\|P_{\mathcal{U}} J^{(l)\top} g^{(l+1)}\|_2}{\|P_{\mathcal{U}^\perp} J^{(l)\top} g^{(l+1)}\|_2} \geq \gamma_l \cdot \frac{\|P_{\mathcal{U}} g^{(l+1)}\|_2}{\|P_{\mathcal{U}^\perp} g^{(l+1)}\|_2} = \gamma_l \cdot \text{SNR}_{l+1}. \quad (14)$$

938

939 Iterating this inequality from layer $L - 1$ down to l yields the exponential product. The same
940 multiplicative logic applies to the vector components corresponding to the top two heads within the
941 subspace \mathcal{U} , proving margin amplification. \square
942943 C.6 REMARK: CONCEPTUAL LINK TO CONVOLUTION KERNELS
944945 It is helpful to conceptually frame the aggregated gradient $H_L^{(h)}(d)$ as a discrete convolution. If we
946 define the empirical distribution of distances as a signal $\hat{\mu}_N$, and the expected gradient contribution
947 for a given relative distance Δ as a "deposit kernel" $\kappa^{(h)}(\Delta)$, then the total aggregated gradient is
948 their convolution: $H_L^{(h)} = N(\hat{\mu}_N * \kappa^{(h)})$.
949950 From this perspective, our proof demonstrates a key difference in the structure of these implicit
951 kernels:952

- For **RoPE**, the kernel $\kappa^{(h)}(\Delta)$ has a trigonometric structure due to the rotational mechanism.
953 This structure is analogous to a positive-definite kernel, which resists being driven to zero
954 and ensures a positive "seed" is deposited.
- For **ALIBI**, the kernel $\kappa^{(h)}(\Delta)$ is merely affine (linear plus a constant). This simple struc-
955 ture allows for exact cancellation when convolved with a symmetric distance distribution,
956 explaining why no seed is guaranteed.

957958 This intuitive framing aligns with the rigorous proof and reinforces the conclusion that the deposit
959 pattern is an inherent property of RoPE's multiplicative design.
960961 D SUPPORT EXPERIMENT
962963 D.1 EXPERIMENT SETUP
964965 All experiments were performed on a single NVIDIA RTX 4090.
966967 The experimental parameter settings of non-MLA are shown in Table 3, and the experimental
968 parameter settings of MLA are shown in Table 4.
969970 *Remark D.1.* Note that all our experiments used dropout, so the deposit pattern is not a phenomenon
971 that can be improved by ordinary dropout.
972973 Since Task 2 did not have a position effect, our subsequent experiments were all on Task 1.
974

Setting	Value
Vocabulary size (vocab_size)	574
Model dimension (d_{model})	256
Feed-forward dimension (d_{ff})	512
Number of attention heads (num_heads)	16
Number of decoder layers (num_layers)	6
Dropout rate	0.1
Maximum sequence length (max_len)	128
Positional encoding types tested	nope, absolute, alibi, relative, random, rope
Number of epochs	100 (Task 1); 150 (Task 2)
Batch size	512 or 1024
Optimizer	AdamW (lr=1e-4, betas=(0.98, 0.9), weight_decay=1e-5)
Learning-rate scheduler	Cosine schedule with warm-up (6% of total steps)
Loss function	Cross-entropy
Train/Test split	70% / 30%
Random seed	0,42,70,113,130

Table 3: Hyperparameters and settings (PE).

Setting	Value
Vocabulary size (vocab_size)	574
Model hidden dimension (d_{model})	256
Feed-forward dimension (d_{ff})	512
Number of logical MLA heads (num_heads)	16 (8 in fact)
Compression dimension (d_{compress})	128
Number of decoder layers (num_layers)	6
Dropout rate	0.1
Maximum sequence length (max_len)	128
Positional embedding	Rotary (RoPE)
Number of epochs	100 (Task 1); 150 (Task 2)
Batch size	1024
Optimizer	AdamW (lr=1e-4, betas=(0.98, 0.9), weight_decay=1e-5)
Learning-rate scheduler	Cosine warm-up (6% of total steps)
Loss function	Cross-entropy
Train/Test split	70% / 30%
Random seed	0,42,70,113,130

Table 4: Hyperparameters and settings (MLA).

