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ABSTRACT

Learning from noisy data has attracted much attention, where most methods focus
on label noise. In this work, we propose a new framework which simultaneously
addresses three types of noise commonly seen in real-world data: label noise, out-
of-distribution input, and input corruption. In contrast to most existing methods,
we combat noise by learning robust representation. Specifically, we embed images
into a low-dimensional subspace by training an autoencoder on the deep features.
We regularize the geometric structure of the subspace with robust contrastive
learning, which includes an unsupervised consistency loss and a supervised mixup
prototypical loss. Furthermore, we leverage the structure of the learned subspace for
noise cleaning, by aggregating information from neighboring samples. Experiments
on multiple benchmarks demonstrate state-of-the-art performance of our method
and robustness of the learned representation. Our code will be released1.

1 INTRODUCTION

Data in real life is noisy. However, deep models with remarkable performance are mostly trained
on clean datasets with high-quality human annotations. Manual data cleaning and labeling is an
expensive process that is difficult to scale. On the other hand, there exists almost infinite amount of
noisy data online. It is crucial that deep neural networks (DNNs) could harvest noisy training data.
However, it has been shown that DNNs are susceptible to overfitting to noise (Zhang et al., 2017).

As shown in Figure 1, a real-world noisy image dataset often consists of multiple types of noise.
Label noise refers to samples that are wrongly labeled as another class (e.g. flower labeled as orange).
Out-of-distribution input refers to samples that do not belong to any known classes. Input corruption

refers to image-level distortion (e.g. low brightness) that causes data shift between training and test.

Most of the methods in literature focus on addressing the more detrimental label noise. Two dominant
approaches include: (1) find clean samples as those with smaller loss and assign larger weights to
them (Han et al., 2018; Yu et al., 2019; Shen & Sanghavi, 2019; Arazo et al., 2019); (2) relabel noisy
samples using model’s predictions (Reed et al., 2015; Ma et al., 2018; Tanaka et al., 2018; Yi & Wu,
2019). The recently proposed DivideMix (Li et al., 2020a) integrates both approaches in a co-training
framework, but it also increases computation cost. Previous methods that focus on addressing label
noise do not consider out-of-distribution input or input corruption, which limits their performance in
real-world scenarios. Furthermore, using a model’s own prediction to relabel samples could cause
confirmation bias, where the prediction error accumulates and harms performance.

We propose a new direction for effective learning from noisy data. Our method embeds images
into noise-robust low-dimensional representations, and regularizes the geometric structure of the
representations with contrastive learning. Specifically, our algorithmic contributions include:

• We propose noise-robust contrastive learning, which introduces two contrastive losses. The first is
an unsupervised consistency contrastive loss. It enforces inputs with perturbations to have similar
normalized embeddings, which helps learn robust and discriminative representation.

• Our second contrastive loss is a weakly-supervised mixup prototypical loss. We compute class
prototypes as normalized mean embeddings, and enforces each sample’s embedding to be closer to

1Code is in the supplementary material
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Figure 1: Google search images from WebVision (Li et al., 2017) dataset with keyword “orange”.

its class prototype. Inspired by Mixup (Zhang et al., 2018), we construct virtual training samples as
linear interpolation of inputs, and encourage the same linear relationship w.r.t the class prototypes.

• We train a linear autoencoder to reconstruct the high-dimensional features using low-dimensional
embeddings. The autoendoer enables the high-dimensional features to maximally preserve the
robustness of the low-dimensional embeddings, thus regularizing the classifier.

• We propose a new noise cleaning method which exploits the structure of the learned representations.
For each sample, we aggregate information from its top-k neighbors to create a pseudo-label.
A subset of training samples with confident pseudo-labels are selected to compute the weakly-
supervised losses. This process can effectively clean both label noise and out-of-distribution (OOD)
noise.

Our experimental contributions include:

• We experimentally show that our method is robust to label noise, OOD input, and input corruption.
Experiments are performed on multiple datasets with controlled noise and real-world noise, where
our method achieves state-of-the-art performance.

