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Abstract—The Johnson-Lindenstrauss (JL) lemma allows sub-
sets of a high-dimensional space to be embedded into a lower-
dimensional space while approximately preserving all pairwise
Euclidean distances. This important result has inspired an
extensive literature, with a significant portion dedicated to
constructing structured random matrices with fast matrix-vector
multiplication algorithms that generate such embeddings for
finite point sets. In this paper, we briefly consider fast JL
embedding matrices for infinite subsets of Rd. Prior work in
this direction such as [15], [14] has focused on constructing fast
JL matrices HD ∈ Rk×d by multiplying structured matrices
with RIP(-like) properties H ∈ Rk×d against a random diagonal
matrix D ∈ Rd×d. However, utilizing RIP(-like) matrices H in
this fashion necessarily has the unfortunate side effect that the
resulting embedding dimension k must depend on the ambient
dimension d no matter how simple the infinite set is that one aims
to embed. Motivated by this, we explore an alternate strategy
for removing this d-dependence from k herein: Extending a
concentration inequality proven by Ailon and Liberty [1] in
the hope of later utilizing it in a chaining argument to obtain
a near-optimal result for infinite sets. Though this strategy
ultimately fails to provide the near-optimal embedding dimension
we seek, along the way we obtain a stronger-than-sub-exponential
extension of the concentration inequality in [1] which may be of
independent interest.

I. INTRODUCTION

The Johnson-Lindenstrauss lemma [8] states that for ε ∈
(0, 1) and a finite set T ⊂ Rd with n > 1 elements, there
exists a k × d matrix Φ with k = O(ε−2 log n) such that

(1− ε)‖x− y‖22 ≤ ‖Φx− Φy‖22 ≤ (1 + ε)‖x− y‖22 (I.1)

holds ∀x,y ∈ T . A matrix Φ satisfying (I.1) is called an ε-JL
embedding of T into Rk. Moreover, it has been shown that
the dimension k of the Euclidean space where T is embedded
is optimal for finite sets (see [12]). This result is a cornerstone
in dimensionality reduction and has proved to be an extremely
useful tool in many application domains (see, e.g., the relevant
discussions in [3], [13], [9], [2], [4], [5], [7]).

If T ⊂ Rd is an infinite set one may bound the embed-
ding dimension k in terms of its Gaussian Width, w(T ) :=
E supx∈T 〈g,x〉, where g is a random vector with d indepen-
dent and identically distributed (i.i.d.) mean 0 and variance
1 Gaussian entries (see, e.g,. [16, Definition 7.5.1]). Let
unit(T − T ) := {(x− y)/‖x− y‖2 | x,y ∈ T,x 6= y}. For
any bounded set T ⊂ Rd, standard upper bounds demonstrate
that sub-Gaussian random matrices Φ are ε-JL embeddings
of T into Rk, where k = O(ε−2w2(unit(T − T ))), with

high probability (w.h.p.) (see, e.g., [16, Theorem 9.1.1 and
Exercise 9.1.8]). Similarly, [6, Theorem 9] shows that any
JL embedding of a bounded set T ⊆ Rd into Rk must have
k & w2(T ), which matches the prior upper bound for a large
class of sets T ⊂ Rd when ε isn’t too small. Most importantly
for our discussion here, we note that all the bounds on k
mentioned above are entirely independent of d.

If we further demand that a Φ ∈ Rk×d satisfying (I.1)
∀x,y ∈ T also be a structured matrix with an associated
fast matrix-vector multiplication algorithm, the situation com-
plicates. In this setting state-of-the-art results [15], [14] build
on Restricted Isometry Property (RIP) related results implied
by, e.g., [11], [10] to produce structured ε-JL embeddings of
infinite sets that also have fast matrix-vector multiplication
algorithms. However, their dependence on the RIP has the
unfortunate side effect that the bounds they obtain on the
embedding dimension k must always depend (logarithmically)
on d no matter how simple the set T is.

