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Abstract
This work studies temporal reading comprehen-001
sion (TRC), which reads a free-text passage and002
answers temporal ordering questions. Precise003
question understanding is critical for tempo-004
ral reading comprehension. For example, the005
question “What happened before the victory”006
and “What happened after the victory” share007
almost all words except one, while their an-008
swers are totally different. Moreover, even if009
two questions query about similar temporal re-010
lations, different varieties might also lead to011
various answers. For example, although both012
the question “What usually happened during013
the press release?” and “What might happen014
during the press release” query events which015
happen after the press release, they convey di-016
vergent semantics. To this end, we propose a017
novel reading comprehension approach with018
precise question understanding. Specifically, a019
temporal ordering question is embedded into020
two vectors to capture the referred event and the021
temporal relation. Then we evaluate the tempo-022
ral relation between candidate events and the023
referred event based on that. Such fine-grained024
representations offer two benefits. First, it en-025
ables a better understanding of the question026
by focusing on different elements of a ques-027
tion. Second, it provides good interpretabil-028
ity when evaluating temporal relations. Fur-029
thermore, we also harness an auxiliary con-030
trastive loss for representation learning of tem-031
poral relations, which aims to distinguish re-032
lations with subtle but critical changes. The033
proposed approach outperforms strong base-034
lines and achieves state-of-the-art performance035
on the TORQUE dataset. It also increases the036
accuracy of four pre-trained language models037
(BERT base, BERT large, RoBERTa base, and038
RoBETRa large), demonstrating its generic ef-039
fectiveness on divergent models.040

1 Introduction041

Understanding temporal relationships between042

events in a passage is essential for natural lan-043

guage understanding (Wang et al., 2019; Dong044

Figure 1: Examples of temporal reading comprehension.
Temporal relations are diverse: Q1-Q5 list examples of
possible varieties of temporal relations. Small changes
in the question might lead to substantially divergent
semantics: replacing usually in Q4 with might in Q5
leads to different answers. Related events are underlined
in the passage.

et al., 2019). Temporal reading comprehension 045

(TRC) (Ning et al., 2020) is a natural way to study 046

temporal relations since natural language questions 047

are flexible to capture divergent temporal relations 048

(Zhou et al., 2021). Figure 1 shows several exam- 049

ples of temporal reading comprehension, where 050

given a free-text passage, a system is required to 051

answer temporal questions like “What usually hap- 052

pened during the press release?”. 053

A natural solution for temporal ordering un- 054

derstanding is to compare each candidate answer 055

and the referred event in the question and classify 056

their temporal relation into several pre-defined cate- 057

gories, e.g., UzZaman et al. (2013) defines 13 possi- 058

ble relations such as after, ends, equal to. Nonethe- 059

less, since temporal relationships vary greatly, it is 060

almost impossible to enumerate all possible rela- 061
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tionships. Figure 1 shows several divergent vari-062

