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Abstract

The goal of Computer Adaptive Testing (CAT) is to reliably estimate an individual’s abil-
ity as modeled by an item response theory (IRT) instrument using only a subset of the
instrument’s items. A secondary goal is to vary the items presented across di�erent testing
sessions so that the sequence of items does not become overly stereotypical – we want all
items to have an exposure rate su�ciently far from zero. We formulate the optimization
problem for CAT in terms of Bayesian information theory, where one chooses the item at
each step based on the criterion of the ability model discrepancy – the statistical distance
between the ability estimate at the next step and the full-test ability estimate. This view-
point of CAT naturally motivates a stochastic selection procedure that equates sampling
the next item to Bayesian model averaging in the space of ability estimates. Using the NIH
Work Disability Functional Assessment Battery (WD-FAB), we evaluate our new methods
in comparison to pre-existing methods found in the literature. We find that our stochastic
selector has superior properties in terms of both item exposure and test accuracy/e�ciency.

1 Introduction

Computer Adaptive Testing (CAT), coupled with Item Response Theory (IRT) is the dominant statistical
paradigm behind assessment. Examples in high-stakes standardized testing alone include the Graduate Man-
agement Admission Test (GMAT) (Kingston et al., 1985; Rudner, 2010), the nursing National Council Licen-
sure Examination (NCLEX) (Woo & Dragan, 2012), the National Registry of Emergency Medical Technicians
(NREMT) (Ventura et al., 2021), and the Armed Services Vocational Aptitude Battery (ASVAB) (Segall &
Moreno, 1999). IRT/CAT also features in many healthcare contexts such as in the Patient Reported Out-
comes Measurement Information System (PROMIS) instruments (Cella et al., 2010; Segawa et al., 2020).
The objective of computer adaptive testing (CAT) is to tailor the administration of an item battery to the
ability on the respondent so that one can obtain a precise estimate for the respondent’s ability in a shorter
amount of time than that required to administer the entire battery. In CAT, items are selected sequentially,
conditional on a running estimate of a respondent’s aptitude. Given an ability estimate, item selection is
based on maximizing a given utility related to the information gain provided by an item.

One of the oldest and most popular CAT methodology selects items based on their specific contribution to
the overall Fisher information I =

q
i Ji. For a given step of the test t + 1, conditional on a point estimate

of the respondent’s ability conditional on previously answered items, ◊̂t, one chooses the item i that has the
maximum local information

Ji(◊)|◊=◊̂t
= ≠ ˆ2

ˆ◊2

Kÿ

k=1

wik log pi(k|◊)

-----
◊=◊̂t

, (1)

based on model point estimates, where pi(k|◊) is the probability mass function for item i, and wik is a
weighting parameter associated with choosing k as a response to item i for a person with ability estimate ◊̂t.
The rationale for this criteria derives from asymptotic normality of the sampling distribution of the estimate,

◊̂t
dæ normal

1
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where

It =
tÿ

s=1

Js(◊̂t) (2)

is the Fisher information. In choosing an item that maximizes the Fisher information, one is seeking the
maximal reduction to the estimator variance.

Typically one resolves the weights wik self-consistently using the IRT model by setting them to wik = pi(k|◊),
though sometimes uniform weights wik = 1/K are used. In this manuscript we will assume that one sets
the weights in accordance with taking a conditional (on ◊) expectation over the probability mass function
for item i.

1.1 Newer CAT item selection criteria

The Fisher information method is simple and computationally expedient. Although widely used, it has
several known limitations. First, the method adjudicates items conditional on the current running ability
estimate. This quantity is not well-characterized early-on in an exam. Second, the Fisher information of
Eq. 2 is an asymptotic approximation of the ability estimate precision; it is inaccurate when the number of
observed items is small. Third, the greedy nature of most item selection methods, in conjunction with pre-set
initialization, leads to highly stereotypical item trajectories and poor item exposure. Optimizing strictly for
ability estimate variance ignores other concerns such as item exposure.

To address the first issue, item selection criteria that take ability uncertainty into account exist, taking the
expectation of the Fisher information over a distribution of ability values (Owen, 1975; van der Linden, 1998;
van der Linden & Ren, 2020; Ueno, 2013; Choi & Swartz, 2009). To address the second issue, some item
selection methods directly target the posterior variance of the ability estimate (van der Linden, 1998). To
address the third issue, explicit and complex exposure controls exist (Georgiadou et al., 2007; Han, 2018),
including by using randomness in the selection procedure Barrada et al. (2008). The third issue motivates
our proposed selection method.