Returning to the setting of finite sets T , in [1] Ailon and
Liberty construct ε-JL embeddings with fast matrix-vector
multiplication algorithms that also have near-optimal embed-
ding dimensions for sets of sufficiently small cardinality.
In particular, they construct a k × d matrix A for which
the mapping x 7→ Ax can be computed in O(d log k)-time
that also satisfies the following sub-Gaussian concentration
inequality: For any x ∈ Rd with ‖x‖2 = 1 and 0 < t < 1,

P {|‖Ax‖2 − 1| > t} ≤ c1 exp{−c2kt2}, (I.2)

for some universal constants c1, c2 > 0. This then allows
for optimal dimensionality reduction of finite sets T with n
elements by taking k = O(ε−2 log n), where ε > 0 is the
desired distortion of the JL-embedding. Looking at (I.2) in the
context of, e.g., [16, Chapter 8], one might wonder if (I.2) can
be extended to hold for all t > 0. If so, a chaining argument
could then be employed to extend the fast ε-JL embedding
results in [1] to more arbitrary (e.g., infinite) subsets of Rd
with embedding dimensions k that don’t depend on d.

Unfortunately, the approach in [1] apparently fails to pro-
vide sub-Gaussian concentration for large distortions t. We are,
however, at least able to demonstrate an extended concentra-
tion inequality herein that is better than sub-exponential.

Theorem I.1. There is a k × d random matrix A, for which
the mapping x 7→ Ax can be computed in time O(d log k),



such that for any x ∈ Rd with ‖x‖2 = 1 and t > 0

P {|‖Ax‖2 − 1| > t} ≤ c3 exp{−c4k2/3t4/3},

for some universal constants c3, c4 > 0.

The matrix A appearing in the above result is defined as
A = BDHD′, where B is a 4-wise independent k×d matrix,
D and D′ are independent diagonal matrices with entries
that are random variables taking values ±1 with probability
1/2, and H is a d × d Walsh-Hadamard matrix. This is
a simplified version of the matrix that Ailon and Liberty
constructed in [1]. While Ailon and Liberty’s construction
involves iterating the transformation HD′ multiple times,
Example III.3 demonstrates that such iterations do not lead to
improvements in Theorem I.1 for large distortions. We refer
to Section II for a detailed construction of the matrix A.

Using Theorem I.1 one can now quickly prove the following
theorem providing d-independent bounds on the embedding
dimension k of A for infinite sets.

Theorem I.2. Let A be the random matrix in Theorem I.1.
Let S ⊂ {x ∈ Rd : ‖x‖2 = 1} and ε, p ∈ (0, 1). Then A is an
ε-JL map of S into Rk with probability at least 1−p provided
that

k ≥ C

ε4
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4
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where N
(
S, ‖ · ‖2, 1

2j

)
is the 1

2j -covering number of S, and
C ≥ 1 is a universal constant.

Looking at Theorem I.2 we can see that it is indeed
independent of d as desired. Unfortunately, it also provides
sub-optimal dependence on the covering numbers (in this case)
of the set S. It is proven in Section IV for completeness.

II. PRELIMINARIES

In this section, we review the necessary background and
results that will be applied throughout the paper.

A. Definitions

Given x ∈ Rd, we write ‖x‖2 for the Euclidean norm of
x. Given a k × d matrix B, the operator norm ‖BT ‖2→4 is
defined as the maximum ratio of the `4 norm of the matrix-
vector product to the `2 norm of the vector, formally expressed
as:

‖BT ‖2→4 = sup
‖x‖2=1

‖BTx‖4,

where the `4 norm of a vector x ∈ Rd is defined as

‖x‖4 =

(
d∑
i=1

|xi|4
)1/4

.

A Rademacher sequence ξ ∈ Rd is a random vector whose
coordinates are independent and take the value 1 or −1 with

equal probability. A random variable X is said to be sub-
Gaussian if its sub-Gaussian norm, defined as

‖X‖Ψ2
= inf

{
c > 0: EeX

2/c2 ≤ 2
}
,

is finite. An equivalent characterization of sub-Gaussianity is
given by the tail bound:

P {|X| ≥ t} ≤ 2e−t
2/C2

1 ∀ t ≥ 0,

for some constant C1 > 0. Another useful characterization is
that X is sub-Gaussian if for any p ≥ 1,

E|X|p ≤ Cp2pp/2 for some constant C2 > 0.

