D-RAG: Differentiable Retrieval-Augmented Generation for Knowledge
Graph Question Answering

Anonymous ACL submission

Abstract

Knowledge Graph Question Answering
(KGQA) aims to answer natural language
questions based on knowledge graphs. Recent
approaches apply the Retrieval-Augmented
Generation (RAG) paradigm to incorporate
Large Language Models (LLMs) to this task,
where a retriever selects a question-related
subgraph and an LLM-based generator is
then adopted to predict answers based on the
retrieved subgraph. However, the subgraph
selection process is non-differentiable, pre-
venting end-to-end training of the retriever
and the generator, which leads to sub-optimal
performance. To overcome this limitation,
this paper proposes a Differentiable RAG
(D-RAQG) approach that jointly optimizes the
retriever and the generator for KGQA. Via
reformulating the optimization objective as
an expectation over a subgraph distribution
with respect to answer generation likelihood,
D-RAG makes the joint optimization fea-
sible. Specifically, it implements this joint
optimization through a differentiable subgraph
sampling and prompting module that integrates
Gumbel-Softmax reparameterization for
sampling and a neural prompt construction
process that fuses semantic and structural infor-
mation. Experimental results on WebQSP and
CWQ demonstrate that D-RAG outperforms
state-of-the-art approaches.

1 Introduction

Knowledge Graph Question Answering (KGQA)
aims to automatically answer natural language
questions via well-structured facts stored in Knowl-
edge Graphs (KGs). It is an essential task in
Natural Language Processing (NLP) and is vi-
tal in various applications such as information
retrieval and intelligent assistance (Potdar et al.,
2025; Liang et al., 2024). However, KGQA poses
challenges to existing approaches, as it requires a
deep understanding of natural language questions

Current RAG-based K6QA Approach

)) Predicted
Retriever Subgraph Subgraph Geﬂzrmor
Knowledge] e

Graph

)
1 Heuristic1 i True
1Subgraph' | Answer !

The Proposed D-RAG Approach
Question Retriever| —| Differentiable Subgraph =_3lc, 4o Predicted
Sampling and Prompting Answer
Knowledge it}
Graph | True
' Answer :

Retriever Loss Gradient ~ <—— Generator Loss Gradient —#/» Non-differentiable

[paw

<—— Generator-to-Retriever Gradient (___] Module

Figure 1: Comparison between the current RAG-based
KGQA approaches and the proposed D-RAG approach.
The red arrows highlight the end-to-end gradient flow.

and the ability to perform complex reasoning over
KGs. Considering that Large Language Models
(LLMs) (DeepSeek, 2025; OpenAl, 2024b; Meta,
2024) have shown strong capabilities in natural lan-
guage understanding and reasoning, some recent
approaches (Peng et al., 2024; Luo et al., 2024a;
He et al., 2024) incorporate LLMs into KGQA
via the Retrieval-Augmented Generation (RAG)
paradigm (Lewis et al., 2020). Specifically, they
adopt a retriever to select a question-relevant sub-
graph from the KG. Then, they serialize the sub-
graph into the prompt and adopt LLMs as the gen-
erator to reason for answers.

Despite the promising performance of these
RAG-based KGQA approaches, significant chal-
lenges remain in optimizing both the retriever and
the generator. As illustrated in Figure 1, current
approaches (Luo et al., 2024a; Mavromatis and
Karypis, 2024) typically adopt a sequential opti-
mization paradigm, where the retriever is trained us-
ing heuristic supervision signals, and the generator
is subsequently optimized with the retriever frozen.
This sequential optimization leads to sub-optimal
performance for the complete system. Specifically,
the generator’s semantic understanding capabilities

cannot guide the retriever, while the retriever can-
not effectively communicate structural knowledge
in a way the generator can optimally utilize.

To address above limitations, we propose the
Differentiable Retrieval-Augmented Generation
(D-RAG) for KGQA. First, we reformulate the
optimization objective as a tractable expectation
over a subgraph distribution with respect to an-
swer generation likelihood, making the joint opti-
mization tractable. Second, we develop a differ-
entiable subgraph sampling and prompting mod-
ule that achieves end-to-end training. In the
subgraph sampling step, D-RAG transforms dis-
crete subgraph selection into differentiable fact-
level sampling using the Gumbel-Softmax repa-
rameterization trick (Jang et al., 2017; Maddison
et al., 2017). In the prompt construction step, D-
RAG converts the sampled subgraph into LLM-
compatible prompts that fuse both semantic and
structural information while maintaining gradient
flow throughout the entire pipeline. This end-to-
end optimization creates a synergistic relationship
where the generator’s semantic understanding in-
forms retrieval quality, and the retriever provides
structurally meaningful information that enhances
the generator’s reasoning capabilities.

Experimental results on WebQSP and CWQ
show that D-RAG outperforms the state-of-the-art
approaches by 2.5% and 1.8% on Hits@]1, and
by 3.4% and 4.4% on the F1 scores, respectively.
These improvements stem from the end-to-end op-
timization strategy, which effectively reduces re-
trieval noise and enhances answer generation qual-
ity.

The main contributions of this work are as fol-
lows:

* We propose D-RAG, the first differentiable
RAG-based KGQA approach, to the best of
our knowledge, that enables end-to-end opti-
mization with gradient flow from the genera-
tor to the retriever.

* We reformulate the optimization objective as
a tractable expectation over subgraph distri-
butions and develop a differentiable subgraph
sampling and prompting module. This mod-
ule combines Gumbel-Softmax reparameter-
ization for differentiable sampling with neu-
ral prompt construction that integrates both
semantic and structural information, estab-
lishing an effective end-to-end optimization
framework for KGQA.

* Comprehensive experiments on two widely
used benchmark datasets, i.e., WebQSP and
CWQ, demonstrate that D-RAG outperforms
state-of-the-art performance, validating the
effectiveness of the proposed approach.

2 Related Works

2.1 Knowledge Graph Question Answering

KGQA approaches can be broadly categorized into
Semantic Parsing-based (SP-based) and Informa-
tion Retrieval-based (IR-based) ones (Lan et al.,
2023). While SP-based methods parse questions
into formal queries for execution, IR-based meth-
ods retrieve relevant subgraphs for answer ranking
or generation. D-RAG falls into the latter category.

Traditional IR-based approaches typically learn
entity and relation representations for answer rank-
ing using network architectures such as graph neu-
ral networks (Sun et al., 2018; He et al., 2021;
Zhang et al., 2022), which we categorize as Graph
Reasoning methods. The emergence of LLMs has
led to RAG-based approaches that leverage LLMs’
powerful reasoning capabilities for answer genera-
tion. These RAG-based approaches can be divided
into two groups: LLM Reasoning methods that pri-
marily rely on LLMs for both subgraph retrieval
and answer generation (Luo et al., 2024a; Jiang
et al., 2023a; Sun et al., 2024; Ma et al., 2024;
Luo et al., 2024b), and Graph-LLM approaches
that address LLMs’ limitations in processing graph-
structured data (Guo et al., 2023; Guan et al., 2025)
by incorporating graph-specific techniques during
retrieval while using LLMs for reasoning (He et al.,
2024; Li et al., 2025; Mavromatis and Karypis,
2024; Liu et al., 2024a).

Despite the promise of these RAG-based ap-
proaches, a critical limitation is their lack of end-to-
end training capabilities. While SR (Zhang et al.,
2022) achieves end-to-end KGQA by construct-
ing tree-structured subgraphs from multi-hop paths,
their posterior approximation requires computing
answer generation probability for each top-k path
independently, which would incur prohibitive com-
putational costs when LLMs serve as the generator.

2.2 End-to-End Training in RAG

Most RAG systems follow a pipeline
paradigm (Gao et al., 2023), where separate
modules for retrieval, prompting, and generation
are optimized separately. Several works have
explored end-to-end trainable approaches for text

retrieval, including REALM (Guu et al., 2020),
EMDR? (Sachan et al., 2021), VOD (Liévin
et al., 2023), and StochasticRAG (Zamani and
Bendersky, 2024). However, these text-centric
methods cannot be directly applied to KGQA due
to the structured nature of graph data and the need
for specialized graph retrieval mechanisms.

StochasticRAG (Zamani and Bendersky, 2024)
is the most similar one to the proposed approach, as
both methods leverage Gumbel tricks for discrete
sampling, whether for documents or subgraphs.
However, D-RAG differs in two key aspects: (1)
StochasticRAG retrieves a fixed number of docu-
ments, which is not suitable for KGQA. In contrast,
our approach transforms subgraph sampling into
independent sampling of facts, allowing for flexible
subgraph sizes; (2) Unlike documents that can be
directly fed to LLMs, we employ a differentiable
prompting step to bridge the gap between graph
structures and LLM reasoning.