D.2 COMPLETE VISUALIZATION OF LAYER-BY-LAYER HEAD ABLATION

For completeness, we provide the full layer-by-layer head ablation results for the RoPE models trained on **Task 1**. These figures expand upon the summary violin plots in Fig. 4, showing the *per-head* accuracy after zeroing out each attention head at every layer.

How to read the plots. Each subplot corresponds to one Transformer layer, and each point plots the test accuracy after ablating a single head. Large vertical drops indicate heads whose removal severely harms performance, revealing where positional reasoning is concentrated. Flat curves indicate heads that contribute minimally and whose ablation produces no measurable degradation.

6-layer RoPE model. Figure 9 shows the full ablation for the 6-layer model. The first layer contains a single dominant head whose ablation causes a large accuracy collapse, while all remaining heads exhibit near-flat profiles across layers. This fine-grained visualization matches the condensed “deposit pattern” presented in the main text.

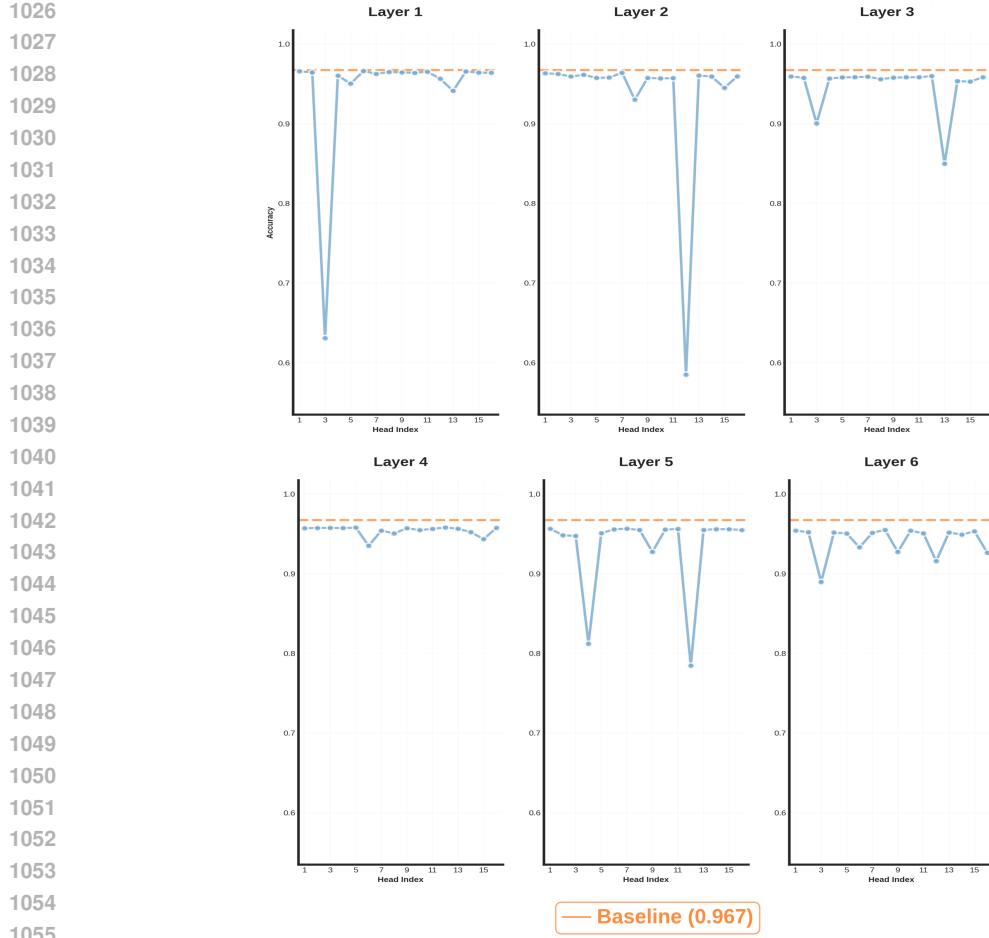


Figure 9: **Full head-ablation curves for the 6-layer RoPE model on Task 1.** Each subplot shows the test accuracy after ablating a single attention head in the corresponding layer. A single head in Layer 1 produces a catastrophic accuracy drop, while all other heads across all layers induce only minor changes. This confirms that RoPE concentrates positional reasoning into one early-layer head, even in shallower architectures.

