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Abstract

Knowledge Graph Question Answering001
(KGQA) aims to answer natural language002
questions based on knowledge graphs. Recent003
approaches apply the Retrieval-Augmented004
Generation (RAG) paradigm to incorporate005
Large Language Models (LLMs) to this task,006
where a retriever selects a question-related007
subgraph and an LLM-based generator is008
then adopted to predict answers based on the009
retrieved subgraph. However, the subgraph010
selection process is non-differentiable, pre-011
venting end-to-end training of the retriever012
and the generator, which leads to sub-optimal013
performance. To overcome this limitation,014
this paper proposes a Differentiable RAG015
(D-RAG) approach that jointly optimizes the016
retriever and the generator for KGQA. Via017
reformulating the optimization objective as018
an expectation over a subgraph distribution019
with respect to answer generation likelihood,020
D-RAG makes the joint optimization fea-021
sible. Specifically, it implements this joint022
optimization through a differentiable subgraph023
sampling and prompting module that integrates024
Gumbel-Softmax reparameterization for025
sampling and a neural prompt construction026
process that fuses semantic and structural infor-027
mation. Experimental results on WebQSP and028
CWQ demonstrate that D-RAG outperforms029
state-of-the-art approaches.030

1 Introduction031

Knowledge Graph Question Answering (KGQA)032

aims to automatically answer natural language033

questions via well-structured facts stored in Knowl-034

edge Graphs (KGs). It is an essential task in035

Natural Language Processing (NLP) and is vi-036

tal in various applications such as information037

retrieval and intelligent assistance (Potdar et al.,038

2025; Liang et al., 2024). However, KGQA poses039

challenges to existing approaches, as it requires a040

deep understanding of natural language questions041
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Figure 1: Comparison between the current RAG-based
KGQA approaches and the proposed D-RAG approach.
The red arrows highlight the end-to-end gradient flow.

and the ability to perform complex reasoning over 042

KGs. Considering that Large Language Models 043

(LLMs) (DeepSeek, 2025; OpenAI, 2024b; Meta, 044

2024) have shown strong capabilities in natural lan- 045

guage understanding and reasoning, some recent 046

approaches (Peng et al., 2024; Luo et al., 2024a; 047

He et al., 2024) incorporate LLMs into KGQA 048

via the Retrieval-Augmented Generation (RAG) 049

paradigm (Lewis et al., 2020). Specifically, they 050

adopt a retriever to select a question-relevant sub- 051

graph from the KG. Then, they serialize the sub- 052

graph into the prompt and adopt LLMs as the gen- 053

erator to reason for answers. 054

Despite the promising performance of these 055

RAG-based KGQA approaches, significant chal- 056

lenges remain in optimizing both the retriever and 057

the generator. As illustrated in Figure 1, current 058

approaches (Luo et al., 2024a; Mavromatis and 059

Karypis, 2024) typically adopt a sequential opti- 060

mization paradigm, where the retriever is trained us- 061

ing heuristic supervision signals, and the generator 062

is subsequently optimized with the retriever frozen. 063

This sequential optimization leads to sub-optimal 064

performance for the complete system. Specifically, 065

the generator’s semantic understanding capabilities 066
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cannot guide the retriever, while the retriever can-067

not effectively communicate structural knowledge068

in a way the generator can optimally utilize.069

To address above limitations, we propose the070

Differentiable Retrieval-Augmented Generation071

(D-RAG) for KGQA. First, we reformulate the072

optimization objective as a tractable expectation073

over a subgraph distribution with respect to an-074

swer generation likelihood, making the joint opti-075

mization tractable. Second, we develop a differ-076

entiable subgraph sampling and prompting mod-077

ule that achieves end-to-end training. In the078

subgraph sampling step, D-RAG transforms dis-079

crete subgraph selection into differentiable fact-080

level sampling using the Gumbel-Softmax repa-081

rameterization trick (Jang et al., 2017; Maddison082

et al., 2017). In the prompt construction step, D-083

RAG converts the sampled subgraph into LLM-084

compatible prompts that fuse both semantic and085

structural information while maintaining gradient086

flow throughout the entire pipeline. This end-to-087

end optimization creates a synergistic relationship088

where the generator’s semantic understanding in-089

forms retrieval quality, and the retriever provides090

structurally meaningful information that enhances091

the generator’s reasoning capabilities.092

Experimental results on WebQSP and CWQ093

show that D-RAG outperforms the state-of-the-art094

approaches by 2.5% and 1.8% on Hits@1, and095

by 3.4% and 4.4% on the F1 scores, respectively.096

These improvements stem from the end-to-end op-097

timization strategy, which effectively reduces re-098

trieval noise and enhances answer generation qual-099

ity.100

The main contributions of this work are as fol-101

lows:102

• We propose D-RAG, the first differentiable103

RAG-based KGQA approach, to the best of104

our knowledge, that enables end-to-end opti-105

mization with gradient flow from the genera-106

tor to the retriever.107

• We reformulate the optimization objective as108

a tractable expectation over subgraph distri-109

butions and develop a differentiable subgraph110

sampling and prompting module. This mod-111

ule combines Gumbel-Softmax reparameter-112

ization for differentiable sampling with neu-113

ral prompt construction that integrates both114

semantic and structural information, estab-115

lishing an effective end-to-end optimization116

framework for KGQA.117

• Comprehensive experiments on two widely 118

used benchmark datasets, i.e., WebQSP and 119

CWQ, demonstrate that D-RAG outperforms 120

state-of-the-art performance, validating the 121

effectiveness of the proposed approach. 122

2 Related Works 123

2.1 Knowledge Graph Question Answering 124

KGQA approaches can be broadly categorized into 125

Semantic Parsing-based (SP-based) and Informa- 126

tion Retrieval-based (IR-based) ones (Lan et al., 127

2023). While SP-based methods parse questions 128

into formal queries for execution, IR-based meth- 129

ods retrieve relevant subgraphs for answer ranking 130

or generation. D-RAG falls into the latter category. 131

Traditional IR-based approaches typically learn 132

entity and relation representations for answer rank- 133

ing using network architectures such as graph neu- 134

ral networks (Sun et al., 2018; He et al., 2021; 135

Zhang et al., 2022), which we categorize as Graph 136

Reasoning methods. The emergence of LLMs has 137

led to RAG-based approaches that leverage LLMs’ 138

powerful reasoning capabilities for answer genera- 139

tion. These RAG-based approaches can be divided 140

into two groups: LLM Reasoning methods that pri- 141

marily rely on LLMs for both subgraph retrieval 142

and answer generation (Luo et al., 2024a; Jiang 143

et al., 2023a; Sun et al., 2024; Ma et al., 2024; 144

Luo et al., 2024b), and Graph-LLM approaches 145

that address LLMs’ limitations in processing graph- 146

structured data (Guo et al., 2023; Guan et al., 2025) 147

by incorporating graph-specific techniques during 148

retrieval while using LLMs for reasoning (He et al., 149

2024; Li et al., 2025; Mavromatis and Karypis, 150

2024; Liu et al., 2024a). 151

Despite the promise of these RAG-based ap- 152

proaches, a critical limitation is their lack of end-to- 153

end training capabilities. While SR (Zhang et al., 154

2022) achieves end-to-end KGQA by construct- 155

ing tree-structured subgraphs from multi-hop paths, 156

their posterior approximation requires computing 157

answer generation probability for each top-k path 158

independently, which would incur prohibitive com- 159

putational costs when LLMs serve as the generator. 160

2.2 End-to-End Training in RAG 161

Most RAG systems follow a pipeline 162

paradigm (Gao et al., 2023), where separate 163

modules for retrieval, prompting, and generation 164

are optimized separately. Several works have 165

explored end-to-end trainable approaches for text 166
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retrieval, including REALM (Guu et al., 2020),167