eties of temporal relations: one might query about063

plain after in Q1, negated after in Q2, constrained064

after in Q3, etc. Similarly, a question might query065

about usually happen in Q4, might happen, or066

other relations. Moreover, creating sufficient la-067

bels for all such relations is costly and poses great068

challenges for real-world applications. Therefore,069

the classification-based approach is incompetent070

to handle the flexible relations in temporal reading071

comprehension.072

Another paradigm is to formulate it as a read-073

ing comprehension problem and directly predict074

the answer to a question. With the help of large075

pre-trained language models (e.g., BERT (Devlin076

et al., 2019) and RoBERTa (Liu et al., 2019)), such077

approaches have achieved relatively good perfor-078

mance. However, they still struggle for the tempo-079

ral reading comprehension task due to the lack of080

precise question understanding. For example, given081

the same passage, the BERT model fine-tuned on082

SQuAD (Rajpurkar et al., 2016) predicts the same083

answer to the two questions (Ning et al., 2020),084

“What happened before a woman was trapped” and085

“What happened after a woman was trapped”. In086

this case, although the two questions share almost087

the same words, the only different one between088

before and after leads to completely opposite inten-089

tions. Moreover, even if two questions query about090

similar relations, different varieties might also lead091

to various answers. Take the question Q4 “What092

usually happened during the press release?” and093

“What might happen during the press release?” in094

Figure 1 as an example. Although they both query095

about events occurring after the press release, the096

slight difference conveys divergent semantics and097

leads to different answers.098

To tackle these challenges, we propose a novel099

question answering approach with precise ques-100

tion understanding. Intuitively, temporal ordering101

questions consist of two elements, referred events,102

and concerned temporal relations. For example,103

the question “What usually happened during the104

press release?” can be decomposed into the re-105

ferred event the press release and the concerned106

relation usually happen during. Inspired by this ob-107

servation, we first encode such questions into two108

representations, the event vector hc and the relation109

vector hr. Then we evaluate how well each candi-110

date answer matches the relation hr compared to111

hc with a separate MLP module. Such fine-grained112

representations enable a better understanding of 113

questions by focusing on different elements with 114

different vectors and further provides good inter- 115

pretability about the reasoning process. More im- 116

portantly, it empowers the model to capture the se- 117

mantics of divergent variants of temporal relations. 118

Specifically, we harness an auxiliary contrastive 119

loss that aims to distinguish relations with subtle 120

but critical changes. 121

We evaluate the proposed approach on the 122

TORQUE dataset and achieve state-of-the-art per- 123

formance compared to strong baselines. We further 124

testify its effectiveness based on four different mod- 125

els (i.e., BERT base, BERT large, RoBERTa base, 126

RoBERTa large) and demonstrate that precise ques- 127

tion understanding can improve the QA accuracy 128

for all models. Ablation study shows that both 129

question representation learning and contrastive 130

loss play a critical role in the approach. 131

2 Related Work 132

Temporal machine comprehension is closely re- 133

lated to two areas of works, i.e., machine reading 134

comprehension and temporal ordering reasoning. 135

2.1 Machine Reading Comprehension 136

Machine reading comprehension (MRC) (Ra- 137

jpurkar et al., 2016, 2018) has attracted much 138

attention in recent years. Traditional solutions 139

to MRC tasks focus on utilizing the interaction 140

information between questions and passages via 141

attention-based structures (Kadlec et al., 2016; 142

Dhingra et al., 2017). Later on, pre-trained lan- 143

guage models (PLMs), e.g., BERT (Devlin et al., 144

2019), RoBERTa (Liu et al., 2019), and XLNet 145

(Yang et al., 2019), have been widely used for MRC 146

tasks. With the sheer scale of parameters and the 147

pretraining strategies, PLMs capture more knowl- 148

edge from the context and have shown outstanding 149

performance on traditional MRC benchmarks. 150

For more challenging MRC tasks which intro- 151

duce multi-hop reasoning (Yang et al., 2018), nu- 152

merical reasoning (Dua et al., 2019), etc., the 153

generic PLMs become not applicable. Recent ef- 154

forts use graph-based reasoning approaches (Chen 155

et al., 2020) or define specific pretraining training 156

techniques (Raffel et al., 2020) to solve the above 157

challenges. However, existing MRC approaches 158