3 Preliminary

Knowledge Graph Question Answering. In this
paper, the knowledge graph is composed of multi-
ple facts, where each fact 7 = (h, r,t) represents
a triple consisting of a head entity h, a relation r,
and a tail entity ¢. Formally, the KG can be repre-
sented as G = {(h,r,t)|h,t € E,r € R}, where
& denotes the set of all entities and R represents
the set of all relation types, with each entity and
relation type typically corresponding to a natural
language form. Given a knowledge graph G, the
KGQA task takes a natural language question g
as input and outputs an answer a corresponding
to one or more entities in G. The ultimate goal is
to maximize the likelihood of the correct answer,
which can be formulated as E(,) [log p(alq, G)] .

RAG-based KGQA. The RAG paradigm for
KGQA involves two independent modules: a re-
triever g that identifies the question-relevant sub-
graph g, With probability ps(gsus|G,¢), and a
generator (7 that generates the answer a with prob-
ability p(a|gsup, ¢)- B and ~y denote the parame-
ters of the retriever and the generator, respectively.

The overall answer generation probability can
be formulated as:

Z p'y(a‘Qa gsub)pﬁ (gsub|Q> g),
gsubgg
(D

where 6 denotes all parameters in the above two
modules.

po(alg,G) =

4 The Proposed D-RAG Approach

This section presents Differentiable Retrieval-
Augmented-Generation (D-RAG), as illustrated in
Figure 2. Our approach integrates a graph neural
network (GNN)-based retriever and an LLM-based
generator through a differentiable subgraph sam-
pling and prompting module, enabling end-to-end
training. Below, we detail these modules and the
training strategy.

4.1 GNN-based Retriever

The GNN-based retriever encodes the knowledge
graph to identify question-relevant facts. Given a
question and a knowledge graph, it outputs fact
representations that serve multiple purposes in D-
RAG.

Fact Representation. For each fact 7; in the
knowledge graph, we construct a representation
by concatenating its constituent elements:

F; = [h; || r; || t;] € RPow, (2)

where h;, r;, and t; are representations of the head
entity, relation, and tail entity, respectively, derived
from a GNN module based on ReaRev (Mavroma-
tis and Karypis, 2022).

From these fact representations, we compute the
selection probability for each fact using a linear
layer followed by a sigmoid function: p(7;) =
o(WF; 4+ b), where W and b are learnable pa-
rameters.

Subgraph Selection Probability Factorization.
For subgraph sampling, computing the exact prob-
ability of a specific subgraph is combinatorially
complex. Therefore, we employ a factorization
approach that decomposes the subgraph selection
probability into independent binary selectionss for
each fact:

plosw) = [p=) [A=p). @

Ti€Gsub T ¢gsub

Detailed derivations of this factorization and
specifications of the GNN architecture are provided
in Appendix A and B, respectively.

4.2 LLM-based Generator

The LLM-based generator predicts answers to ques-
tions based on the information contained in the re-
trieved subgraph. It processes the input through

Knowledge Graph G (Differentiable Subgraph Sampling h Differentiable Prompt Construction B True
L [y 00} Textual H Answer
Fact 1Heuristic i Sampled Subgraph© = Embeddings Generator Prompt TTTTaTTTTT
5 e - Representations ._S_u?g:ﬁ:;_:h_, >0 >0 supe;wsz
: T Facts F emvise Selection Selection T ey ,
«"_)O ﬁ Probabilities of Matrix ;aram: chd?rzn Neural Fact Prompt
p Fact v X bicher axon @)
© 6NN-based | 0-0 & acts e iomer yany ¢ | || tm-based
Retriever 0@ ﬁ . g gg g Softmax > g Generator
a -0 ﬁ té{:.%._ Structural
uestion g : Embeddings
Wt menaneof| | | ©-0 & — : v
Justin bieber O—=0 Projector o0 & =0 @ Predicted
brother? \ = J Y, Answer

Figure 2: The proposed D-RAG consists of four steps: 1) The GNN-based retriever processes the knowledge
graph to obtain fact representations; 2) The differentiable subgraph assigns selection probabilities to facts and
uses Gumbel-Softmax reparameterization trick to sample a subgraph; 3) The differentiable prompt construction
transforms the sampled subgraph into a neural fact prompt that combines semantic and structural information; 4)

The LLM-based generator predicts the final answer.

autoregressive decoding to generate answers:

La

Py(algsu, @) = [[Py ailaci, gsu, @),
=1

“)

where L, is the token length of the ground-truth
answer.

The generator receives input comprising three
components as shown in Figure 2: the task setting,
the question, and the neural fact prompt derived
from the retrieved subgraph. These are combined
in a structured template:

Answer the question based

on the provided facts.

Question: <question>

Provided facts: <factl1><fact2> ...
Answer:

Answers are formatted as a bar-separated list:
<Ans1>|<Ans2>|...|<AnsN>. Complete prompt
examples are provided in Appendix C.

4.3 Differentiable Subgraph Sampling and
Prompting

D-RAG constructs differentiable bridges across the
retriever-generator interface through two designs:
(1) reformulating the optimization objective into
a tractable form, and (2) implementing differen-
tiable operations for both subgraph sampling and
prompt construction. This end-to-end approach en-
ables joint optimization where the retriever learns
to identify graph patterns that enhance the genera-
tor’s reasoning capabilities.

4.3.1 Differentiable Formulation

The optimization objective of maximizing Equa-
tion 1 involves a summation with combinatorial

complexity, making it generally intractable. We ad-
dress this by optimizing its evidence lower bound
(ELBO) (Hoffman et al., 2013), formulated as:

[10 pewblqg)}
T(gsub)
+ DKL(T(gsub) || p@(gsub‘av q, g))

2 Egmbwr [log pe(mgsu})q’g)] ’
’r(gsub)

- EgsubNT

log pg(alq, G)

where 7(gsyp) represents the variational distribu-
tion of the subgraph, and the inequality holds
because the Kullback-Leibler divergence is non-
negative. By specifying the variational distribution
7(gsup) as the retriever’s distribution p(gsub|q, G).
the ELBO simplifies to:

bo\a, q, g
log pg(alg, G) > Eqg,,,~ps {bg G(gsub’)}

pﬁ(gsub’qv g)
|:1 pw(a‘gsub7Q)p,3(gsub|Q7 g):|
og
P8(gsuvlq; G)
= Egsub’\‘pﬁ [1ng'y(a|gsub’ Q)] 9

=]Egsub"“pﬁ

(6)
where pg is modeled by the GNN-based retriever
and p, by the LLM-based generator. This formu-
lation transforms the original combinatorial objec-
tive into a tractable expectation over subgraph dis-
tributions. To optimize this expectation through
gradient-based methods, two critical challenges
need to be addressed: (1) implementing differen-
tiable operations for discrete subgraph sampling
from distribution pg, and (2) constructing differen-
tiable prompts that allow gradients to flow through
the generator p.

4.3.2 Differentiable Subgraph Sampling

Sampling a subgraph results a selection matrix
Z = [z1:20;...;2n,) € {0,1}77%2, where Ny

is the total number of facts in the knowledge graph
and each row z; indicates whether the ¢-th fact is se-
lected ([1,0]) or not ([0, 1]). Given Z, the sampled
subgraph is represented as gs,» = {7|z; = [1,0]}.

To make this subgraph sampling process dif-
ferentiable, we adopt the Gumbel-Softmax repa-
rameterization trick (Jang et al., 2017; Maddison
et al., 2017). For each fact 7;, the retriever outputs
a Bernoulli parameter p; = pg(7;), representing
its selection probability. We apply the Gumbel-
Softmax trick:

)

Zsoft — softmax < (logpi + 771‘1) / t >T
(log(L —pi) +mi2) / t)
(7)
where 1,1, ;2 are independent Gumbel(0,1) noise
samples and ¢t is the temperature coefficient.
The final binary selection indicator z; is obtained

through:

z; = onchot(argmax(z5°")) + z°t — SG(z°M),
®)

where SG denotes the stop-gradient operation. This
formulation combines discrete selection in the for-
ward pass with differentiability in the backward
pass.

With this reparameterization, our training objec-
tive becomes:

Eyp(n) log Dy (algsub, @)1,)

which transforms the expectation from a complex
parameterized distribution to sampling from a fixed
distribution, enabling gradient flow through the
discrete sampling process.