A Walsh-Hadamard matrix Hd is a d × d orthogonal matrix
defined recursively: For d = 1, H1 = [1], and for d = 2n, it
is defined as

Hd =
1√
2

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
.

The entries of a Walsh-Hadamard matrix are given by

Hd(i, j) = d−1/2(−1)〈i,j〉,

where 〈i, j〉 denotes the dot product of the binary represen-
tations of the indices i and j. For convenience, we will omit
the subscript and denote the Walsh-Hadamard matrix simply
as H instead of Hd

A matrix B of size k × d is said to be 4-wise independent
if for any 1 ≤ i1 < i2 < i3 < i4 ≤ k and any
(b1, b2, b3, b4) ∈ {1,−1}4, the number of columns B(j)

for which (A
(j)
i1
, A

(j)
i2
, A

(j)
i3
, A

(j)
i4

) = k−1/2(b1, b2, b3, b4) is
exactly d/16.

B. Supporting Results

We will utilize several supporting theorems in our analysis.
We start with the following classic tool that provides con-
centration bounds for sums of bounded independent random
variables.

Proposition II.1 (Hoeffding’s Inequality). Let x ∈ Rd and let
ξ = (ξj)

d
j=1 be a Rademacher sequence. For any t > 0,

P


∣∣∣∣∣∣
d∑
j=1

ξjxj

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
− t2

2‖x‖22

)
.

We will also need some results from the work of Ailon and
Liberty [1], particularly the following lemmas:

Lemma II.2 (Corollary 5.1 from [1]). Let B be a k×d matrix
with Euclidean unit length columns, and let D be a random
{±1} diagonal matrix. Given x ∈ Rd with ‖x‖2 = 1, let
Y = ‖BDx‖2. Then, for any t ≥ 0,

P {|Y − 1| > t} ≤ c5 exp

{
−c6

t2

‖x‖24‖BT ‖22→4

}
,

for some universal constants c5, c6 > 0.



Lemma II.3 (Lemma 4.1 from [1]). There exists a 4-
wise independent code matrix of size k × fBCH(k), where
fBCH(k) = Θ(k2).

Lemma II.4 (Lemma 5.1 from [1]). Assume that B is a k×d
4-wise independent matrix. Then,

‖BT ‖2→4 ≤ (3d)1/4k−1/2.

III. PROOFS

Consider a d×d diagonal matrix D′, whose diagonal entries
are independent variables that take the value 1 or −1 with
probability 1/2.

The norm in `d4 will play an important role in our analysis.
Specifically, there exist vectors with ‖x‖2 = 1 but very
small ‖x‖4, which occurs when the vector is “flat”. Roughly
speaking, a vector is considered flat if a substantial portion of
its coordinates have similar absolute values. Our first result
demonstrates that we can make a unit vector flat w.h.p.
by applying HD′. This result provides a sharp version of
inequality (5.6) in [1] and serves as a fundamental element
of the argument for constructing the desired embedding.

Lemma III.1. Let x ∈ Rd with ‖x‖2 = 1. Then, for any t > 0
we have

P
{
‖HD′x‖4 ≥ td−1/4

}
≤ e1−c7t4 ,

where c7 > 0 is a universal constant.

Proof. Fix x ∈ Rd with ‖x‖2 = 1. Write Z =
√
dHD′x

and consider random variables Z1, . . . , Zd so that Z =
(Z1, . . . , Zd)

T . First, since H is orthogonal observe that

d∑
j=1

Z2
j = ‖Z‖22 = d‖HD′x‖22 = d‖D′x‖22 = d‖x‖22 = d.