EMDR2 (Sachan et al., 2021), VOD (Liévin168

et al., 2023), and StochasticRAG (Zamani and169

Bendersky, 2024). However, these text-centric170

methods cannot be directly applied to KGQA due171

to the structured nature of graph data and the need172

for specialized graph retrieval mechanisms.173

StochasticRAG (Zamani and Bendersky, 2024)174

is the most similar one to the proposed approach, as175

both methods leverage Gumbel tricks for discrete176

sampling, whether for documents or subgraphs.177

However, D-RAG differs in two key aspects: (1)178

StochasticRAG retrieves a fixed number of docu-179

ments, which is not suitable for KGQA. In contrast,180

our approach transforms subgraph sampling into181

independent sampling of facts, allowing for flexible182

subgraph sizes; (2) Unlike documents that can be183

directly fed to LLMs, we employ a differentiable184

prompting step to bridge the gap between graph185

structures and LLM reasoning.186

3 Preliminary187

Knowledge Graph Question Answering. In this188

paper, the knowledge graph is composed of multi-189

ple facts, where each fact τ = (h, r, t) represents190

a triple consisting of a head entity h, a relation r,191

and a tail entity t. Formally, the KG can be repre-192

sented as G = {(h, r, t)|h, t ∈ E , r ∈ R}, where193

E denotes the set of all entities and R represents194

the set of all relation types, with each entity and195

relation type typically corresponding to a natural196

language form. Given a knowledge graph G, the197

KGQA task takes a natural language question q198

as input and outputs an answer a corresponding199

to one or more entities in G. The ultimate goal is200

to maximize the likelihood of the correct answer,201

which can be formulated as E(q, a) [log p(a|q,G)] .202

RAG-based KGQA. The RAG paradigm for203

KGQA involves two independent modules: a re-204

triever Rβ that identifies the question-relevant sub-205

graph gsub with probability pβ(gsub|G, q), and a206

generator Gγ that generates the answer a with prob-207

ability pγ(a|gsub, q). β and γ denote the parame-208

ters of the retriever and the generator, respectively.209

The overall answer generation probability can210

be formulated as:211

pθ(a|q,G) =
∑

gsub⊆G
pγ(a|q, gsub)pβ(gsub|q,G),

(1)212

where θ denotes all parameters in the above two213

modules.214

4 The Proposed D-RAG Approach 215

This section presents Differentiable Retrieval- 216

Augmented-Generation (D-RAG), as illustrated in 217

Figure 2. Our approach integrates a graph neural 218

network (GNN)-based retriever and an LLM-based 219

generator through a differentiable subgraph sam- 220

pling and prompting module, enabling end-to-end 221

training. Below, we detail these modules and the 222

training strategy. 223

4.1 GNN-based Retriever 224

The GNN-based retriever encodes the knowledge 225

graph to identify question-relevant facts. Given a 226

question and a knowledge graph, it outputs fact 227

representations that serve multiple purposes in D- 228

RAG. 229

Fact Representation. For each fact τi in the 230

knowledge graph, we construct a representation 231

by concatenating its constituent elements: 232

Fi = [hi ∥ ri ∥ ti] ∈ RDGNN , (2) 233

where hi, ri, and ti are representations of the head 234

entity, relation, and tail entity, respectively, derived 235

from a GNN module based on ReaRev (Mavroma- 236

tis and Karypis, 2022). 237

From these fact representations, we compute the 238

selection probability for each fact using a linear 239

layer followed by a sigmoid function: p(τi) = 240

σ(WFi + b), where W and b are learnable pa- 241

rameters. 242

Subgraph Selection Probability Factorization. 243

For subgraph sampling, computing the exact prob- 244

ability of a specific subgraph is combinatorially 245

complex. Therefore, we employ a factorization 246

approach that decomposes the subgraph selection 247

probability into independent binary selectionss for 248

each fact: 249

p(gsub) =
∏

τi∈gsub

p(τi)
∏

τj /∈gsub

(1− p(τj)). (3) 250

Detailed derivations of this factorization and 251

specifications of the GNN architecture are provided 252

in Appendix A and B, respectively. 253

4.2 LLM-based Generator 254

The LLM-based generator predicts answers to ques- 255

tions based on the information contained in the re- 256

trieved subgraph. It processes the input through 257
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Figure 2: The proposed D-RAG consists of four steps: 1) The GNN-based retriever processes the knowledge
graph to obtain fact representations; 2) The differentiable subgraph assigns selection probabilities to facts and
uses Gumbel-Softmax reparameterization trick to sample a subgraph; 3) The differentiable prompt construction
transforms the sampled subgraph into a neural fact prompt that combines semantic and structural information; 4)
The LLM-based generator predicts the final answer.

autoregressive decoding to generate answers:258

pγ(a|gsub, q) =
La∏
i=1

pγ(ai|a<i, gsub, q), (4)259

where La is the token length of the ground-truth260

answer.261

The generator receives input comprising three262

components as shown in Figure 2: the task setting,263

the question, and the neural fact prompt derived264

from the retrieved subgraph. These are combined265

in a structured template:266

Answer the question based267

on the provided facts.268

Question: <question>269

Provided facts: <fact1><fact2> ...270

Answer:271

Answers are formatted as a bar-separated list:272

<Ans1>|<Ans2>|...|<AnsN>. Complete prompt273

examples are provided in Appendix C.274

4.3 Differentiable Subgraph Sampling and275

Prompting276

D-RAG constructs differentiable bridges across the277

retriever-generator interface through two designs:278

(1) reformulating the optimization objective into279

a tractable form, and (2) implementing differen-280

tiable operations for both subgraph sampling and281

prompt construction. This end-to-end approach en-282

ables joint optimization where the retriever learns283

to identify graph patterns that enhance the genera-284

tor’s reasoning capabilities.285

4.3.1 Differentiable Formulation286

The optimization objective of maximizing Equa-287

tion 1 involves a summation with combinatorial288

complexity, making it generally intractable. We ad- 289

dress this by optimizing its evidence lower bound 290

(ELBO) (Hoffman et al., 2013), formulated as: 291

log pθ(a|q,G) = Egsub∼r

[
log

pθ(a, gsub|q,G)
r(gsub)

]
+ DKL(r(gsub) || pθ(gsub|a, q,G))

≥ Egsub∼r

[
log

pθ(a, gsub|q,G)
r(gsub)

]
,

(5) 292

where r(gsub) represents the variational distribu- 293

tion of the subgraph, and the inequality holds 294

because the Kullback-Leibler divergence is non- 295

negative. By specifying the variational distribution 296

r(gsub) as the retriever’s distribution pβ(gsub|q,G), 297

the ELBO simplifies to: 298

log pθ(a|q,G) ≥ Egsub∼pβ

[
log

pθ(a, gsub|q,G)
pβ(gsub|q,G)

]
= Egsub∼pβ

[
log

pγ(a|gsub, q)pβ(gsub|q,G)
pβ(gsub|q,G)

]
= Egsub∼pβ [log pγ(a|gsub, q)] ,

(6) 299

where pβ is modeled by the GNN-based retriever 300

and pγ by the LLM-based generator. This formu- 301

lation transforms the original combinatorial objec- 302

tive into a tractable expectation over subgraph dis- 303

tributions. To optimize this expectation through 304

gradient-based methods, two critical challenges 305

need to be addressed: (1) implementing differen- 306

tiable operations for discrete subgraph sampling 307

from distribution pβ , and (2) constructing differen- 308

tiable prompts that allow gradients to flow through 309

the generator pγ . 310

4.3.2 Differentiable Subgraph Sampling 311

Sampling a subgraph results a selection matrix 312

Z = [z1; z2; . . . ; zNf
] ∈ {0, 1}Nf×2, where Nf 313
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is the total number of facts in the knowledge graph314