still struggle for the temporal reading comprehen- 159

sion task due to the lack of temporal relation un- 160

derstanding (Ning et al., 2020). Hence, we propose 161

a novel question answering approach with precise 162

question understanding to tackle this challenge. 163

2



2.2 Temporal Ordering Reasoning164

Traditional temporal order reasoning tasks (UzZa-165

man et al., 2013; Cassidy et al., 2014; Ning et al.,166

2018), are often formulated as relation extraction167

tasks. Given the context passage, the target is168

to classify the relation between every two events169

from a predefined relation set, e.g., UzZaman et al.170

(2013) defines 13 possible relations such as after,171

ends, equal to. Existing solutions can be roughly172

classified into two categories. The first category173

focuses on developing the structure of the encoder174

to capture more temporal information. For exam-175

ple, Cheng et al. (2020) add up a GRU-based dy-176

namically updating structure upon the outputs of177

the common BERT sentence encoder. The second178

category focuses on joint learning with external179

knowledge or some specific constraints. For in-180

stance, Ning et al. (2019) significantly improve the181

extraction performance by joint training temporal182

and causal relations.183

However, the success of the existing approaches184

is limited to the formulation of the traditional tem-185

poral order reasoning tasks, where the events and186

the candidate temporal relation set are fixed. How-187

ever, the fixed candidate relation set cannot cover188

all temporal relations in our daily uses. The most re-189

cent released dataset, TORQUE (Ning et al., 2020),190

formulates temporal ordering reasoning as a ma-191

chine reading comprehension task. Given a context192

passage, we need to answer a free-text question193

about the temporal relations in the context passage.194

The task is much analogous to our real-world tasks195

and is more challenging – we need to automatically196

identify the events and the relations in the free-text197

question to retrieve the answers from the context198

passage. To the best of our knowledge, we are the199

very first to address this challenge.200

3 Our Approach201

We first introduce the definition of temporal reading202

comprehension (TRC) and then describe the model203

architecture consisting of contextual encoder, ques-204

tion understanding, and event relation assessment.205

Finally, we provide details for the learning and206

inference process.207

3.1 Task Definition208

The Temporal Reading Comprehension (TRC) task209

is defined as follows. Given a passage P which210

describes a set of events, a system is required211

to answer a temporal ordering question Q. Here212

events refer to verbs or nouns which define actions213

or states. A temporal ordering question usually 214

queries events satisfying some concerned temporal 215

relations considering one or more referred events. 216

For example, the first passage in Figure 1 describes 217

events about Hamas goverment, and question Q1 218

queries which events have the temporal relation 219

happen after with the referred event the victory. 220

The answer set A to a question Q could be empty 221

when no events meet the requirement. 222

3.2 Model Architecture 223

Figure 2: An overview of the proposed model.

Figure 2 depicts the proposed model architecture. 224

Specifically, the passage P and question Q are 225

first encoded by a contextual-aware encoder, after 226

which the representations of the question are passed 227

to a question understanding module. Finally, each 228

candidate answer is evaluated considering whether 229

it satisfies the concerned relation to the referred 230

event by an event relation assessment module. 231

Contextual Encoder We first encode the 232

passage-question pairs with a pre-trained language 233

model encoder, and here we take BERT as an ex- 234

ample. Given a question Q = [qi]
m
i=1 and a passage 235

P = [pi]
n
i=1, where m and n are token numbers, 236

we concatenate them into a sequence with the for- 237

mat of [cls] question [sep] passage [sep], which 238

is then fed into the contextual encoder to generate 239

the embeddings, 240

[hq
1, ...,h

q
m,hp

1 , ...,h
p
n] = BERT([q1, ..., qm, p1, ..., pn]),

(1) 241

where hq
i ,h

p
i ∈ Rd are embeddings for question 242

token qi and passage token pi, and d is the embed- 243

ding size. 244

Question Understanding As discussed in Sec- 245

tion 1, precise question understanding plays an 246

essential role in TRC task. Therefore, we propose 247

a question understanding module to achieve that. 248

Intuitively, a temporal ordering question consists of 249

two elements, referred events, and concerned tem- 250

poral relation. For example, the question “What 251
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Figure 3: The structure of attention-based event/relation
extractor, with attention loss for it.