8-layer RoPE model. Figure 10 reports the same analysis for an 8-layer RoPE model. Despite the increased depth, the pattern is qualitatively identical: a single early-layer head carries almost all positional reasoning, and deeper layers show only small, noise-level fluctuations across heads. This demonstrates that the deposit pattern is not sensitive to depth and remains stable across architectures.

Summary. These complete ablation maps confirm that the deposit pattern is a robust and highly localized effect: RoPE consistently routes positional reasoning into one head in the earliest layers, with all other heads acting effectively position-agnostic for this task.

D.3 EXPERIMENTS OF HEAD ABLATION ON OTHER PE METHODS

In this subsection, we use violin plots to show the ablation experiment results of Alibi, Absolute PE, and Relative PE.

In Figure 11, we can find that the position information of relative position encoding and ALiBi are scattered, while the absolute position encoding has some significant heads and some insignificant heads in the shallow layer, and the whole is oscillating.

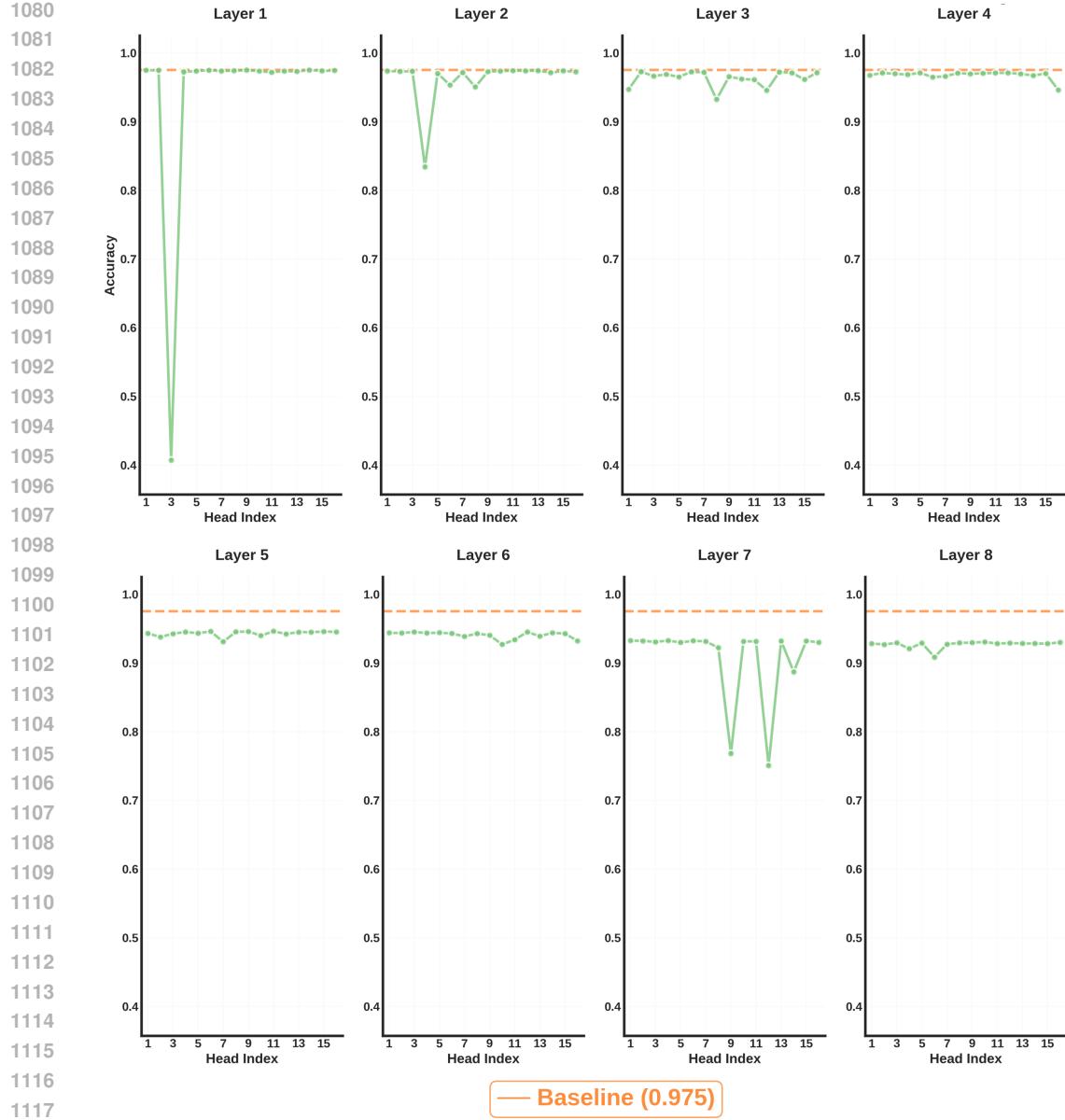
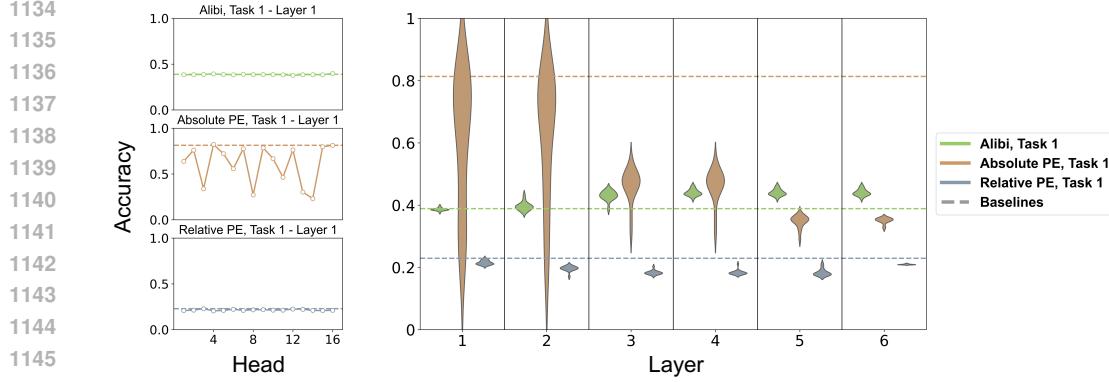


