
Under review as a conference paper at ICLR 2024

PROMPT SKETCHING FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many recent prompting strategies for large language models (LLMs) query the
model multiple times sequentially – first to produce intermediate results and then
the final answer. However, using these methods, both decoder and model are
unaware of potential follow-up prompts, leading to disconnected and undesirably
wordy intermediate responses. In this work, we address this issue by proposing
prompt sketching, a new prompting paradigm in which an LLM does not only
respond by completing a prompt, but by predicting values for multiple variables in a
template. This way, sketching grants users more control over the generation process,
e.g., by providing a reasoning framework via intermediate instructions, leading to
better overall results. The key idea enabling sketching with existing, autoregressive
models is to adapt the decoding procedure to also score follow-up instructions
during text generation, thus optimizing overall template likelihood in inference.
Our experiments show that in a zero-shot setting, prompt sketching outperforms
existing, sequential prompting schemes such as direct asking or chain-of-thought on
7 out of 8 LLM benchmarking tasks, including state tracking, arithmetic reasoning,
and general question answering. To facilitate future use, we release a number of
generic, yet effective sketches applicable to many tasks, and an open source library
called dclib, powering our sketch-aware decoders.

1 INTRODUCTION

While early prompting strategies for large language models (LLMs) focused on simple trigger phrases
to elicit the desired responses (Kojima et al., 2022), more recent work considers conversational
(Ouyang et al., 2022), multi-part, and template-guided LLM interactions, where a model is queried
several times in a constrained way, based on a template or grammar. This offers control over LLM
reasoning by filling in a template of pre-defined steps (Beurer-Kellner et al., 2023; Lundberg and
Ribeiro), allows interfacing with automated software systems, and enables syntactically reliable code
generation (Poesia et al., 2022).

Key Challenge: Decoding with (Hard) Structural Constraints We consider a simple application,
illustrated in Figure 1. The goal is to generate a list of items, satisfying two hard requirements:
(1) the result should be a dashed list of exactly four items and (2) the second item should be Frisbee.
To guarantee that these requirements are satisfied, prompting and fine-tuning alone are insufficient,
as unconstrained LLMs remain inherently stochastic, even with good instructions, demonstrations,
or training Arora et al. (2023); Zhao et al. (2021). To address this issue, template-guided inference
constructs a template from the (hard) constraints, leaving multiple holes for the LLM to fill during
the generation (top right, Figure 1). Unfortunately, the naive strategy of calling an unconstrained
model (Figure 1, left) for each placeholder fails frequently, as the model runs on, beyond the template,
generating many items per placeholder. A practical alternative is stop-and-go inference (middle):
By feeding the template incrementally, item-by-item, and enforcing stopping-conditions for each
call, we can force the overall output to adhere to the template. While this method is effective for
output formatting (Beurer-Kellner et al., 2023; Lundberg and Ribeiro), the model remains unaware of
the overall template when decoding each placeholder, leading to sub-optimal reasoning strategies.
For instance, in Figure 1, stop-and-go generates Frisbee as the first item, leading to a repetition of
the word, which would otherwise be unlikely under the model’s distribution. This example raises
three important questions: (1) How does stop-and-go inference compare to unconstrained inference –
Beurer-Kellner et al. (2023); Lundberg and Ribeiro do not evaluate this – in terms of overall model
performance on reasoning tasks? (2) Can we improve on naive stop-and-go inference by anticipating

1

Under review as a conference paper at ICLR 2024

Prompt: A list of single-word,
fun things to bring to a trip.

(Hard) Specification: A list of
exactly four items, with ’Fris-
bee’ as second element, such
that the resulting output is
guaranteed to be a parsable list.

Template: - [ITEM]
- Frisbee
- [ITEM]
- [ITEM]

Unconstrained Inference

- ITEM Frisbee
- Camera
- Snacks
- Sunglasses
- Hammock
- ...<EOS>
- Frisbee
- ITEM Sunscreen
...

✗ Fails to adhere
to template
✗ Repeats itself
✗ Seq. Decoding

Stop-And-Go Inference

- ITEM Frisbee ⬣
- Frisbee
- ITEM Camera ⬣
- ITEM Snacks ⬣

✓Adheres to template
✗ Repeats itself
✗ Sequential Decoding

Prompt Sketching (ours)

- ITEM Camera ⬣
- Frisbee
- ITEM Snorkeling gear ⬣
- ITEM Hammock ⬣

✓ Adheres to template
✓ Does not repeat
✓ Beam Search over template

Figure 1: Prompt Sketching is a novel inference method for template-guided text generation with
LLMs. In comparison to standard inference and sequential stop-and-go inference, prompt sketching
optimizes overall template likelihood, prevents repetitions, and adheres to the template structure.
Output generated by the model is highlighted, and enforced stopping phrases are indicated as ⬣.

the overall template during generation? And, (3) what are the general effects of these inference
methods, i.e., do they impair or improve the model’s reasoning capabilities?

This Work: Prompt Sketching To answer these questions, we present prompt sketching, a
novel framework for template-guided LLM inference. The key technical difference of sketching
in contrast to prior techniques is that we phrase the entire template as one segmented sequence
decoding problem, rather than multiple isolated model calls. This, (1) theoretically anchors standard
stop-and-go inference as a special case and (2) allows us to generalize and implement novel, sketch-
aware decoding procedures based on beam search, that optimize templates end-to-end. Figure 1
compares sketch-aware decoding (right) with unconstrained inference (left) and stop-and-go (middle).
Sketching allows us to adhere to the provided prompt template, while also optimizing multiple
placeholder variables jointly, in this case, avoiding a repetition of Frisbee. We carry out an extensive
experimental evaluation, showing that sketching outperforms non-templated prompting methods like
chain-of-thought on 7/8 LLM reasoning tasks, demonstrating the effectiveness of template-guided
inference in general reasoning. In our experiments, sketching allows us to consistently enforce
reasoning strategies across all tasks, enabling a more controlled form of LLM programming going
beyond simple prompting. For 5/8 tasks, we even observe significant improvements over simple
stop-and-go templating, demonstrating that sketch-aware decoding and joint optimization of multiple
variables are crucial components of effective template-guided LLM inference.

Main Contributions Our core contributions are:
• A framework of prompt sketching, phrasing multi-step and template-guided LLM inference

as a segmented sequence decoding problem.
• Two novel sketch-aware decoding procedures, transferring several insights from constrained

sequence decoding to general template-guided inference.
• A collection of ready-to-use, generic prompt sketches that work well with a number of hard

LLM reasoning tasks and can be easily adapted.
• The first extensive evaluation of sketching using stop-and-go as well as a several novel

(sketch-aware) decoding strategies, along with a comparison to non-templated inference.

Additionally, we publish an open source library dclib, included in the supplementary material (see
App. E), which allows the implementation of sketch-aware decoding procedures on top of OpenAI,
transformers, and llama.cpp models, thus facilitating future research and open source work.

2 BACKGROUND

We first provide relevant background on prompting and decoding, before discussing prompt sketching.

2

Under review as a conference paper at ICLR 2024

Decoding Most recent language models operate left-to-right only, i.e., they predict a probability
distribution p(yt|y<t,x) over the next token yt given an input sequence x = ⟨x1, x2, ..., xn⟩ and
previously predicted tokens y<t = ⟨y1, y2, ..., yt⟩. Thus, a core task is to transduce or decode a
model output y⋆ that maximizes some scoring function:

y⋆ = argmax
y∈Y

score(y,x). (1)

A popular choice for this scoring function is the posterior or joint probability assigned to the decoded
sequence by the language model. This leads to the so-called maximum a posteriori (MAP) solution:

yMAP := argmax
y∈Y

p(y|x) = argmax
y∈Y

ΠN
t=1p(yt|y<t,x) = argmax

y∈Y
ΣN

t=1 log p(yt|y<t,x) (2)

However, solving the MAP decoding exactly is generally intractable, as it requires all conditional
probabilities p(yt|y<t,x) over an exponentially large search space to be evaluated. To solve this
problem, a range of decoding strategies have been introduced, which aim to find approximate
solutions. To discuss them, it is helpful to imagine Y as a tree with the prompt or prefix x at the root
and children of a node corresponding to possible continuations, all scored by score(y<t,x).

ARGMAX Decoding corresponds to a depth-first search of our decoding tree that terminates once
the first solution has been found. Operationally, at every decoding step, we extend our hypothesis
y<(t−1) by choosing the next token yt to maximize score(yt | y<(t−1),x):

yARGMAX :=

N⊕
t=1

argmax
yt∈Y

p(yt|y<t,x) (3)

where ⊕ denotes concatenation. ARGMAX decoding is efficient, but will also disregard many
alternative hypotheses due to its greedy nature.

Beam Search corresponds to a breadth-first search in the decoding tree where the breadth (at every
tree depth) is limited to the beam width n. Operationally, we first determine the n best continuations
of all of our n hypotheses and then retain the n best ones across all these n2 continuations. This
yields high-quality solutions at moderate computational cost, making Beam Search popular across a
wide range of tasks. Interestingly, thus obtained solutions often outperform exact decodings (or very
large beam widths) in down-stream tasks (Holtzman et al., 2020). Meister et al. (2020) suggest that
this is due to beam search inducing a regularization towards uniform information density, which is
preferred in human speech.

Grid Beam Search (Hokamp and Liu, 2017) extends beam search to facilitate constraint decoding,
i.e., transducing a response such that it contains certain strings or satisfies constraints. As sequences
complying with such constraints typically achieve a much lower score than natural model predictions,
they would never be included using vanilla beam search. Grid beam search solves this problem by
introducing separate comparison pools for hypotheses satisfying different numbers of constraints.
To avoid a linear increase in beam width and thus computational cost in the number of constraints,
Post and Vilar (2018) introduce a dynamic beam allocation scheme that keeps the total beam width
constant and assigns slots on this beam depending on the number of satisfied constraints.

Length Normalization (Wu et al., 2016) is frequently employed to compare sequences of different
lengths, to compensate for the summation of additional negative logprobs. We can simply weight our
scoring function with a length normalization term, parametrized by β ∈ R≥0 and α ∈ [0, 1]:

w =
(β + 1)α

(β + |y|)α
, (4)

where β = 0 and α = 1 recovers the mean and α = 0 no normalization.

3 PROMPT SKETCHING

The core of prompt sketching is template-guided LLM inference, i.e., alternating model output
with template-derived intermediate tokens. This is different from sequential prompting methods

3

Under review as a conference paper at ICLR 2024

like chain-of-thought or answer-only, where first, the model consumes an input such as a ques-
tion or instructions and then generates an answer in an unconstrained way. More formally, we
consider a sketch S to be a template of the form S := "<p1> [v2] . . . <pk−2> [vk−1] <pk>" where,
pi are deterministic sequences of tokens, specified by the template, and vi are variables that are
completed by the model. This definition captures existing forms of prompting, where e.g. answer-
only (AO) can be written as SAO := "<Q> A: [ANSWER]" and chain-of-thought (CoT) prompting as
SCoT := "<Q> A: Let's think step by step. [COT].", where <Q> corresponds to a question and the
variable COT contains model reasoning as well as the final answer.