1.2 Item Response Theory (IRT)

IRT, a generative latent-variable modeling framework, is the dominant statistical paradigm for using assess-
ments in order to evaluate the ability of respondents. In addition to its use in pretty much every high-stakes
standardized assessment, applications of IRT are also widespread in health applications such as activities of
daily living (Fieo et al., 2010), quality of life (Bilbao et al., 2014), depression (Carlo et al., 2021), and in
personality tests (Goldberg, 1992; Bore et al., 2020; Saunders & Ngo, 2017; DeYoung et al., 2016; Funke,
2005; Spence et al., 2012).

In IRT, an ability parameter (canonically denoted ◊) is associated with a person, placing that individual into
a percentile rank relative to the population. In multidimensional IRT models, the ability of an individual
◊ is a vector. Many types of multidimensional IRT models exist; however, our primary target is factorized
models where each scale (dimension) can be isolated and treated separately.

In IRT models, a person’s response to an item depends on the person’s latent ability and the item’s di�culty.
Additionally, each item has a degree to which it is informed by the scale called the item discrimination. At
calibration, the item-specific scale and discrimination parameters are fitted to a sample of responses collected
from multiple respondents. The model’s item parameters are then frozen and the model is used to score new
respondents. In doing so, one is placing ability for new respondents within the context of the sample used
for calibration.

1.3 Work Disability Functional Assessment Battery (WD-FAB)

IRT also serves as the theoretical basis for the WD-FAB (Meterko et al., 2015; Marfeo et al., 2016; 2019;
Chang et al., 2022). Boston University and the National Institutes of Health, with the support of the Social
Security Administration (SSA) (Marfeo et al., 2018; Meterko et al., 2015; Jette et al., 2019; Porcino et al.,
2018), developed this multidimensional instrument for characterizing whole body and mental function. The
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IRT model itself is fully factorized, with four mental scales and four physical scales, each scale using an
independent uni-dimensional graded response model. Initial versions of it were developed using empirical
Bayesian methods and later versions employed full Bayesian inference (Chang et al., 2022).

The intended use of this instrument is to provide standardized and reliable information about an individual’s
functional abilities to help inform SSA’s disability adjudication process. The WD-FAB provides eight scores
across two domains of physical and mental function that are relevant to a person’s ability to work.

The item banks consist of questions that ask about a range of everyday activities, such as emptying a
dishwasher, walking a block, turning a door knob, speaking to someone on the phone, and managing under
stress. Accepted responses were graded on either four or five option ordinal Likert scales. Overall, these
studies collected item responses from approximately 12, 000 subjects sampled from claimants for disability
benefits as well as working-age adults who represent the general population of the United States. The
underlying parameters for these models were rescaled so that a unit of one point corresponds to one standard
deviation in estimated scores from a representative control sample of working age adults in the United States.

It is our objective to improve the CAT administration of the WD-FAB in terms of accuracy, e�ciency,
and item exposure. In the current assessment, where item selection is based on optimizing the Fisher
information, a minimum of five and maximum of twelve items are administered per scale. These limits
are designed in order to achieve at least a minimum degree of scoring convergence while being mindful of
respondent burden. Subject to these limits, a scale is also considered converged if its posterior score estimate
has standard deviation of about a third of a point.

The assessment is often administered to physically and mentally impaired individuals who are applying for
disability benefits. These individuals commonly need assistance, so it is important to reduce administration
times. However, the prior methodology has poor item exposure, and we would like to improve this aspect
without compromising accuracy and e�ciency.

Item exposure in the context of the WD-FAB is important for two main reasons. First, by increasing
the diversity of the exposed items (and real-world item trajectories), we are able to reduce the possibility
of gaming the instrument and by proxy the disability determination process. Second, having poor item
exposure can bias the instrument in focusing on a small subset of physical or mental impairments while
ignoring others. While the underlying IRT model theoretically is invariant to which exact items are provided
to a respondent in terms of producing a score, in reality no IRT model perfectly describes the response data.
The necessarily finite nature of the CAT means that finite-size e�ects can bias scores.

2 Methods

2.1 Notation

Suppose that one has modeled responses to a test bank using an item response model so that a person of
ability ◊ is expected to respond to item i according to the probability mass function pi(k|◊). For a given
individual, knowing all of his responses x = (x1, x2, . . . , xI), one may estimate the ability of the individual
by computing the statistics of the posterior distribution,

fi(◊|x) Ã fi(◊)
IŸ

i=1

pi(xi|◊) (3)

where the maximum likelihood estimate corresponds to using a flat prior for fi(◊).