4.3.3 Differentiable Prompt Construction

After sampling the subgraph, we transform it into
a neural prompt that preserves both semantic and
structural information while maintaining end-to-
end differentiability.

For semantic information, each fact is converted
into natural language using the template <head
name>, <relation name>, <tail name> and
then tokenized and encoded into embeddings V; €
RLixDPum where L; is the token length and Dy m
is the LLM embedding dimension. We multiply
each embedding V; by the corresponding selection
indicator z;; from matrix Z, effectively retaining
only the embeddings of selected facts.

For structural information, we utilize the fact rep-
resentations F = [F1; Fy;...;Fy,] € RV *Pow
learned by the GNN retriever (defined in Equa-
tion 2). These representations capture each fact’s

position and relevance within the knowledge graph.
A two-layer MLP projects these representations
to align with the LLM embedding space: F/' =
Projector(F) € RN7xPuv - Similarly, we select
only the structural embeddings F corresponding
to facts where z;; = 1.

For each selected fact 7;, we concatenate its se-
mantic embedding V; with its structural embed-
ding F’, to form an enriched representation. These
combined embeddings are then concatenated to
create the complete neural fact prompt Vg for the
LLM-based generator.

Our approach enables gradient flow from the
LLM loss L back to the retriever parameters
through dual pathways:

9L _ 9L 9V 0Z 9L 9Vp OF'
98~ OVy 0Z 05 OVp OF 0B

Semantic pathway

(10)

Structural pathway

where the first term represents gradient flow
through the discrete selection process, and the sec-
ond term captures flow through the fact representa-
tions.

For multi-hop reasoning, facts are arranged by
their selection probabilities, helping preserve poten-
tial logical sequences within the sampled subgraph.

4.4 Training Strategy and Inference

With the differentiable subgraph sampling and
prompting module proposed above, D-RAG sup-
ports end-to-end training. To accelerate conver-
gence, we adopt a two-phase training strategy.

In the first phase, the GNN-based retriever is pre-
trained using heuristically constructed subgraphs
as guidance:

Ly = DKL(pheuT(gsub) H pﬂ(gsub))7 (11)

where ppe.- represents the heuristic subgraph dis-
tribution (typically in one-hot form), and pg is the
retriever’s predicted distribution.
In the second phase, the retriever and generator
are trained jointly with the generation loss:
Ly = —Eqppm logpy(a|VE,q)], (12)
where Vy is the neural fact prompt constructed
from the sampled subgraph g, as described in the
previous section. Importantly, Vg depends on both
the Gumbel noise 77 and the retriever parameters (3.
To balance the significantly different gradient
magnitudes between the retriever pre-training and

generation objectives, we apply a direct gradient
normalization approach:

Ly

Lo
At 4
VgLl

=7
IV Lal|

Lioine = (13)
where A\ is a balancing hyperparameter and
||V 3L;|| represents the norm of gradients with re-
spect to the retriever parameters.

During inference, we employ a hybrid strategy
that first selects the top-k facts with highest se-
lection probabilities, then filters out facts below a
probability threshold to remove irrelevant informa-
tion.

5 Experiments

5.1 Experiment Settings

Datasets. The experimental evaluation was con-
ducted on two benchmark datasets: WebQSP (Yih
et al., 2016) and CWQ (Talmor and Berant, 2018),
both built upon the Freebase (Bollacker et al., 2008)
knowledge graph. These datasets represent clas-
sical benchmarks for complex logical reasoning
in KGQA. WebQSP contains relatively straightfor-
ward questions that typically require 1-2 hop rea-
soning chains, and CWQ presents more challeng-
ing scenarios involving 3-4 hop reasoning chains.
Detailed specifications of the datasets are provided
in Appendix D.

Baselines. D-RAG is compared with 15 baselines
across three categories: 1) Graph reasoning meth-
ods that leverage graph structure for scoring-based
answer inference; 2) LLM reasoning methods that
perform reasoning with LLMs without utilizing
graph structure during retrieval; and 3) Graph-LLM
methods that maintain dedicated graph-based re-
trieval and leverage LLMs for reasoning. The de-
tails of each baseline are described in Appendix E.

Evaluation Metrics. Following previous
works (Luo et al., 2024a; Sun et al., 2024), D-RAG
employs Hits@1 and F1 metrics for evaluation
on WebQSP and CWQ. The evaluation process
first parses LLM-generated answers into a list
for comparison with the ground truth answers.
The Hits@ 1 metric measures whether any correct
answer appears in the model’s response, repre-
senting a basic retrieval capability. In contrast,
F1 provides a more rigorous and comprehensive
assessment by balancing precision and recall, thus
better reflecting the model’s overall answer quality.
Further details are provided in Appendix F.

Implementations. D-RAG employs the
ReaRev (Mavromatis and Karypis, 2022)
model as the GNN and utilizes the Llama3-8B-
Instruct (Meta, 2024) as the LLM. Based on entities
linked to the knowledge graph, heuristic subgraphs
are extracted via SPARQL query parsing. A
heuristic subgraph is a set of facts that conform to
the intrinsic logic of the SPARQL query, typically
forming a tree structure. Full implementation
details are provided in Appendix G.

5.2 Main Results

To evaluate the overall effectiveness of D-RAG,
we compare it with state-of-the-art baselines on
KGQA tasks. Table 1 presents the results, where
"-" indicates the corresponding method does not
report results for that metric.

The D-RAG approach achieves state-of-the-art
performance across both datasets among compara-
ble methods. Specifically, on the WebQSP dataset,
D-RAG achieves a 2.5% improvement in Hits@ 1
over the best-performing baseline SubgraphRAG,
and outperforms DECAF by 3.4% in the F1 score.
Although some baselines like RoG achieve compet-
itive Hits@1 (85.7%), their F1 scores (70.8%) lag
substantially behind, suggesting they may retrieve
some correct answers but with lower precision.

For the more complex CWQ dataset, the pro-
posed approach demonstrates a 1.8% advantage in
Hits@1 compared to the best-performing ToG ap-
proach, and surpasses GNN-RAG by 4.4% in the
F1 score. Notably, methods like SubgraphRAG suf-
fer from a significant performance drop on CWQ
(F1 decreases from 70.6% to 47.2%). In con-
trast, D-RAG maintains consistently superior per-
formance across datasets of varying complexity,
achieving the highest scores on both basic retrieval
capability (Hits@ 1) and the more comprehensive
measure of answer quality (F1).

A recent work, GCR (Luo et al., 2024b), us-
ing the proprietary GPT4-o-mini (OpenAl, 2024a),
achieves substantially lower F1 scores than our D-
RAG approach: 6.4% lower on WebQSP (74.1%
vs. 80.5%) and 2.1% lower on CWQ (61.7%
vs. 63.8%). While GCR reports higher Hits@1
scores with GPT4-o-mini (92.2% on WebQSP and
75.8% on CWQ), its performance drops signifi-
cantly when using comparable open-source models.
With Qwen-2-7B (Yang et al., 2024), which has
similar parameter size to D-RAG, GCR’s Hits@ 1
on WebQSP falls to 86.3%, 2.8% below our ap-
proach. These results reveal that while propri-

Type | Method | WebQSP | CWQ
| |Hits@l F1 |Hits@1 F1
Graftnet (Sun et al., 2018) 66.4 - 32.8 -
NSM (He et al., 2021) 68.7 62.8| 47.6 424
Graph Reasoning SR+NSM (Zhang et al., 2022) 68.9 64.1| 502 47.1
ReaRev (Mavromatis and Karypis, 2022) 764 709 | 529 -
UniKGQA (Jiang et al., 2023b) 75.1 702 50.7 48.0
NuTrea (Choi et al., 2023) 774 727| 53.6 495
Llama3-8B (Meta, 2024) 59.8 457] 30.8 27.6
StructGPT (Jiang et al., 2023a) 72.6 - - -
LLM Reasoning | DECAF (DPR + FiD-large) (Yu et al., 2023) 80.7 77.1| 67.0 -
ToG (GPT4) (Sun et al., 2024) 82.6 - 68.5 -
RoG (joint) (Luo et al., 2024a) 857 70.8| 62.6 562
G-Retriever (He et al., 2024) 70.1 - - -
EtD (ChatGPT) (Liu et al., 2024a) 82.5 - 62.0 -
Graph-LLM GNN-RAG (Mavromatis and Karypis, 2024) 85.7 713| 66.8 594
SubgraphRAG (Llama3.1-8B) (Li et al., 2025) | 86.6 70.6| 57.0 47.2
D-RAG 89.1 805| 70.3 638

Table 1: Performance comparison with different baselines on WebQSP and CWQ.

etary models may excel at Hits@1 through internal
knowledge, they still struggle with retrieval preci-
sion that impacts F1 scores. D-RAG mitigates this
limitation, achieving higher F1 scores using only
open-source models.