Single vs. Multi-Variable Sketches We consider SAO and SCoT as sequential, single-variable
sketches, as the variable is placed at the end of the template. The model, therefore, first digests all
provided information such as a question and reasoning instructions before generating the answer. In
contrast, with more general sketches, values for multiple variables can be generated, and deterministic
intermediate instructions can be inserted during the generation process. Existing examples of multi-
variable problems include conversational systems like ChatGPT, agentic prompting like ReAct (Yao
et al., 2022a), language model programming (Beurer-Kellner et al., 2023), and language model
cascades (Dohan et al., 2022).

Autoregressive Sketch Decoding Sketching extends the range of decoding strategies beyond just
sequential generation. However, most language models are still simple next-token predictors, i.e.,
given some prompt x, they generate a sequence of tokens y autoregressively, that is, one token at a
time, conditioned only on the previously generated tokens:

p(y|x) =
|y|∏
i=1

p(yi|x, y<i) (5)

To align this with sketching, we split the generated sequence y = {y1, . . . , yn}, including both deter-
ministic and variable portions, into k consecutive chunks Cy = {c1, . . . , ck} of lengths n1, . . . , nk

respectively, i.e., Cy =
{
{y1, . . . , yn1

}, . . . , {yn(k−1)+1, . . . , ynk
}
}

. Each chunk in Cy is then asso-
ciated either with a deterministic prompt part pi or a model-predicted variable vi. The overall joint
probability of all chunks is then defined as

p(c1, . . . , ck) =

k∏
j=1

nj∏
i=nj−1+1

p(yi|y<i) (6)

Crucially, we derive the values of all chunks from a single sequence of tokens y, which can be
predicted sequentially using an autoregressive model. A chunk- and variable-partitioned sequence can
then be leveraged by decoding algorithms to obtain higher-quality responses or inject deterministic
phrases during generation. The main challenge of this approach is the chunking strategy, i.e., a way
to split a generated sequence of tokens y into chunks of an a priori unknown length to determine
which variables they should be associated with.

Chunking with Stopping Phrases Like in stop-and-go inference, sketching relies on the use of
per-variable stopping phrases (SPs). SPs are specified as part of a prompt sketch and terminate the
generation of the current chunk i on occurence. This allows us to chunk the output sequence y,
assigning the resulting subsequences to variables vi, and keep the model from running-on without
respecting the sketch template. In case no specified stopping phrase occurs before the model predicts
its designated end-of-sequence token, we do not terminate the entire generation process, but only the
decoding of the current chunk, unless no further chunks remain.

Deterministic and Constrained Chunks To inject deterministic phrases during generation, we
force a predetermined sequence pi to be decoded, while still evaluating its likelihood p(ci|c<i).
Further, we consider constrained variables as a special case of non-deterministic variables, whose
values are predicted by the model, but can only be chosen from a restricted set of sequences (e.g.,
only numbers, matching a regular expression, etc.). To implement constrained variables, we rely
on the LMQL query language for LLMs (Beurer-Kellner et al., 2023). This allows us to mask out all
tokens that will not satisfy a given constraint during generation, such that the resulting value of some
restricted variable ci is guaranteed to satisfy the constraint.

4

Under review as a conference paper at ICLR 2024

Reasoning Framework
<Question>
Let’s weigh our options:
On the one hand [THOUGHT]
However, on the other
hand [THOUGH]
In conclusion, [ANSWER]

Interleaved Reasoning
Let’s digest this step by step.
<Q1>
So now, [STATE]
<Q2>
So now, [STATE]
Overall this means [ANSWER]

<S1> [IS_NEEDED1] to answer <Q>. However, <S2> [IS_NEEDED2]. Therefore, [CONCLUSION]

Figure 2: Two exam-
ples of simple multi-
variable sketches.

Example We show two example sketch templates in Figure 2. In
the Reasoning Framework example, we guide the model’s reasoning
process by inserting deterministic phrases such as "On the one hand",
"On the other hand", or "In conclusion" inbetween generated reasoning
steps. In the Interleaved Reasoning example, we feed the model our prob-
lem definition, e.g. sentence by sentence as chunks Qi, prompting for
intermediate results after each one. Once the full problem description has
been fed to the model, we generate the overall conclusion and answer.

3.1 SKETCH-AWARE DECODING

Sketching allows us to denote template-guided LLM inference as one long,
segmented sequence decoding problem. With greedy ARGMAX decoding
and autoregressive model conditioned on previously generated tokens only,
this recovers stop-and-go inference. As discussed in Section 1, however,
this form of sequential decoding does not account for yet-to-come parts of
the template. At the same time, we operate greedily so after a deterministic
chunk has been inserted, we cannot retroactively change the previously generated variable values.

To address this, we leverage the probabilistic understanding of sketching and propose a novel class
of decoding procedures that, in contrast to traditional token-level decoders, operate on the level of
the template to guide the decoding process end-to-end. Concretely, we experiment with two novel
decoder adaptations, namely: (1) Hierarchical Variable-Level Beam Search (VAR) and (2) Grid-Based
Beam Search (BEAMVAR). Next, we discuss the implementation of these methods in more detail.

VAR: Variable-Level Beam Search is based on the idea of applying beam search on the level of
the decoded placeholder variables. This means that instead of extending each active hypothesis by
the n most likely next tokens, we extend it by n sampled values for the currently decoded variable.
Starting with an empty sequence of tokens, we decode variable by variable. When at variable vi, we
have at most n hypotheses for which the variables v<i have been chosen. For each of them, we then
generate n proposals for variable vi, thus giving us n2 hypotheses over the variables v≤i. Among
these, we then select the n most likely ones according to the model score and move to the next
variable. Deterministic chunks are handled by appending them to the set of active hypotheses all at
once. This process is repeated until all variables have been decoded. See App. A, for a pseudo-code
implementation of VAR.

BEAMVAR: Variable-Grid Beam Search is based on the idea that the number of decoded variables
is an important measure of decoding progress and should thus be considered when comparing the
scores of different sequences during token-level beam search, to decide which to explore further. This
is particularly important in the presence of deterministic chunks, which, by their very nature, typically
have lower likelihoods under the model distribution than non-deterministic variables and would
thus never be included in a decoded hypothesis. To this end, we adapt the dynamic beam allocation
method of Post and Vilar (2018) to the sketching setting and propose Variable-Grid Beam Search
(BEAMVAR): We partition our beam width into separate pools depending on the currently decoded
variable vi and only compare scores per pool. To decide how many slots to allocate to each pool and
thus variable, we divide the beam width by the number of unique, currently decoded variables and
allocate the remainder to the pool with the most decoded variables, reassigning unused slots to pools
decoding later variables, to ensure progress at the template-level. A pseudo-code implementation of
BEAMVAR can be found in App. A.

4 EXPERIMENTAL EVALUATION

We focus our evaluation on the following questions: (1) Is templated-guided inference and sketching
effective at improving the performance of LLMs on reasoning tasks? (2) Can sketch-aware decoders
outperform existing decoders in and outside of the sketching setting? And (3), what kind of tasks
benefit the most from sketching? To answer these questions, we compare model performance with
non-templated, sequential inference on a wide range of different reasoning benchmarks for LLMs
(Section 4.1) and also experiment with novel applications enabled by prompt sketching (Section 4.2).

5

Under review as a conference paper at ICLR 2024

Table 1: text-davinci-003 task accuracy with Answer-Only, Chain-Of-Thought, and Prompt Sketching
(ours) using ARGMAX, BEAM, BEAMVAR (ours) and VAR (ours) decoding. Each configuration is
evaluated on 100 uniformly sampled instances per task. Best results are bold.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.48 0.70 0.75 0.75 0.69 0.72 0.73 0.66 -

Information Essentiality+∗ - - - - - 0.01 0.25 0.06 0.15

Question Answering
AQuA (Ling et al., 2017) 0.31 0.37 0.37 0.35 0.35 0.40 0.47 0.35 -

StrategyQA (Geva et al., 2021) 0.68 0.71 0.72 0.67 0.67 0.69 0.77 0.66 -

Arithmetic Reasoning
Multistep Arithmetic+ 0.20 0.43 0.44 0.49 0.44 0.45 0.48 0.38 -

GSM8K (Cobbe et al., 2021) 0.08 0.56 0.58 0.64 0.57 0.57 0.53 0.59 -

Interleaved Reasoning
Tracking Shuffled Objects+ 0.19 0.62 0.47 0.52 0.62 0.64 0.62 0.66 -

Matrix Shapes+ 0.61 0.77 0.77 0.71 0.76 0.81 0.79 0.85 -
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

Sketched Chain-Of-Thought
"Q: <question>"
"Answer Choices: (A)...(B)..."
"A: Let's think step by step."

for i in range(12):
"- [THOUGHT]"
if not THOUGHT.endswith("\\n"):
"\\n"
if "answer" in THOUGHT: break

"Overall this means,[CONCLUSION]
Therefore, among A through E,
the answer is[answer]"

Figure 3: A sketched formulation of
chain-of-though reasoning.

Models We use OpenAI’s text-davinci-003 InstructGPT
model (175B parameters; Ouyang et al. (2022)) and Llama-2
Chat (13B parameters; Llama-2 in the following; Touvron
et al. (2023)) to evaluate. While text-davinci-003 clearly is
the more capable model, we find that Llama-2 provides an in-
teresting comparison point for the applicability of sketching
to smaller, more open models. We further also experimented
with OpenAI’s smaller text-curie-001 model (comparative
study in App. C.2).

Baselines As a baseline, we compare sketching to non-
templated zero-shot formulations of answer-only (AO) and
chain-of-thought (CoT), using zero-shot CoT (Kojima et al.,
2022) for the latter. Examples of all used prompts/sketches
are given in App. F. During generation, no task demonstra-
tions are provided and the model is prompted with simple instructions only. This highlights a core
benefit of sketching: the ability to precisely guide the model during generation without concrete
demonstrations. Still, we also include a comparison with few-shot prompting in App. C.1, which is
generally orthogonal to sketching.

Datasets and Sketches We evaluate on a total of 8 LLM reasoning tasks. For each task, we apply
one of two generic sketch templates: For arithmetic and logical reasoning, date understanding, and
general question answering, we rely on a sketched form of chain-of-thought, as shown in Figure 3.
For state tracking and matrix shape reasoning, we employ an interleaved reasoning sketch, as shown
in Figure 2, splitting task descriptions into sentences and interleaving them with the model’s reasoning
steps. For a detailed description of the tasks and sketches, we refer to App. F.

Compute and Dataset Size The total costs of our OpenAI experiments are roughly $4,000 USD in
API use. To limit these costs for our OpenAI experiments specifically, we evaluate only 100 uniformly
random samples per task-decoder configuration, with confidence bounds reported in App. C.3. For
Llama-2, on the other hand, we run all of our experiments on 1000 samples per task (or the full
datasets), using a single NVIDIA H100 GPU with 80GB memory.

Decoder Configurations As a baseline for our sketch-aware decoding procedures, we compare
with ARGMAX and traditional beam search (BEAM), applied to each sketch variable individually.
Based on this, we examine the benefit of sketching with and without our sketch-aware decoders VAR

and BEAMVAR. For BEAM, VAR, and BEAMVAR we use a beam width of n = 2 and rely on length
normalized scoring in line with previous work (Wu et al., 2016), using β = 0 and α = 0.7.