• We demonstrate that the proposed noise cleaning method can effectively clean a majority of
label noise. It also learns a curriculum that gradually leverages more samples to compute the
weakly-supervised losses as the pseudo-labels become more accurate.

• We validate the robustness of the learned low-dimensional representation by showing (1) k-nearest
neighbor classification outperforms the softmax classifier. (2) OOD samples can be separated from
in-distribution samples. The efficacy of the proposed autoencoder is also verified.

2 RELATED WORK

Label noise learning. Learning from noisy labels have been extensively studied in the literature.
While some methods require access to a small set of clean samples (Xiao et al., 2015; Vahdat,
2017; Veit et al., 2017; Lee et al., 2018; Hendrycks et al., 2018), most methods focus on the more
challenging scenario where no clean labels are available. These methods can be categorized into two
major types. The first type performs label correction using predictions from the network (Reed et al.,
2015; Ma et al., 2018; Tanaka et al., 2018; Yi & Wu, 2019). The second type tries to separate clean
samples from corrupted samples, and trains the model on clean samples (Han et al., 2018; Arazo
et al., 2019; Jiang et al., 2018; 2020; Wang et al., 2018; Chen et al., 2019; Lyu & Tsang, 2020). The
recently proposed DivideMix (Li et al., 2020a) effectively combines label correction and sample
selection with the Mixup (Zhang et al., 2018) data augmentation under a co-training framework.
However, it cost 2⇥ the computational resource of our method.

Different from existing methods, our method combats noise by learning noise-robust low-dimensional
representations. We propose a more effective noise cleaning method by leveraging the structure of
the learned representations. Furthermore, our model is robust not only to label noise, but also to
out-of-distribution and corrupted input. A previous work has studied open-set noisy labels (Wang
et al., 2018), but their method does not enjoy the same level of robustness as ours.

Contrastive learning. Contrastive learning is at the core of recent self-supervised representation
learning methods (Chen et al., 2020; He et al., 2019; Oord et al., 2018; Wu et al., 2018). In self-
supervised contrastive learning, two randomly augmented images are generated for each input image.
Then a contrastive loss is applied to pull embeddings from the same source image closer, while
pushing embeddings from different source images apart. Recently, prototypical contrastive learning
(PCL) (Li et al., 2020b) has been proposed, which uses cluster centroids as prototypes, and trains the
network by pulling an image embedding closer to its assigned prototypes.
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Figure 2: Our proposed framework for noise-robust contrastive learning. We project images into a low-
dimensional subspace, and regularize the geometric structure of the subspace with (1)Lcc a consistency con-
trastive loss which enforces images with perturbations to have similar embeddings; (2)Lpc mix: a prototypical
contrastive loss augmented with mixup, which encourages the embedding for a linearly-interpolated input to
have the same linear relationship w.r.t the class prototypes. The low-dimensional embeddings are also trained to
reconstruct the high-dimensional features, which preserves the learned information and regularizes the classifier.

Different from previous methods, our method performs contrastive learning in the principal subspace
of the high-dimensional feature space, by training a linear autoencoder. Furthermore, our supervised
contrastive loss improves PCL (Li et al., 2020b) with Mixup (Zhang et al., 2018). Different from the
original Mixup where learning happens at the classification layer, our learning takes places in the
low-dimensional subspace.

3 METHOD

Given a noisy training dataset D = {(xi, yi)}ni=1, where xi is an image and yi 2 {1, ..., C} is its
class label. We aim to train a network that is robust to the noise in training data (i.e. label noise, OOD
input, input corruption) and achieves high accuracy on a clean test set. The proposed network consists
of three components: (1) a deep encoder (a convolutional neural network) that encodes an image
xi to a high-dimensional feature vi; (2) a classifier (a fully-connected layer followed by softmax)
that receives vi as input and outputs class predictions; (3) a linear autoencoder that projects vi into
a low-dimensional embedding zi 2 Rd. We show an illustration of our method in Figure 2, and a
pseudo-code in appendix B. Next, we delineate its details.