5.3 Ablation Study

To evaluate the effectiveness of end-to-end opti-
mization between the retriever and the generator,
our ablation experiments compare D-RAG with
four training method variants: 1) REINFORCE,
which optimizes both modules jointly using the RE-
INFORCE algorithm (Williams, 1992) with vari-
ance reduction; 2) Dynamic Cascade, where both
modules are trained simultaneously with the gener-
ator using real-time retriever outputs, but without
gradient backpropagation from the generator to the
retriever; 3) Static Cascade, where the generator is
optimized using outputs from the frozen retriever;
4) Isolation, where the generator is trained using
heuristic subgraphs as input, completely decou-
pling the two modules. Further details are available
in Appendix H.

Impact on Overall Performance. Table 2
presents the performance comparison across dif-
ferent training methods on WebQSP and CWQ. We
report both "Full Dataset" performance across the
entire test set and "Retrieved Subset" metrics for

cases where at least one relevant fact is retrieved.

The results reveal that D-RAG consistently out-
performs all variants in most metrics across both
datasets, with particularly substantial F1 score im-
provements. On retrieval success cases, D-RAG
achieves up to 6.4% and 8.5% higher F1 scores
than the best variant on WebQSP and CWQ respec-
tively, demonstrating that end-to-end optimization
enables more effective utilization of retrieved facts.

Dynamic Cascade shows modest improvements
over Static Cascade, confirming the benefit of
continuously updating the retriever during train-
ing. While REINFORCE generally outperforms
Static Cascade, it still falls short of D-RAG’s per-
formance, suggesting direct gradient propagation
is more effective than reward-based optimization.
The Isolation variant maintains reasonable Hits@1
performance but exhibits significant drops in F1
scores due to the training-inference gap between
clean training subgraphs and noisy inference re-
trieval.

Impact on Retrieval Performance. Figure 3 re-
veals two advantages of D-RAG’s retriever opti-
mization. First, D-RAG consistently achieves the
highest retriever F1 scores after joint training be-
gins, demonstrating that gradient propagation from
the generator effectively refines retrieval quality.
Second, D-RAG shows a more significant down-

WebQSP CwQ
Training Method Full Dataset | Retrieved Subset | Full Dataset | Retrieved Subset
Hits@1l F1 | Hits@1 F1 Hits@1 F1 | Hits@1 F1

D-RAG 89.1 805 | 94.0 86.2 70.3 638 | 81.7 75.6
REINFORCE 85.1 729 | 90.4 78.9 61.7 554 | 73.0 66.7
D-RAG w/o e2e

Dynamic Cascade 85.3 74.0 90.4 79.8 61.9 559 73.5 67.1
Static Cascade 84.8 73.0| 90.7 79.4 60.6 543 73.2 66.6
Isolation 827 532 | 911 59.6 63.1 300 | 851 40.0

Table 2: Ablation study comparing overall performance across different training methods.

Metrics

F1

—===- Retrieval Number
50

Training Methods
—— Dynamic Cascade
—— REINFORCE

—— D-RAG

—— Retriever
Static Cascade

1.0
0.9
0.8
0.7
0.6

S h 8 &
Retrieval Number

—
w05

N

0.4

=
@

0.3
0.2

0.1

0.0 3 7 0
Epoch

Figure 3: Evolution of retriever F1 (solid lines) and re-
trieval number (dashed lines) across training epochs on
WebQSP. Epochs 1-4 represent retriever-only pretrain-
ing, followed by joint training with different methods.
Top-50 facts with selection probability >0.5 were used
for retrieval evaluation.

ward trend in retrieved fact count compared to oth-
ers, which is meaningful progress toward the actual
average of 6.4 relevant facts per WebQSP question
(corresponding to the heuristic subgraph), demon-
strating superior noise reduction capability.

5.4 Relationship Between Retrieval and
Generation Performance

To understand how different aspects of retrieval
quality affect generation performance, we exam-
ined various retrieval configurations and their im-
pact on generator performance. As shown in Fig-
ure 4, both retrieval recall and precision signifi-
cantly impact generator performance. Models in
the lower-right region (high recall but low preci-
sion) perform worse than those with balanced met-
rics, indicating that retrieving many relevant facts
without filtering irrelevant ones leads to suboptimal
results. Similarly, models in the upper-left region
(high precision but low recall) underperform due
to insufficient fact coverage.

0.795
0.6 & I
. -
0.765

0.735

o
wn

o
>

o
w

0.705
I0A675

0.645
Figure 4: Impact of retriever quality on generator perfor-
mance (WebQSP dataset). Heatmap shows generator F1
scores (color intensity) as a function of retriever recall
(x-axis) and precision (y-axis). Each point represents
a model configuration with different retrieval configu-

rations using various probability thresholds (0.01-0.9)
applied to the top-100 retrieved facts.

Precision of the Retriever
F1 of the Generator

o
o

0.1

0.80 0.85 0.90 0.95
Recall of the Retriever

To further evaluate the effectiveness and effi-
ciency of D-RAG, we perform additional experi-
ments, including more overall performance anal-
ysis, detail analysis, efficiency analysis, and case
study in Appendix I.

Conclusion

In this paper, we presented D-RAG, a novel differ-
entiable approach for KGQA that enables end-to-
end optimization between the retriever and the gen-
erator. D-RAG achieves this through reformulating
the optimization and a differentiable implementa-
tion of subgraph sampling and prompt construction,
Experimental results demonstrate that D-RAG out-
performs state-of-the-art methods with substantial
improvements, with the joint optimization signif-
icantly reducing noise in the retrieved subgraph
while showing that both precision and recall in re-
trieval impact generator performance.

Limitations

Despite the effectiveness of D-RAG, we acknowl-
edge several limitations of our current approach.
First, our approach relies on entity linking results
without considering potential errors in this prepro-
cessing step. Second, our end-to-end optimization
approach is limited to open-source language mod-
els and cannot be directly applied to closed-source
API-based models.

References

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247-1250, New York,
NY, USA. Association for Computing Machinery.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient nor-
malization for adaptive loss balancing in deep mul-
titask networks. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML
2018, Stockholmsmdssan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 793-802. PMLR.

Hyeong Kyu Choi, Seunghun Lee, Jaewon Chu, and
Hyunwoo J. Kim. 2023. Nutrea: Neural tree search
for context-guided multi-hop KGQA. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurlPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

DeepSeek. 2025. Deepseek-r1 release.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR, abs/2312.10997.

Zhong Guan, Likang Wu, Hongke Zhao, Ming He, and
Jianpin Fan. 2025. Attention mechanisms perspec-
tive: Exploring llm processing of graph-structured
data. Preprint, arXiv:2505.02130.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gptd4graph: Can large lan-
guage models understand graph structured data ? an
empirical evaluation and benchmarking. Preprint,
arXiv:2305.15066.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In WSDM °21, The Fourteenth
ACM International Conference on Web Search and
Data Mining, Virtual Event, Israel, March 8-12, 2021,
pages 553-561. ACM.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2024. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. CoRR, abs/2402.07630.

Matthew D. Hoffman, David M. Blei, Chong Wang,
and John W. Paisley. 2013. Stochastic variational
inference. J. Mach. Learn. Res., 14(1):1303-1347.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categori-
cal reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023a. StructGPT: A gen-
eral framework for large language model to reason
over structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237-9251, Singapore. Associa-
tion for Computational Linguistics.

Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen.
2023b. Unikgqga: Unified retrieval and reasoning for
solving multi-hop question answering over knowl-
edge graph. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Complex
knowledge base question answering: A survey. /IEEE
Trans. Knowl. Data Eng., 35(11):11196-11215.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Mufei Li, Siqi Miao, and Pan Li. 2025. Simple is effec-
tive: The roles of graphs and large language models
in knowledge-graph-based retrieval-augmented gen-
eration. Preprint, arXiv:2410.20724.

Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu
Zhu, Zhouyu Jiang, Ling Zhong, Yuan Qu, Pei-
long Zhao, Zhongpu Bo, Jin Yang, Huaidong Xiong,
Lin Yuan, Jun Xu, Zaoyang Wang, Zhiqgiang Zhang,
Wen Zhang, Huajun Chen, Wenguang Chen, and Jun
Zhou. 2024. KAG: boosting llms in professional do-
mains via knowledge augmented generation. CoRR,
abs/2409.13731.