6

Under review as a conference paper at ICLR 2024

Table 2: Evaluation results for Llama-2 Chat (13 billion parameters) analogous to Table 1. Zero-shot
task accuracy with Answer-Only, Chain-Of-Thought, and Prompt Sketching (ours) using ARGMAX,
BEAM, BEAMVAR (ours) and VAR (ours) decoding. Best results in bold.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.496 0.591 0.599 0.613 0.580 0.634 0.656 0.642 -

Information Essentiality+∗ - - - - - 0.088 0.132 0.132 0.132

Question Answering
AQuA (Ling et al., 2017) 0.231 0.291 0.311 0.275 0.271 0.239 0.255 0.243 -

StrategyQA (Geva et al., 2021) 0.564 0.555 0.566 0.570 0.568 0.638 0.630 0.640 -

Arithmetic Reasoning
Multistep Arithmetic+ 0.038 0.133 0.120 0.138 0.132 0.126 0.142 0.103 -

GSM8K (Cobbe et al., 2021) 0.049 0.276 0.296 0.305 0.296 0.320 0.353 0.350 -

Interleaved Reasoning
Tracking Shuffled Objects+ 0.197 0.196 0.204 0.198 0.188 0.227 0.210 0.234 -

Matrix Shapes+ 0.227 0.068 0.065 0.056 0.191 0.205 0.200 0.204 -
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

4.1 TASK ACCURACY

In Tables 1 and 2, we report our main results on task performance with text-davinci-003 and Llama-2,
respectively. Considering only ARGMAX decoding, we consistently observe improved or maintained
performance with sketching, as compared to sequential CoT or AO (7 out of 8 improved for
text-davinci-003, 6 out of 8 with Llama-2). This shows, that simple ARGMAX sketching can already
be effective (up to 4% and 8% points improvement for text-davinci-003 and Llama-2 respectively).
Manual inspection reveals that sketching consistently results in clearly structured reasoning, while
with CoT the model makes a seemingly random choice about the form of reasoning applied to each
sample (simple text, a list of steps, etc.), impairing task accuracy (see App. F for detailed examples).

Llama-2 largely confirms our results for text-davinci-003. Two outliers are the matrix shapes task
and the AQuA dataset Ling et al. (2017). For both, Llama-2 exhibits very bad performance across all
decoding and prompting strategies, suggesting that the model is likely unable to perform these tasks
at all. We attribute this to the difference in model size when compared to OpenAI. text-davinci-003
has 175 billion parameters, while the Llama-2 variant only has 13 billion parameters. As shown by
Kojima et al. (2022), model size directly relates to an increase in general reasoning capabilities.

Decoders Combining simple sketches with sketch-aware decoding, we observe even stronger
performance gains of up to 10% points, e.g., for BEAMVAR compared to sequential prompting with
ARGMAX or BEAM on the question answering datasets AQuA (Ling et al., 2017) and StrategyQA
(Geva et al., 2021) with text-davinci-003. We observe VAR to perform particularly well on tasks
that rely on interleaved reasoning while BEAMVAR is more effective in other settings. For Llama-2,
we observe analogous effects, e.g., BEAMVAR improves performance on Date Understanding and
GSM8K by almost 7% points, compared to non-templated CoT and simple ARGMAX.

For text-davinci-003, we also observe notable performance gains of up to 6% points, when using
our sketch-aware decoders in combination with the established Zero-Shot CoT (Kojima et al., 2022)
prompting scheme (cf. Table 1). This is because Zero-Shot CoT already is a two-part prompting
scheme, which naturally benefits from our sketch-aware decoders, letting them optimize over the
reasoning process (first variable) and final answer (second variable) jointly.

4.2 NOVEL APPLICATIONS ENABLED BY PROMPT SKETCHING

Reasoning Framework
<Question>
Let’s weigh our options:
On the one hand [THOUGHT]
However, on the other
hand [THOUGH]
In conclusion, [ANSWER]

Interleaved Reasoning
Let’s digest this step by step.
<Q1>
So now, [STATE]
<Q2>
So now, [STATE]
Overall this means [ANSWER]

<S1> [IS_NEEDED1]
to answer <Q>
However, <S2> [IS_NEEDED2].
Therefore, [CONCLUSION]

Figure 4: Information Essen-
tiality prompt with forward
references (details in App. F).

In addition to reasoning performance, sketching also enables novel
applications, for which non-templated sequential inference either
fails completely or is much less effective and reliable. We highlight
multiple scenarios here (causal reordering, sudoku, interactive en-
vironments) and expand on them in App. B (JSON generation and
graph traversal).

7

Under review as a conference paper at ICLR 2024

Table 3: Sketch-aware decoding enables sudoku solving and more effective graph and world traversal.

Sequential Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAMVAR VAR

Sudoku (3x3)
text-davinci-003 98/100 (reordered) 15/100 66/100 62/100
text-curie-001 9/100 (reordered) 5/100 38/100 33/100

Dungeon Escape
text-davinci-003 - 93/100 (∼4.14 steps) 100/100 (∼2.75 steps) 96/100 (∼3.42 steps)
text-curie-001 - 38/100 (∼4.0 steps) 76/100 (∼2.94 steps) 46/100 (∼2.30 steps)

TextWorld
text-davinci-003 - 24/32 (∼11.21 steps) 27/32 (∼9.37 steps) 24/32 (∼9.56 steps)

Causal Reordering First, we investigate forward referencing abilities with our sketch-aware
decoders. More specifically, we examine whether sketch-aware decoders enable the model to
anticipate future information to some degree. For this, we adapt the existing Information Essentiality
dataset (Srivastava et al., 2022), by reordering it according to the template shown in Figure 4. The
model has to determine the essentiality of two statements <S1> and <S2>, with respect to a given
question <Q>. However, in our reordered prompt, the result variable IS_NEEDED1 is decoded before the
<Q> is shown. For this custom task (cf. Table 1), we indeed observe that ARGMAX is incapable of
producing any meaningful results (0.01 accuracy), whereas, BEAMVAR and VAR achieve an improved
accuracy of 0.25 and 0.06 respectively, by exploring a wider hypotheses space.

Sudoku We further examine the capabilities of a model to solve simple 3× 3 sudoku-like puzzles:
the LLM is tasked to complete a partial grid with unique numbers in 1− 9. Similar to before, this
task requires forward referencing to effectively choose the correct numbers. As shown in Table 3, out
of 100 puzzles with 1− 6 empty spots, sequential ARGMAX decoding is only capable of solving 15.
This is expected, as greedy decoding does not allow to anticipate any future information (i.e. fixed
numbers), before choosing earlier ones. In contrast, BEAMVAR and VAR solve 66/100 and 62/100
puzzles respectively, demonstrating again that they explore a wider hypotheses space. A potential
alternative is to re-order the template, which allows text-davinci-003 to achieve perfect accuracy
with ARGMAX, although re-ordering is not always an option with more complex multi-step puzzles.

Interactive Environments Sketch-aware decoders can take the effect of template-induced continu-
ations into account. If we choose these continuations dynamically based on previous model output,
we can effectively leverage them to explore interactive environments (Driess et al., 2023). For this,
we experiment with LLM-guided graph and world traversal, where an LLM agent traverses a world,
starting out in a randomly chosen room, with the goal of finding the exit or completing some other
task. For this, we run with random graphs (Dungeon Escape), as well as generated TextWorld (Côté
et al., 2019) environments. For further details on the setup, we refer to App. B.2. As shown in Table 3,
in Dungeon Escape, ARGMAX mostly finds the exit, but often requires a lot more steps (∼ 4) than
VAR (∼ 2.8) and BEAMVAR (∼ 2 − 3) for both OpenAI models, with the smaller text-curie-001

model being less effective overall. In TextWorld, wee generally see similar trends, though lower
success rates.

4.3 DISCUSSION

Our evaluation shows that sketching and, by extension, template-guided LLM inference in general,
can significantly improve model reasoning capabilities. Here, we briefly discuss limitations and other
considerations relating to design, compuational, and applicability aspects.

Sketch Design and Iteration While still sensitive to wording, prompt sketching does offer more
control over exact model behavior, thereby addressing some of the difficulties of traditional prompt
design (Reynolds and McDonell, 2021; Arora et al., 2023; Zhao et al., 2021). However, sketching is
also not a silver bullet: Most importantly, we find that an effective sketch must not be too restrictive
to not impair model performance. Still, as substantiated by our results, even simple sketches can
already be effective at improving reasoning capabilities. Lastly, much like non-templated prompts,
sketches still require iterative development and tuning to achieve optimal performance on a given
task. More importantly, however, they offer benefits such as improved control, a guaranteed output
format, and reduced free-text formatting instructions, otherwise needed.

8

Under review as a conference paper at ICLR 2024

Applicability While sketch design still requires some effort, we find that many tasks in our
evaluation can be solved with a small set of generic sketches. For instance, we find that a sketched
form of chain-of-thought (Wei et al., 2022a) (see Figure 3) is already effective for a wide range of
tasks, including arithmetic reasoning and general question answering. For direct adoption, we also
publish the sketches used in our evaluation, which can be adapted or used as-is by practitioners.

Computational Overhead Of Sketch-Aware Decoding Sketch-aware decoders naturally incur
computational overhead compared to simple, greedy search. While BEAMVAR requires as much
compute as regular beam search, VAR requires an additional factor of beam width n more hypotheses
to be tracked in parallel. Similar to regular beam search, this is a well-known trade-off: branching
decoders are more expensive but still widely used, especially when improved performance and
diversity are important.

5 RELATED WORK

Prompting Recent works have proposed a variety of different prompting techniques including
chain-of-thought prompting (Wei et al., 2022a;b), interactive question answering (Yao et al., 2022b),
self-consistency (Wang et al., 2022a), and ThinkSum (Ozturkler et al., 2022). These prompt pro-
gramming techniques (Reynolds and McDonell, 2021; Zhou et al., 2022), aim to leverage the general
reasoning abilities of LLMs to solve diverse tasks. To enable the efficient implementation of such
complex prompting techniques, LM-focused programming systems have recently been introduced:
PromptChainer (Wu et al., 2022), PromptSource (Bach et al., 2022), and LMQL (Beurer-Kellner
et al., 2023) provide development environments for LM interaction. We build on LMQL, as it
supports variable constraints and control flow within prompts, enabling the efficient representation of
sketches. Finally, language model cascades (Dohan et al., 2022) view LM querying as probabilistic
programming over multiple variables, thus implicitly assuming a sketching setting and opening up
interesting perspectives for more advanced decoders in the future. In contrast to prompt sketching,
however, existing works compose multiple LLM calls in a disconnected manner, and, crucially, do
not consider the overall likelihood of the resulting sequence.

Language Model Decoding Most decoding techniques either aim to approximately recover the
maximum a posteriori solution under the model distribution or sample from it. Beyond direct
sampling from the model distribution, Nucleus Sampling (Holtzman et al., 2020) clips away the
tail of the distribution and Locally Typical Sampling (Meister et al., 2022) considers a subset that
yields uniform information density sequences. While ARGMAX can be seen as a best-first search
of the decoding tree with a maximum width of 1, Beam Search can be seen as a width-first search
with a width constrained to k (often 5) trajectories. Best First Beam Search (Meister et al., 2020)
combines the two ideas, always exploring the sequence with the largest score while maintaining
the width limit, to increase efficiency. Best-k Search (Xu et al., 2022a) drops the width restriction
and always explores the k highest scoring sequences. Lattice decoding (Xu et al., 2022b) allows for
the recombination of similar trajectories, leading to more diverse solutions. Diverse Beam Search
(Vijayakumar et al., 2016) includes a diversity objective in scoring beams. To improve performance
on constraint decoding problems, Grid Beam Search (Hokamp and Liu, 2017) creates separate beams
for sequences satisfying a different number of constraints. Post and Vilar (2018) propose Dynamic
Beam Allocation to instead partition a fixed beam width into pools depending on the number of
satisfied constraints, with Hu et al. (2019) introducing a vectorized implementation.