and each row zi indicates whether the i-th fact is se-315

lected ([1, 0]) or not ([0, 1]). Given Z, the sampled316

subgraph is represented as gsub = {τi|zi = [1, 0]}.317

To make this subgraph sampling process dif-318

ferentiable, we adopt the Gumbel-Softmax repa-319

rameterization trick (Jang et al., 2017; Maddison320

et al., 2017). For each fact τi, the retriever outputs321

a Bernoulli parameter pi = pβ(τi), representing322

its selection probability. We apply the Gumbel-323

Softmax trick:324

zsoft
i = softmax

(
(log pi + ηi1) / t

(log(1− pi) + ηi2) / t

)T

,

(7)325

where ηi1, ηi2 are independent Gumbel(0,1) noise326

samples and t is the temperature coefficient.327

The final binary selection indicator zi is obtained328

through:329

zi = onehot(argmax(zsoft
i )) + zsoft

i − SG(zsoft
i ),

(8)330

where SG denotes the stop-gradient operation. This331

formulation combines discrete selection in the for-332

ward pass with differentiability in the backward333

pass.334

With this reparameterization, our training objec-335

tive becomes:336

Eη∼p(η) [log pγ(a|gsub, q)] , (9)337

which transforms the expectation from a complex338

parameterized distribution to sampling from a fixed339

distribution, enabling gradient flow through the340

discrete sampling process.341

4.3.3 Differentiable Prompt Construction342

After sampling the subgraph, we transform it into343

a neural prompt that preserves both semantic and344

structural information while maintaining end-to-345

end differentiability.346

For semantic information, each fact is converted347

into natural language using the template <head348

name>, <relation name>, <tail name> and349

then tokenized and encoded into embeddings Vi ∈350

RLi×DLLM , where Li is the token length and DLLM351

is the LLM embedding dimension. We multiply352

each embedding Vi by the corresponding selection353

indicator zi1 from matrix Z, effectively retaining354

only the embeddings of selected facts.355

For structural information, we utilize the fact rep-356

resentations F = [F1;F2; . . . ;FNf
] ∈ RNf×DGNN357

learned by the GNN retriever (defined in Equa-358

tion 2). These representations capture each fact’s359

position and relevance within the knowledge graph. 360

A two-layer MLP projects these representations 361

to align with the LLM embedding space: F′ = 362

Projector(F) ∈ RNf×DLLM . Similarly, we select 363

only the structural embeddings F′
i corresponding 364

to facts where zi1 = 1. 365

For each selected fact τi, we concatenate its se- 366

mantic embedding Vi with its structural embed- 367

ding F′
i to form an enriched representation. These 368

combined embeddings are then concatenated to 369

create the complete neural fact prompt VF for the 370

LLM-based generator. 371

Our approach enables gradient flow from the 372

LLM loss L back to the retriever parameters β 373

through dual pathways: 374

∂L

∂β
=

∂L

∂VF

∂VF

∂Z

∂Z

∂β︸ ︷︷ ︸
Semantic pathway

+
∂L

∂VF

∂VF

∂F′
∂F′

∂β︸ ︷︷ ︸
Structural pathway

, (10) 375

where the first term represents gradient flow 376

through the discrete selection process, and the sec- 377

ond term captures flow through the fact representa- 378

tions. 379

For multi-hop reasoning, facts are arranged by 380

their selection probabilities, helping preserve poten- 381

tial logical sequences within the sampled subgraph. 382

4.4 Training Strategy and Inference 383

With the differentiable subgraph sampling and 384

prompting module proposed above, D-RAG sup- 385

ports end-to-end training. To accelerate conver- 386

gence, we adopt a two-phase training strategy. 387

In the first phase, the GNN-based retriever is pre- 388

trained using heuristically constructed subgraphs 389

as guidance: 390

L1 = DKL(pheur(gsub) || pβ(gsub)), (11) 391

where pheur represents the heuristic subgraph dis- 392

tribution (typically in one-hot form), and pβ is the 393

retriever’s predicted distribution. 394

In the second phase, the retriever and generator 395

are trained jointly with the generation loss: 396

L2 = −Eη∼p(η) [log pγ(a|VF, q)] , (12) 397

where VF is the neural fact prompt constructed 398

from the sampled subgraph gsub as described in the 399

previous section. Importantly, VF depends on both 400

the Gumbel noise η and the retriever parameters β. 401

To balance the significantly different gradient 402

magnitudes between the retriever pre-training and 403
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generation objectives, we apply a direct gradient404

normalization approach:405

Ljoint = λ
L1

||∇βL1||
+ (1− λ)

L2

||∇βL2||
, (13)406

where λ is a balancing hyperparameter and407

||∇βLi|| represents the norm of gradients with re-408

spect to the retriever parameters.409

During inference, we employ a hybrid strategy410

that first selects the top-k facts with highest se-411

lection probabilities, then filters out facts below a412

probability threshold to remove irrelevant informa-413

tion.414

5 Experiments415

5.1 Experiment Settings416

Datasets. The experimental evaluation was con-417

ducted on two benchmark datasets: WebQSP (Yih418

et al., 2016) and CWQ (Talmor and Berant, 2018),419

both built upon the Freebase (Bollacker et al., 2008)420

knowledge graph. These datasets represent clas-421

sical benchmarks for complex logical reasoning422

in KGQA. WebQSP contains relatively straightfor-423

ward questions that typically require 1-2 hop rea-424

soning chains, and CWQ presents more challeng-425

ing scenarios involving 3-4 hop reasoning chains.426

Detailed specifications of the datasets are provided427

in Appendix D.428

Baselines. D-RAG is compared with 15 baselines429

across three categories: 1) Graph reasoning meth-430

ods that leverage graph structure for scoring-based431

answer inference; 2) LLM reasoning methods that432

perform reasoning with LLMs without utilizing433

graph structure during retrieval; and 3) Graph-LLM434

methods that maintain dedicated graph-based re-435

trieval and leverage LLMs for reasoning. The de-436

tails of each baseline are described in Appendix E.437

Evaluation Metrics. Following previous438

works (Luo et al., 2024a; Sun et al., 2024), D-RAG439

employs Hits@1 and F1 metrics for evaluation440

on WebQSP and CWQ. The evaluation process441

first parses LLM-generated answers into a list442

for comparison with the ground truth answers.443

The Hits@1 metric measures whether any correct444

answer appears in the model’s response, repre-445

senting a basic retrieval capability. In contrast,446

F1 provides a more rigorous and comprehensive447

assessment by balancing precision and recall, thus448

better reflecting the model’s overall answer quality.449

Further details are provided in Appendix F.450

Implementations. D-RAG employs the 451

ReaRev (Mavromatis and Karypis, 2022) 452

model as the GNN and utilizes the Llama3-8B- 453

Instruct (Meta, 2024) as the LLM. Based on entities 454

linked to the knowledge graph, heuristic subgraphs 455

are extracted via SPARQL query parsing. A 456

heuristic subgraph is a set of facts that conform to 457

the intrinsic logic of the SPARQL query, typically 458

forming a tree structure. Full implementation 459

details are provided in Appendix G. 460

5.2 Main Results 461

To evaluate the overall effectiveness of D-RAG, 462

we compare it with state-of-the-art baselines on 463

KGQA tasks. Table 1 presents the results, where 464

"-" indicates the corresponding method does not 465

report results for that metric. 466

The D-RAG approach achieves state-of-the-art 467

performance across both datasets among compara- 468

ble methods. Specifically, on the WebQSP dataset, 469

D-RAG achieves a 2.5% improvement in Hits@1 470

over the best-performing baseline SubgraphRAG, 471

and outperforms DECAF by 3.4% in the F1 score. 472

Although some baselines like RoG achieve compet- 473

itive Hits@1 (85.7%), their F1 scores (70.8%) lag 474

substantially behind, suggesting they may retrieve 475

some correct answers but with lower precision. 476

For the more complex CWQ dataset, the pro- 477

posed approach demonstrates a 1.8% advantage in 478

Hits@1 compared to the best-performing ToG ap- 479

proach, and surpasses GNN-RAG by 4.4% in the 480

F1 score. Notably, methods like SubgraphRAG suf- 481

fer from a significant performance drop on CWQ 482

(F1 decreases from 70.6% to 47.2%). In con- 483

trast, D-RAG maintains consistently superior per- 484

formance across datasets of varying complexity, 485

achieving the highest scores on both basic retrieval 486

capability (Hits@1) and the more comprehensive 487

measure of answer quality (F1). 488

A recent work, GCR (Luo et al., 2024b), us- 489

ing the proprietary GPT4-o-mini (OpenAI, 2024a), 490

achieves substantially lower F1 scores than our D- 491

RAG approach: 6.4% lower on WebQSP (74.1% 492

vs. 80.5%) and 2.1% lower on CWQ (61.7% 493

vs. 63.8%). While GCR reports higher Hits@1 494

scores with GPT4-o-mini (92.2% on WebQSP and 495

75.8% on CWQ), its performance drops signifi- 496

cantly when using comparable open-source models. 497

With Qwen-2-7B (Yang et al., 2024), which has 498

similar parameter size to D-RAG, GCR’s Hits@1 499

on WebQSP falls to 86.3%, 2.8% below our ap- 500

proach. These results reveal that while propri- 501
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Type Method WebQSP CWQ