Figure 10: **Full head-ablation curves for the 8-layer RoPE model on Task 1.** The same localization pattern reappears at larger depth: a unique critical head in Layer 1 causes a large accuracy collapse, and all remaining heads across Layers 2–8 have negligible impact. The persistence of this topology across depth demonstrates the stability and robustness of the RoPE deposit pattern.

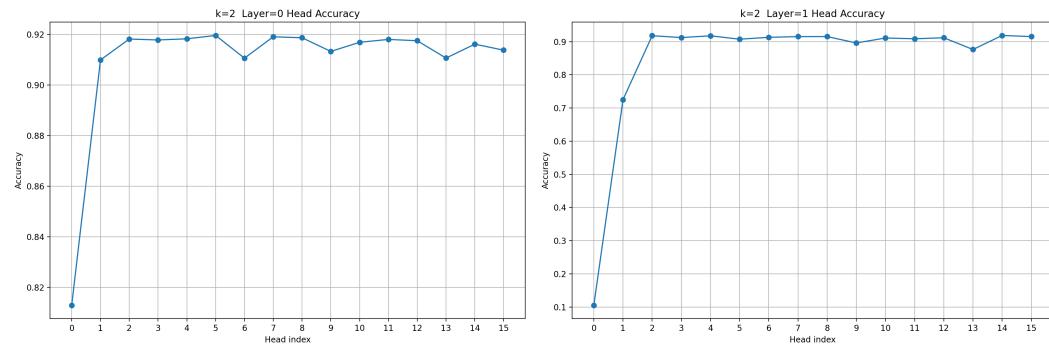
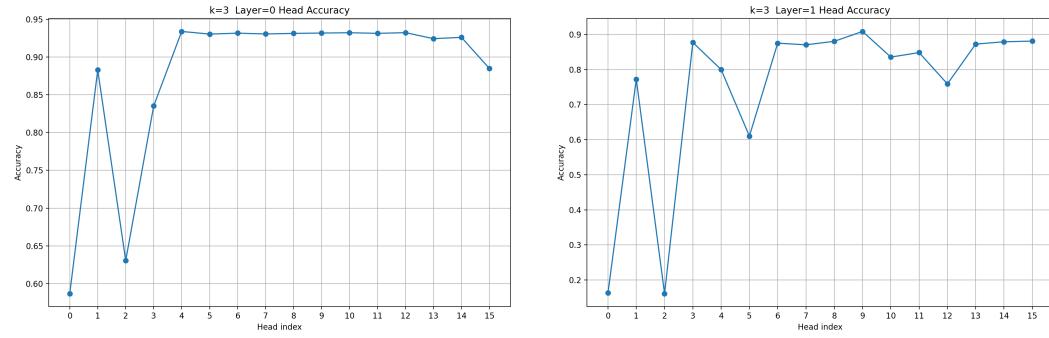
The similarities among NoPE, Relative PE, and ALiBi are consistent with previous studies on how NoPE obtains position information through causal masks [Kazemnejad et al. \(2023\)](#); [Haviv et al. \(2022\)](#).