6 CONCLUSION

We presented prompt sketching, a novel framework for template-guided LLM inference that phrases
templated generation as a segmented sequence decoding problem. This perspective unlocks novel
sketch-aware decoding procedures that optimize for overall template likelihood and not just sequen-
tially generate text. Our experiments show that sketching outperforms naive templating as well
as sequential prompting like chain-of-thought on 7 out of 8 hard LLM reasoning tasks, improving
task accuracy by up to 10% points. Looking forward, we also show how sketching enables novel
applications such as reliable output formatting, forward references in reasoning, and LLM-guided
graph traversal, inspiring future work in this direction.

9

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY

We publish our code, prompts, and detailed instructions on how to reproduce our results at
ANONYMIZED, providing an anonymized version to the reviewers in the supplementary mate-
rial, including our implementation of dclib (also see App. E). Additionally, we provide detailed
descriptions of all prompts in App. F.

10

Under review as a conference paper at ICLR 2024

REFERENCES

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are Zero-Shot
Reasoners,” ArXiv preprint, vol. abs/2205.11916, 2022.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray et al., “Training language models to follow instructions with human feedback,” Advances
in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is programming: A query language for
large language models,” Proceedings of the ACM on Programming Languages, vol. 7, no. PLDI,
pp. 1946–1969, 2023.

S. Lundberg and M. T. C. Ribeiro, “Guidance-ai/guidance: A guidance language for controlling large
language models.” [Online]. Available: https://github.com/guidance-ai/guidance

G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani, “Synchromesh:
Reliable code generation from pre-trained language models,” in The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=KmtVD97J43e

S. Arora, A. Narayan, M. F. Chen, L. J. Orr, N. Guha, K. Bhatia, I. Chami, and C. Ré,
“Ask me anything: A simple strategy for prompting language models,” in The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=bhUPJnS2g0X

Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate before use: Improving few-shot
performance of language models,” in Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings of Machine
Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 12 697–12 706.
[Online]. Available: http://proceedings.mlr.press/v139/zhao21c.html

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,”
in Proc. of International Conference on Learning Representations (ICLR), 2020.

C. Meister, R. Cotterell, and T. Vieira, “If beam search is the answer, what was the question?” in
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

C. Hokamp and Q. Liu, “Lexically constrained decoding for sequence generation using grid beam
search,” in Proc. of Association for Computational Linguistics (ACL), R. Barzilay and M. Kan,
Eds., 2017.

M. Post and D. Vilar, “Fast lexically constrained decoding with dynamic beam allocation for neural
machine translation,” in Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), 2018.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s neural machine translation system:
Bridging the gap between human and machine translation,” ArXiv preprint, vol. abs/1609.08144,
2016.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “ReAct: Synergizing Reasoning
and Acting in Language Models,” ArXiv preprint, vol. abs/2210.03629, 2022.

D. Dohan, W. Xu, A. Lewkowycz, J. Austin, D. Bieber, R. G. Lopes, Y. Wu, H. Michalewski, R. A.
Saurous, J. Sohl-dickstein, K. Murphy, and C. Sutton, “Language Model Cascades,” ArXiv preprint,
vol. abs/2207.10342, 2022.

11

https://github.com/guidance-ai/guidance
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/pdf?id=bhUPJnS2g0X
http://proceedings.mlr.press/v139/zhao21c.html

Under review as a conference paper at ICLR 2024

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom, “Program induction by rationale generation:
Learning to solve and explain algebraic word problems,” in Proc. of Association for Computational
Linguistics (ACL), 2017.

M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant, “Did aristotle use a laptop? a
question answering benchmark with implicit reasoning strategies,” Transactions of the Association
for Computational Linguistics, vol. 9, 2021.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano et al., “Training verifiers to solve math word problems,” ArXiv preprint, vol.
abs/2110.14168, 2021.

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. San-
toro, A. Gupta, A. Garriga-Alonso, A. Kluska, A. Lewkowycz, A. Agarwal, A. Power, A. Ray,
A. Warstadt, A. W. Kocurek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain,
A. Askell, A. Dsouza, A. Rahane, A. S. Iyer, A. Andreassen, A. Santilli, A. Stuhlmüller, A. M. Dai,
A. La, A. K. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli,
A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubarajan, A. Mullokandov,
A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A. Karakas, and et al., “Beyond the imitation game:
Quantifying and extrapolating the capabilities,” ArXiv preprint, vol. abs/2206.04615, 2022.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv
preprint arXiv:2307.09288, 2023.

D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong,
T. Yu et al., “Palm-e: An embodied multimodal language model,” arXiv preprint arXiv:2303.03378,
2023.

M.-A. Côté, A. Kádár, X. Yuan, B. Kybartas, T. Barnes, E. Fine, J. Moore, M. Hausknecht, L. El Asri,
M. Adada et al., “Textworld: A learning environment for text-based games,” in Computer Games:
7th Workshop, CGW 2018, Held in Conjunction with the 27th International Conference on Artificial
Intelligence, IJCAI 2018, Stockholm, Sweden, July 13, 2018, Revised Selected Papers 7. Springer,
2019, pp. 41–75.

L. Reynolds and K. McDonell, “Prompt programming for large language models: Beyond the few-
shot paradigm,” in CHI ’21: CHI Conference on Human Factors in Computing Systems, Virtual
Event / Yokohama Japan, May 8-13, 2021, Extended Abstracts, 2021.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou, “Chain of thought
prompting elicits reasoning in large language models,” arXiv preprint arXiv:2201.11903, 2022.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le,
“Finetuned language models are zero-shot learners,” in Proc. of International Conference on
Learning Representations (ICLR), 2022.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning
and acting in language models,” ArXiv preprint, vol. abs/2210.03629, 2022.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, and D. Zhou, “Self-consistency improves chain
of thought reasoning in language models,” ArXiv preprint, vol. abs/2203.11171, 2022.

B. Ozturkler, N. Malkin, Z. Wang, and N. Jojic, “Thinksum: Probabilistic reasoning over sets using
large language models,” ArXiv preprint, vol. abs/2210.01293, 2022.

Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba, “Large language models are
human-level prompt engineers,” ArXiv preprint, vol. abs/2211.01910, 2022.

T. Wu, E. Jiang, A. Donsbach, J. Gray, A. Molina, M. Terry, and C. J. Cai, “Promptchainer: Chaining
large language model prompts through visual programming,” in CHI ’22: CHI Conference on
Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5 May 2022,
Extended Abstracts, 2022.

12

Under review as a conference paper at ICLR 2024

S. H. Bach, V. Sanh, Z. X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S. Bari,
T. Févry, Z. Alyafeai, M. Dey, A. Santilli, Z. Sun, S. Ben-David, C. Xu, G. Chhablani, H. Wang,
J. A. Fries, M. S. AlShaibani, S. Sharma, U. Thakker, K. Almubarak, X. Tang, D. R. Radev, M. T.
Jiang, and A. M. Rush, “Promptsource: An integrated development environment and repository
for natural language prompts,” in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics, ACL 2022 - System Demonstrations, Dublin, Ireland, May 22-27, 2022,
2022.

C. Meister, T. Pimentel, G. Wiher, and R. Cotterell, “Locally typical sampling,” ArXiv preprint, vol.
abs/2202.00666, 2022.

J. Xu, C. Xiong, S. Savarese, and Y. Zhou, “Best-k search algorithm for neural text generation,” ArXiv
preprint, vol. abs/2211.11924, 2022.

J. Xu, S. Jonnalagadda, and G. Durrett, “Massive-scale decoding for text generation using lattices,”
in Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United
States, July 10-15, 2022, 2022.

A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee, D. J. Crandall, and D. Batra,
“Diverse beam search: Decoding diverse solutions from neural sequence,” ArXiv preprint, vol.
abs/1610.02424, 2016.

J. E. Hu, H. Khayrallah, R. Culkin, P. Xia, T. Chen, M. Post, and B. Van Durme, “Improved lexically
constrained decoding for translation and monolingual rewriting,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), 2019.

C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial limits illustrated in the case of the
binomial,” Biometrika, vol. 26, no. 4, 1934.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou,
“Self-consistency improves chain of thought reasoning in language models,” arXiv preprint
arXiv:2203.11171, 2022.

13

Under review as a conference paper at ICLR 2024

A DECODING ALGORITHMS

Variable-Level Beam Search VAR The pseudo-code implementation of VAR is given in Algorithm 2.
The function expanddet, expands a given sequence by a deterministic chunk if the next chunk in
the prompt template is not a variable. The function expandsample, expands a given sequence by
sampling n different continuations for the next variable value in the prompt template. Lastly, topn
selects the n best sequences from a given set of sequences, according to the the length normalized
beam search score as discussed in Section 2. In practice, an additional early stopping criterion on
done is employed.

Algorithm 1 Variable-Level Beam Search (VAR)

Require: Input n: number of beams, V set of variables
Ensure: set of n VAR-best hypotheses done

1: h← {<bos>}, h′ ← {}
2: for vi ∈ V do
3: h← expanddet(h)
4: for s ∈ h do
5: h′ ← h′ + expandsample(s, n)
6: end for
7: h← topn(h

′)
8: done, h← separate_done(h)
9: end for

Variable-Grid Beam Search VAR The simplified pseudo-code implementation of BEAMVAR is
given in Algorithm 2. The function expanddet, expands a given sequence by a deterministic chunk if
the next chunk in the prompt template is not a variable. The function expandtop, expands a given
sequence by the top-n token continuations according to the model distribution. post_vilar determines
the dynamic beam size per group according to Post and Vilar (2018), where groups are defined by the
currently decoded variable and or deterministic chunk. Lastly, topn selects the n best sequences from
a given set of sequences, according to the the length normalized beam search score as discussed in
Section 2. In practice, an additional early stopping criterion on done is employed.

Algorithm 2 Variable-Grid Beam Search (BEAMVAR)

Require: Input n: number of beams, N : maximum length, V set of variables
Ensure: set of n BEAMVAR-best hypotheses done

1: h← {<bos>}, h′ ← {}
2: for i ∈ {1, . . . , N} do
3: h← expanddet(h)
4: h′ ← {}
5: {Expand each hypothesis in h by its top-n continuations}
6: for s ∈ h do
7: h′ ← h′ + expandtop(s, n)
8: end for
9: h← {}

10: {Determine dynamic beam size per group according to Post and Vilar (2018)}
11: {n0 . . . n|V|} ← post_vilar(h′)
12: for vi ∈ V do
13: h← h+ topnvi

(h′)
14: end for
15: {Filter out completed sequences}
16: done, h← separate_done(h)
17: end for

14

Under review as a conference paper at ICLR 2024

B APPLICATIONS

B.1 SKETCHING FOR OUTPUT FORMATTING

Alex Kim is a software architect at Intel, designing and
implementing complex systems for the company's processors. He
graduated from the University of California, Los Angeles with a
degree in Computer Science and enjoys playing video games and
practicing photography.
As JSON:
{

 "name": "[VALUE] Alex Kim",

 "job": "[VALUE] software architect",

 "role": "[VALUE] systems engineer",

 "education": {

 "university": "[VALUE] University of

 California, Los

 Angeles",

 "degree": "[VALUE] Computer Science",

 },

 "interests": "[VALUE] video games,

 photography",

}

Figure 5: Sketched JSON parsing.
Only highlighted text is completed by
the model.