Hits@1 F1 Hits@1 F1

Graph Reasoning

Graftnet (Sun et al., 2018) 66.4 - 32.8 -
NSM (He et al., 2021) 68.7 62.8 47.6 42.4
SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1
ReaRev (Mavromatis and Karypis, 2022) 76.4 70.9 52.9 -
UniKGQA (Jiang et al., 2023b) 75.1 70.2 50.7 48.0
NuTrea (Choi et al., 2023) 77.4 72.7 53.6 49.5

LLM Reasoning

Llama3-8B (Meta, 2024) 59.8 45.7 30.8 27.6
StructGPT (Jiang et al., 2023a) 72.6 - - -
DECAF (DPR + FiD-large) (Yu et al., 2023) 80.7 77.1 67.0 -
ToG (GPT4) (Sun et al., 2024) 82.6 - 68.5 -
RoG (joint) (Luo et al., 2024a) 85.7 70.8 62.6 56.2

Graph-LLM

G-Retriever (He et al., 2024) 70.1 - - -
EtD (ChatGPT) (Liu et al., 2024a) 82.5 - 62.0 -
GNN-RAG (Mavromatis and Karypis, 2024) 85.7 71.3 66.8 59.4
SubgraphRAG (Llama3.1-8B) (Li et al., 2025) 86.6 70.6 57.0 47.2
D-RAG 89.1 80.5 70.3 63.8

Table 1: Performance comparison with different baselines on WebQSP and CWQ.

etary models may excel at Hits@1 through internal502

knowledge, they still struggle with retrieval preci-503

sion that impacts F1 scores. D-RAG mitigates this504

limitation, achieving higher F1 scores using only505

open-source models.506

5.3 Ablation Study507

To evaluate the effectiveness of end-to-end opti-508

mization between the retriever and the generator,509

our ablation experiments compare D-RAG with510

four training method variants: 1) REINFORCE,511

which optimizes both modules jointly using the RE-512

INFORCE algorithm (Williams, 1992) with vari-513

ance reduction; 2) Dynamic Cascade, where both514

modules are trained simultaneously with the gener-515

ator using real-time retriever outputs, but without516

gradient backpropagation from the generator to the517

retriever; 3) Static Cascade, where the generator is518

optimized using outputs from the frozen retriever;519

4) Isolation, where the generator is trained using520

heuristic subgraphs as input, completely decou-521

pling the two modules. Further details are available522

in Appendix H.523

Impact on Overall Performance. Table 2524

presents the performance comparison across dif-525

ferent training methods on WebQSP and CWQ. We526

report both "Full Dataset" performance across the527

entire test set and "Retrieved Subset" metrics for528

cases where at least one relevant fact is retrieved. 529

The results reveal that D-RAG consistently out- 530

performs all variants in most metrics across both 531

datasets, with particularly substantial F1 score im- 532

provements. On retrieval success cases, D-RAG 533

achieves up to 6.4% and 8.5% higher F1 scores 534

than the best variant on WebQSP and CWQ respec- 535

tively, demonstrating that end-to-end optimization 536

enables more effective utilization of retrieved facts. 537

Dynamic Cascade shows modest improvements 538

over Static Cascade, confirming the benefit of 539

continuously updating the retriever during train- 540

ing. While REINFORCE generally outperforms 541

Static Cascade, it still falls short of D-RAG’s per- 542

formance, suggesting direct gradient propagation 543

is more effective than reward-based optimization. 544

The Isolation variant maintains reasonable Hits@1 545

performance but exhibits significant drops in F1 546

scores due to the training-inference gap between 547

clean training subgraphs and noisy inference re- 548

trieval. 549

Impact on Retrieval Performance. Figure 3 re- 550

veals two advantages of D-RAG’s retriever opti- 551

mization. First, D-RAG consistently achieves the 552

highest retriever F1 scores after joint training be- 553

gins, demonstrating that gradient propagation from 554

the generator effectively refines retrieval quality. 555

Second, D-RAG shows a more significant down- 556
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Training Method
WebQSP CWQ

Full Dataset Retrieved Subset Full Dataset Retrieved Subset
Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 F1

D-RAG 89.1 80.5 94.0 86.2 70.3 63.8 81.7 75.6
REINFORCE 85.1 72.9 90.4 78.9 61.7 55.4 73.0 66.7

D-RAG w/o e2e

Dynamic Cascade 85.3 74.0 90.4 79.8 61.9 55.9 73.5 67.1
Static Cascade 84.8 73.0 90.7 79.4 60.6 54.3 73.2 66.6
Isolation 82.7 53.2 91.1 59.6 63.1 30.0 85.1 40.0

Table 2: Ablation study comparing overall performance across different training methods.
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Figure 3: Evolution of retriever F1 (solid lines) and re-
trieval number (dashed lines) across training epochs on
WebQSP. Epochs 1-4 represent retriever-only pretrain-
ing, followed by joint training with different methods.
Top-50 facts with selection probability >0.5 were used
for retrieval evaluation.

ward trend in retrieved fact count compared to oth-557

ers, which is meaningful progress toward the actual558

average of 6.4 relevant facts per WebQSP question559

(corresponding to the heuristic subgraph), demon-560

strating superior noise reduction capability.561

5.4 Relationship Between Retrieval and562

Generation Performance563

To understand how different aspects of retrieval564

quality affect generation performance, we exam-565

ined various retrieval configurations and their im-566

pact on generator performance. As shown in Fig-567

ure 4, both retrieval recall and precision signifi-568

cantly impact generator performance. Models in569

the lower-right region (high recall but low preci-570

sion) perform worse than those with balanced met-571

rics, indicating that retrieving many relevant facts572

without filtering irrelevant ones leads to suboptimal573

results. Similarly, models in the upper-left region574

(high precision but low recall) underperform due575

to insufficient fact coverage.576
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Figure 4: Impact of retriever quality on generator perfor-
mance (WebQSP dataset). Heatmap shows generator F1
scores (color intensity) as a function of retriever recall
(x-axis) and precision (y-axis). Each point represents
a model configuration with different retrieval configu-
rations using various probability thresholds (0.01-0.9)
applied to the top-100 retrieved facts.