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://proceedings.mlr.press/v80/chen18a.html
http://proceedings.mlr.press/v80/chen18a.html
http://proceedings.mlr.press/v80/chen18a.html
http://proceedings.mlr.press/v80/chen18a.html
http://proceedings.mlr.press/v80/chen18a.html
http://papers.nips.cc/paper_files/paper/2023/hash/707a2d58641b2192203b4bf4c532cfe1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/707a2d58641b2192203b4bf4c532cfe1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/707a2d58641b2192203b4bf4c532cfe1-Abstract-Conference.html
https://api-docs.deepseek.com/news/news250120
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://arxiv.org/abs/2505.02130
https://arxiv.org/abs/2505.02130
https://arxiv.org/abs/2505.02130
https://arxiv.org/abs/2505.02130
https://arxiv.org/abs/2505.02130
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.48550/ARXIV.2402.07630
https://doi.org/10.48550/ARXIV.2402.07630
https://doi.org/10.48550/ARXIV.2402.07630
https://doi.org/10.48550/ARXIV.2402.07630
https://doi.org/10.48550/ARXIV.2402.07630
https://doi.org/10.5555/2567709.2502622
https://doi.org/10.5555/2567709.2502622
https://doi.org/10.5555/2567709.2502622
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://doi.org/10.1109/TKDE.2022.3223858
https://doi.org/10.1109/TKDE.2022.3223858
https://doi.org/10.1109/TKDE.2022.3223858
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2410.20724
https://arxiv.org/abs/2410.20724
https://doi.org/10.48550/ARXIV.2409.13731
https://doi.org/10.48550/ARXIV.2409.13731
https://doi.org/10.48550/ARXIV.2409.13731

Valentin Liévin, Andreas Geert Motzfeldt, Ida Riis
Jensen, and Ole Winther. 2023. Variational open-
domain question answering. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
20950-20977. PMLR.

Zhutian Lin, Junwei Pan, Shangyu Zhang, Ximei Wang,
Xi Xiao, Shudong Huang, Lei Xiao, and Jie Jiang.
2024. Understanding the ranking loss for recommen-
dation with sparse user feedback. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2024, Barcelona,
Spain, August 25-29, 2024, pages 5409-5418. ACM.

Guangyi Liu, Yongqi Zhang, Yong Li, and Quanming
Yao. 2024a. Explore then determine: A gnn-llm
synergy framework for reasoning over knowledge
graph. Preprint, arXiv:2406.01145.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2024a. Reasoning on graphs: Faithful
and interpretable large language model reasoning. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Linhao Luo, Zicheng Zhao, Chen Gong, Gholamreza
Haffari, and Shirui Pan. 2024b. Graph-constrained
reasoning: Faithful reasoning on knowledge graphs
with large language models. CoRR, abs/2410.13080.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li,
Huaren Qu, and Jian Guo. 2024. Think-on-graph 2.0:
Deep and interpretable large language model reason-
ing with knowledge graph-guided retrieval. CoRR,
abs/2407.10805.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Costas Mavromatis and George Karypis. 2022. ReaRev:
Adaptive reasoning for question answering over
knowledge graphs. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
2447-2458, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Costas Mavromatis and George Karypis. 2024. GNN-
RAG: graph neural retrieval for large language model
reasoning. CoRR, abs/2405.20139.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available 1lm to date.

10

OpenAl 2024a. Gpt-4o mini: advancing cost-efficient
intelligence.

OpenAl. 2024b. Learning to reason with llms.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. 2024. Graph retrieval-augmented generation:
A survey. CoRR, abs/2408.08921.

Saloni Potdar, Daniel Lee, Omar Attia, Varun Em-
bar, De Meng, Ramesh Balaji, Chloe Seivwright,
Eric Choi, Mina H. Farid, Yiwen Sun, and Yun-
yao Li. 2025. Comprehensive evaluation for a large
scale knowledge graph question answering service.
Preprint, arXiv:2501.17270.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Devendra Singh Sachan, Siva Reddy, William L. Hamil-
ton, Chris Dyer, and Dani Yogatama. 2021. End-to-
end training of multi-document reader and retriever
for open-domain question answering. In Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 25968-25981.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231-4242,
Brussels, Belgium. Association for Computational
Linguistics.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641-651, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8:229-256.

https://proceedings.mlr.press/v202/lievin23a.html
https://proceedings.mlr.press/v202/lievin23a.html
https://proceedings.mlr.press/v202/lievin23a.html
https://doi.org/10.1145/3637528.3671565
https://doi.org/10.1145/3637528.3671565
https://doi.org/10.1145/3637528.3671565
https://arxiv.org/abs/2406.01145
https://arxiv.org/abs/2406.01145
https://arxiv.org/abs/2406.01145
https://arxiv.org/abs/2406.01145
https://arxiv.org/abs/2406.01145
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://doi.org/10.48550/ARXIV.2410.13080
https://doi.org/10.48550/ARXIV.2410.13080
https://doi.org/10.48550/ARXIV.2410.13080
https://doi.org/10.48550/ARXIV.2410.13080
https://doi.org/10.48550/ARXIV.2410.13080
https://doi.org/10.48550/ARXIV.2407.10805
https://doi.org/10.48550/ARXIV.2407.10805
https://doi.org/10.48550/ARXIV.2407.10805
https://doi.org/10.48550/ARXIV.2407.10805
https://doi.org/10.48550/ARXIV.2407.10805
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.18653/v1/2022.findings-emnlp.181
https://doi.org/10.18653/v1/2022.findings-emnlp.181
https://doi.org/10.18653/v1/2022.findings-emnlp.181
https://doi.org/10.18653/v1/2022.findings-emnlp.181
https://doi.org/10.18653/v1/2022.findings-emnlp.181
https://doi.org/10.48550/ARXIV.2405.20139
https://doi.org/10.48550/ARXIV.2405.20139
https://doi.org/10.48550/ARXIV.2405.20139
https://doi.org/10.48550/ARXIV.2405.20139
https://doi.org/10.48550/ARXIV.2405.20139
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.48550/ARXIV.2408.08921
https://doi.org/10.48550/ARXIV.2408.08921
https://doi.org/10.48550/ARXIV.2408.08921
https://arxiv.org/abs/2501.17270
https://arxiv.org/abs/2501.17270
https://arxiv.org/abs/2501.17270
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/da3fde159d754a2555eaa198d2d105b2-Abstract.html
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
gin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen?2 techni-
cal report. CoRR, abs/2407.10671.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321-1331, Beijing, China. Association for
Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206, Berlin,
Germany. Association for Computational Linguis-
tics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2023. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Hamed Zamani and Michael Bendersky. 2024. Stochas-
tic RAG: end-to-end retrieval-augmented generation
through expected utility maximization. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR 2024, Washington DC, USA, July
14-18, 2024, pages 2641-2646. ACM.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5773—
5784, Dublin, Ireland. Association for Computational
Linguistics.

11

A Probability Factorization Analysis

In this section, we first prove the validity of Equa-
tion 3, followed by a discussion on the rationale
behind fact-wise factorization.

The factorization of subgraph probability repre-
sents an approximation of the complex probability
distribution, with an underlying assumption that
the selection of each fact is independent. Consider
a knowledge graph with Ny facts, where each fact
has two possible states (selected or not selected),
resulting in 27/ possible subgraphs. The sum of
probabilities over all possible subgraphs can be
expressed as:

Zp(gsub)

Gsubd

=> II »=) I @ -»(m)

Gsub Ti€Gsub T & Gsub
=SS S T —
1 T2 TNy i=1

(1= p(r)))

S

1=11(r;)e{0,1}

Ny
= H(P(Tz’) +(1
i=1

where the third row follows from the fact that sum-
ming over all subgraphs is equivalent to consid-
ering both possibilities (selected or not selected)
for each fact independently. I(7;) is an indicator
function that equals 1 when fact 7; is included in
the subgraph and 0 otherwise. The final result of 1
validates the probability formulation in Equation 3.

Beyond fact-wise factorization, node-level and
path-wise granularities are also common choices
for probability decomposition. Path-wise granu-
larities, however, face combinatorial complexity
challenges, which explains why direct modeling of
subgraph probability is computationally intractable.
Node-wise granularity, on the other hand, disre-
gards relation information between entities and
fails to handle multi-edge scenarios. These limita-
tions motivate our choice of fact-wise factorization.
To address the potential dependencies between fact
selections that may be overlooked by the indepen-
dence assumption implicit in factorization, we em-
ploy a GNN-based retriever. The inherent capabil-
ity of GNNSs to capture graph structural information

—p(n)) =1,

https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.1145/3626772.3657923
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396

helps mitigate the independence assumption, as the
internal parameters of GNN can effectively encode
the correlations between facts.