One direct application of sketching, is to generate schema-
conform JSON objects with LLMs, given only free text as
input, as illustrated in Figure 5. Using sketching, we can
guarantee the output format 10/10 times with different ex-
amples similar to the one shown in Figure 5. This works for
both, text-davinci-003 and text-curie-001, regardless of
the model (size) used. Without sketching, text-davinci-003
requires detailed descriptions of the output format in the
prompt to produce valid JSON at a similar rate. At the same
time it may still fail stochastically (no guarantees), and the
smaller text-curie-001 is not be able to produce valid JSON
at all when just instructed to do so. Further, including de-
tailed data format instructions in non-templated queries in
this way, causes a high average inference cost of 179.5 to-
kens per sample, reduced to 28.7 when using sketching, an
84% reduction in inference cost.

B.2 INTERACTIVE ENVIRONMENTS

As part of our evaluation, we also consider the use of sketching and our sketch-aware decoders in
interactive environments.

Dungeon Escape For our Dungeon Escape experiment, we generate 100 random dungeons with
8− 10 rooms each, where the average shortest exit route is 2.3 steps away. At each node, the model
is asked for the next room/node to traverse to. We rely on the following interactive sketch program
with corresponding constraints on sketch variable ACTION:

node = <initialized to start node>
steps = 0
max_steps = 10

while rooms[node] != 'Exit':
name = rooms[node]
neighbours = hallways[node]
"System: You are in room {node} '{name}'. "
"You can go to {neighbours}. "
"Where do you want to go?\n"
"You:[ACTION]\n"
next_node = int(ACTION.strip())
if next_node not in neighbours:

"System: {next_node} is not a valid neighboring
room of '{name}'. Valid rooms are {neighbours}.\n"

else:
node = next_node

steps += 1

if steps > max_steps:
"System: You have taken too many steps. You lose.\n"
return "failure"

return "success"

Constraints: ACTION in ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]

Depending on the graph that is being explored, this results in a runtime instantiation of a prompt
sketch as shown in Figure 6. The sketch-aware decoder is then used to generate the next action
to take, given the current state of the environment. The generated action is then executed in the
environment and the process is repeated until the agent reaches the exit or the maximum number
of steps is exceeded. Depending on the decoding algorithm, the agent can be made to explore the

15

Under review as a conference paper at ICLR 2024

environment in different ways. For example, ARGMAX will result in a greedy, depth-first search,
while VAR and BEAMVAR result in a breadth-first search.

Figure 6: Exploring a graph using prompt sketching.

TextWorld For our TextWorld experiments, we rely on the following command, to generate custom
environments of different sizes and difficulty levels:

tw-make custom --world-size 5 --nb-objects 10 --quest-length {i} --seed 4321 --output
eval_games/game-{i}.z8

We choose i ∈ [2,10] and generate 4 worlds per size. We decode a sketch that uses an LLM to
decode the next TextWorld action to perform. We report the detailed results about the number of steps
and the number of games solved in Figure 7. As shown, especially towards larger game size (more
actions required), BEAMVAR and VAR solve more games and require less steps to do so, compared to
ARGMAX. This is in line with our results on the Dungeon Escape environment. ARGMAX performs a
greedy, single, depth-first traversal with in-context backtracking, while VAR and BEAMVAR perform a
breadth-first search, allowing them to complete quests quicker and more reliably.

3 4 5 6 7 8 9 10
Game Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ov

es

Var
Argmax
BeamVar

Figure 7: Solving TextWorld with ARGMAX, BEAMVAR and VAR. Circles mark solved games, while
crosses mark unsolved games which are counted as games with step limit exceeded (16)

16

Under review as a conference paper at ICLR 2024

Table 4: Few-Shot Task Accuracy with Answer-Only, Chain-Of-Thought and Prompt Sketching (ours)
using ARGMAX, BEAM, BEAMVAR (ours) and VAR (ours) decoding. The best results are highlighted in
bold.

Task

Two-Shot Zero-Shot

Task

Sequential Decoding Sketch-Aware

Answer-Only CoT Prompt Sketching (ours)

ARGMAX ARGMAX ARGMAX VAR BEAMVAR VAR

Question Answering
AQuA (Ling et al., 2017) 0.29 0.45 0.46 0.44 0.47 0.35

StrategyQA (Geva et al., 2021) 0.67 0.74 0.78 0.78 0.77 0.66

Interleaved Reasoning
Tracking Shuffled Objects+ 0.1 0.46 0.57 0.57 0.62 0.66

Matrix Shapes+ 0.67 0.76 0.81 0.77 0.79 0.85
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

C ADDITIONAL RESULTS

C.1 FEW-SHOT PROMPTING

In addition to evaluating zero-shot performance of sketching, we also evaluate a two-shot setting (two
demonstrations) for selected datasets (AQuA, StrategyQA, Tracking Shuffled Objects and Matrix
Shapes) and report the results in Table 4. We rely on few-shot samples exhibiting the same reasoning
structure as enforced by the respective sketches. For comparison, we also include the best zero-shot
result from the paper.

While we observe a slight increase in performance for the question-answering tasks, performance for
the interleaved reasoning tasks is surprisingly decreased in the few-shot setting. In all considered set-
tings, sketching outperforms CoT. In fact, zero-shot sketching with the best decoder even outperforms
few-shot CoT with argmax decoding in all settings. Upon manual inspection, we observe that the
LLM generally follows the demonstrated reasoning process. However, for Tracking Shuffled Objects,
the added demonstrations seem to impair task performance, possibly because the model is confused
by the unrelated extra information. Overall, the results of this ablation study suggest that zero-shot
sketching with the right decoder may be able to replace few-shot demonstrations by enforcing a given
reasoning structure via intermediate instructions and task decomposition. At the same time, note that
sketching is much more cost-effective, as few-shot samples increase overall sequence lengths, and
thus API cost when using OpenAI models or computational cost (scaling quadratically with sequence
length) when using local models.

C.2 PROMPT SKETCHING WITH SMALLER OPENAI MODELS

We also examine the use of smaller OpenAI models. However, the strong zero-shot performance we
rely on has previously (for CoT) only been observed in models of sufficient size (150B+ parameters
(Kojima et al., 2022)). Nonetheless, we also run our evaluation to the smaller InstructGPT (Ouyang
et al., 2022) model text-curie-001 (1 level below text-davinci-00x, 6.7 billion parameters). For
comparison, we also include the best results for text-davinci-003, as reported in the paper in Table 5.

Overall, we observe almost no reasoning capabilities, with scores close to random guessing for
multiple-choice tasks, and close to zero for open-ended questions like Matrix Shapes. As noted
above, this is in line with previous results (Kojima et al., 2022). However, as our main evaluation
demonstrates, the slightly larger and more recent Llama-2 Chat 13B Touvron et al. (2023) (13 billion
parameters), does clearly benefit from sketching.

17

Under review as a conference paper at ICLR 2024

Table 5: Task Accuracy with text-curie-001 with Answer-Only, Chain-Of-Thought and Prompt
Sketching (ours) using ARGMAX, BEAM, BEAMVAR (ours) and VAR (ours) decoding, compared to the
results with text-davinci-003. The best results are highlighted in bold.

Task

text-curie-001 text-davinci-003

Task

Sequential Decoding Sketch-Aware

Answer-Only CoT Prompt Sketching (ours)

ARGMAX ARGMAX ARGMAX VAR BEAMVAR VAR

Question Answering
AQuA (Ling et al., 2017) 0.16 0.24 0.27 0.17 0.47 0.35

StrategyQA (Geva et al., 2021) 0.46 0.53 0.58 0.52 0.77 0.66

Interleaved Reasoning
Tracking Shuffled Objects+ 0.18 0.19 0.22 0.24 0.62 0.66

Matrix Shapes+ 0.04 0.07 0.01 0.0 0.79 0.85
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

C.3 CONFIDENCE BOUNDS AND SCALING OF OPENAI-SPECIFIC RESULTS

To check for significance of our smaller scale OpenAI-specific experiments, we additionally examine
the corresponding confidence bounds. For this, we report all main OpenAI results with a Clopper-
Pearson 95% two-sided confidence interval in Table 6.

Lastly, we scale our best OpenAI results for the Matrix Shapes task Srivastava et al. (2022), by
evaluating with 1000 instead of 100 samples, sampled uniformly from the original dataset. Doing so,
we can confirm our main result in Table 7, i.e. that prompt sketching and interleaved reasoning specif-
ically are effective at improving LLM reasoning performance on this task. Due to cost considerations,
we cannot scale all OpenAI experiments like this, but expect similar results, similar to the trends we
observe in our large scale experiments with Llama-2 Chat 13B (Touvron et al. (2023) (see Section 4).

Table 6: Task accuracy of text-davinci-003 with Clopper-Pearson 95% two-sided confidence intervals
Clopper and Pearson (1934).

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.48 [0.38,0.58] 0.70 [0.6,0.79] 0.75 [0.65,0.83] 0.75 [0.65,0.83] 0.69 [0.59,0.78] 0.72 [0.62,0.81] 0.73 [0.63,0.81] 0.66 [0.56,0.75] -

Information Essentiality+∗ - - - - - 0.01 [0.0,0.05] 0.25 [0.17,0.35] 0.06 [0.02,0.13] 0.15 [0.09,0.24]

Question Answering
AQuA (Ling et al., 2017) 0.31 [0.22,0.41] 0.37 [0.28,0.47] 0.37 [0.28,0.47] 0.35 [0.26,0.45] 0.35 [0.26,0.45] 0.40 [0.3,0.5] 0.47 [0.37, 0.57] 0.35 [0.26,0.45] -

StrategyQA (Geva et al., 2021) 0.68 [0.58,0.77] 0.71 [0.61,0.8] 0.72 [0.62,0.81] 0.67 [0.57,0.76] 0.67 [0.57,0.76] 0.69 [0.59,0.78] 0.77 [0.68,0.85] 0.66 [0.56,0.75] -

Arithmetic Reasoning
Multistep Arithmetic+ 0.20 [0.13,0.29] 0.43 [0.33,0.53] 0.44 [0.34,0.54] 0.49 [0.39,0.59] 0.44 [0.34,0.54] 0.45 [0.35,0.55] 0.48 [0.38,0.58] 0.38 [0.28,0.48] -

GSM8K (Cobbe et al., 2021) 0.08 [0.04,0.15] 0.56 [0.46,0.66] 0.58 [0.48,0.68] 0.64 [0.54,0.73] 0.57 [0.48,0.68] 0.57 [0.47,0.67] 0.53 [0.43,0.63] 0.59 [0.49,0.69] -

Interleaved Reasoning
Shuffled Objects+ 0.19 [0.12,0.28] 0.62 [0.52,0.72] 0.47 [0.37,0.57] 0.52 [0.42,0.62] 0.62 [0.52,0.72] 0.64 [0.54,0.73] 0.62 [0.52,0.72] 0.66 [0.56,0.75] -

Matrix Shapes+ 0.61 [0.51,0.71] 0.77 [0.68,0.85] 0.77 [0.61,0.8] 0.71 [0.66,0.84] 0.76 [0.66,0.84] 0.81 [0.72,0.88] 0.79 [0.7,0.87] 0.85 [0.76,0.91] -
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

Table 7: Task Accuracy when evaluating with 1000 samples from the original dataset.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Interleaved Reasoning
Matrix Shapes+ 0.572 [0.54,0.6] 0.779 [0.75,0.8] - - - 0.814 [0.79,0.84] - 0.817 [0.79,0.84] -

+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).