To further evaluate the effectiveness and effi- 577

ciency of D-RAG, we perform additional experi- 578

ments, including more overall performance anal- 579

ysis, detail analysis, efficiency analysis, and case 580

study in Appendix I. 581

Conclusion 582

In this paper, we presented D-RAG, a novel differ- 583

entiable approach for KGQA that enables end-to- 584

end optimization between the retriever and the gen- 585

erator. D-RAG achieves this through reformulating 586

the optimization and a differentiable implementa- 587

tion of subgraph sampling and prompt construction, 588

Experimental results demonstrate that D-RAG out- 589

performs state-of-the-art methods with substantial 590

improvements, with the joint optimization signif- 591

icantly reducing noise in the retrieved subgraph 592

while showing that both precision and recall in re- 593

trieval impact generator performance. 594
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Limitations595

Despite the effectiveness of D-RAG, we acknowl-596

edge several limitations of our current approach.597

First, our approach relies on entity linking results598

without considering potential errors in this prepro-599

cessing step. Second, our end-to-end optimization600

approach is limited to open-source language mod-601

els and cannot be directly applied to closed-source602

API-based models.603
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A Probability Factorization Analysis 872

In this section, we first prove the validity of Equa- 873

tion 3, followed by a discussion on the rationale 874

behind fact-wise factorization. 875

The factorization of subgraph probability repre- 876

sents an approximation of the complex probability 877

distribution, with an underlying assumption that 878

the selection of each fact is independent. Consider 879

a knowledge graph with Nf facts, where each fact 880

has two possible states (selected or not selected), 881

resulting in 2Nf possible subgraphs. The sum of 882

probabilities over all possible subgraphs can be 883

expressed as: 884∑
gsub

p(gsub) 885

=
∑
gsub

∏
τi∈gsub

p(τi)
∏

τj /∈gsub

(1− p(τj)) 886

=
∑
τ1

∑
τ2

· · ·
∑
τNf

Nf∏
i=1

p(τi)
I(τi)(1− p(τi))

1−I(τi) 887

=

Nf∏
i=1

∑
I(τi)∈{0,1}

p(τi)
I(τi)(1− p(τi))

1−I(τi) 888

=

Nf∏
i=1

(p(τi) + (1− p(τi))) = 1, 889

where the third row follows from the fact that sum- 890

ming over all subgraphs is equivalent to consid- 891

ering both possibilities (selected or not selected) 892

for each fact independently. I(τi) is an indicator 893

function that equals 1 when fact τi is included in 894

the subgraph and 0 otherwise. The final result of 1 895

validates the probability formulation in Equation 3. 896

Beyond fact-wise factorization, node-level and 897

path-wise granularities are also common choices 898

for probability decomposition. Path-wise granu- 899

larities, however, face combinatorial complexity 900

challenges, which explains why direct modeling of 901

subgraph probability is computationally intractable. 902

Node-wise granularity, on the other hand, disre- 903

gards relation information between entities and 904

fails to handle multi-edge scenarios. These limita- 905

tions motivate our choice of fact-wise factorization. 906

To address the potential dependencies between fact 907

selections that may be overlooked by the indepen- 908

dence assumption implicit in factorization, we em- 909

ploy a GNN-based retriever. The inherent capabil- 910

ity of GNNs to capture graph structural information 911
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helps mitigate the independence assumption, as the912

internal parameters of GNN can effectively encode913

the correlations between facts.914

B Specific design of GNN-based Retriever915

B.1 Module916

For the GNN-based retriever, D-RAG adopts917

ReaRev (Mavromatis and Karypis, 2022) as the918

core architecture, which consists of three primary919

modules:920

• The Instruction Module employs Sentence-921

BERT (Reimers and Gurevych, 2019) as its922

Language Model (LM) encoder to transform923

queries into instructions;924

• The Graph Reasoning Module initializes and925

updates node representations through message926

passing, considering the relationship between927

instructions and nodes;928

• The Instruction Update Module refines in-929

structions based on the node representations930

and predicted terminal node distributions.931

In our implementation, the node encoder cor-932

responds to the output of the Graph Reasoning933

Module, and the relation encoder refers to the LM934

encoder and MLP projection components used in935

the node initialization process.936

B.2 Loss design of GNN-based Retriever937

As shown in Equation 11 of the main text, the loss938

function L1 for training the GNN-based retriever939

is formulated as:940

DKL(pheur(gsub)|pβ(gsub))

= −
∑

τ∈gsub

log pβ(τ) = LBCE.
(14)941

This can be implemented using PyTorch’s BCE942

(Binary Cross Entropy) weighted loss 1. Inspired943

by the work of (Lin et al., 2024), to address the944

sparsity of positive examples in knowledge graph945

link classification tasks, we further incorporate a946

rank loss:947

Lrank = − 1

N+N−

N+∑
i=1

N−∑
j=1

log σ(p(τi)− p(τj)),

(15)948

1https://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html

where N+ and N− denote the number of positive 949

and negative examples, respectively, τi represents a 950

positive example, τj represents a negative example, 951

and σ(·) is the sigmoid function. This ranking loss 952

generates larger gradients on sparse samples, effec- 953

tively complementing the BCE loss and enhancing 954

the model’s classification capability. 955

The total loss of the GNN-based retriever is a 956

weighted combination of these two losses: 957

L1 = ρLBCE + (1− ρ)LRank, (16) 958

where we empirically set ρ = 0.7 to balance be- 959

tween the BCE loss and the ranking loss. 960

C Prompts 961

Figure 5 illustrates the full input prompt received 962

by the LLM-based generator, which consists of 963

three components: task setting, question, and sub- 964

graph. The subgraph is shown in typewriter font, 965

representing the neural fact prompt in D-RAG. 966

In the subgraph part, each line corresponds to 967

a distinct fact that will be converted to embed- 968

ding form before being input to the LLM. The 969

<S-Embedding> marker at the beginning of each 970

line represents the structural embedding mentioned 971

in the proposed approach. The textual content fol- 972

lowing this marker contains the semantic informa- 973

tion of each fact. Together, these elements consti- 974

tute the neural fact prompt that enables the model to 975

effectively integrate knowledge during generation. 976

D Datasets 977

D-RAG evaluates on two benchmark KGQA 978

datasets: WebQuestionSP (WebQSP) (Yih et al., 979

2016) and Complex WebQuestions (CWQ) (Talmor 980

and Berant, 2018). Following previous works (Luo 981

et al., 2024a; He et al., 2021), the same train and 982

test splits are adopted for fair comparison. The 983

datasets are analyzed from two perspectives: basic 984

statistics and reasoning complexity. 985

The overall statistics of both datasets are summa- 986

rized in Table 3, including the number of samples 987

in training, validation and test sets. 988

Table 4 shows the distribution of reasoning 989

hops required for answering questions, indicat- 990

ing the logical complexity of questions in each 991

dataset. The hop counting method analyzes the 992

path length from topic entities to answer entities 993

in SPARQL queries. For WebQSP, hop counts 994

are determined precisely as most questions involve 995

single topic entities with equal path lengths from 996
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Complete Generator Prompt

Answer the question based on the provided facts.
Question: what does jamaican people speak
Provided facts:

<S-Embedding> Jamaica, location.country.official_language, Jamaican English
<S-Embedding> Jamaica, location.country.languages_spoken, Jamaican English
<S-Embedding> Jamaica, location.country.languages_spoken, Jamaican Creole English Language
<S-Embedding> Jamaica, location.country.currency_used, Jamaican dollar
<S-Embedding> Jamaica, location.country.form_of_government, Democracy
<S-Embedding> Jamaica, location.country.form_of_government, Parliamentary system
<S-Embedding> Jamaica, base.locations.countries.continent, North America
<S-Embedding> Jamaica, location.country.form_of_government, Constitutional monarchy
<S-Embedding> Grenada, location.country.official_language, English Language
<S-Embedding> Bermuda, location.country.official_language, English Language
<S-Embedding> Belize, location.country.official_language, English Language
<S-Embedding> Turks and Caicos Islands, location.country.official_language, English Language
<S-Embedding> Bahamas, location.country.official_language, English Language
<S-Embedding> Cayman Islands, location.country.official_language, English Language
<S-Embedding> Puerto Rico, location.country.official_language, English Language
<S-Embedding> Grenada, location.country.languages_spoken, English Language
<S-Embedding> Bermuda, location.country.languages_spoken, English Language
<S-Embedding> Costa Rica, location.country.languages_spoken, Jamaican Creole English Language
<S-Embedding> , location.country.languages_spoken, English Language
<S-Embedding> Turks and Caicos Islands, location.country.languages_spoken, English Language

Answer:

Figure 5: The complete input prompt for the LLM-based generator, incorporating 20 facts.

topic to answer entities. For CWQ, we compute997

fuzzy hop counts due to frequent multi-topic scenar-998

ios. When SPARQL queries represent constrained999

graphs rather than simple reasoning chains, we1000

take the maximum path length among all topic-to-1001

answer paths as the final hop count.1002

Datasets #Train #Validate #Test
WebQSP 2826 246 1,628
CWQ 27,639 3519 3531

Table 3: Statistics of the datasets.