B Specific design of GNN-based Retriever

B.1 Module

For the GNN-based retriever, D-RAG adopts
ReaRev (Mavromatis and Karypis, 2022) as the
core architecture, which consists of three primary
modules:

* The Instruction Module employs Sentence-
BERT (Reimers and Gurevych, 2019) as its
Language Model (LM) encoder to transform
queries into instructions;

* The Graph Reasoning Module initializes and
updates node representations through message
passing, considering the relationship between
instructions and nodes;

e The Instruction Update Module refines in-
structions based on the node representations
and predicted terminal node distributions.

In our implementation, the node encoder cor-
responds to the output of the Graph Reasoning
Module, and the relation encoder refers to the LM
encoder and MLP projection components used in
the node initialization process.

B.2 Loss design of GNN-based Retriever

As shown in Equation 11 of the main text, the loss
function L; for training the GNN-based retriever
is formulated as:

DKL (pheur (gsub) |Pﬂ (gsub))
—) logpg(r) = Lace.

TEYGsub

(14)

This can be implemented using PyTorch’s BCE
(Binary Cross Entropy) weighted loss !. Inspired
by the work of (Lin et al., 2024), to address the
sparsity of positive examples in knowledge graph
link classification tasks, we further incorporate a
rank loss:

1 Ny N_
L = - 1 i) — 1))
rank NJFN, ;; OgO’(p(T) p(TJ))

15)

1h'ctps ://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html

12

where N, and N_ denote the number of positive
and negative examples, respectively, 7; represents a
positive example, 7; represents a negative example,
and o (-) is the sigmoid function. This ranking loss
generates larger gradients on sparse samples, effec-
tively complementing the BCE loss and enhancing
the model’s classification capability.

The total loss of the GNN-based retriever is a
weighted combination of these two losses:

Ly = pLpcg + (1 — p) Lrank, (16)

where we empirically set p = 0.7 to balance be-
tween the BCE loss and the ranking loss.

C Prompts

Figure 5 illustrates the full input prompt received
by the LLM-based generator, which consists of
three components: task setting, question, and sub-
graph. The subgraph is shown in typewriter font,
representing the neural fact prompt in D-RAG.

In the subgraph part, each line corresponds to
a distinct fact that will be converted to embed-
ding form before being input to the LLM. The
<S-Embedding> marker at the beginning of each
line represents the structural embedding mentioned
in the proposed approach. The textual content fol-
lowing this marker contains the semantic informa-
tion of each fact. Together, these elements consti-
tute the neural fact prompt that enables the model to
effectively integrate knowledge during generation.

D Datasets

D-RAG evaluates on two benchmark KGQA
datasets: WebQuestionSP (WebQSP) (Yih et al.,
2016) and Complex WebQuestions (CWQ) (Talmor
and Berant, 2018). Following previous works (Luo
et al., 2024a; He et al., 2021), the same train and
test splits are adopted for fair comparison. The
datasets are analyzed from two perspectives: basic
statistics and reasoning complexity.

The overall statistics of both datasets are summa-
rized in Table 3, including the number of samples
in training, validation and test sets.

Table 4 shows the distribution of reasoning
hops required for answering questions, indicat-
ing the logical complexity of questions in each
dataset. The hop counting method analyzes the
path length from topic entities to answer entities
in SPARQL queries. For WebQSP, hop counts
are determined precisely as most questions involve
single topic entities with equal path lengths from

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

Complete Generator Prompt

Answer the question based on the provided facts.
Question: what does jamaican people speak
Provided facts:

location.
location
location.
location.
location.
location.

<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>
<S-Embedding>

Jamaica,
Jamaica,
Jamaica,
Jamaica,
Jamaica,
Jamaica,
Jamaica,
Jamaica,
Grenada,
Bermuda,

Answer:

.

country.official_language, Jamaican English
.country.languages_spoken, Jamaican English
country.languages_spoken, Jamaican Creole English Language
country.currency_used, Jamaican dollar
country.form_of_government, Democracy
country.form_of_government, Parliamentary system
base.locations.countries.continent, North America
location.country.form_of_government, Constitutional monarchy
location.country.official_language, English Language
location.country.official_language, English Language

Belize, location.country.official_language, English Language

Turks and Caicos Islands, location.country.official_language, English Language
Bahamas, location.country.official_language, English Language

Cayman Islands, location.country.official_language, English Language

Puerto Rico, location.country.official_language, English Language

Grenada, location.country.languages_spoken, English Language

Bermuda, location.country.languages_spoken, English Language

Costa Rica, location.country.languages_spoken, Jamaican Creole English Language
, location.country.languages_spoken, English Language

Turks and Caicos Islands, location.country.languages_spoken, English Language

Figure 5: The complete input prompt for the LLM-based generator, incorporating 20 facts.

topic to answer entities. For CWQ, we compute
fuzzy hop counts due to frequent multi-topic scenar-
i0os. When SPARQL queries represent constrained
graphs rather than simple reasoning chains, we
take the maximum path length among all topic-to-
answer paths as the final hop count.

Datasets | #Train #Validate #Test
WebQSP | 2826 246 1,628
CWQ 27,639 3519 3531

Table 3: Statistics of the datasets.

Datasets 1-hop 2-hop 3-hop >4-hop
WebQSP | 62.00% 37.66% 0.17% 0.17%
CWQ 24.66% 64.78% 1.50% 3.06%

Table 4: Statistics of reasoning hop distribution in We-
bQSP and CWQ.

E Baselines

The D-RAG approach is compared with the 15
baselines grouped into three categories: 1) Graph
reasoning methods; 2) LLM reasoning methods;
and 3) Graph-LLM methods. The details of each
baseline are described as follows:

13

Graph Reasoning Methods.

Graftnet (Sun et al., 2018) performs question
answering by propagating features through
a heterogeneous graph that fuses knowledge
bases and text documents.

NSM (He et al., 2021) leverages language
models’ bidirectional reasoning capabilities
for multi-hop question answering.

SR+NSM (Zhang et al., 2022) introduces a
trainable path-wise subgraph retriever that de-
couples retrieval from reasoning.

ReaRev (Mavromatis and Karypis, 2022)
adaptively refines reasoning instructions using
knowledge graph context and executes them
through a BFS-guided neural network.

UniKGQA (Jiang et al., 2023b) unifies re-
trieval and reasoning stages in KGQA through
a shared PLM-based architecture and joint pre-
training strategy.

NuTrea (Choi et al., 2023) utilizes tree search-
based message passing to explore future paths
with RF-IEF node embeddings that capture
global KG context.

LLM Reasoning Methods.

* Llama3-8B (Meta, 2024) performs direct rea-
soning without fact retrieval by leveraging its
pre-trained knowledge.

StructGPT (Jiang et al., 2023a) enhances
LLM reasoning by iteratively collecting ev-
idence from structured data through special-
ized interfaces before performing reasoning
steps.

DECAF (DPR + FiD-large) (Yu et al., 2023)
improves KB question answering by combin-
ing logical form generation with direct an-
swer prediction, while simplifying the process
through text-based retrieval.

* ToG (GPT4) (Sun et al., 2024) enables LLMs
to perform traceable reasoning by iteratively
exploring knowledge graphs through beam
search.

RoG (joint) (Luo et al., 2024a) enhances
LLM reasoning by leveraging KG structure to
generate faithful reasoning chains through a
planning-retrieval-reasoning framework.

Graph-LLM Methods.

* G-Retriever (He et al., 2024) enables conversa-
tional graph interaction by combining GNNSs,
LLMs, and RAG through Prize-Collecting
Steiner Tree optimization.

EtD (ChatGPT) (Liu et al., 2024a) combines
GNNs for efficient knowledge exploration
with frozen LLMs for final answer determina-
tion, creating a resource-efficient framework

for KGQA.

GNN-RAG (Mavromatis and Karypis, 2024)
combines GNNs for subgraph reasoning and
path extraction with LLMs for natural lan-
guage understanding in a RAG framework.

SubgraphRAG (Llama3.1-8B) (Li et al., 2025)
enhances KG-based RAG by implementing
efficient subgraph retrieval with flexible size
control and directional structural encoding.