3.1 CONTRASTIVE LEARNING IN ROBUST LOW-DIMENSIONAL SUBSPACE

Let zi = Wevi be the linear projection from high-dimensional features to low-dimensional embed-
dings, and ẑi = zi/ kzik2 be the normalized embeddings. We aim to learn robust embeddings with
two contrastive losses: unsupervised consistency loss and weakly-supervised mixup prototypical loss.

Unsupervised consistency contrastive loss. Following the NT-Xent (Chen et al., 2020) loss for self-
supervised representation learning, our consistency contrastive loss enforces images with semantic-
preserving perturbations to have similar embeddings. Specifically, given a minibatch of b images,
we apply weak-augmentation and strong-augmentation to each image, and obtain 2b inputs {xi}2bi=1.
Weak augmentation is a standard flip-and-shift augmentation strategy, while strong augmentation
consists of color and brightness changes with details given in Section 4.1.

We project the inputs into the low-dimensional space to obtain their normalized embeddings {ẑi}2bi=1.
Let i 2 {1, ..., b} be the index of a weakly-augmented input, and j(i) be the index of the strong-
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augmented input from the same source image, the consistency contrastive loss is defined as:

Lcc =
bX

i=1

� log
exp(ẑi · ẑj(i)/⌧)

P2b
k=1 i 6=k exp(ẑi · ẑk/⌧)

, (1)

where ⌧ is a scalar temperature parameter. The consistency contrastive loss maximizes the inner
product between the pair of positive embeddings ẑi and ẑj(i), while minimizing the inner product
between 2(b� 1) pairs of negative embeddings. By mapping different views (augmentations) of the
same image to neighboring embeddings, the consistency contrastive loss encourages the network to
learn discriminative representation that is robust to low-level image corruption.

Weakly-supervised mixup prototypical contrastive loss. Our second contrastive loss injects struc-
tural knowledge of classes into the embedding space. Let Ic denote indices for the subset of images
in D labeled with class c, we calculate the class prototype as the normalized mean embedding:

zc =
1

|Ic|
X

i2Ic

ẑi, ẑc =
zc

kzck2
, (2)

where ẑi is the embedding of a center-cropped image, and the class prototypes are calculated at the
beginning of each epoch.

The prototypical contrastive loss enforces an image embedding ẑi to be more similar to its corre-
sponding class prototype ẑyi , in contrast to other class prototypes:

Lpc(ẑi, yi) = � log
exp(ẑi · ẑyi/⌧)

PC
c=1 exp(ẑi · ẑc/⌧)

. (3)

Since the label yi is noisy, we would like to regularize the encoder from memorizing training labels.
Mixup (Zhang et al., 2018) has been shown to be an effective method against label noise (Arazo et al.,
2019; Li et al., 2020a). Inspired by it, we create virtual training samples by linearly interpolating
a sample (indexed by i) with another sample (indexed by m(i)) randomly chosen from the same
minibatch:

xm
i = �xi + (1� �)xm(i), (4)

where � ⇠ Beta(↵,↵).

Let ẑm
i be the normalized embedding for xm

i , the mixup version of the prototypical contrastive loss is
defined as a weighted combination of the two Lpc w.r.t class yi and ym(i). It enforces the embedding
for the interpolated input to have the same linear relationship w.r.t. the class prototypes.

Lpc mix =
2bX

i=1

�Lpc(ẑ
m
i , yi) + (1� �)Lpc(ẑ

m
i , ym(i)). (5)

Reconstruction loss. We also train a linear decoder Wd to reconstruct the high-dimensional feature
vi based on zi. The reconstruction loss is defined as:

Lrecon =
2bX

i=1

kvi �Wdzik22 . (6)

There are several benefits for training the autoencoder. First, with an optimal linear autoencoder,
We will project vi into its low-dimensional principal subspace and can be understood as applying
PCA (Baldi & Hornik, 1989). Thus the low-dimensional representation zi is intrinsically robust
to input noise. Second, minimizing the reconstruction error is maximizing a lower bound of the
mutual information between vi and zi (Vincent et al., 2010). Therefore, knowledge learned from
the proposed contrastive losses can be maximally preserved in the high-dimensional representation,
which helps regularize the classifier.