Datasets 1-hop 2-hop 3-hop ≥4-hop
WebQSP 62.00% 37.66% 0.17% 0.17%
CWQ 24.66% 64.78% 7.50% 3.06%

Table 4: Statistics of reasoning hop distribution in We-
bQSP and CWQ.

E Baselines1003

The D-RAG approach is compared with the 151004

baselines grouped into three categories: 1) Graph1005

reasoning methods; 2) LLM reasoning methods;1006

and 3) Graph-LLM methods. The details of each1007

baseline are described as follows:1008

Graph Reasoning Methods. 1009

• Graftnet (Sun et al., 2018) performs question 1010

answering by propagating features through 1011

a heterogeneous graph that fuses knowledge 1012

bases and text documents. 1013

• NSM (He et al., 2021) leverages language 1014

models’ bidirectional reasoning capabilities 1015

for multi-hop question answering. 1016

• SR+NSM (Zhang et al., 2022) introduces a 1017

trainable path-wise subgraph retriever that de- 1018

couples retrieval from reasoning. 1019

• ReaRev (Mavromatis and Karypis, 2022) 1020

adaptively refines reasoning instructions using 1021

knowledge graph context and executes them 1022

through a BFS-guided neural network. 1023

• UniKGQA (Jiang et al., 2023b) unifies re- 1024

trieval and reasoning stages in KGQA through 1025

a shared PLM-based architecture and joint pre- 1026

training strategy. 1027

• NuTrea (Choi et al., 2023) utilizes tree search- 1028

based message passing to explore future paths 1029

with RF-IEF node embeddings that capture 1030

global KG context. 1031
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LLM Reasoning Methods.1032

• Llama3-8B (Meta, 2024) performs direct rea-1033

soning without fact retrieval by leveraging its1034

pre-trained knowledge.1035

• StructGPT (Jiang et al., 2023a) enhances1036

LLM reasoning by iteratively collecting ev-1037

idence from structured data through special-1038

ized interfaces before performing reasoning1039

steps.1040

• DECAF (DPR + FiD-large) (Yu et al., 2023)1041

improves KB question answering by combin-1042

ing logical form generation with direct an-1043

swer prediction, while simplifying the process1044

through text-based retrieval.1045

• ToG (GPT4) (Sun et al., 2024) enables LLMs1046

to perform traceable reasoning by iteratively1047

exploring knowledge graphs through beam1048

search.1049

• RoG (joint) (Luo et al., 2024a) enhances1050

LLM reasoning by leveraging KG structure to1051

generate faithful reasoning chains through a1052

planning-retrieval-reasoning framework.1053

Graph-LLM Methods.1054

• G-Retriever (He et al., 2024) enables conversa-1055

tional graph interaction by combining GNNs,1056

LLMs, and RAG through Prize-Collecting1057

Steiner Tree optimization.1058

• EtD (ChatGPT) (Liu et al., 2024a) combines1059

GNNs for efficient knowledge exploration1060

with frozen LLMs for final answer determina-1061

tion, creating a resource-efficient framework1062

for KGQA.1063

• GNN-RAG (Mavromatis and Karypis, 2024)1064

combines GNNs for subgraph reasoning and1065

path extraction with LLMs for natural lan-1066

guage understanding in a RAG framework.1067

• SubgraphRAG (Llama3.1-8B) (Li et al., 2025)1068

enhances KG-based RAG by implementing1069

efficient subgraph retrieval with flexible size1070

control and directional structural encoding.1071

F Discussion on Evaluation Metrics1072

The evaluation procedure varies across different1073

methods. While node prediction and graph query1074

approaches produce direct answers requiring no1075

additional processing, LLM-based methods often 1076

generate responses containing multiple predicted 1077

answers. This characteristic of LLMs explains 1078

why many recent works (Mavromatis and Karypis, 1079

2024; Li et al., 2025; Luo et al., 2024b) prefer the 1080

term Hit over Hits@1, as the evaluation focuses 1081

on the presence of correct answers within the com- 1082

plete generated response rather than strictly the first 1083

answer. 1084

It is important to note that the above discussion 1085

pertains to the overall performance of KGQA sys- 1086

tems in terms of answer generation. Throughout 1087

this paper, we also report retrieval performance 1088

using F1, recall, and precision metrics. These re- 1089

trieval metrics are calculated by comparing the 1090

facts in the retrieved subgraph with those in the 1091

heuristic subgraph, which serves as a reference 1092

standard. A key consideration is that KGQA bench- 1093

marks do not provide ground truth subgraph anno- 1094

tations. The heuristic subgraphs are constructed 1095

by parsing SPARQL queries associated with each 1096

question, detailed in Appendix G. This parsing en- 1097

sures that the heuristic subgraphs fully align with 1098

the multi-hop reasoning required by the questions, 1099

making them relatively reliable reference standards 1100

for evaluating retrieval performance. 1101

G Implementation Details 1102

Preprocessing. Consistent with prior 1103

work (Mavromatis and Karypis, 2022; Luo 1104

et al., 2024a), we assume that the entities men- 1105

tioned in the questions (referred to as topic entities) 1106

have already been linked to the knowledge graph 1107

through entity linking (Yih et al., 2015). After 1108

identifying entities in the questions, we construct 1109

a heuristic subgraph for each question by parsing 1110

the SPARQL query. For each SPARQL query, we 1111

focus on the logic chain from the topic entity to the 1112

answer entity, identifying paths that connect the 1113

topic entity to the answer through specific logical 1114

chains. All facts along these paths collectively 1115

form the heuristic subgraph used in the proposed 1116

approach. 1117

Inference. During inference, we employ a hy- 1118

brid strategy that first selects the top-k facts with 1119

highest selection probabilities, then filters out facts 1120

below a probability threshold to remove irrelevant 1121

information. For both WebQSP and CWQ datasets, 1122

we set k = 100 (due to context length constraints) 1123

and use a probability threshold of 0.01, which is 1124

determined through grid search on the WebQSP 1125
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validation set.1126