(III.1)
Next, we will show that each Zi is a sub-Gaussian random
variable for i = 1, . . . , d. To be more precise, we claim that

P {|Zi| > t} ≤ 2e−t
2/2 (III.2)

Fix i = 1, . . . , d. Then, Zi = d1/2H(i)D
′x, where H(i) is the

ith row of H . Observe that H(i)D
′ is a vector whose entries

are independent with each entry being d−1/2 or −d−1/2 with
probability 1/2. Consequently, Zi has the same distribution
as 〈ξ,x〉, where ξ is a Rademacher sequence. Thus, we can
apply Proposition II.1 to obtain the claim.

We now proceed to estimate the norm of HD′x in `d4.
Observe that for any p ≥ 1 we have

‖Z‖44 =

d∑
i=1

Z4
i =

d∑
i=1

Z
(2p+2) 1

p+2(1− 1
p )

i

≤

(
d∑
i=1

Z2p+2
i

)1/p( d∑
i=1

Z2
i

)1− 1
p

= d1− 1
p

(
d∑
i=1

Z2p+2
i

)1/p

,

where the inequality follows from applying Hölder’s inequal-
ity, and the last equality follows from (III.1). Taking expecta-
tion and using the fact that each Zi is a sub-Gaussian random
variable gives a universal constant C > 0 for which

E(‖Z‖4p4 ) ≤ dp−1
d∑
i=1

E|Zi|2p+2

≤ dp−1
d∑
i=1

C2p+2(2p+ 2)p+1

= C2p+2dp(2p+ 2)p+1.

Consequently, we deduce that

E(‖HD′x‖4p4 ) ≤ C2p+2d−p(2p+ 2)p+1.

Finally, Markov’s inequality gives

P
{
‖HD′x‖4 ≥ td−1/4

}
≤ E(‖HD′x‖4p4 )

t4pd−p

≤ C2p+2(2p+ 2)p+1

t4p

≤
(
C1p

t4

)p
,

where C1 > 0 is another universal constant. Take c7 = 1
eC1

.
When t4 ≥ eC1, the result follows by taking p = t4

eC1
since it

shows that

P
{
‖HD′x‖4 ≥ td−1/4

}
≤ exp

(
− t4

eC1

)
= e−c7t

4

.

When t4 ≤ eC1, the result is trivial.

The following example shows that Lemma III.1 is sharp.

Example III.2. Let x = d−1/2(1, 1, . . . , 1)T . Then, with
probability 2−d we have D′x = x. In such a case, we have that
HD′x = Hx = (1, 0, . . . , 0)T . Therefore, ‖HD′x‖4 = 1.
Taking t = d1/4, this argument shows that

P
{
‖HD′x‖4 ≥ td−1/4

}
≥ 2−d ≥ e−t

4

.

As Lemma III.1 shows, applying the transformation HD′

to a vector x ∈ Rd reduces its `4-norm with high probability.
In [1], the embedding they consider is an iterative version
of ours. Specifically, they apply the transformation HDi,
where Di are independent copies of D′, multiple times to



further ”flatten” the vector. While this approach works well
for small distortions, the following example shows that for
larger distortions iterating the transformation does not offer
any additional improvement.

Example III.3. For i ∈ N, let Di be indepentend diagonal
matrices whose diagonal entries are independent and take the
value 1 or −1 with equal probability. Let x ∈ Rd be a vector
whose first

√
d coordinates are equal to d−1/4, and the rest

are 0. Then, ‖x‖2 = 1. Observe that D1x = x with probability
2−
√
d. In that case, we have HD1x = Hx = x. Repeating

this argument r times, we find that with probability at least
2−r
√
d,

HDrHDr−1 · · ·HD1x = x

Setting the distortion t = d1/8, we obtain

P
{
‖HDrHDr−1 · · ·HD1x‖4 ≥ td−1/4

}
≥ 2−r

√
d ≥ e−rt

4

.

This probability, up to a constant factor, is the same as the
one achieved in Lemma III.1 using just a single iteration.

Let B be a k×d 4-wise independent code matrix. Consider
D and D′ independent diagonal matrices whose diagonal
entries are independent and take the value ±1 with probability
1/2. Let H be a Walsh-Hadamard matrix of size d×d. Define
the matrix A = BDHD′.