Classification loss. Given the softmax output from the classifier, p(y;xi), we define the classification
loss as the cross-entropy loss. Note that it is only applied to the weakly-augmented inputs.

Lce = �
bX

i=1

log p(yi;xi). (7)
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(a) (b) (c)

Figure 3: Curriculum learned by the proposed label correction method for training on CIFAR datasets with
50% sym. noise. (a) Accuracy of pseudo-labels w.r.t to clean training labels. (b) Number of samples in the
weakly-supervised subset Dt

sup. (c) Label noise ratio in the weakly-supervised subset.

The overall training objective is to minimize a weighted sum of all losses:

L = Lce + !ccLcc + !pcLpc mix + !reconLrecon (8)

For all experiments, we fix !cc = 1, !recon = 1, and change !pc only across datasets.

3.2 NOISE CLEANING WITH SMOOTH NEIGHBORS

After warming-up the model by training with the noisy labels {yi}ni=1 for t0 epochs, we aim to
clean the noise by generating a soft pseudo-label qi for each training sample. Different from
previous methods that perform label correction purely using the model’s softmax prediction, our
method exploits the structure of the low-dimensional subspace by aggregating information from top-k
neighboring samples, which helps alleviate the confirmation bias problem.

At the t-th epoch, for each sample xi, let pt
i be the classifier’s softmax prediction, let qt�1

i be its soft
label from the previous epoch, we calculate the soft label for the current epoch as:

qt
i =

1

2
pt
i +

1

2

kX

j=1

wt
ijq

t�1
j , (9)

where wt
ij represents the normalized affinity between a sample and its neighbor and is defined as

wt
ij =

exp(ẑt
i ·ẑ

t
j/⌧)Pk

j=1 exp(ẑt
i ·ẑt

j/⌧)
. We set k = 200 in all experiments.

The soft label defined by eqn.(9) is the minimizer of the following quadratic loss function:

J(qt
i) =

kX

j=1

wt
ij

��qt
i � qt�1

j

��2
2
+
��qt

i � pt
i

��2
2
. (10)

The first term is a smoothness constraint which encourages the soft label to take a similar value as its
neighbors’ labels, whereas the second term attempts to maintain the model’s class prediction.

We construct a weakly-supervised subset which contains (1) clean sample whose soft label score for
the original class yi is higher than a threshold ⌘0, (2) pseudo-labeled sample whose maximum soft
label score exceeds a threshold ⌘1. For pseudo-labeled samples, we convert their soft labels into hard
labels by taking the class with the maximum score.

Dt
sup = {xi, yi | qti(yi) > ⌘0}[ {xi, ŷ

t
i = argmax

c
qti(c) | 8max

c
qti(c) > ⌘1, c 2 {1, .., C}} (11)

Given the weakly-supervised subset, we modify the classification loss Lce, the mixup prototypical
contrastive loss Lpc mix, and the calculation of prototypes ẑc, such that they only use samples from
Dt

sup. The unsupervised losses (i.e. Lcc and Lrecon) still operate on all training samples.

Learning curriculum. Our iterative noise cleaning method learns an effective training curriculum,
which gradually increases the size of Dt

sup as the pseudo-labels become more accurate. To demonstrate
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Dataset CIFAR-10 CIFAR-100
Noise type Sym 20% Sym 50% Asym 40% Sym 20% Sym 50%

Cross-Entropy (Li et al., 2020a) 82.7 57.9 72.3 61.8 37.3
Forward (Patrini et al., 2017) 83.1 59.4 83.1 61.4 37.3
Co-teaching+ (Yu et al., 2019) 88.2 84.1 - 64.1 45.3
Mixup (Zhang et al., 2018) 92.3 77.6 - 66.0 46.6
P-correction (Yi & Wu, 2019) 92.0 88.7 88.1 68.1 56.4
MLNT (Li et al., 2019) 92.0 88.8 88.6 67.7 58.0
M-correction (Arazo et al., 2019) 93.8 91.9 86.3 73.4 65.4
DivideMix (Li et al., 2020a) 95.0 93.7 91.4 74.8 72.1
DivideMix (reproduced) 95.1±0.1 93.6±0.2 91.3±0.8 75.1±0.2 72.1±0.3