usually happened during the press release” queries252

the temporal relation usually happen to the event253

the press release. A straightforward solution is to254

decompose the question into two segments directly.255

However, natural language questions vary a lot, and256

hard decomposition is risky and might propagate257

errors to downstream modules, which is verified by258

experimental analysis in Section 4.5,259

Therefore, we design an attention-based extrac-260

tor to decompose the question implicitly, and ob-261

tain two hidden representations, hc for the referred262

event and hr for the concerned temporal relation263

as follows,264

s
(z)
i = tanh(W

(z)
1 hq

i + b
(z)
1 ), z ∈ {c, r} (2)265

266

α
(z)
i = Softmax(W

(z)
2 s

(z)
i + b

(z)
2 ), z ∈ {c, r}

(3)267

268

hz =
m∑
i=1

α
(z)
i hq

i , z ∈ {c, r} (4)269

where W(c),W(r) ∈ Rd, and b(c), b(r) ∈ R are270

learn-able weights for the extractor, hq
i ∈ Rd is271

the embedding for the i-th question token. To effec-272

tively learn hr and hc, we employ several auxiliary273

losses in the training phase, which will be described274

in section 3.3.275

Event Relation Assessment Given the question276

representations hr and hc, the event relation as-277

sessment module evaluates how a candidate an-278

swer satisfy the relation hr with respect to hc.279

Let e = pi . . . pi+l denotes the candidate answer,280

which consists of l tokens in the passage P . We281

first get the representation of e by pooling over282

according token vectors,283

he = Pool(hp
i , . . . ,h

p
i+l). (5)284

Figure 4: The structure of the event relation assessment,
with answer prediction loss for it.

Then we concatenate the representations of the 285

candidate event he, question relation hr, and the 286

question event hc, and feed it into a two-layer MLP, 287

followed by a softmax function to get the final 288

probability, 289

oe = tanh(Wo
1[he;hc;hr] + bo

1), (6) 290

291
pe = Softmax(Wo

2oe + bo
2), (7) 292

where Wo
1 ∈ R3d×d′ , Wo

2 ∈ Rd′×2, bo
1 ∈ Rd′ , 293

bo
2 ∈ R2 are model parameters, and ; indicates 294

concatenation. pe ∈ R2 is the probability whether 295

the candidate e satisfies the temporal relation hr 296

with respect to event hc. 297

3.3 Learning Objectives 298

We employ three learning objectives for model 299

training, including a classification loss Lqa function 300

for final answer prediction, and an attention loss 301

Latt and a contrastive loss Lcon for precise ques- 302

tion understanding. The overall loss is a weighted 303

combination of all the objectives, 304

L = wqaLqa + wattLatt + wconLcon. (8) 305

306
Answer Prediction Loss The training objective 307

for final answer prediction is defined as, 308

Lqa = −
∑
e∈C

wep̂
T
e logpe, (9) 309

where C is the candidate event set, we is the weight 310

for candidate e, pe ∈ R2 is the predicted probabil- 311

ity from Eq. (7), and p̂e ∈ {0, 1}2 is the golden 312

label indicating whether the candidate e belongs to 313

the final answer of the question. 314

Usually, the candidate set C is derived by pre- 315

liminary filtering all unigrams in the passage P . 316
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Figure 5: Illustration of the contrastive loss for question
understanding.

However, some candidates are easy to be classified317

while others are not. For example, it is easy to clas-318

sify the word government in Figure 1 as a negative319

answer since it is not an event. In contrast, predict-320

ing whether the word frozen is the answer for Q1321

in Figure 1 is more challenging. Inspired by this322

observation, we assign weights we for candidates323

in the learning objective, we = 1.5 if e is an event,324

and otherwise we = 1.0. The label of whether325

a word is an event can be derived when labeling326

the final answer with little effort, so we can safely327

assume that we always have such annotation1.328

Attention Loss Besides the answer prediction329

loss, we also leverage an auxiliary loss to guide330

the learning of the attention score α
(c)
i and α

(r)
i331

defined in Eq. (3). We first derive silver annota-332

tion for referred events and concerned relation in333

a passage using a rule-based approach, which will334

be detailed in Section 4.2. Let Qc, Qr be the set335

of event and relation tokens according to the silver336

annotation. Then we have α̂
(z)
i (z ∈ {c, r}) as the337

derived attention label,338

α̂
(z)
i =

{
1

|Qz | , if qi ∈ Qz,

0, otherwise.
(10)339

The attention loss is defined as,340

Latt = Lc + Lr, (11)341

where342

Lz = −
∑
i

α̂
(z)
i logα

(z)
i , z ∈ {c, r}. (12)343

344
Contrastive Loss As shown in Figure 1, a small345

change of a question might lead to substantially di-346

vergent temporal relations. To this end, we propose347

1The TORQUE dataset in our experiment also contains
such annotation, and we use it directly in our approach