The objective of a testing session is to use this model to ascertain the ability of a given individual relative to
that of the calibration sample, approximating the statistics of Eq. 3 in as e�cient a manner as possible. In this
sense, Eq. 3 is considered the true estimate of a person’s ability. Let the vector –t = (–1, –2, . . . , –t) œ P (I, t)
represent the particular permutation of items presented to a respondent by step t, and xt be the responses
to those particular items. In CAT applications it is common to estimate the ability at step t according to
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the likelihood of the previously observed items so that

fĩt(◊|xt) Ã fi(◊)
tŸ

s=1

p–s(x–s |◊). (4)

Then, the choice of item –t+1 is made conditional on this running estimate. At a given step t, the choice of
the next item –t+1 is analogous to choosing among I≠t choices for the next ability estimate fĩt+1(◊|xt+1). By
computing the KL divergence between this next estimate and the true estimate, we obtain the information
theoretic discrepancy measure

D (fi(◊|x), fĩt+1(◊|xt+1)) =
⁄

fi(◊|x) log fi(◊|x)
fĩt+1(◊|xt+1)d◊. (5)

2.2 Computer adaptive testing

In computer adaptive testing (CAT), items are presented sequentially to a respondent. Our focus is on
addressing the optimization of Eq. 5 at each step in this setting. Conditional on the new response, one may
update ability estimates by application of Bayes rule,

fĩt+1(◊|xt+1) =
p–t+1(xt+1|◊)fĩt(◊|xt)s

p–t+1(xt+1|„)fĩt(„|xt)d„
. (6)

We wish to adjudicate item choice based on Eq. 5, but a major di�culty remains: we do not know the future
responses so fi(◊|x) is unknown. This issue is not unique to our methodology, and is usually resolved by
taking an expectation using a given mass function (typically using the current ability estimate).

Each di�erent set of responses {x–t+1}I
s=t+1

yields a di�erent value for the discrepancy; in particular, it
is inconvenient that each possible response to the next item yields a di�erent fi(◊|x). Computing the
expectation of Eq. 5 exactly requires specifying (I ≠ t)◊K di�erent marginal posterior distributions, each of
which is challenging to compute. In order to make the method tractable, we develop a mean field estimate
of the expectation of Eq. 5. In this estimate, we ignore the coupling between fi(◊|x) and the response to the
next item, plugging in the expectation of fi(◊|x) into Eq. 5.

2.3 Variational Bayesian Expectation Maximization (VBEM)

In order to decouple the full bank posterior fi(◊|x) term, we wish to marginalize it against the unobserved
items,

fit(◊|xt) = Eztfi(◊, zt|xt), (7)

where zt are the responses that have not yet been observed at step t. VBEM (Bernardo et al., 2003) allows
us to approximate Eq. 7 through the following iterative procedure, at step m,

log q(m+1)

zt,j (k) = const(m+1)

j +
⁄

log pj(k|◊)q(m)

◊ (◊)d◊ (8)

log q(m+1)

◊ (◊) = const(m+1) + log fi(◊) +
ÿ

jœ–t

log pj(xj |◊) +
ÿ

j ”œ–t

ÿ

k

q(m+1)

zt,j (k) log pj(k|◊) (9)

where each iteration is guaranteed to not increase D(fit(◊|xt), q(m)

◊ ) by the principle of majorization-
minimization (Wu, 1983; Wu & Lange, 2010; Lange, 2016; Lange & Zhou, 2022). Then, after some number
of EM iterations M, we can compute the plug-in criterion

�(i)
t =

ÿ

k

q(M)

zt,i (k)D
1

q(M)

◊ (◊), fĩ(◊|xt, xi = k)
2

. (10)

Technically, Eq. 7, rather than the commonly-used Eq. 4, is the best estimate of the ability at step t, an
observation that we will save for the Discussion.
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2.4 Stochastic item selection

At step t there remain I ≠ t un-selected items to present to the respondent. Eq. 10 provides a relative
measure for judging each item, with the goal of closing the gap between the running ability estimate and
the final ability estimate. Typically, one uses criteria such as Eq. 10 as part of a stepwise greedy algorithm
where at each step one chooses the single item that optimizes the given criterion. However, with the aim of
reducing stereotypical item paths and improving item exposure, we motivate a stochastic selection method.