Optimization and Hyperparameters. We train1127

separate models for CWQ and WebQSP datasets.1128

The training process follows a two-stage approach:1129

GNN pre-training followed by joint training. Dur-1130

ing the first training phase (retriever pre-training),1131

we train the model for 10 epochs. In the sec-1132

ond training phase (joint training), we train for1133

18 epochs.1134

For model optimization, we apply different1135

strategies to the GNN and LLM components. The1136

GNN undergoes full parameter fine-tuning with1137

a learning rate of 5e-5, while the LLM is fine-1138

tuned using LoRA with a learning rate of 1e-5. The1139

LoRA hyperparameters are configured as: lora_r=8,1140

lora_alpha=16, and dropout=0.05, specifically tar-1141

geting the q_proj and v_proj modules. We em-1142

ploy the AdamW optimizer with a weight decay of1143

0.001, a batch size of 16, and a cosine learning rate1144

scheduler.1145

Regarding the hyperparameters in our formu-1146

lations, we set the Gumbel-Softmax temperature1147

coefficient to 0.5 and the loss balancing parame-1148

ter λ to 0.9. All experiments are conducted on 21149

NVIDIA A800-80GB GPUs.1150

H Details of Ablation Study1151

As mentioned in Section 4.4, we initially pre-train1152

the retriever using heuristic subgraph labels to pre-1153

vent it from retrieving completely irrelevant sub-1154

graphs. All training method variants describes be-1155

low, including our proposed D-RAG, are trained1156

based on this pre-trained retriever. Here we elabo-1157

rate on the four training method variants:1158

1. REINFORCE: We implements the REIN-1159

FORCE algorithm with variance reduction1160

techniques to jointly optimize both the re-1161

triever and the generator. Two reward func-1162

tions are considered: (i) the negative of the1163

generator’s answer loss, and (ii) the recall of1164

retrieved subgraphs compared to heuristic sub-1165

graphs. As we observes no significant differ-1166

ence between these reward formulations, the1167

results reported in the main paper correspond1168

to the recall reward.1169

2. Dynamic Cascade: In this approach, both1170

modules are trained simultaneously with the1171

generator using real-time outputs from the1172

retriever during training. However, gradient1173

backpropagation from the generator to the re- 1174

triever is blocked, meaning the retriever is 1175

only optimized using heuristic subgraph la- 1176

bels. 1177

3. Static Cascade: The generator is optimized us- 1178

ing outputs from the initial fixed retriever (af- 1179

ter pre-training). The retriever remains frozen 1180

throughout this process and is trained only 1181

with heuristic subgraph labels. 1182

4. Isolation: The generator is trained using 1183

heuristic subgraphs as input, completely de- 1184

coupling the two modules. Both the retriever 1185

and the generator are essentially trained inde- 1186

pendently. 1187

Table 5 summarizes the key differences between 1188

these training methods. The key distinction be- 1189

tween D-RAG and the REINFORCE variant lies 1190

in the granularity of supervision: D-RAG employs 1191

fine-grained supervision through direct end-to-end 1192

gradient-based optimization, allowing it to analyze 1193

the influence of each individual fact on answer gen- 1194

eration, while REINFORCE uses policy gradient 1195

methods that provide only coarse-grained, holistic 1196

supervision regarding the quality of the retrieved 1197

subgraph information. 1198

I Additional Expreiment Results 1199

I.1 Performance Comparison Under Different 1200

Situation 1201

In this section, we provide a detailed analysis of 1202

the performance results presented in Table 6, which 1203

compares our proposed D-RAG method against 1204

several baseline training methods as described in 1205

Section 5.3. 1206

From Table 6, we can draw three important ob- 1207

servations: 1208

1) D-RAG’s Comprehensive Effectiveness: D- 1209

RAG consistently outperforms alternative training 1210

methods across almost all metrics and complexity 1211

levels. This superiority extends to both genera- 1212

tion metrics (Hits@1 and F1) and retrieval metrics 1213

(Recall and Precision), demonstrating the holistic 1214

effectiveness of the proposed approach. 1215

2) Recall Necessity but Insufficiency: High 1216

recall is necessary but not sufficient for strong gen- 1217

eration performance. or 3-hop questions, the differ- 1218

ence in recall between D-RAG and Dynamic Cas- 1219

cade is 6.9 percentage points (89.8% vs. 82.9%), 1220

yet the gap in generation F1 is significantly larger 1221
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Training Method Retriever Supervision Generator Input G → R gradient

D-RAG Retrieval label + Answer label Real-time retriever output ✓
REINFORCE Retrieval label + Reward label Real-time retriever output ✓
Dynamic Cascade Retrieval label Real-time retriever output ×
Static Cascade Retrieval label Fixed pre-trained retriever output ×
Isolation Retrieval label Heuristic subgraph ×

Table 5: Comparison of different training methods highlighting differences in retriever supervision signals, generator
inputs, and whether gradients flow from generator to retriever (G → R) during joint training.

Training Method
Generation Hits@1 Generation F1

1-hop 2-hop 3-hop 4-hop 1-hop 2-hop 3-hop 4-hop

D-RAG 74.4 81.3 79.8 58.0 69.0 76.2 74.5 55.6
REINFORCE 63.7 73.4 65.9 45.7 59.6 67.4 59.4 45.7
Dynamic Cascade 66.1 74.0 65.9 39.5 62.4 67.8 59.2 39.5
Static Cascade 64.4 71.1 64.3 43.2 60.4 64.9 57.9 42.7

Training Method
Retrieval Recall Retrieval Precision

1-hop 2-hop 3-hop 4-hop 1-hop 2-hop 3-hop 4-hop

D-RAG 92.6 95.5 89.8 91.2 6.9 20.2 23.1 13.9
REINFORCE 89.1 90.7 81.1 80.7 4.0 9.0 13.0 14.1
Dynamic Cascade 89.4 91.6 82.9 82.5 4.3 10.9 14.7 15.1
Static Cascade 86.7 85.5 78.1 78.7 3.9 9.2 13.6 14.1

Table 6: Performance comparison of D-RAG against different training methods on the CWQ dataset. Results
show both overall performance (Hits@1 and F1) and retrieval performance (Recall and Precision) across different
complexity levels (1-4 hops).

at 15.3% (74.5% vs. 59.2%). This suggests that1222

retrieval precision and effective utilization of re-1223

trieved documents also play crucial roles in genera-1224

tion quality.1225

3) Widening Retrieval-Generation Gap: As1226

question complexity increases, the gap between1227

retrieval performance and generation performance1228

widens. For 4-hop questions, despite D-RAG main-1229

taining high recall (91.2%), its generation Hits@11230

drops to 58.0% - a gap of 33.2%. In comparison, for1231

1-hop questions, this gap is much smaller (92.6%1232

recall vs. 74.4% Hits@1, a difference of 18.2%).1233

I.2 Detail Analysis1234

Due to computational constraints, all experiments1235

in this detail analysis were conducted with joint1236

training limited to 8 epochs, whereas the main1237

experimental results reported in previous sections1238

used 18 training epochs. This difference in training1239

duration may account for some performance dis-1240

crepancies between these detailed analyses and our1241

primary results.1242

0.1 0.3 0.5 0.7 0.9
λ

0.70

0.72

0.74

0.76

0.78

0.80

F1

Figure 6: Impact of loss balancing hyperparameter λ
on overall performance for WebQSP Dataset. The plot
shows the overall F1 scores (y-axis) achieved with dif-
ferent values of λ (x-axis) in the joint loss function 13.
Error bars represent standard deviations across three
experimental runs.

Robustness to Loss Balancing Hyperparameter. 1243

Figure 6 examines the effect of the loss balanc- 1244

ing hyperparameter λ on the overall performance, 1245

where λ controls the weighting between retriever 1246

and generator losses as defined in Equation 13. 1247

The experimental results demonstrate remark- 1248

able stability across the entire range of λ values 1249
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(0.1 to 0.9). This consistent performance indicates1250

that the system is largely insensitive to the specific1251

weighting between retriever and generator compo-1252

nents. This robustness can be primarily attributed1253

to the gradient normalization mechanism employed1254

in our loss formulation, which effectively prevents1255

either component from dominating the optimiza-1256

tion process regardless of the λ value. Future work1257

could explore more sophisticated gradient balanc-1258

ing techniques such as GradNorm (Chen et al.,1259

2018), which builds upon gradient normalization1260

by introducing adaptive weighting strategies that1261

automatically adjust task weights during training1262

based on learning dynamics.1263

Fact Order Training Method
D-RAG Dynamic Cascade

ascent 76.11 ± 0.09 75.04 ± 0.38
descent 76.33 ± 0.22 74.94 ± 0.10
random 76.66 ± 0.34 73.77 ± 0.77

Table 7: The F1 scores across different fact ordering
strategies and training methods. The table compares the
performance (F1 score ± standard deviation) of D-RAG
and Dynamic Cascade training methods under three fact
ordering strategies.