to leverage a contrastive loss for precise learning 348

of question relation representations. 349

For the relation representation hr of a question 350

Q, we derive a positive vector hp
r and a set of 351

negative ones {hn
r,i}Ni=1). The positive sample hp

r 352

is obtained in two ways. First, we search ques- 353

tions with the same temporal relations but different 354

events, from which we randomly sample one and 355

take its relation representation as hp
r . Note we can 356

get the silver annotation of events and relations in 357

a question by a rule-based approach. Please re- 358

fer to section 4.2 for more details. Second, if no 359

such questions can be found, we take the similar 360

approach as in SimCSE (Gao et al., 2021), which 361

applies a different dropout on hr and gets a variant 362

of hr as hp
r . We search questions that contain the 363

same events by different temporal relations with 364

respect to Q, and take their relation representations 365

as the negative set {hn
r,i}Ni=1). 366

Given the triple (hr,h
p
r , {hn

r }) for the question 367

Q, its loss is defined as, 368

Lcon(Q) = − log
ecos(hr,h

p
r )

ecos(hr,h
p
r ) + 1

N

∑N
i=1 e

cos(hr,hn
r,i)

,

(13) 369

where cos() indicates cosine similarity. 370

3.4 Inference 371

The inference phase takes three steps. First, we gen- 372

erate a candidate set Cp for each passage P . Gener- 373

ally speaking, one can take any n-gram in P as a 374

candidate. In temporal relation understanding, we 375

usually take a triggering word as an event candidate. 376

Therefore, Cp is the set of all unigrams in P . Then, 377

we filter Cp according to part-of-speech (POS) tag- 378

ging. Specifically, we use an off-the-shelf POS tag- 379

ger to tag all words in P , and then keep only verbs 380

and nouns in Cp. Finally, each candidate e ∈ Cp 381

together with the passage P and the question Q 382

is fed into our proposed model, and e is evaluated 383

according to Eq. (7) and gets its score pe, where 384

pe,0 represents the probability that the candidate 385

matches the question Q. Then we can get the final 386

answer set A as A = {e : e ∈ Cp and pe,0 > τ}, 387

where τ is a predefined threshold. 388

4 Experiments 389

This section describes an empirical evaluation of 390

our proposed approach. We also provide analysis, 391

ablation studies, and case analysis to demonstrate 392

its effectiveness. 393
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4.1 Settings394