18

Under review as a conference paper at ICLR 2024

C.4 CONFIDENCE BOUNDS FOR LLAMA-2

As for the OpenAI models we report the confidence bounds for the Llama-2 Chat model (13 billion
parameters) in Table 8.

Table 8: Task accuracy of Llama-2 Chat (13B) with Clopper-Pearson 95% two-sided confidence
intervals Clopper and Pearson (1934). We either use 1000 uniformly drawn samples from the dataset
or the whole dataset.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.496 [0.444, 0.548] 0.591 [0.539, 0.641] 0.599 [0.547, 0.649] 0.613 [0.561, 0.662] 0.580 [0.528, 0.631] 0.634 [0.583, 0.683] 0.656 [0.605, 0.704] 0.642 [0.591, 0.691] 0.591 [0.539, 0.641]

Information Essentiality+∗ - - - - - 0.088 [0.033, 0.182] 0.132 [0.062, 0.236] 0.132 [0.062, 0.236] 0.132 [0.062, 0.236]

Question Answering
AQuA (Ling et al., 2017) 0.231 [0.180, 0.288] 0.291 [0.235, 0.351] 0.311 [0.254, 0.372] 0.275 [0.221, 0.335] 0.271 [0.217, 0.330] 0.239 [0.188, 0.297] 0.255 [0.202, 0.314] 0.243 [0.191, 0.301] 0.283 [0.229, 0.344]

StrategyQA (Geva et al., 2021) 0.564 [0.533, 0.595] 0.555 [0.524, 0.586] 0.566 [0.535, 0.597] 0.570 [0.539, 0.601] 0.568 [0.537, 0.599] 0.638 [0.607, 0.668] 0.630 [0.599, 0.660] 0.640 [0.609, 0.670] 0.659 [0.629, 0.688]

Arithmetic Reasoning
Multistep Arithmetic+ 0.038 [0.027, 0.052] 0.133 [0.113, 0.156] 0.120 [0.101, 0.142] 0.138 [0.117, 0.161] 0.132 [0.111, 0.154] 0.126 [0.106, 0.148] 0.142 [0.121, 0.165] 0.103 [0.085, 0.124] 0.125 [0.105, 0.147]

GSM8K (Cobbe et al., 2021) 0.049 [0.036, 0.064] 0.276 [0.248, 0.305] 0.296 [0.268, 0.325] 0.305 [0.277, 0.335] 0.296 [0.268, 0.325] 0.320 [0.291, 0.350] 0.353 [0.323, 0.384] 0.350 [0.320, 0.380] 0.353 [0.323, 0.384]

Interleaved Reasoning
Shuffled Objects+ 0.197 [0.173, 0.223] 0.196 [0.172, 0.222] 0.204 [0.179, 0.230] 0.198 [0.174, 0.224] 0.188 [0.164, 0.214] 0.227 [0.201, 0.254] 0.210 [0.185, 0.237] 0.234 [0.208, 0.262] 0.157 [0.135, 0.181]

Matrix Shapes+ 0.227 [0.201, 0.254] 0.068 [0.053, 0.085] 0.065 [0.051, 0.082] 0.056 [0.043, 0.072] 0.191 [0.167, 0.217] 0.205 [0.180, 0.231] 0.200 [0.176, 0.226] 0.204 [0.179, 0.23] 0.200 [0.176, 0.226]
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

19

Under review as a conference paper at ICLR 2024

Table 9: Self-Consistency Wang et al. (2022b) prompting compared to simple ARGMAX chain-of-
thought prompting (text-davinci-003, 100 samples as in Table 1). Results that are greyed out are not
comparable to the respective sketching results, due to different levels of computation.

Task

Chain-Of-Thought Chain-Of-Thought/Sketching (ours)

ARGMAX SELFCONSIST (n = 2) SELFCONSIST (n = 4) Sketch-Aware

Logical Reasoning
Date Understanding+ 0.70 0.64 0.72 0.75 (CoT+BEAMVAR)

Question Answering
AQuA (Ling et al., 2017) 0.37 0.33 0.32 0.47 (Sketching+BEAMVAR)

StrategyQA (Geva et al., 2021) 0.71 0.64 0.70 0.77 (Sketching+BEAMVAR)

Arithmetic Reasoning
Multistep Arithmetic+ 0.43 0.40 0.47 0.49 (CoT+BEAMVAR)

GSM8K (Cobbe et al., 2021) 0.56 0.56 0.66 0.64 (CoT+BEAMVAR)

Interleaved Reasoning
Tracking Shuffled Objects+ 0.62 0.39 0.43 0.66 (Sketching+VAR)

Matrix Shapes+ 0.77 0.66 0.66 0.85 (Sketching+VAR)
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

D SELF-CONSISTENCY BASELINE

We also considered self-consistency Wang et al. (2022b) (SC) as a possible baseline in our experi-
ments. Based on our decoder experiments, we ran self-consistency with chain-of-thought and n = 2
and n = 4 consistency samples. Computationally, this is comparable to BEAMVAR n = 2 and VAR

n = 2 respectively, as in our main evaluation. We report the results in Table 9. We find SC mostly
does not even outperform a simple ARGMAX chain-of-thought baseline, except with n = 4 on the
GSM8K dataset. There, it achieves 0.66, outcompeting even BEAMVAR with n = 2 (0.64). However,
we note that BEAMVAR with n = 2, is also half as computationally expensive as SC with n = 4,
while achieving comparable performance.

Increasing the number of self-consistency samples to a higher n would be possible but is not a useful
comparison, as it would increase the cost of SC significantly, over our sketch-aware decoders (see
Section 4.3). Lastly, we note that self-consistency and sketch-aware decoding are orthogonal, and
could be combined to further improve performance.

20

Under review as a conference paper at ICLR 2024

Figure 8: The adapted LMQL playground interface extended with dclib support allows users to
visualize the underlying decoding trees during sketch decoding.

E USING dclib AND SKETCH-AWARE DECODERS

In the supplementary material, we provide the Python library dclib, that contains implementations
for all compared (sketch-aware) decoding algorithms.

To install and use dclib, please consult the README.md file in the supplementary material.

Once installed, you can use an adapted version of the lmql playground as shown in Figure 8 to
interactively play with the different decoding algorithms and their parameters.

21

Under review as a conference paper at ICLR 2024

F FULL PROMPTS

Here we list full exemplary prompts, per task and prompting method as used in our evaluation. We rely on the
same notation of sketches as in the main body of the paper. For control-flow (e.g. loops and conditions) and
constraints, we rely on the semantics of the LMQL query language for LMs, and refer to Beurer-Kellner et al.
(2023) for a more thorough introduction.

Task Prompting Method Query and Response
date_understanding@ao Answer-Only Query

"""Q: It was Sept. 1st, 2021 a week ago. What is the
date 10 days ago in MM/DD/YYYY?
Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C)
08/29/1925 (D) 08/30/2021 (E) 05/25/2021 (F) 09/19/2021
Among A through F, the answer is[answer]"""

Constraints

answer in [" A", " B", " C", " D", " E", " F"]

Model Response Q: It was Sept. 1st, 2021 a week ago. What is
the date 10 days ago in MM/DD/YYYY? Answer Choices: (A)
08/29/2021 (B) 08/28/2021 (C) 08/29/1925 (D) 08/30/2021 (E)
05/25/2021 (F) 09/19/2021 Among A through F, the answer is B ✗

date_understanding@cot Chain-Of-Thought Query

"""Q: It was Sept. 1st, 2021 a week ago. What is the
date 10 days ago in MM/DD/YYYY?
Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C)
08/29/1925 (D) 08/30/2021 (E) 05/25/2021 (F) 09/19/2021
A: Let's think step-by-step.
[COT] Therefore, among A through F, the answer is[
answer]"""

Model Response Q: It was Sept. 1st, 2021 a week ago. What is
the date 10 days ago in MM/DD/YYYY? Answer Choices: (A)
08/29/2021 (B) 08/28/2021 (C) 08/29/1925 (D) 08/30/2021 (E)
05/25/2021 (F) 09/19/2021 A: Let’s think step-by-step.
Sept. 1st, 2021 was a week ago, so 10 days ago would be 8 days
before that, which would be August 23rd, 2021.
Therefore, the answer is (A) 08/23/2021. Therefore, among A
through F, the answer is A. ✓

22

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
date_under-
standing@multivar2

Multi-Variable Query

"""Q: It was Sept. 1st, 2021 a week ago. What is the
date 10 days ago in MM/DD/YYYY?
Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C)
08/29/1925 (D) 08/30/2021 (E) 05/25/2021 (F) 09/19/2021
A: Let's think step by step."""
for i in range(5):
"\\n-[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "Therefore" in THOUGHT: break
if "According" in THOUGHT: break
" Overall this means,[CONCLUSION] Therefore, among A
through F, the answer is[answer]"

Constraints

STOPS_AT(THOUGHT, "\\n") and STOPS_AT(THOUGHT, ".") and
STOPS_AT(CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, "
.")

Model Response Q: It was Sept. 1st, 2021 a week ago. What is
the date 10 days ago in MM/DD/YYYY? Answer Choices: (A)
08/29/2021 (B) 08/28/2021 (C) 08/29/1925 (D) 08/30/2021 (E)
05/25/2021 (F) 09/19/2021 A: Let’s think step by step. - Sept. - 1st -
2021 - a week ago - 10 days ago Overall this means, 10 days before
Sept. Therefore, among A through F, the answer is B: 08/28/2021.
✗

23

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
Information Essential-
ity

Forward Referencing Query

"Cole is on the varsity basketball team. Therefore, the
statement that Cole is under 7 feet tall[var_1] to
answer the question: Is Cole over 6 feet tall? However,
the statement that Every player on Cole's varsity
basketball team is above 6'1''[var_2]. Therefore [
answer]"

Constraints

var_1 in [" is sufficient", " is insufficient", " is
not needed"] and var_2 in [" would also be sufficient",
" would alone be insufficient", " in addition is
sufficient", " is sufficient" , " is insufficient", "
is still insufficient", " is also not needed"] and
answer in ["the first statement alone is sufficient
while the second statement alone is insufficient", "the
second statement alone is sufficient while the first
statement alone is insufficient", "either the first or
the second statement is sufficient", "the first and
second statement taken together are sufficient", "the
question can not be answered with the provided
statements", "the question can be answered without
either statement"]

Model Response Cole is on the varsity basketball team. Therefore,
the statement that Cole is under 7 feet tall is not needed to answer
the question: Is Cole over 6 feet tall? However, the statement that
Every player on Cole’s varsity basketball team is above 6’1" is also
not needed. Therefore the question can be answered without either
statement ✗

24

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
AQUA@ao Answer-Only Query

"""Q: What is the greatest number of identical bouquets
that can be made out of 28 white and 98 red tulips if
no flowers are to be left out? (Two bouquets are
identical whenever the number of red tulips in the two
bouquets is equal and the number of white tulips in the
two bouquets is equal.)\\n"""
"Answer Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21\\n"
"A: Among A through E, the answer is[answer]"

Model Response Q: What is the greatest number of identical bou-
quets that can be made out of 28 white and 98 red tulips if no
flowers are to be left out? (Two bouquets are identical whenever the
number of red tulips in the two bouquets is equal and the number
of white tulips in the two bouquets is equal.) Answer Choices: (A)
4 (B) 7 (C) 10 (D) 14 (E) 21 A: Among A through E, the answer is
D, 14. ✓

AQUA@cot Chain-Of-Thought Query

"""Q: What is the greatest number of identical bouquets
that can be made out of 28 white and 98 red tulips if
no flowers are to be left out? (Two bouquets are
identical whenever the number of red tulips in the two
bouquets is equal and the number of white tulips in the
two bouquets is equal.)\\n"""
"Answer Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21\\n"
"A: Let's think step by step.[COT] Therefore, among A
through E, the answer is[answer]"

Constraints

STOPS_AT(answer, ".")