Ours (classifier) 95.8±0.1 94.3±0.2 91.9±0.8 79.1±0.1 74.8±0.4
Ours (knn) 95.9±0.1 94.5±0.1 92.4±0.9 79.4±0.1 75.0±0.4

Table 1: Comparison with state-of-the-art methods on CIFAR datasets with label noise. Numbers indicate
average test accuracy (%) over last 10 epochs. We report results over 3 independent runs with randomly-generated
label noise. Results for previous methods are copied from Arazo et al. (2019); Li et al. (2020a). We re-run
DivideMix (without ensemble) using the publicly available code on the same noisy data as ours.

such curriculum, we analyse the noise cleaning statistics for training our model on CIFAR-10 and
CIFAR-100 datasets with 50% label noise (experimental details explained in the next section). In
Figure 3 (a), we show the accuracy of the soft pseudo-labels w.r.t to clean training labels (only used
for analysis purpose). Our method can significantly reduce the ratio of label noise from 50% to 5%
(for CIFAR-10) and 17% (for CIFAR-100). Figure 3 (b) shows the size of Dt

sup as a percentage of the
total number of training samples, and Figure 3 (c) shows the effective label noise ratio within the
weakly-supervised subset Dt

sup. Our method maintains a low noise ratio in the weakly-supervised
subset, while gradually increasing its size to utilize more samples for the weakly-supervised losses.

4 EXPERIMENT
In this section, we validate the proposed method on multiple benchmarks with controlled noise and
real-world noise. Our method achieves state-of-the-art performance across all benchmarks. For fair
comparison, we compare with DivideMix (Li et al., 2020a) without ensemble. In appendix A, we
report the result of our method with co-training and ensemble, which further improves performance.

4.1 EXPERIMENTS ON CONTROLLED NOISY LABELS

Dataset. Following Tanaka et al. (2018); Li et al. (2020a), we corrupt the training data of CIFAR-
10 and CIFAR-100 (Krizhevsky & Hinton, 2009) with two types of label noise: symmetric and
asymmetric. Symmetric noise is injected by randomly selecting a percentage of samples and changing
their labels to random labels. Asymmetric noise is class-dependant, where labels are only changed to
similar classes (e.g. dog$cat, deer!horse). We experiment with multiple noise ratios: sym 20%,
sym 50%, and asym 40% (see results for sym 80% and 90% in appendix A). Note that asymmetric
noise ratio cannot exceed 50% because certain classes would become theoretically indistinguishable.

Implementation details. Same as previous works (Arazo et al., 2019; Li et al., 2020a), we use
PreAct ResNet-18 (He et al., 2016) as our encoder model. We set the dimensionality of the bottleneck
layer as d = 50. Our model is trained using SGD with a momentum of 0.9, a weight decay of 0.0005,
and a batch size of 128. The network is trained for 200 epochs. We set the initial learning rate
as 0.02 and use a cosine decay schedule. We apply standard crop and horizontal flip as the weak
augmentation. For strong augmentation, we use AugMix (Hendrycks et al., 2020), though other
methods (e.g. SimAug (Chen et al., 2020)) work equally well. For all CIFAR experiments, we fix the
hyper-parameters as !cc = 1,!pc = 5,!recon = 1, ⌧ = 0.3,↵ = 8, ⌘1 = 0.9. For CIFAR-10, we
activate noise cleaning at epoch t0 = 5, and set ⌘0 = 0.1 (sym.) or 0.4 (asym.). For CIFAR-100, we
activate noise cleaning at epoch t0 = 15, and set ⌘0 = 0.02. We use faiss-gpu (Johnson et al., 2017)
for efficient knn search in the low-dimensional subspace, which finishes within 1 second.