D.4 SOME EXPERIMENTS ON PARTIAL ROPE

It is foreseeable that MLA can fully alleviate the deposit pattern at the expense of a little generalization ability. We also conducted some ablation experiments in the experiments of RoPE for some heads and NoPE for some heads. Interestingly, we found that the most significant deposit pattern is not necessarily in the first layer, but may be in the second or third layer. In some cases, the first layer does not even have a deposit pattern. We can imagine that this is the effect of using NoPE attention



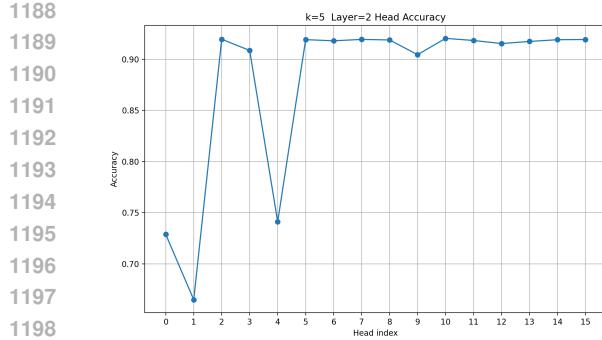
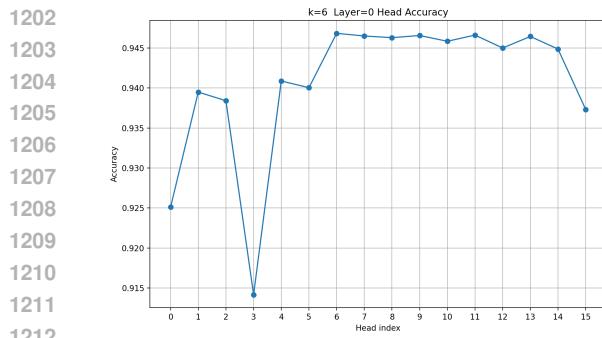
heads in deeper layers. This inspires us that the way the FFN affects the position encoding is far more complicated than we imagined. We give the partial ablation line graph of the first k heads doing RoPE layer 1 below.



D.5 WHY POSITION EMBEDDING COMPLEX?

We conclude this section by explaining why understanding positional encodings is difficult and almost impossible to decouple.

We first give our conclusion that the position component in the token comes from manifold embedding rather than subspace decomposition, which means that extracting the position component requires us

Figure 14: $k = 5, l = 1, 3$.Figure 15: $k = 6, l = 1, 2$.

1216 to have an algorithm to solve the changes in the position manifold. In an extremely ideal case, we
1217 can use the Levinson–Durbin algorithm in signal processing to recursively solve it through the value
1218 of the Toeplitz matrix. However, extracting a Toeplitz matrix from a general matrix is not unique, and
1219 we cannot determine whether the extracted Toeplitz matrix truly represents the position information.

1220 This conclusion comes from a very simple observation: the position embedding of absolute position
1221 encoding is not orthogonal to word embedding. Therefore, there is no subspace decomposition that
1222 can completely separate the two components.