F Discussion on Evaluation Metrics

The evaluation procedure varies across different
methods. While node prediction and graph query
approaches produce direct answers requiring no

14

additional processing, LLM-based methods often
generate responses containing multiple predicted
answers. This characteristic of LLMs explains
why many recent works (Mavromatis and Karypis,
2024; Li et al., 2025; Luo et al., 2024b) prefer the
term Hit over Hits@1, as the evaluation focuses
on the presence of correct answers within the com-
plete generated response rather than strictly the first
answer.

It is important to note that the above discussion
pertains to the overall performance of KGQA sys-
tems in terms of answer generation. Throughout
this paper, we also report retrieval performance
using F1, recall, and precision metrics. These re-
trieval metrics are calculated by comparing the
facts in the retrieved subgraph with those in the
heuristic subgraph, which serves as a reference
standard. A key consideration is that KGQA bench-
marks do not provide ground truth subgraph anno-
tations. The heuristic subgraphs are constructed
by parsing SPARQL queries associated with each
question, detailed in Appendix G. This parsing en-
sures that the heuristic subgraphs fully align with
the multi-hop reasoning required by the questions,
making them relatively reliable reference standards
for evaluating retrieval performance.

G Implementation Details

Preprocessing. Consistent with prior
work (Mavromatis and Karypis, 2022; Luo
et al., 2024a), we assume that the entities men-
tioned in the questions (referred to as topic entities)
have already been linked to the knowledge graph
through entity linking (Yih et al., 2015). After
identifying entities in the questions, we construct
a heuristic subgraph for each question by parsing
the SPARQL query. For each SPARQL query, we
focus on the logic chain from the topic entity to the
answer entity, identifying paths that connect the
topic entity to the answer through specific logical
chains. All facts along these paths collectively
form the heuristic subgraph used in the proposed
approach.

Inference. During inference, we employ a hy-
brid strategy that first selects the top-k facts with
highest selection probabilities, then filters out facts
below a probability threshold to remove irrelevant
information. For both WebQSP and CWQ datasets,
we set k£ = 100 (due to context length constraints)
and use a probability threshold of 0.01, which is
determined through grid search on the WebQSP

validation set.

Optimization and Hyperparameters. We train
separate models for CWQ and WebQSP datasets.
The training process follows a two-stage approach:
GNN pre-training followed by joint training. Dur-
ing the first training phase (retriever pre-training),
we train the model for 10 epochs. In the sec-
ond training phase (joint training), we train for
18 epochs.

For model optimization, we apply different
strategies to the GNN and LLM components. The
GNN undergoes full parameter fine-tuning with
a learning rate of Se-5, while the LLM is fine-
tuned using LoRA with a learning rate of 1e-5. The
LoRA hyperparameters are configured as: lora_r=8§,
lora_alpha=16, and dropout=0.05, specifically tar-
geting the q_proj and v_proj modules. We em-
ploy the AdamW optimizer with a weight decay of
0.001, a batch size of 16, and a cosine learning rate
scheduler.

Regarding the hyperparameters in our formu-
lations, we set the Gumbel-Softmax temperature
coefficient to 0.5 and the loss balancing parame-
ter A to 0.9. All experiments are conducted on 2
NVIDIA A800-80GB GPUs.

H Details of Ablation Study

As mentioned in Section 4.4, we initially pre-train
the retriever using heuristic subgraph labels to pre-
vent it from retrieving completely irrelevant sub-
graphs. All training method variants describes be-
low, including our proposed D-RAG, are trained
based on this pre-trained retriever. Here we elabo-
rate on the four training method variants:

1. REINFORCE: We implements the REIN-
FORCE algorithm with variance reduction
techniques to jointly optimize both the re-
triever and the generator. Two reward func-
tions are considered: (i) the negative of the
generator’s answer loss, and (ii) the recall of
retrieved subgraphs compared to heuristic sub-
graphs. As we observes no significant differ-
ence between these reward formulations, the
results reported in the main paper correspond
to the recall reward.

2. Dynamic Cascade: In this approach, both
modules are trained simultaneously with the
generator using real-time outputs from the
retriever during training. However, gradient

15

backpropagation from the generator to the re-
triever is blocked, meaning the retriever is
only optimized using heuristic subgraph la-
bels.

Static Cascade: The generator is optimized us-
ing outputs from the initial fixed retriever (af-
ter pre-training). The retriever remains frozen
throughout this process and is trained only
with heuristic subgraph labels.

Isolation: The generator is trained using
heuristic subgraphs as input, completely de-
coupling the two modules. Both the retriever
and the generator are essentially trained inde-
pendently.

Table 5 summarizes the key differences between
these training methods. The key distinction be-
tween D-RAG and the REINFORCE variant lies
in the granularity of supervision: D-RAG employs
fine-grained supervision through direct end-to-end
gradient-based optimization, allowing it to analyze
the influence of each individual fact on answer gen-
eration, while REINFORCE uses policy gradient
methods that provide only coarse-grained, holistic
supervision regarding the quality of the retrieved
subgraph information.

I Additional Expreiment Results

I.1 Performance Comparison Under Different
Situation

In this section, we provide a detailed analysis of
the performance results presented in Table 6, which
compares our proposed D-RAG method against
several baseline training methods as described in
Section 5.3.

From Table 6, we can draw three important ob-
servations:

1) D-RAG’s Comprehensive Effectiveness: D-
RAG consistently outperforms alternative training
methods across almost all metrics and complexity
levels. This superiority extends to both genera-
tion metrics (Hits@1 and F1) and retrieval metrics
(Recall and Precision), demonstrating the holistic
effectiveness of the proposed approach.

2) Recall Necessity but Insufficiency: High
recall is necessary but not sufficient for strong gen-
eration performance. or 3-hop questions, the differ-
ence in recall between D-RAG and Dynamic Cas-
cade is 6.9 percentage points (89.8% vs. 82.9%),
yet the gap in generation F1 is significantly larger

Training Method Retriever Supervision

Generator Input

D-RAG
REINFORCE
Dynamic Cascade
Static Cascade
Isolation

Retrieval label
Retrieval label
Retrieval label

Retrieval label + Answer label
Retrieval label + Reward label

Real-time retriever output
Real-time retriever output
Real-time retriever output
Fixed pre-trained retriever output
Heuristic subgraph

X X X NN

Table 5: Comparison of different training methods highlighting differences in retriever supervision signals, generator
inputs, and whether gradients flow from generator to retriever (G — R) during joint training.

Generation Hits@1

Generation F1

Training Method

1-hop 2-hop 3-hop 4-hop 1-hop 2-hop 3-hop 4-hop
D-RAG 744 813 798 580 69.0 762 745 55.6
REINFORCE 63.7 734 659 457 596 674 594 457
Dynamic Cascade 66.1 74.0 659 395 624 678 59.2 395
Static Cascade 644 T71.1 643 432 604 649 579 427

Retrieval Recall

Retrieval Precision

Training Method

1-hop 2-hop 3-hop 4-hop 1-hop 2-hop 3-hop 4-hop
D-RAG 926 955 898 91.2 6.9 202 231 139
REINFORCE 89.1 90.7 8.1 80.7 4.0 9.0 13.0 14.1
Dynamic Cascade 894 91.6 829 825 4.3 109 147 151
Static Cascade 86.7 855 781 787 39 9.2 13.6 14.1

Table 6: Performance comparison of D-RAG against different training methods on the CWQ dataset. Results
show both overall performance (Hits@1 and F1) and retrieval performance (Recall and Precision) across different

complexity levels (1-4 hops).

at 15.3% (74.5% vs. 59.2%). This suggests that
retrieval precision and effective utilization of re-
trieved documents also play crucial roles in genera-
tion quality.

3) Widening Retrieval-Generation Gap: As
question complexity increases, the gap between
retrieval performance and generation performance
widens. For 4-hop questions, despite D-RAG main-
taining high recall (91.2%), its generation Hits@1
drops to 58.0% - a gap of 33.2%. In comparison, for
1-hop questions, this gap is much smaller (92.6%
recall vs. 74.4% Hits@1, a difference of 18.2%).

L2 Detail Analysis

Due to computational constraints, all experiments
in this detail analysis were conducted with joint
training limited to 8 epochs, whereas the main
experimental results reported in previous sections
used 18 training epochs. This difference in training
duration may account for some performance dis-
crepancies between these detailed analyses and our
primary results.

16

0.80

0.78

0.76

i\./E——’Fi

F1

0.74

0.72

0.70

0.1 0.3 0.5

A

0.7 0.9

Figure 6: Impact of loss balancing hyperparameter A
on overall performance for WebQSP Dataset. The plot
shows the overall F1 scores (y-axis) achieved with dif-
ferent values of A (x-axis) in the joint loss function 13.
Error bars represent standard deviations across three
experimental runs.