Each item choice implies a di�erent posterior ability distribution at the next step. The act of choosing
between these potential distributions is e�ectively a form of model selection. Computing Eq. 10 is equivalent
to estimating the information theoretic model discrepancy, relative to a true ability estimate and conditional
on next item choice. This fact motivates the creation of a meta distribution in ability estimate space where
each ability model (implied by item choice) has the relative weight of exp(≠�(i)

t ) (Akaike, 1978; Bozdogan,
1987; Dormann et al., 2018; Wagenmakers & Farrell, 2004; Yao et al., 2018). Corresponding to this ensemble
ability model we introduce an item sampling scheme. We draw the next item i ”œ –t, according to

–t+1 ≥ Categorical(wt) w(i)
t =

exp
1

≠�(i)
t

2

ÿ

j ”œ–t

exp
1

≠�(j)

t

2 , (11)

where the categorical distribution is defined over the I ≠ t items that have not yet been administered at time
step t. In e�ect, the frequency statistics of items in Eq. 11 correspond to Bayesian model averaging (Hinne
et al., 2020; Hoeting et al., 1999) of the corresponding per-item ability estimates.

2.5 Alternate formulations

We can rewrite the discrepancy (Eq. 5) to remove the explicit dependence on fĩt+1,

D (fi(◊|x), fĩt+1(◊|xt+1)) =
⁄

fi(◊|x) log p̃(t)

i (xt+1)fi(◊|x)
pi(xt+1|◊)fĩt(◊|xt)

d◊

=
⁄

fi(◊|x) log p̃(t)

i (xt+1)
pi(xt+1|◊)d◊ + D(fi(◊|x)||fĩt(◊|xt)) (12)

where
p̃(t)

i (k) =
⁄

pi(k|◊)fĩt(◊|xt)d◊,

and note that while the second term in the last line of Eq. 12 depends on the response for the next item, it
does not depend on the choice of the next item. We can then relate the discrepancy to leave one out (LOO)
cross validation, expanding the first term in Eq. 12

D (fi(◊|x), fĩt+1(◊|xt+1)) = D(fi(◊|x)||fĩt(◊|xt)) +
⁄

fi(◊|x) log p̃(t)

i (xi)fi(◊|x)
fi(◊|x)pi(xi|◊)d◊

= D(fi(◊|x)||fĩt(◊|xt)) + S[fi(◊|x)] ≠ D(fi(◊|x)||fĩI≠1(◊|x \ {xi})) + log p̃(t)

i (xi)
p̃LOO

i (xi)
(13)

where, fĩI≠1(◊|x \ {xi}), the ability estimate when leaving out xi follows Bayes rule,

pi(xi|◊)fĩI≠1(◊|x \ {xi})
p̃LOO

i (xi)
= fi(◊|x)

and p̃LOO

i (xi) =
s

p(xi|◊)fĩI≠1(◊|x \ {xi})d◊ is the corresponding LOO mass function for item i. In this
representation, only the last two terms in Eq. 13 depend on the item choice. In minimizing the discrepancy,
one is also selecting the item that if left out would yield the biggest discrepancy.
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2.6 Relationship to prior methods

Eq. 5 is not in the class of variance minimizing criteria, whether it be the Fisher information (Eq. 2), global
variants of the Fisher information

Bayesian Fisher information =
⁄

fĩt(◊)Ji(◊)d◊, (14)

or any criteria that directly approximates the quantity

Bayesian variance = Var [◊|xt, –t+1 = i] . (15)

The LOO version of the discrepancy (Eq. 13) relates to the “global information” method of Chang & Ying
(1996),

Global information = E◊

C
ÿ

k

pi(k|◊) log pi(k|◊)
pi(k|◊̂t)

D

=
ÿ

k

⁄
fĩt(◊|xt)pi(k|◊) log

C
pi(k|◊)
pi(k|◊̂t)

fĩt(◊|xt)
fĩt(◊|xt)

D
d◊

=
ÿ

k

p̃(t)

i (k)
Ë
D (fĩt+1(◊|xt, xi = k)||fĩt) ≠ log pi(k|◊̂t) + log p̃(t)

i (k)
È

= Exi [D (fĩt+1(◊|xt, xi = k)||fĩt(◊|xt))] + Dxi [p̃
(t)

i ||pi(k|◊̂t)], (16)

for xi ≥ p̃(t)

i . Other information-theoretic methods that are based on comparing the statistical distance
relative to the current ability estimate also exist (Sorrel et al., 2020; Wang & Chang, 2011; Weissman, 2007;
Wang et al., 2020). The main di�erence between our method and these prior methods is that we evaluate the
item choice against the true ability estimate rather than the current ability estimate – and thereby motivate
a model-averaging stochastic selector.