Dataset We evaluate the proposed approach on395

the TORQUE dataset. TORQUE is a temporal396

reading comprehension benchmark. Each training397

sample contains a passage and a question requiring398

understanding temporal relation between events in399

the passage. Figure 1 shows several examples of400

training data. The answer to a question consists401

of an event set A, and A could be empty if no402

event in the passage satisfies the requirement of the403

question. In TORQUE, events are defined as event404

triggers, usually verbs or nouns describing actions405

or states. There are 3.16k passages with 30.7k ques-406

tions in total and 2 events for an answer on average.407

We follow the official split2 with 80%/5%/15% of408

data in training/validation/test.409

Evaluation Metrics Following Ning et al.410

(2020)3, we report three metrics in our exper-411

iment, including standard macro F1 and Exact412

Match (EM) for question answering and consis-413

tency score(C). There are multiple annotations for414

each passage-question pair, which might not al-415

ways be consistent with each other. We follow the416

official implementation. Specifically, for each sam-417

ple, a model’s prediction is evaluated according to418

all annotations, where the largest score is selected419

and aggregated as the final result.420

4.2 Implementation Details421

We experiment four pre-trained language mod-422

els as our contextual encoder, i.e., the base and423

large model of BERT (Devlin et al., 2019) and424

RoBERTa (Liu et al., 2019). The embedding size425

d is set to 64, d′ in Eq (6) and Eq (7) is set426

to 64. The threshold τ for inference is set to427

0.5. In model training, the batch size is set to428

16, the dropout rate is set to 0.5. The combina-429

tion weight wqa, watt and wcon in Eq. (8) is set430

to 1.0, 0.3, and 1.0, respectively. We search the431

learning rate lr, with grid searching within 3 tri-432

als in lr ∈ {0.9× 10−5, 1.0× 10−5, 1.1× 10−5}433

for the base and large model of RoBERTa, and434

lr ∈ {4.0× 10−5, 5.0× 10−5, 6.0× 10−5} for the435

base and large model of BERT. The implementa-436

tion is based on Python and trained on a Tesla V100437

GPU with Adam optimizer for approximately three438

hours (base model with approximately 110M pa-439

rameters) and ten hours (large model with approx-440

imately 340M parameters). We get the averaged441

2https://github.com/qiangning/TORQUE-dataset
3https://github.com/rujunhan/TORQUE

result of three trials for each setting, choose the 442

model with the highest F1 score on the develop- 443

ment set, and report the performance on the test set 444

derived from the official online test4. 445

Deriving Attention Annotation The relation an- 446

notation Qr for question Q is derived as follows. 447

First, we compile a dictionary for temporal rela- 448

tions, such as before, after, etc. Please refer to 449

Appendix A.1 for the complete list. Then Qr is 450

constructed with those words in Q that hit the dic- 451

tionary. The event annotation Qc is mainly derived 452

according to the passage P . Particularly, we as- 453

sume the mentioned event list E in P is known. If 454

a word of Q matches an event in E, it is included in 455

Qc. Otherwise, if no words of Q hit E, we rely on 456

the relation annotation. Suppose the last relation 457

word is in position k, then Qk+1...n is set as Qc. 458

4.3 Main Results 459

Dev Test
F1 EM C F1 EM C

BERT-base

baseline† 67.6 39.6 24.3 67.2 39.8 23.6
Ours 70.5 44.6 26.2 69.8 43.0 26.1
∆ +2.9 +5.0 +1.9 +2.6 +3.2 +2.5

BERT-large

Baseline† 72.8 46.0 30.7 71.9 45.9 29.1
Ours 73.5 46.5 31.8 72.6 45.1 30.1
∆ +0.7 +0.5 +1.1 +0.7 -0.8 +1.0

RoBERTa-base

Baseline† 72.2 44.5 28.7 72.6 45.7 29.9
Ours 73.3 47.0 32.5 73.5 46.8 31.5
∆ +1.1 +3.5 +3.8 +0.9 +1.1 +1.6

RoBERTa-large

Baseline† 75.7 50.4 36.0 75.2 51.1 34.5
Ours 77.5 52.2 37.5 76.1 51.0 38.1
∆ +1.8 +1.8 +1.5 +0.9 -0.1 +3.6

Human - - - 95.3 84.5 82.5

Table 1: Comparison of our approach and the baseline
on the TORQUE Dataset. † denotes published results
(Ning et al., 2020).

We compare our approach with the baseline 460

(Ning et al., 2020), which takes a passage and 461

the corresponding question as input and applies 462

a one-layer perception on the embedding of each 463

token to predict whether it is the answer of the 464

question or not. The comparison results with four 465

different contextual encoders are shown in Table 466

1. The table shows that our proposed approach 467

4https://leaderboard.allenai.org/torque/submissions/public
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outperforms the baseline on nearly all evaluation468