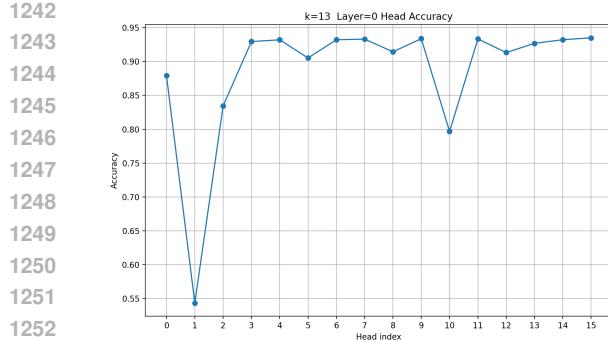
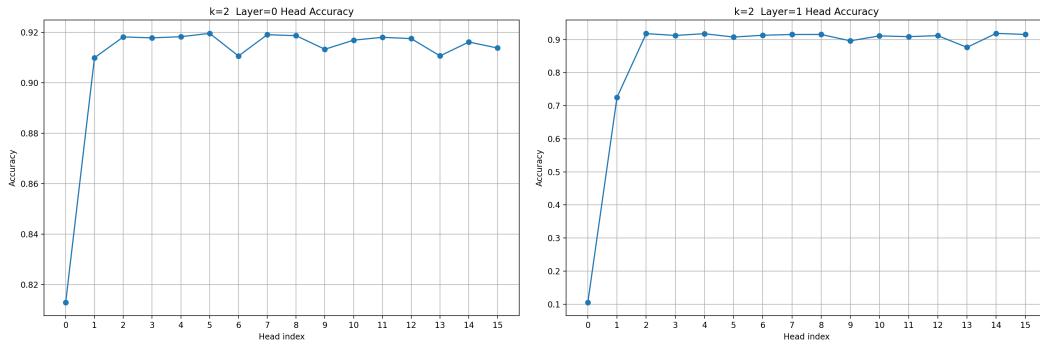
1224 If we denote f as a continuous embedding from $S_1 \otimes S_1 \dots \otimes S_1$ to \mathbb{R}^n , and g as a continuous
1225 embedding from \mathbb{R}_+ to $S_1 \otimes S_1 \dots \otimes S_1$, then the essence of absolute position encoding is actually
1226 $f(g(i))$. In other words, the explicit position encoding that we can understand is essentially a
1227 manifold embedding.

1228 The general method of dealing with manifold embeddings requires a specific embedding mapping.
1229 For general positional encodings, this mapping is not solvable, so it is almost impossible to decouple
1230 the positional encoding.

E RELATIONSHIP TO LENGTH GENERATION

1234 Here, we give a more detailed qualitative statement to describe our thinking on the relationship
1235 between deposit patterns and length generation.

1237 **Why the deposit pattern reflects a training bias rather than modularity.** Although the deposit
1238 pattern superficially resembles a form of head-level modularity, our evidence suggests that it is
1239 instead a training-induced bias specific to RoPE’s multiplicative structure. First, multiplicative PE
1240 suppresses activation-level positional directions (Section 5.4), causing early-layer heads to compete
1241 for the positional signal. Once a single head captures the content–position interaction, RoPE’s strong
inductive bias quickly eliminates positional gradients for the other heads, preventing them from

Figure 16: $k = 13, l = 1, 2$.Figure 17: $k = 15, l = 2, 4$.

acquiring similar capabilities. This is fundamentally different from deliberate modularization: the specialization emerges not because the model decomposes the task across heads, but because the training dynamics collapse positional reasoning into the earliest head that happens to align with the RoPE kernel.

Second, the deposit head does not learn a general positional module; it learns a narrow set of frequency bands that are amplified by RoPE’s rotation mechanism. As noted in [Ermo et al. \(2025\)](#), only a subset of frequencies is sufficiently trained, and their influence is later propagated through feed-forward mixing. This leads to a compressed, low-rank representation of positional structure, which is efficient for the training distribution but fragile outside it.

Taken together, the deposit pattern is better interpreted as a *training bias toward early collapse of positional responsibility*, rather than evidence for a stable or interpretable modular decomposition of positional reasoning. RoPE’s multiplicative interaction creates a “winner-takes-all” dynamic, where one head monopolizes positional information not because the architecture encourages modularity, but because the optimization process and frequency structure favor such collapse.