Robustness to Loss Balancing Hyperparameter.
Figure 6 examines the effect of the loss balanc-
ing hyperparameter A on the overall performance,
where A controls the weighting between retriever
and generator losses as defined in Equation 13.

The experimental results demonstrate remark-
able stability across the entire range of A values

G — R gradient

(0.1 to 0.9). This consistent performance indicates
that the system is largely insensitive to the specific
weighting between retriever and generator compo-
nents. This robustness can be primarily attributed
to the gradient normalization mechanism employed
in our loss formulation, which effectively prevents
either component from dominating the optimiza-
tion process regardless of the A value. Future work
could explore more sophisticated gradient balanc-
ing techniques such as GradNorm (Chen et al.,
2018), which builds upon gradient normalization
by introducing adaptive weighting strategies that
automatically adjust task weights during training
based on learning dynamics.

Training Method
Fact Order D-RAG Dynamic Cascade
ascent 76.11 +0.09 75.04 £ 0.38
descent 76.33 £0.22 74.94 £+ 0.10
random 76.66 + 0.34 73.77 £0.77

Table 7: The F1 scores across different fact ordering
strategies and training methods. The table compares the
performance (F1 score + standard deviation) of D-RAG
and Dynamic Cascade training methods under three fact
ordering strategies.

Impact of Fact Ordering on Overall Perfor-
mance. Since the order of input facts can influ-
ence LLM generation (Liu et al., 2024b), we com-
pare three ordering strategies: 1) Ascent: Facts are
arranged in ascending order of selection probabili-
ties; 2) Descent: The reverse of ascent, with facts
ordered from high to low probabilities; 3) Random:
Facts are shuffled randomly during both training
and inference.

Table 7 evaluates the influence of fact order-
ing on overall performance for both D-RAG and
Dynamic Cascade in Section 5.3. The results re-
veal two key findings. First, D-RAG demonstrates
remarkable robustness across all ordering strate-
gies. This stability suggests that D-RAG effectively
learns to process fact sequences regardless of their
presentation order, an advantageous property for
real-world applications where optimal fact ordering
may not be predetermined or existed.

In contrast, the Dynamic Cascade method shows
greater sensitivity to fact ordering, with perfor-
mance declining noticeably under random ordering
(73.77%) compared to more structured approaches
(ascent: 75.04%, descent: 74.94%). This indicates
that consistent, deterministic ordering strategies

17

Training Method | Time (minutes)
D-RAG 74.43 £ 0.43
Dynamic Cascade | 68.92 £ 1.28
Static Cascade 69.66 + 0.42

Table 8: Training time per epoch on CWQ with 5,000
random samples. Time variations () indicate the stan-
dard deviation across multiple epochs.

generally outperform random fact arrangements.

I.3 Training Efficiency Analysis

Table 8 presents the training time per epoch for dif-
ferent training methods on the CWQ dataset using
5,000 random samples.

D-RAG shows a modest increase in training time
compared to others, requiring 8.0% more time than
Dynamic Cascade and 6.9% more than Static Cas-
cade. This additional overhead primarily comes
from computing gradient norms during loss calcu-
lation and the extra backpropagation computations
required for end-to-end training.

Interestingly, Dynamic Cascade achieves faster
training times than Static Cascade despite the ad-
ditional computation needed for retriever updates.
As shown in Figure 3, Dynamic Cascade retrieves
fewer facts than Static Cascade, suggesting that the
computational benefits from retrieving fewer facts
outweigh the cost of training the retriever.

Similarly, the relatively small time difference
between D-RAG and the cascade variants can be
largely attributed to D-RAG’s ability to retrieve
fewer and more relevant facts as training progresses
(as shown in Figure 3).

L4 Case Study

To illustrate the advantages of D-RAG, we select
representative examples from both WebQSP and
CWQ datasets, covering a range of reasoning com-
plexity (1-hop to 3-hop) and answer cardinality
(single and multiple answers). Table 9 and 10
present these case studies with visualizations of the
retrieved subgraphs and generated answers across
different training methods.

The retrieved subgraphs in different cases reveal
D-RAG’s superior retrieval characteristics com-
pared to other methods. D-RAG consistently pro-
duces more focused subgraphs with significantly
reduced noise and maintains high recall of relevant
facts. This selective retrieval aligns with our goal
of providing LLMs with concise yet comprehen-
sive information, as excessive irrelevant facts can

distract the generation process and insufficient cov-
erage may miss critical reasoning chains. In the
WebQSP example "who inspired Obama" (Table 9,
1-hop), we observe that Static Cascade retrieves a
sparse and incomplete subgraph leading to an in-
correct answer, D-RAG successfully identifies and
preserves all three correct answers with minimal
extraneous facts.

The 3-hop example from CWQ—"What county
is the city that includes the Houston City
Council as a part of their government located
in?"—particularly highlights D-RAG’s effective-
ness in complex reasoning scenarios. This ques-
tion requires following a challenging reasoning
chain: Houston City Council <- governmental
body <- governing officials -> county ->
Montgomery County. Static Cascade fails to re-
trieve the complete reasoning chain, resulting in
an incorrect answer ("Texas"), and Dynamic Cas-
cade suffers from excessive noise that impedes
identifying the correct reasoning chain. In con-
trast, D-RAG effectively prunes irrelevant facts
and preserving the critical reasoning chains, en-
abling the generator to correctly identify "Mont-
gomery County". These cases empirically validate
the proposed approach, demonstrating how end-to-
end optimization produces cleaner, more focused
subgraphs that contain essential reasoning chains
and minimize noise. Based on these high-quality
subgraphs, the KGQA system generates accurate
answers, underscoring the practical benefits of D-
RAG in real-world knowledge-based question an-
swering scenarios.

18

1-hop Example

2-hop Example

Question

who inspired obama

what did stephen hawking study

True
Answers

Reinhold Niebuhr | Nipsey Russell |
Saul Alinsky

Physics

Heuristic
Subgraph
from
SPARQL

Static
Cascade
(Subgraph)

Static
Cascade
(Answers)

Martin Luther King Jr.

/

o

Astrophysicist | Cosmologistl
Physicist...

Dynamic
Cascade
(Subgraph)

Dynamic
Cascade
(Answers)

Saul Alinsky

@‘

Cosmologist | Physicist |
Astrophysicist...

D-RAG
(Subgraph)

D-RAG
(Answers)

Reinhold Niebuhr | Nipsey Russell |
Saul Alinsky

Physics

Table 9: Case studies on WebQSP dataset. Comparison of retrieved subgraphs and generated answers across
different methods on 1-hop and 2-hop questions. Blue nodes represent question entities, red nodes represent answer
entities, and yellow nodes are intermediate entities.

19

2-hop Example

3-hop Example

What languiages are spoken by What county is the city that includes
Question residents of the Central Western the Houston City Council as a part
Time Zone? of their government located in?
True Esperanto Language | Lojban |
Answers English Language Montgomery County
Heuristic _ . o
Subgraph - <. — ~®
from T @ ol —
SPARQL ® -
Static / -
Cascade <
(Subgraph) S /
Static
Cascade English Language Texas
(Answers)
Dynamic .\ N /@"
Cascade i
(Subgraph) E S @\\//
Dynamic
Cascade English Language Harris County
(Answers)
D-RAG / P < e
(Subgraph) —
e ©
D-RAG Esperanto Language | Lojban |
(Answers) English Language Montgomery County

Table 10: Case studies on CWQ dataset. Comparison of retrieved subgraphs and generated answers across different
methods on 2-hop and 3-hop questions. Blue nodes represent question entities, red nodes represent answer entities,
and yellow nodes are intermediate entities.

20

	Introduction
	Related Works
	Knowledge Graph Question Answering
	End-to-End Training in RAG

	Preliminary
	The Proposed D-RAG Approach
	GNN-based Retriever
	LLM-based Generator
	Differentiable Subgraph Sampling and Prompting
	Differentiable Formulation
	Differentiable Subgraph Sampling
	Differentiable Prompt Construction

	Training Strategy and Inference

	Experiments
	Experiment Settings
	Main Results
	Ablation Study
	Relationship Between Retrieval and Generation Performance

	Probability Factorization Analysis
	Specific design of GNN-based Retriever
	Module
	Loss design of GNN-based Retriever

	Prompts
	Datasets
	Baselines
	Discussion on Evaluation Metrics
	Implementation Details
	Details of Ablation Study
	Additional Expreiment Results
	Performance Comparison Under Different Situation
	Detail Analysis
	Training Efficiency Analysis
	Case Study