metrics. Our model achieves state-of-the-art results469

with the RoBERTa-large encoder, increasing the F1470

score by 1.8% and 0.9% for the dev and test set,471

respectively. We can see a huge increase for the472

consistency score (C) on the test set from 34.5%473

to 38.1%. Using other pre-train language models474

like BERT-base, our model also improves the per-475

formance compared to the baseline approach, by476

2.6%, 3.2%, 2.5% in terms of F1, EM, and C score,477

respectively. Although there is still a large gap to-478

wards the human performance, our model takes a479

large step compared to the baseline approach, ver-480

ifying the effectiveness of the proposed approach.481

482

4.4 Ablation Study483

Models F1 EM C

OUR MODEL 76.1 51.0 38.1
-con 75.8 (-0.3) 49.8 (-1.2) 37.0 (-1.1)
-con -att 75.6 (-0.5) 50.8 (-0.2) 36.6 (-1.5)
-we 75.8 (-0.3) 50.6 (-0.4) 37.6 (-0.5)
-all 74.8 (-1.3) 49.7 (-1.3) 34.0 (-4.1)

Table 2: Ablation study on the test set of TORQUE.
RoBERTa-large is used as contextual encoder.

We conduct an ablation study to illustrate the ef-484

fectiveness of each loss in our approach. As shown485

in Table 2, removing the contrastive loss will lead486

to a 1.1% drop on consistency value. When we487

remove both the contrastive and attention loss for488

question understanding and use mean pooling over489

the contextual embedding of the whole question490

token sequence, the macro F1 score and the con-491

sistency score decrease by 0.5% and 1.5%, respec-492

tively, showing that precise question understanding493

plays a critical role for TRC. Also, we remove494

weight we in the answer prediction loss in Eq. (9),495

which results in a 0.3% drop in terms of the F1496

score. When all auxiliary loss is removed, which497

is basically the same as the baseline model with498

our own implementation, it leads to a huge gap499

of 1.3%, 1.3%, 4.1% on macro F1, exactly match500

and Consistency score, respectively. The results501

of the ablation study indicate that each element of502

our proposed model is critical for temporal relation503

understanding.504

4.5 Question Representation Analysis505

As discussed in Section 3.2, a straightforward so-506

lution for question understanding is to decompose507

a temporal ordering question into two parts di-508

Models F1 EM C

w contrastive loss

attention-based 76.1 51.0 38.1
rule-based 75.8 (-0.3) 50.6 (-0.4) 37.6 (-0.5)

w/o contrastive loss

attention-based 75.8 49.8 37.0
rule-based 75.6 (-0.2) 48.9 (-0.9) 36.3 (-0.7)

Table 3: Comparison of attention-based and rule-based
question representation learning. RoBERTa-large is
used as contextual encoder.

rectly. This section compares our attention-based 509

approach with the hard question decomposition, 510

which obtains the two question vectors hr and hc 511

by conducting mean pooling over embeddings of 512

tokens in Qr and Qc respectively. The comparison 513

results are shown in Table 3. We can see that al- 514

though the rule-based approach achieves relatively 515

good accuracy, it still underperforms our attention- 516

based approach. For example, when no contrastive 517

loss is employed, the EM score drops by 0.9% 518

when replacing the attention-based representation 519

with the rule-based one. The possible reason is 520

that the rule-based decomposition cannot handle 521

all questions perfectly, and errors in the decompo- 522

sition will be propagated to downstream modules. 523

For example, “What could have happened while 524

the announcement was made but didn’t?”. “but 525

didn’t” is a crucial negate in the temporal relation, 526

but the rule-based method might miss it. 527

4.6 Case Study 528

Figure 6 shows predicted answers of our model 529

and the baseline for several questions. For the first 530

passage, Questions 1, 2, and 3 inquire about the 531

“happened after” temporal relation, but with subtle 532

differences. Q1 is the most common form, which 533

can be answered correctly by both the baseline and 534

our proposed approach. Meanwhile, the baseline 535

model can not capture the negation information 536

in Q2 and fails to predict the correct answer. In 537

Q3 “happened after” is constrained by the word 538

begin, which confuses the baseline model and leads 539

to partially correct answers. In contrast, our pro- 540

posed approach can capture these subtle but critical 541

differences and thus makes correct predictions. 542

For the second passage, our proposed model 543

performs better for all three questions of differ- 544

ent temporal types. Q1 and Q2 are variants of 545

uncertain relations, which query about two oppo- 546

site temporal relations “started after” and “started 547

before”. The word “might” brings uncertainty for 548
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Figure 6: Case study of our approach and the baseline model. Correct answers are marked in blue. Incorrect ones are
marked in red. Candidate events in passages are underlined. Both the baseline and our approach use RoBERTa-large
as encoder.