Impact of Fact Ordering on Overall Perfor-1264

mance. Since the order of input facts can influ-1265

ence LLM generation (Liu et al., 2024b), we com-1266

pare three ordering strategies: 1) Ascent: Facts are1267

arranged in ascending order of selection probabili-1268

ties; 2) Descent: The reverse of ascent, with facts1269

ordered from high to low probabilities; 3) Random:1270

Facts are shuffled randomly during both training1271

and inference.1272

Table 7 evaluates the influence of fact order-1273

ing on overall performance for both D-RAG and1274

Dynamic Cascade in Section 5.3. The results re-1275

veal two key findings. First, D-RAG demonstrates1276

remarkable robustness across all ordering strate-1277

gies. This stability suggests that D-RAG effectively1278

learns to process fact sequences regardless of their1279

presentation order, an advantageous property for1280

real-world applications where optimal fact ordering1281

may not be predetermined or existed.1282

In contrast, the Dynamic Cascade method shows1283

greater sensitivity to fact ordering, with perfor-1284

mance declining noticeably under random ordering1285

(73.77%) compared to more structured approaches1286

(ascent: 75.04%, descent: 74.94%). This indicates1287

that consistent, deterministic ordering strategies1288

Training Method Time (minutes)
D-RAG 74.43 ± 0.43
Dynamic Cascade 68.92 ± 1.28
Static Cascade 69.66 ± 0.42

Table 8: Training time per epoch on CWQ with 5,000
random samples. Time variations (±) indicate the stan-
dard deviation across multiple epochs.

generally outperform random fact arrangements. 1289

I.3 Training Efficiency Analysis 1290

Table 8 presents the training time per epoch for dif- 1291

ferent training methods on the CWQ dataset using 1292

5,000 random samples. 1293

D-RAG shows a modest increase in training time 1294

compared to others, requiring 8.0% more time than 1295

Dynamic Cascade and 6.9% more than Static Cas- 1296

cade. This additional overhead primarily comes 1297

from computing gradient norms during loss calcu- 1298

lation and the extra backpropagation computations 1299

required for end-to-end training. 1300

Interestingly, Dynamic Cascade achieves faster 1301

training times than Static Cascade despite the ad- 1302

ditional computation needed for retriever updates. 1303

As shown in Figure 3, Dynamic Cascade retrieves 1304

fewer facts than Static Cascade, suggesting that the 1305

computational benefits from retrieving fewer facts 1306

outweigh the cost of training the retriever. 1307

Similarly, the relatively small time difference 1308

between D-RAG and the cascade variants can be 1309

largely attributed to D-RAG’s ability to retrieve 1310

fewer and more relevant facts as training progresses 1311

(as shown in Figure 3). 1312

I.4 Case Study 1313

To illustrate the advantages of D-RAG, we select 1314

representative examples from both WebQSP and 1315

CWQ datasets, covering a range of reasoning com- 1316

plexity (1-hop to 3-hop) and answer cardinality 1317

(single and multiple answers). Table 9 and 10 1318

present these case studies with visualizations of the 1319

retrieved subgraphs and generated answers across 1320

different training methods. 1321

The retrieved subgraphs in different cases reveal 1322

D-RAG’s superior retrieval characteristics com- 1323

pared to other methods. D-RAG consistently pro- 1324

duces more focused subgraphs with significantly 1325

reduced noise and maintains high recall of relevant 1326

facts. This selective retrieval aligns with our goal 1327

of providing LLMs with concise yet comprehen- 1328

sive information, as excessive irrelevant facts can 1329
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distract the generation process and insufficient cov-1330

erage may miss critical reasoning chains. In the1331

WebQSP example "who inspired Obama" (Table 9,1332

1-hop), we observe that Static Cascade retrieves a1333

sparse and incomplete subgraph leading to an in-1334

correct answer, D-RAG successfully identifies and1335

preserves all three correct answers with minimal1336

extraneous facts.1337

The 3-hop example from CWQ—"What county1338

is the city that includes the Houston City1339

Council as a part of their government located1340

in?"—particularly highlights D-RAG’s effective-1341

ness in complex reasoning scenarios. This ques-1342

tion requires following a challenging reasoning1343

chain: Houston City Council <- governmental1344

body <- governing officials -> county ->1345

Montgomery County. Static Cascade fails to re-1346

trieve the complete reasoning chain, resulting in1347

an incorrect answer ("Texas"), and Dynamic Cas-1348

cade suffers from excessive noise that impedes1349

identifying the correct reasoning chain. In con-1350

trast, D-RAG effectively prunes irrelevant facts1351

and preserving the critical reasoning chains, en-1352

abling the generator to correctly identify "Mont-1353

gomery County". These cases empirically validate1354

the proposed approach, demonstrating how end-to-1355

end optimization produces cleaner, more focused1356

subgraphs that contain essential reasoning chains1357

and minimize noise. Based on these high-quality1358

subgraphs, the KGQA system generates accurate1359

answers, underscoring the practical benefits of D-1360

RAG in real-world knowledge-based question an-1361

swering scenarios.1362
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1-hop Example 2-hop Example

Question who inspired obama what did stephen hawking study

True
Answers

Reinhold Niebuhr | Nipsey Russell |
Saul Alinsky

Physics

Heuristic
Subgraph

from
SPARQL

influence.influence_node.influenced_by

influence.influence_node.influenced_by

influence.influence_node.influenced_by

Reinhold
Niebuhr

Saul
Alinsky

Nipsey
Russell

Barack
Obama

people.perso
n.educa

tio
n

education.education.major_field_of_study

Stephen
Hawking

Physics

Static
Cascade

(Subgraph)

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

Barack
Obama

T-0

T-0

T-0

T-0

T-0

T-3

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-1

T-0

T-0

T-0

T-0

T-0

T-3

T-0

T-0

T-0

T-0

T-0

T-0

T-0

Stephen
Hawking

Physics

Static
Cascade

(Answers)
Martin Luther King Jr.

Astrophysicist | Cosmologist|
Physicist...

Dynamic
Cascade

(Subgraph)
T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-3

T-0

T-0

T-3

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-3

T-0

Barack
Obama

Reinhold
Niebuhr

Saul Alinsky

Nipsey
Russell

T-0

T-0

T-3

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-1

T-0

T-0

T-0

T-3

T-0

T-0

T-0

T-0

T-0

Stephen
Hawking

Physics

Dynamic
Cascade

(Answers)
Saul Alinsky

Cosmologist | Physicist |
Astrophysicist...

D-RAG
(Subgraph)

T-0

T-0

T-3

T-0

T-3

T-0

T-0

T-0

T-3

T-0

Barack
Obama

Reinhold
Niebuhr

Saul Alinsky

Nipsey
Russell

T-3

T-0

T-0

T-0

T-0

T-0

T-3

T-0

T-0

Stephen
Hawking

Physics

D-RAG
(Answers)

Reinhold Niebuhr | Nipsey Russell |
Saul Alinsky

Physics

Table 9: Case studies on WebQSP dataset. Comparison of retrieved subgraphs and generated answers across
different methods on 1-hop and 2-hop questions. Blue nodes represent question entities, red nodes represent answer
entities, and yellow nodes are intermediate entities.
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2-hop Example 3-hop Example

Question
What languiages are spoken by
residents of the Central Western

Time Zone?

What county is the city that includes
the Houston City Council as a part

of their government located in?

True
Answers

Esperanto Language | Lojban |
English Language

Montgomery County

Heuristic
Subgraph

from
SPARQL

location.country.languages_spoken

location.location.time_zones
location.country.la

nguages_spoken

location.country.languages_spoken

Lojban

Central
Western

Zo…

Esperanto
Language

English
Language

go
ve

rn
m

en
t.g

ov
er

nm
en

ta
l_

ju
ris

di
ct

io
n.

go
ve

rn
in

g_
offi

ci
al

s location.hud_county_place.county
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m
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t.g
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en

t_
po

sit
io

n_
he

ld
.g

ov
er

nm
en

ta
l_
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dy

government.government_position_held.governmental_body

government.governmental_jurisdiction.governing_officials

Montgomery
County

Houston City
Council

Static
Cascade

(Subgraph)

T-0

T-3

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-3

T-1

T-0

T-0

T-0
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T-0
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T-0

T-3
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T-2

T-2
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T-0
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T-0

T-0

T-0

Houston City
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Cascade

(Answers)
English Language Texas
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(Subgraph) T-0
T-0

T-3

T-0

T-0

T-1

T-0

T-0

T-0

T-0

T-3

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-3

T-0

T-3

T-0

T-0

T-0
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English
Language
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Language

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-0

T-2
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T-0
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English Language Harris County
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T-3
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Zo…Esperanto
Language
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Language

T-0

T-0

T-0

T-0

T-2

T-0

T-0

T-0

T-0

T-3

T-2

T-2

T-1

T-2

T-0
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D-RAG
(Answers)

Esperanto Language | Lojban |
English Language

Montgomery County

Table 10: Case studies on CWQ dataset. Comparison of retrieved subgraphs and generated answers across different
methods on 2-hop and 3-hop questions. Blue nodes represent question entities, red nodes represent answer entities,
and yellow nodes are intermediate entities.
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