Model Response Q: What is the greatest number of identical bou-
quets that can be made out of 28 white and 98 red tulips if no
flowers are to be left out? (Two bouquets are identical whenever the
number of red tulips in the two bouquets is equal and the number
of white tulips in the two bouquets is equal.) Answer Choices: (A)
4 (B) 7 (C) 10 (D) 14 (E) 21 A: Let’s think step by step.
We know that we have 28 white tulips and 98 red tulips. We also
know that two bouquets are identical when the number of red tulips
and white tulips are equal.
Therefore, we can make the greatest number of identical bouquets
by making sure that each bouquet has the same number of red and
white tulips.
The greatest number of identical bouquets that can be made out of
28 white and 98 red tulips is 10. (C) Therefore, among A through
E, the answer is C. ✗

25

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
AQUA@multivar Multi-Variable Query

"""Q: What is the greatest number of identical bouquets
that can be made out of 28 white and 98 red tulips if
no flowers are to be left out? (Two bouquets are
identical whenever the number of red tulips in the two
bouquets is equal and the number of white tulips in the
two bouquets is equal.)\\n"""
"Answer Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21\\n"
"A: Let's think step by step.\\n"
for i in range(12):
"\\n- [THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break
" Overall this means,[CONCLUSION] Therefore, among A
through E, the answer is[answer]"

Constraints

STOPS_AT(answer, ".") and STOPS_AT(THOUGHT, "\\n") and
STOPS_AT(CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".
")

Model Response Q: What is the greatest number of identical bou-
quets that can be made out of 28 white and 98 red tulips if no
flowers are to be left out? (Two bouquets are identical whenever the
number of red tulips in the two bouquets is equal and the number
of white tulips in the two bouquets is equal.) Answer Choices: (A)
4 (B) 7 (C) 10 (D) 14 (E) 21 A: Let’s think step by step.
- We have 28 white and 98 red tulips.
- We need to make bouquets with the same number of white and red
tulips in each bouquet.
- The greatest number of identical bouquets that can be made is 14.
- This is because we can make 7 bouquets with 4 white and 14 red
tulips each, and 7 bouquets with 14 white and 4 red tulips each.
- Therefore, the answer is (D) 14. Overall this means, 28 white and
98 red tulips can make 14 identical bouquets. Therefore, among A
through E, the answer is D. ✓

26

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
StrategyQA@ao Answer-Only Query

"""Q: While on a liquid diet, are there some types of
soup you cannot eat?\\n"""
"A: The answer (yes or no) is[answer]"

Constraints

answer in [' yes', ' no', ' false', ' true']

Model Response Q: While on a liquid diet, are there some types of
soup you cannot eat? A: The answer (yes or no) is yes ✓

StrategyQA@cot Chain-Of-Thought Query

"""Q: While on a liquid diet, are there some types of
soup you cannot eat?\\n"""
"A: Let's think step by step.\\n[COT] \\n Therefore,
the answer (yes or no) is[answer]"

Constraints

answer in [' yes', ' no', ' false', ' true']

Model Response Q: While on a liquid diet, are there some types of
soup you cannot eat? A: Let’s think step by step.
First, what is a liquid diet? A liquid diet is a diet that consists of
only liquids, such as water, juices, and soups.
Now, are there some types of soup you cannot eat while on a liquid
diet? Generally speaking, no, there are no types of soup that you
cannot eat while on a liquid diet. However, it is important to note
that some soups may contain ingredients that are not allowed on a
liquid diet, such as dairy products, nuts, and certain types of meat.
Therefore, it is important to read the ingredients list of any soup
you are considering eating while on a liquid diet to make sure it
does not contain any of these ingredients. Therefore, the answer
(yes or no) is no ✗

27

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
StrategyQA@multivar Multi-Variable Query

"""Q: While on a liquid diet, are there some types of
soup you cannot eat?\\n"""
"A: Let's think step by step.\\n"
for i in range(5):
"\\n-[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "Therefore" in THOUGHT: break
if "According" in THOUGHT: break
" Overall this means,[CONCLUSION] Therefore, the answer
(yes or no) is[answer]"

Constraints

STOPS_AT(THOUGHT, "\\n") and STOPS_AT(THOUGHT, ".") and
answer in [' yes', ' no'] and
STOPS_AT(CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".
")

Model Response Q: While on a liquid diet, are there some types of
soup you cannot eat? A: Let’s think step by step.
- First, what is a liquid diet? A liquid diet is a diet that consists of
only liquids, such as juices, smoothies, and soups.
- Second, are there some types of soup you cannot eat on a liquid
diet? Yes, there are some types of soup that are not suitable for a
liquid diet.
- Examples of soups that are not suitable for a liquid diet include
cream-based soups, chunky soups, and soups with large chunks of
vegetables or meat.
- Additionally, some soups may contain ingredients that are not
allowed on a liquid diet, such as dairy, sugar, or processed foods.
- Finally, it is important to check with your doctor or nutritionist
before starting any type of diet to make sure it is safe and appropriate
for your individual needs. Overall this means, yes, there are some
types of soup you cannot eat while on a liquid diet. Therefore, the
answer (yes or no) is yes ✓

28

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
multiarith2@ao Answer-Only Query

"""Q: Evaluate the arithmetic expression '((((-2 * 7 +
-6) * (8 - 7 - 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) +
(((9 - -7 - -7) - (0 + -7 - -3)) - ((8 * -2 + -6) * (-3
- 3 - 8))))'.
A: Let's think step by step.
The answer (arabic numerals) is[answer]"""

Constraints

STOPS_AT(answer, ".")

Model Response Q: Evaluate the arithmetic expression ’((((-2 * 7
+ -6) * (8 - 7 - 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0
+ -7 - -3)) - ((8 * -2 + -6) * (-3 - 3 - 8))))’. A: Let’s think step by
step. The answer (arabic numerals) is -1490. ✗

multiarith2@cot Chain-Of-Thought Query

"""Q: Evaluate the arithmetic expression '((((-2 * 7 +
-6) * (8 - 7 - 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) +
(((9 - -7 - -7) - (0 + -7 - -3)) - ((8 * -2 + -6) * (-3
- 3 - 8))))'.
A: Let's think step by step.
[COT] Therefore, the answer (arabic numerals) is[answer
]"""

Model Response Q: Evaluate the arithmetic expression ’((((-2 * 7 +
-6) * (8 - 7 - 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 +
-7 - -3)) - ((8 * -2 + -6) * (-3 - 3 - 8))))’. A: Let’s think step by step.
First, we need to evaluate the innermost expressions.
((6 * -2 + 1) * (-8 * 3 * -1)) = -153
((8 * -2 + -6) * (-3 - 3 - 8)) = -90
Next, we need to evaluate the expressions that contain the innermost
expressions.
(((-2 * 7 + -6) * (8 - 7 - 5)) - (-153)) = -153
(((9 - -7 - -7) - (0 + -7 - -3)) - (-90)) = -90
Finally, we can evaluate the entire expression.
((-153) + (-90)) = -243 Therefore, the answer (arabic numerals) is
-243. ✗

29

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
multiarith@multivar Multi-Variable Query

"""Q: Evaluate the arithmetic expression '((((-2 * 7 +
-6) * (8 - 7 - 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) +
(((9 - -7 - -7) - (0 + -7 - -3)) - ((8 * -2 + -6) * (-3
- 3 - 8))))'.
A: Let's think step by step.\\n"""
for i in range(10):
"({i+1})[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break
"Overall this means,[CONCLUSION] Therefore, the answer
(arabic numerals) is[answer]"""

Constraints

STOPS_AT(THOUGHT, "\\n") and STOPS_AT(CONCLUSION, "\\n"
) and STOPS_AT(CONCLUSION, ".")

Model Response Q: Evaluate the arithmetic expression ’((((-2 * 7 +
-6) * (8 - 7 - 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 +
-7 - -3)) - ((8 * -2 + -6) * (-3 - 3 - 8))))’. A: Let’s think step by step.
(1) (-2 * 7 + -6) * (8 - 7 - 5) = -14 * 0 = 0 (2) 6 * -2 + 1) * (-8 * 3 *
-1) = -12 * 24 = -288 (3) 9 - -7 - -7) - (0 + -7 - -3) = 16 - -4 = 20 (4)
8 * -2 + -6) * (-3 - 3 - 8) = -16 * -14 = 224 (5) 0 - -288 + 20 - 224
= -252 (6) The answer is -252. Overall this means, the expression
evaluates to -252. Therefore, the answer (arabic numerals) is -252.
✗

30

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
GSM8@ao Answer-Only Query

"""Q: The girls are trying to raise money for a
carnival. Kim raises \$320 more than Alexandra, who
raises \$430, and Maryam raises \$400 more than Sarah,
who raises \$300. How much money, in dollars, did they
all raise in total?
The answer (arabic numerals) is[answer]
"""

Model Response Q: The girls are trying to raise money for a carni-
val. Kim raises $320 more than Alexandra, who raises $430, and
Maryam raises $400 more than Sarah, who raises $300. How much
money, in dollars, did they all raise in total? The answer (arabic
numerals) is $1780. ✗

GSM8@cot Chain-Of-Thought Query

"""Q: The girls are trying to raise money for a
carnival. Kim raises \$320 more than Alexandra, who
raises \$430, and Maryam raises \$400 more than Sarah,
who raises \$300. How much money, in dollars, did they
all raise in total?
A: Let's think step by step.[COT] Therefore, the answer
(arabic numerals) is[answer]
"""

Constraints

STOPS_AT(answer, "\\n")

Model Response Q: The girls are trying to raise money for a carni-
val. Kim raises $320 more than Alexandra, who raises $430, and
Maryam raises $400 more than Sarah, who raises $300. How much
money, in dollars, did they all raise in total? A: Let’s think step by
step.
Kim raised $320 more than Alexandra, so Kim raised $750 ($430
+ $320). Maryam raised $400 more than Sarah, so Maryam raised
$700 ($300 + $400).
Therefore, the total amount of money the girls raised is $1,450
($750 + $700). Therefore, the answer (arabic numerals) is 1,450
dollars. ✗

31

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
GSM8@multivar Multi-Variable Query

"""Q: The girls are trying to raise money for a
carnival. Kim raises \$320 more than Alexandra, who
raises \$430, and Maryam raises \$400 more than Sarah,
who raises \$300. How much money, in dollars, did they
all raise in total?\\n"""
"A: Let's think step by step.\\n"
for i in range(10):
"({i+1})[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break
"Overall this means,[CONCLUSION] Therefore, the answer
(arabic numerals) is[answer]"""