the concerned temporal relation, which confuses549

the baseline model, leading to the wrong predic-550

tion for the candidate answer “turbulence” for both551

questions. Q3 queries about a popular temporal552

relation, and our model can precisely capture the553

difference between it and two other ones and pre-554

dict that the candidate event “increase” does not555

meet its requirement since it comes from a contro-556

versial report.557

4.7 Error Analysis558

We randomly sample 100 wrongly predicted559

question-passage pairs from the validation set,560

which can be summarized into three categories.561

562

Multi-round Reasoning Sometimes one needs563

to perform multi-round reasoning to infer the re-564

lation between two events, for example, given the565

passage “Roughly 40 minutes after the operation566

began, jubilant soldiers appeared on the rooftop of567

the residence, flashing the V victory sign. Then Fu-568

jimori, who ordered the operation, arrived to tour569

the residence and embraced the freed hostages.”,570

the temporal ordering between “ordered” and “the571

jubilant soldiers appeared on the rooftop” is in-572

ferred by multi-step reasoning. That is, “ordered”573

happened before “operation began”, and “opera-574

tion began” happened before “solder appeared”,575

and thus “ordered” happened before “appeared”.576

An advanced reasoning framework is necessary to577

handle such cases, and we leave it as future work.578

Commonsense Knowledge Required The given579

passage might not provide sufficient information.580

For example, in the passage “He was preparing the581

paperwork for the move, following the course of an582

absolutely standard transfer. Sadly he killed him- 583

self at home in the meantime.”, although it states 584

that “preparing the paperwork” and ““he killed 585

himself ” happened “in the meantime”, common- 586

sense knowledge indicates that one cannot kill him- 587

self and prepare the paperwork at the same time. 588

So we can infer that “preparing” happened before 589

“killed”. Incorporating external knowledge is a po- 590

tential solution for such cases. 591

Ambiguous Labeling Since the concept of event 592

is not well-defined, it might lead to ambiguous 593

labeling. Considering a passage contains a span 594

“decision is made”, some annotators might label 595

decision as a candidate event, while others does 596

not. This causes inconsistent labeling, and thus 597

makes it difficult to learn a good predictor. 598

5 Conclusion and Future Work 599

Temporal reading comprehension plays a critical 600

role in natural language understanding. In this pa- 601

per, we propose a precise question understanding 602

method to tackle the TRC problem. Specifically, 603

we encode temporal ordering questions into repre- 604

sentations of referred events and concerned tempo- 605

ral relations, based on which candidate answers are 606

evaluated in terms of their temporal relations to the 607

referred events. In addition, a contrastive loss is em- 608

ployed to empower the model to capture essential 609

differences among temporal relations. Experimen- 610

tal results based on four pre-trained models verify 611

the effectiveness of our proposed approach. In the 612

future, we will investigate general approaches to 613

handle more diverse temporal relation understand- 614

ing problems and improve the passage understand- 615

ing capability for temporal reading comprehension. 616
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A Supplement Information for768

Experiments769

A.1 Dictionary for Temporal Relations770

[’before’, ’after’, ’while’, ’not’, ’future’, ’might’,771

’happen’, ’will’, ’may’, ’have’, ’begin’, ’but’, ’fin-772

ish’, ’don’t’, ’continue’, ’do’, ’start’, ’eventually’,773

’during’, ’likely’, ’needs’, ’occur’, ’take’, ’place’,774

’lead’, ’when’, ’prior’, ’same’, ’time’, ’end’, ’on-775

going’, ’now’, ’past’, ’since’, ’already’, ’expect’,776

’go’, ’fail’, ’around’, ’once’, ’be’]777
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