Now we can prove our main result.

Proof of Theorem I.1. Let u > 0 and define the event Eu =
{‖HD′x‖4 < ud−1/4}. Let Euc be the complement event.
Then, conditioning on Eu gives

P {|‖Ax‖2 − 1| > t} ≤ P {|‖Ax‖2 − 1| > t|Eu}+ P {Euc}

On the one hand, we can use Lemma II.2 and Lemma II.4 to
obtain

P {|‖Ax‖2 − 1| > t|Eu} ≤ c5 exp

{
−c6

t2

u2d−1/2‖BT ‖22→4

}
≤ c5 exp

{
−c6

kt2

u2
√

3

}
.

On the other hand, Lemma III.1 gives

P {Euc} ≤ exp{1− c7u4}.

In conclusion, this yields

P {|‖Ax‖2 − 1| > t} ≤ c5 exp

{
−c6

kt2

u2
√

3

}
+exp{1−c7u4}.

Taking u = k1/6t1/3, we conclude that for any t > 0

P {|‖Ax‖2 − 1| > t} ≤ c3 exp{−c4k2/3t4/3},

for some universal constants c3, c4 > 0.

IV. PROOF OF THEOREM I.2

This section is dedicated to prove I.2.

Proof of Theorem I.2. Let jε = dlog2
8
ε e. For each j ≥ 0,

let Sj ⊂ S be such that |Sj | = N(S, ‖ · ‖2, 1
2j ) and S ⊂

∪x0∈Sj{x ∈ Rd : ‖x − x0‖2 ≤ 1
2j }. For each x ∈ S and

each j ≥ 0, let πj(x) be the closest point in Sj to x. Then
‖πj(x)− x‖2 ≤ 1

2j . So

‖πj+1(x)−πj(x)‖2 ≤ ‖πj+1(x)−x‖2 +‖πj(x)−x‖2 ≤
2

2j
.

For each x ∈ S, since x = πjε(x)+
∑∞
j=jε

(πj+1(x)−πj(x)),
we have

|‖Ax‖2 − 1| ≤ |‖Aπjε(x)‖2 − 1|+ ‖A(x− πjε(x))‖2

≤ |‖Aπjε(x)‖2 − 1|+
∞∑
j=jε

‖A(πj+1(x)− πj(x))‖2.

Since πjε(x) ∈ Sjε and πj+1(x)− πj(x) ∈ Sj+1 − Sj for all
x ∈ S, by Theorem I.1, with probability at least 1 − p

2 , we
have

sup
x∈S
|‖Aπjε(x)‖2 − 1|

≤ 1√
k

(
1

c4
ln

(
2c3|Sjε |

p

)) 3
4

≤ 1√
k

(
(ln |Sjε |)

3
4 +

(
ln

1

p

) 3
4

+

(
ln 2c3
c4

) 3
4

)
,

and with probability at least 1− p
2j+2 , we have

sup
x∈S

∥∥∥∥A πj+1(x)− πj(x)

‖πj+1(x)− πj(x)‖2

∥∥∥∥
2

≤1 +
[ 1
c4

ln( 2j+2c3
p |Sj+1||Sj |) ]

3
4

√
k

≤1 +
1√
k

(
(ln |Sj+1|)

3
4 + (ln |Sj |)

3
4 +

(
ln

1

p

) 3
4

+ ((j + 2) ln 2)
3
4 +

(
ln c3
c4

) 3
4
)
.

Therefore, with probability at least 1− p, we have

sup
x∈S
|‖Ax‖2 − 1|

≤ 1√
k

(ln |Sjε |)
3
4 + 3

(
ln

1

p

) 3
4

+ C +
∑
j≥jε

6

2j
(ln |Sj |)

3
4


+

4

2jε

≤ C√
k

(ln
1

p

) 3
4

+
1

ε

∑
j≥jε

1

2j
(ln |Sj |)

3
4

+
ε

2
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