2.7 Numerical implementation

We coded two independent implementations of our methodology as applied to the Graded Response Model:
one in Python (redacted) and one in Golang (redacted). Within our implementation we approximated all
integrals using trapezoid approximations with 200 equally spaced grid points. We used M = 5 iterations to
approximate the marginal posterior distributions (Eq. 9).

3 Results

In producing the following results, for each scale, we simulated item responses for 500 respondents for each
true underlying ability of ◊ œ {≠3, ≠2.5, ≠2, . . . , 2.5, 3}. Then we put each respondent’s item responses
through each CAT item selection method, obtaining ability estimates at given test lengths. The methods
evaluated are greedy selection via the Fisher Information (Eq. 2), Bayesian Fisher information (Eq. 14),
Global information (Eq. 16), Bayesian variance (Eq. 15), ability estimate discrepancy (Eq. 10), and our
stochastic selection method (Eq. 11). Finally, we also computed ability estimates for each simulated respon-
dent based on all of their item responses. In the main text we report on only the four mental scales of the
WD-FAB. Please see the Supplement Results for the corresponding physical scale results.

3.1 Testing error

Figures 1, 2 and 3 provide di�erent measures of ability estimation error in the context of computer adaptive
testing. Fig. 1 displays values of the discrepancy (Eq. 5) conditional on the scale, item selection method, test
length at stopping (5, 10, 20, 30, 40 items), and true fixed ability used in simulating CAT responses. Using
the Fisher information and global information selectors, there are some situations in which the discrepancy
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Figure 1: Ability estimate discrepancy D(fi(◊|x)||fĩ(◊|xt)) (mean and middle 80% interval) conditional
on score ◊ used to generate response sets, by scale, item selection method, and test length t, for mental
function scales of the WD-FAB. Lower is better.

increases as the test length increases for an intermediate range of test lengths before dropping. On the
other hand, the Bayesian variance and the methods based on our criterion (Eq. 10) reliably decrease the
discrepancy as the test length increases. Failure to decrease this discrepancy suggests that a selection
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Figure 2: Error in means (
s

◊fĩ(◊|xt)d◊ ≠
s

◊fi(◊|x)d◊) (mean and middle 80% interval) conditional on
true score ◊ by scale, item selection method, and test length t, for mental function scales of the WD-FAB.

procedure generates item subsets that provide inaccurate ability estimates when used as whole-distribution
A/B comparisons between individuals.

In many CAT/IRT based instruments, the mean ability is used in order to characterize a respondent. Fig. 2
presents statistics of the mean ability error (mean and middle 80% coverage) across the di�erent simulation
configurations. In Fig. 3, we provide statistics of the absolute value of this error across simulations.
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Figure 3: Absolute error in means (|
s

◊fĩ(◊|xt)d◊ ≠
s

◊fi(◊|x)d◊|) (mean and middle 80% interval)
conditional on true score ◊ by scale, item selection method, and test length t, for mental function scales of
the WD-FAB. Lower is better.

The error distributions are highly variable across these attributes. Generally, the magnitude of the error
decreased as the test length increased. For most scales, there is a region of abilities for which all item
selectors produced small errors. No single selection method had the lowest errors in all situations, though
generally the stochastic selector performed most-consistently well.
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Figure 4: Standard deviation of ability estimates (


Vart(◊) (mean and middle 80% percentile) condi-
tional on true score ◊ by scale and item selection method, for mental function scales of the WD-FAB. Used
as stopping criteria for CAT. Lower is better.
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Often, the posterior variance is used to define a cuto� for a CAT stopping rule. The standard deviation
of the posterior ability estimates is presented in Fig. 4 for the di�erent simulation configurations. In these
simulations, it is clear that the two Fisher methods and the global information method provide the lowest
posterior ability standard deviations. However, in light of Figures 1, 2, 3, it is clear that these methods are
under-estimating the error of their ability estimates. In doing so, they are terminating quicker than they
should and settling on sub-optimal ability estimates.

3.2 Item exposure
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Figure 5: Item exposure statistics (mean and middle 80% interval), for each of the given item selection
methods across a given number of CAT sessions, for mental function scales of the WD-FAB. The dashed line
represents the maximum possible exposure per scale. Higher is better.