Results. Table 1 shows the comparison with existing methods. Our method outperforms previous
methods across all label noise settings. On the more challenging CIFAR-100, we achieve 3-4%
accuracy improvement compared to the second-best method DivideMix. Moreover, our method is
more computational efficient than DivideMix, which needs co-training for noise filtering.
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CIFAR-10 CE Iterative GCE DivideMix Ours Ours
50% sym. noise (Wang et al., 2018) (Zhang & Sabuncu, 2018) (Li et al., 2020a) (cls.) (knn)

+ CIFAR-100 20k 53.6 87.2 87.3 89.0 91.5 93.1±0.3
+ SVHN 20k 58.1 88.6 88.8 91.9 93.3 93.9±0.2
+ Image Corruption 53.8 87.7 87.9 89.8 91.4 91.6±0.2

Table 2: Comparison with state-of-the-art methods on datasets with label noise and input noise. Numbers
indicate average test accuracy (%) over last 10 epochs. We report results over 3 independent runs with randomly-
generated noise. We re-run previous methods using publicly available code with the same noisy data and model
architecture as ours.

In order to demonstrate the advantage of the proposed low-dimensional embeddings, we perform k-
nearest neighbor (knn) classification (k = 200), by projecting test images into normalized embeddings.
Compared to the trained classifier, knn achieves higher accuracy, which verifies the robustness of the
learned low-dimensional representations.

4.2 EXPERIMENTS ON CONTROLLED NOISY LABELS WITH NOISY IMAGES

Dataset. We further corrupt a noisy CIFAR-10 dataset (sym. 50%) by injecting two types of input
noise: out-of-distribution (OOD) images and input corruption. For OOD noise, we follow Wang et al.
(2018) and add 20k images from either one of the two other datasets: CIFAR-100 and SVHN (Netzer
et al., 2011), enlarging the training set to 70k. A random CIFAR-10 label is assigned to each OOD
image. For input corruption, we follow Hendrycks & Dietterich (2019) and corrupt each image in
CIFAR-10 with a noise randomly chosen from the following four types: Fog, Snow, Motion blur and
Gaussian noise. Examples of both types of input noise are shown in Figure 4. We follow the same
implementation details as the CIFAR-10 experiments described in Section 4.1.

CIFAR-100 Gaussian NoiseFog Snow Motion BlurSVHN

Out-of-distribution Images Input Corruption

Figure 4: Examples of input noise injected to CIFAR-10.

Results. Table 2 shows the results, where our method consistently outperforms existing methods by
a substantial margin. We observe that OOD images from a similar domain (CIFAR-100) are more
harmful than OOD images from a more different domain (SVHN). This is because noisy images that
are closer to the test data distribution are more likely to distort the decision boundary in a way that
negatively affects test performance. Nevertheless, performing knn classification using the learned
embeddings demonstrates high robustness to input noise.

In Figure 5, we show the t-SNE (Maaten & Hinton, 2008) visualization of the low-dimensional
embeddings for all training samples. As training progresses, our model learns to separate OOD
samples (represented as gray points) from in-distribution samples, and cluster samples of the same
class together despite their noisy labels.

Figure 5: t-SNE visualization of low-dimensional embeddings for CIFAR-10 images (color represents the true
class) + OOD images (gray points) from CIFAR-100 or SVHN. The model is trained on noisy CIFAR-10 (50k
images with 50% label noise) and 20k OOD images with random labels. Our method can effectively learn to (1)
cluster CIFAR-10 images according to their true class, despite their noisy labels; (2) separate OOD samples
from in-distribution samples, such that their harm is reduced.
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Test dataset WebVision ILSVRC12

Accuracy (%) top1 top5 top1 top5

Forward (Patrini et al., 2017) 61.1 82.7 57.4 82.4
Decoupling (Malach & Shalev-Shwartz, 2017) 62.5 84.7 58.3 82.3
D2L (Ma et al., 2018) 62.7 84.0 57.8 81.4
MentorNet (Jiang et al., 2018) 63.0 81.4 57.8 79.9
Co-teaching (Han et al., 2018) 63.6 85.2 61.5 84.7
INCV (Chen et al., 2019) 65.2 85.3 61.0 85.0
DivideMix (Li et al., 2020a) 75.9 90.1 73.3 89.2

Ours (w/o noise cleaning) 75.5 90.2 72.0 90.0
Ours (classifier) 76.3 91.5 73.3 91.2
Ours (knn) 77.8 91.3 74.4 90.9

Table 3: Comparison with state-of-the-art methods trained on WebVision (mini).