Further evidence from tasks beyond pairwise position reasoning. RoPE enables efficient pairwise position–content coupling but does not equip the model with the compositional machinery needed for length-generalizing tasks that require combining several positional relations. To test whether the deposit head learned by RoPE represents a reusable “positional module,” we designed a family of tasks requiring the model to combine multiple pairwise distances (e.g., predicting the sum of several trigger-word distances). Despite the task being a straightforward extension of our synthetic setup, all RoPE-based models failed to generalize beyond the training length, even when the training accuracy was near-perfect. In contrast to the pairwise distance task—where positional responsibility collapses into a single head—the multi-trigger task requires the model to compose several independent positional relations, a capability that is architecturally challenging for standard Transformers.

1296 This observation aligns with prior findings on tasks such as Dyck languages, context-free composition,
 1297 and stack-like dependencies (e.g., Chi et al. (2023)): Transformers struggle when a task requires
 1298 retrieving, combining, or manipulating multiple positional relations simultaneously. The failure
 1299 of RoPE to generalize in our multi-trigger setting therefore does not indicate a lack of training or
 1300 capacity, but rather reveals that the single-head deposit behavior does *not* constitute a modular or
 1301 compositional positional representation. Instead, the deposit head encodes a narrow, task-specific
 1302 mapping tied to the training distribution, and—unlike a true module—it cannot be recombined or
 1303 composed when the task demands multiple positional deductions.

1304 Taken together, these results reinforce that the deposit pattern reflects a training-induced collapse
 1305 of positional responsibility rather than the emergence of a reusable module. RoPE enables efficient
 1306 pairwise position–content coupling but does not equip the model with the compositional machinery
 1307 needed for length-generalizing tasks that require combining several positional relations.

1308 More than one study has shown that transformer’s understanding of position information starts from
 1309 the first layer Zuo et al. (2025); Chi et al. (2023); Kazemnejad et al. (2023). The key to successful
 1310 length generalization is that responses to relative position information within the training length can
 1311 be naturally transferred to a longer length (test length). Therefore, the lower the coupling between
 1312 location and content, the better the scalability. If the coupling degree is high, it is necessary to learn
 1313 the coupling mode. At the same time, Deposit Patterns shows that only some frequency bands are
 1314 fully trained during training like Ermo et al. (2025). These frequency bands are passed through the
 1315 fully connected layer, spreading the influence to most of the frequency bands in the deep layer, which
 1316 means that in fact only specific relative position differences are considered by the training process, so
 1317 the length generalization ability is drastically affected.

1318 **Relationship with massive value in RoPE.** Recent empirical studies have reported that Trans-
 1319 formers trained with RoPE often develop a small number of extremely high-norm rows in W_Q and
 1320 W_K (Jin et al., 2025), a behavior not observed under additive positional encodings. Although this
 1321 phenomenon is not the focus of our work, the Toeplitz formulation naturally explains its underlying
 1322 mechanism.

1323 RoPE mixes content and position multiplicatively through a frequency-indexed Toeplitz kernel G_e .
 1324 In our formulation, each logit entry takes the form

$$\langle q_i, k_j \rangle_{\text{RoPE}} = \langle q_i, k_j \rangle \circ (G_e)_{i-j},$$

1325 where $(G_e)_{i-j}$ is a complex rotation encoding relative displacement. Importantly, each frequency
 1326 band of RoPE corresponds to a fixed Toeplitz diagonal, and gradients flowing through that diagonal
 1327 are accumulated entirely on the rows of W_Q, W_K associated with the same frequency.

1328 This creates a “frequency bottleneck”:

- 1329 • if a particular diagonal of the Toeplitz kernel becomes predictive early in training,
- 1330 • then its associated frequency bands receive disproportionately large gradient flow,
- 1331 • causing the corresponding rows of W_Q, W_K to grow rapidly in norm,
- 1332 • while other frequencies remain under-trained.

1333 Thus the massive-value rows arise as a direct consequence of gradient concentration onto a small
 1334 subset of Toeplitz diagonals, not from instability of the optimization process. Additive PEs do not
 1335 exhibit this effect because their position signal enters only through additive p_i -based cross-terms, so
 1336 no frequency-indexed diagonals receive concentrated multiplicative amplification.

1337 Under our unified framework, the massive-value phenomenon is therefore a natural by-product
 1338 of RoPE’s multiplicative structure, in which positional information is stored directly in selected
 1339 frequency bands of W_Q, W_K rather than in explicit activation-level positional vectors.

1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349