Constraints

STOPS_AT(answer, ".") and STOPS_AT(THOUGHT, "\\n") and
STOPS_AT(CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".
")

Model Response Q: The girls are trying to raise money for a carni-
val. Kim raises $320 more than Alexandra, who raises $430, and
Maryam raises $400 more than Sarah, who raises $300. How much
money, in dollars, did they all raise in total? A: Let’s think step
by step. (1) Sarah raised $300 (2) Maryam raised $400 more than
Sarah, so Maryam raised $700 (3) Alexandra raised $430 (4) Kim
raised $320 more than Alexandra, so Kim raised $750 (5) The total
amount of money they all raised is $300 + $700 + $430 + $750 =
$2,280 (6) Therefore, the girls raised a total of $2,280 in dollars. (7)
Answer: The girls raised a total of $2,280 in dollars. (8) Note: You
can also solve this problem using algebra. Let x = Sarah’s amount,
then Maryam raised x + 400, Alexandra raised x + 430, and Kim
raised x + 750. The total amount is then x + x + 400 + x + 430 + x
+ 750 = 3x + 1580 = 2,280. (9) Therefore, the girls raised a total of
$2,280 in dollars. (10) Answer: The girls raised a total of $2,280
in dollars. Overall this means, the girls raised a total of $2,280 in
dollars. Therefore, the answer (arabic numerals) is 2,280. ✓

32

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
matrixshapes@ao Answer-Only Query

"Multiply a matrix of shape (3,3,2) with a matrix of
shape (3,2,4). Subtract the result from a matrix of
shape (3,3,4). Compute the hadamard product of the
result with a matrix of shape (3,3,4). Multiply the
result with a matrix of shape (3,4,3). The shape of the
overall result is[answer]"

Constraints

STOPS_AT(answer, ")")

Model Response Multiply a matrix of shape (3,3,2) with a matrix
of shape (3,2,4). Subtract the result from a matrix of shape (3,3,4).
Compute the hadamard product of the result with a matrix of shape
(3,3,4). Multiply the result with a matrix of shape (3,4,3). The
shape of the overall result is:
(3, 3, 3) ✓

matrixshapes@cot Chain-Of-Thought Query

"Multiply a matrix of shape (3,3,2) with a matrix of
shape (3,2,4). Subtract the result from a matrix of
shape (3,3,4). Compute the hadamard product of the
result with a matrix of shape (3,3,4). Multiply the
result with a matrix of shape (3,4,3). To determine the
shape of the result, let's think step-by-step:[answer]
"

Model Response Multiply a matrix of shape (3,3,2) with a matrix
of shape (3,2,4). Subtract the result from a matrix of shape (3,3,4).
Compute the hadamard product of the result with a matrix of shape
(3,3,4). Multiply the result with a matrix of shape (3,4,3). To
determine the shape of the result, let’s think step-by-step:
Step 1: Multiply a matrix of shape (3,3,2) with a matrix of shape
(3,2,4).
The result of this multiplication will be a matrix of shape (3,3,4).
Step 2: Subtract the result from a matrix of shape (3,3,4).
The result of this subtraction will be a matrix of shape (3,3,4).
Step 3: Compute the hadamard product of the result with a matrix
of shape (3,3,4).
The result of this hadamard product will be a matrix of shape (3,3,4).
Step 4: Multiply the result with a matrix of shape (3,4,3).
The result of this multiplication will be a matrix of shape (3,3,3). ✓

33

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
matrixshapes@multivar Multi-Variable Query

"Multiply a matrix of shape (3,3,2) with a matrix of
shape (3,2,4). The result is a matrix of shape[var]
Subtract the result from a matrix of shape (3,3,4). The
result is a matrix of shape[var] Compute the hadamard
product of the result with a matrix of shape (3,3,4).
The result is a matrix of shape[var] Multiply the
result with a matrix of shape (3,4,3). The result is a
matrix of shape[var]. The result is a matrix of shape[
answer]"

Constraints

not "\\n" in var and STOPS_AT(var, ")") and STOPS_AT(
answer, ")")

Model Response Multiply a matrix of shape (3,3,2) with a matrix
of shape (3,2,4). The result is a matrix of shape (3,3,4). Subtract
the result from a matrix of shape (3,3,4). The result is a matrix of
shape (3,3,4). Compute the hadamard product of the result with
a matrix of shape (3,3,4). The result is a matrix of shape (3,3,4).
Multiply the result with a matrix of shape (3,4,3). The result is a
matrix of shape (3,3,3).. The result is a matrix of shape (3,3,3). ✓

tracking_shuffled_ob-
jects@ao

Answer-Only Query

"""Q: Alice, Bob, Claire, Dave, and Eve are holding a
white elephant gift exchange. At the start of the event
, they are each holding a present of a different color:
Alice has a red present, Bob has a black ball, Claire
has a pink ball, Dave has a orange ball, and Eve has a
brown present.
As the event progresses, pairs of people swap gifts.
First, Claire and Alice swap their gifts. Then, Claire
and Dave swap their gifts. Then, Alice and Bob swap
their gifts. Then, Eve and Dave swap their gifts.
Finally, Bob and Claire swap their gifts. At the end of
the event, Alice has the[answer]"""

Constraints

answer in [" red present", " black ball", " pink ball",
" orange ball", " brown present"]

Model Response Q: Alice, Bob, Claire, Dave, and Eve are holding
a white elephant gift exchange. At the start of the event, they are
each holding a present of a different color: Alice has a red present,
Bob has a black ball, Claire has a pink ball, Dave has a orange
ball, and Eve has a brown present. As the event progresses, pairs
of people swap gifts. First, Claire and Alice swap their gifts. Then,
Claire and Dave swap their gifts. Then, Alice and Bob swap their
gifts. Then, Eve and Dave swap their gifts. Finally, Bob and Claire
swap their gifts. At the end of the event, Alice has the black ball ✓

34

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
tracking_shuffled_ob-
jects@cot

Chain-Of-Thought Query

"""Q: Alice, Bob, Claire, Dave, and Eve are holding a
white elephant gift exchange. At the start of the event
, they are each holding a present of a different color:
Alice has a red present, Bob has a black ball, Claire
has a pink ball, Dave has a orange ball, and Eve has a
brown present.
As the event progresses, pairs of people swap gifts.
First, Claire and Alice swap their gifts. Then, Claire
and Dave swap their gifts. Then, Alice and Bob swap
their gifts. Then, Eve and Dave swap their gifts.
Finally, Bob and Claire swap their gifts.
A: Let's think step by step.
[COT] Therefore, At the end of the event, Alice has the
[answer].
"""

Constraints

answer in [" red present", " black ball", " pink ball",
" orange ball", " brown present"]

Model Response Q: Alice, Bob, Claire, Dave, and Eve are holding
a white elephant gift exchange. At the start of the event, they are
each holding a present of a different color: Alice has a red present,
Bob has a black ball, Claire has a pink ball, Dave has a orange
ball, and Eve has a brown present. As the event progresses, pairs
of people swap gifts. First, Claire and Alice swap their gifts. Then,
Claire and Dave swap their gifts. Then, Alice and Bob swap their
gifts. Then, Eve and Dave swap their gifts. Finally, Bob and Claire
swap their gifts. A: Let’s think step by step.
Alice has a red present, Bob has a black ball, Claire has a pink ball,
Dave has a orange ball, and Eve has a brown present.
Claire and Alice swap their gifts, so Alice now has a pink ball and
Claire has a red present.
Claire and Dave swap their gifts, so Claire now has an orange ball
and Dave has a pink ball.
Alice and Bob swap their gifts, so Alice now has a black ball and
Bob has a red present.
Eve and Dave swap their gifts, so Eve now has an orange ball and
Dave has a brown present.
Finally, Bob and Claire swap their gifts, so Bob now has a pink ball
and Claire has a black ball.
Therefore, at the end of the event, Alice has a black ball, Bob has
a pink ball, Claire has a black ball, Dave has a brown present, and
Eve has an orange ball. Therefore, At the end of the event, Alice
has the black ball. ✓

35

Under review as a conference paper at ICLR 2024

Task Prompting Method Query and Response
tracking_shuffled_ob-
jects@multivar2

Multi-Variable Query

"""Q: Alice, Bob, Claire, Dave, and Eve are holding a
white elephant gift exchange. At the start of the event
, they are each holding a present of a different color:
Alice has a red present, Bob has a black ball, Claire
has a pink ball, Dave has a orange ball, and Eve has a
brown present.
As the event progresses, pairs of people swap gifts.
First, Claire and Alice swap their gifts. \\n- This
means, now[state_var] Whereas [state_var]\\nThen,
Claire and Dave swap their gifts. \\n- This means, now[
state_var] Whereas [state_var]\\nThen, Alice and Bob
swap their gifts. \\n- This means, now[state_var]
Whereas [state_var]\\nThen, Eve and Dave swap their
gifts. \\n- This means, now[state_var] Whereas [
state_var]\\nFinally, Bob and Claire swap their gifts.
A: Overall this means[CONCLUSION] Therefore, At the
end of the event, Alice has the[answer]"""

Constraints

answer in [" red present", " black ball", " pink ball",
" orange ball", " brown present"] and STOPS_AT(
state_var, ".") and STOPS_AT(CONCLUSION, "\\n") and
STOPS_AT(CONCLUSION, ".")

Model Response Q: Alice, Bob, Claire, Dave, and Eve are holding
a white elephant gift exchange. At the start of the event, they are
each holding a present of a different color: Alice has a red present,
Bob has a black ball, Claire has a pink ball, Dave has a orange
ball, and Eve has a brown present. As the event progresses, pairs of
people swap gifts. First, Claire and Alice swap their gifts. - This
means, now Alice has a pink present and Claire has a red present.
Whereas Bob has a black ball, Dave has an orange ball, and Eve
has a brown present. Then, Claire and Dave swap their gifts. -
This means, now Claire has an orange present and Dave has a pink
present. Whereas Alice has a pink present, Bob has a black ball,
and Eve has a brown present. Then, Alice and Bob swap their gifts.
- This means, now Alice has a black present and Bob has a pink
present. Whereas Claire has an orange present, Dave has a pink
present, and Eve has a brown present. Then, Eve and Dave swap
their gifts. - This means, now Eve has an orange present and Dave
has a brown present. Whereas Alice has a black present, Bob has
a pink present, and Claire has an orange present. Finally, Bob and
Claire swap their gifts. A: Overall this means, now Alice has a black
present, Bob has an orange present, Claire has a pink present, Dave
has a brown present, and Eve has an orange present. Therefore, At
the end of the event, Alice has the black ball ✓

36

	Introduction
	Background
	Prompt Sketching
	Sketch-Aware Decoding

	Experimental Evaluation
	Task Accuracy
	Novel Applications Enabled by Prompt Sketching
	Discussion

	Related Work
	Conclusion
	Reproducibility
	Decoding Algorithms
	Applications
	Sketching for Output Formatting
	Interactive Environments

	Additional Results
	Few-Shot Prompting
	Prompt Sketching With Smaller OpenAI Models
	Confidence Bounds and Scaling of OpenAI-specific Results
	Confidence Bounds for Llama-2

	Self-Consistency Baseline
	Using |dclib| and sketch-aware decoders
	Full Prompts