Method CE Forward Joint-Opt MLNT MentorMix SL DivideMix Ours (cls.) Ours (knn)

Accuracy 69.21 69.84 72.16 73.47 74.30 74.45 74.48 74.84 74.97

Table 4: Comparison with state-of-the-art methods on Clothing1M dataset.

4.3 EXPERIMENTS ON REAL-WORLD NOISY DATA

Dataset and implementation details. We verify our method on two real-word noisy datasets:
WebVision (Li et al., 2017) and Clothing1M (Xiao et al., 2015). Webvision contains images crawled
from the web using the same concepts from ImageNet ILSVRC12 (Deng et al., 2009). Following
previous works (Chen et al., 2019; Li et al., 2020a), we perform experiments on the first 50 classes of
the Google image subset. Clothing1M consists of images collected from online shopping websites
where labels were generated from surrounding texts. Note that we do not use the additional clean set
for training. For both experiments, we use the same model architecture as previous methods. More
implementation details are given in the appendix.

Results. We report the results for WebVision in Table 3 and Clothing1M in Table 4, where we
achieve state-of-the-art performance on both datasets. Our method achieves competitive performance
on WebVision even without performing noise cleaning, which demonstrates the robustness of the
learned representation. Appendix D shows examples of noisy images that are cleaned by our method.

4.4 ABLATION STUDY

Effect of the proposed components. In order to study the effect of the proposed components, we
remove each of them and report accuracy of the classifier (knn) across four benchmarks. As shown in
Table 5, the mixup prototypical contrastive loss (Lpc mix) is most crucial to the model’s performance.
The consistency contrastive loss (Lcc) has a stronger effect with corrupted input or larger number of
classes. We also experiment with removing mixup and using the standard prototypical contrastive loss,
and using standard data augmentation (crop and horizontal flip) instead of AugMix. The proposed
method still achieves state-of-the-art result with standard data augmentation.

CIFAR-10 Sym 50% + CIFAR-100 20k + Image Corruption CIFAR-100 Sym 50%

w/o Lpc mix 85.9 (86.1) 79.7 (81.5) 81.6 (81.7) 65.6 (65.9)
w/o Lcc 93.7 (93.8) 91.3 (91.5) 89.4 (89.5) 71.9 (71.8)
w/o Lrecon 93.3 (94.0) 90.7 (92.9) 90.2 (91.0) 73.2 (73.9)
w/o mixup 89.5 (89.9) 85.4 (87.0) 84.7 (84.9) 69.3 (69.7)
w/ standard aug. 94.1 (94.3) 90.8 (92.9) 90.5 (90.7) 74.5 (75.0)

DivideMix 93.6 89.0 89.8 72.1
Ours 94.3 (94.5) 91.5 (93.1) 91.4 (91.6) 74.8 (75.0)

Table 5: Effect of the proposed components. We show the accuracy of the classifier (knn) on four benchmarks
with different noise. Note that DivideMix (Li et al., 2020a) also performs mixup.
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Effect of bottleneck dimension. We vary the dimensionality of the bottleneck layer, d, and examine
the performance change in Table 6. Our model is in general not very sensitive to the change of d.

bottleneck dimension d = 25 d = 50 d = 100 d = 200

CIFAR-10 Sym 50% 93.4 94.3 94.2 93.7
CIFAR-100 Sym 50% 73.8 74.8 74.4 73.8

Table 6: Classifier’s test accuracy (%) with different low-dimensions.

5 CONCLUSION

This paper proposes noise-robust contrastive learning, a new method to combat noise in training data
by learning robust representation. We demonstrate our model’s state-of-the-art performance with
extensive experiments on multiple noisy datasets. For future work, we are interested in adapting our
method to other domains such as NLP or speech. We would also like to explore the potential of our
method for learning transferable representations that could be useful for down-stream tasks.
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