Fig. 5 compares the di�erent item selection methods on the basis of item exposure across sessions (with 12
items presented per scale) with randomly distributed abilities. In this figure, for each simulation configura-
tion, we counted the number of unique items seen for each scale across replications of the given number of
CAT sessions. For example, for the scale “ME,” we estimate that in each set of 32 sessions approximately 22
items are exposed on average, though with wide variance. As the number of sessions increases, the number of
exposed items increases. Of the greedy methods, the Bayesian variance method has the best item exposure.
For some scales, the Bayesian variance method performed almost as well as the best selection method, the
stochastic selector based on Eq. 11. The stochastic selector successfully exposed all items for all scales in all
the scenarios tested.

4 Discussion

In this manuscript we have introduced a new item selection criterion for CAT based on Bayesian information
theory and motivated its use in defining a stochastic selector that samples from the hypothetical ensemble
of ability estimates conditional on the next item. We provided a computationally expedient plugin version
of our criterion based on variational Bayesian expectation maximization. Using simulations of the new
selector (and other selectors for comparison), on the WD-FAB, we found our new stochastic selector to
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have both superior item exposure properties while not compromising in terms of accuracy. Additionally, the
simulations showed that unlike the Fisher information methods, the new selection methods (whether greedy
or stochastic) are not over-confident in estimating scoring error. This fact implies that the new methods
are less likely to settle on a poor ability estimate. Beyond characterizing a point estimate for ability, using
the discrepancy as a criterion optimizes the whole-distribution ability estimate, which implies more-accurate
A/B tests when comparing scores between di�erent respondents. Finally, the computationally expensive
portion of our overall approach is in computing the marginal posterior ability estimate. As we will discuss,
this quantity is the true ability estimate at step t and should be computed and used in all other selection
methods. For this reason, our criterion is of similar computational complexity to the other Bayesian criterion
mentioned in this manuscript.

4.1 What should the ability estimate be at step t?

In formulating our method, we assume that one is using a scoring methodology similar to what is commonly
used in the literature – using the likelihood of the items observed up to step t. Recall that we call the
posterior ability estimate obtained by this method fĩt(◊|xt), making a distinction between this quantity and
fi(◊|xt), the marginal posterior ability at step t. The latter estimate di�ers from the former in that it also
accounts for the fact that the I ≠ t unobserved items at time t will also impact the final ability estimate.
The latter is a better estimate of the ability because it is consistent with both the observed and unobserved
items being drawn from the same underlying conditional distribution. For this reason, it should also be used
in all selection methods in place of fĩt when taking expectations over unknown responses and in both the
running and final score estimates. In a follow-up to this manuscript, we will elaborate on this point.

4.2 Why ensembling?

Focusing on e�ciency, there are reasons to think why randomization in CAT would be sub-optimal. If the
objective is to optimize a given criterion, then not always choosing the exact optimal item would seem to
result in a less e�cient CAT. As we have shown for the WD-FAB, this assumption did not hold. On the
other hand, there are at least a couple a-priori explanations in support of our findings. First, in the context
of prediction, Le & Clarke (2022) has shown that model averaging is asymptotically better than model
selection. Second, each criterion requires resolving unknown future responses. Since the true ability of the
respondent is unknown, the statistics of these responses is unknown. However, our method uses the correct
item response probabilities in computing the expectation in Eq. 10.

4.3 Limitations and extensions

In using the variational Bayesian EM estimates for the marginal item probability mass functions in order
to compute the item-wise expectations of Eq. 10, we are using the optimal item probabilities provided by
the given IRT model. However, one may also be able to improve the accuracy of this expectation by using
di�erent IRT models that are more-tuned to accuracy than interpretability (Chang et al., 2019; 2023), so
long as one accounts for unobserved items.

The estimate of the criterion of Eq. 5 in the form of the the mean field plugin estimator in Eq. 10 trades
accuracy for computational e�ciency. One could more-accurately compute this expectation by developing a
version of Eq. 10 that preserves the coupling between fi(◊|x) and the response to the next item.

This work was focused on improving the assessment of the WD-FAB, a factorized multidimensional IRT
model. We found generally, across all scales (dimensions) that our model ensembling stochastic selector
outperformed the other commonly used selection methods that we tested. Your mileage my vary when
trying these methods with other instruments.

While we formulate our methodology assuming a multidimensional ability parameter ◊, it would likely take
additional work in order to adapt this method to non-factorized multidimensional instruments. Additional
controls might be needed in order to balance out the administration of the di�erent scales for instance.
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