BEDD: The MineRL BASALT
Evaluation and Demonstrations Dataset
for Training and Benchmarking Agents

that Solve Fuzzy Tasks

Stephanie Milani Anssi Kanervisto
Carnegie Mellon University Microsoft Research
smilani@cs.cmu.edu anssi.kanervisto@microsoft.com

Karolis Ramanauskas Sander Schulhoff Brandon Houghton
University of Bath University of Maryland OpenAl
kr711@bath.ac.uk sschulho@umd.edu brandon@openai.com

Rohin Shah
rohinmshah@gmail . com

Abstract

The MineRL BASALT competition has served to catalyze advances in learning
from human feedback through four hard-to-specify tasks in Minecraft, such as
create and photograph a waterfall. Given the completion of two years of BASALT
competitions, we offer to the community a formalized benchmark through the
BASALT Evaluation and Demonstrations Dataset (BEDD), which serves as a re-
source for algorithm development and performance assessment. BEDD consists of
a collection of 26 million image-action pairs from nearly 14,000 videos of human
players completing the BASALT tasks in Minecraft. It also includes over 3,000
dense pairwise human evaluations of human and algorithmic agents. These com-
parisons serve as a fixed, preliminary leaderboard for evaluating newly-developed
algorithms. To enable this comparison, we present a streamlined codebase for
benchmarking new algorithms against the leaderboard. In addition to presenting
these datasets, we conduct a detailed analysis of the data from both datasets to guide
algorithm development and evaluation. The released code and data are available at
https://github.com/minerllabs/basalt-benchmark.

1 Introduction

In traditional reinforcement learning, an agent learns how to act using reward based on an explicitly-
defined reward signal [42]. This reward signal is often carefully designed by domain experts to
communicate the intended goal for the agent to accomplish. Precisely specifying this form of feedback
programmatically requires designers to a priori enumerate all potential outcomes or constraints on
how they would like the task to be completed. This enumeration is difficult to achieve in practice,
and the resulting reward signals often fall short at correctly specifying the designer’s intent [29].
To address this challenge, researchers have explored the idea of incorporating alternative channels
for communicating information about the desired behavior of the agent. This class of techniques is
generally called learning from human feedback (LfHF) [8, 23]. The goal of LfHF is to utilize the
feedback modalities most likely to result in an agent acting according to human-desired specifications.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

J— N Training & Rollouts
/ \)

i‘l'x
e

(Evaluation Against Baselines)

Left was better than New method ranking
right at solving the task

Human evaluators

Figure 1: The BASALT benchmark. Green parts show the components of the included datasets. The
agents are compared using video recordings of them solving the task. We contribute data for training
agents to perform fuzzy tasks and for evaluating agents with human evaluators. We contribute code
for further benchmarking.

The complexity of this approach has been exemplified in the MineRL BASALT competitions [39],
which leverage the open-ended and flexible Minecraft environment to promote the development of
LfHF algorithms. This competition series has provided a platform for developing agents capable of
solving fuzzy tasks that lack well-defined reward signals. However, despite two years of competition,
no agents have yet matched human performance levels [33], emphasizing the need to establish the
BASALT tasks as a consistent, standardized benchmark. In this paper, we clarify the BASALT
benchmark and present concrete evaluation recommendations toward the goal of consistency.

To support this benchmark we introduce the BASALT Evaluation and Demonstrations Dataset
(BEDD), an open and accessible dataset for learning to solve fuzzy tasks from human feedback.
As shown in Figure 1, this dataset consists of three main ingredients: the Demonstrations
Dataset, the Evaluation Dataset, and supporting code for utilizing and analyzing the data.
The Demonstrations Dataset consists of over 26 million image-action pairs from 14,000 videos
of labeled Minecraft gameplay of human players completing the BASALT tasks. To facilitate evalu-
ating agents using real human judgments, we present the Evaluation Dataset, derived from the
most recent BASALT competition [25]. The Evaluation Dataset consists of over 3,000 dense
pairwise human evaluations of videos of various agents performing the BASALT tasks. By dense,
we mean that each evaluation includes a comparison of the relative task-completion performance of
the agents and at least four additional questions, such as which agent was more human-like. This
results in 27,905 comparison points between 17 different agents. This dataset also includes a natural
language response justifying why an agent was selected as being the better of the two. The provided
data functions as a leaderboard, offering researchers the ability to compare their newly-developed
algorithm against various agents without redoing all costly human evaluations from scratch.

To facilitate the use of the Demonstrations Dataset and the Evaluation Dataset, we present
a streamlined codebase. With this codebase, one can train a new model from the demonstration
dataset and evaluate it against the provided leaderboard. Alongside the presentation of these datasets,
we conduct a detailed analysis of the data to guide algorithm development and evaluation. We release
the code and detailed documentation for others to perform such analyses. We hope that this codebase
will assist others with quickly developing and evaluating LfHF algorithms to spur further progress
toward agents that are better aligned with human intent.

2 The MineRL BASALT Benchmark

We provide an overview of the MineRL BASALT benchmark, consisting of a task suite and evaluation
framework for learning from human feedback, illustrated in (Figure 1). The benchmark uses Minecraft,
a videogame that provides a rich and complex environment in which to define different tasks. The
states are pixel observations; the actions are regular keyboard and mouse actions, closely following
how humans play the game. This includes navigating the crafting menus using a mouse (Figure 2).

Figure 2: Two example images of the pixel observations provided by the MineRL environment used
by BASALT. The agent receives pixels as observations and must use regular keyboard and mouse
actions, including navigating the crafting menu with a mouse to make items.

2.1 Tasks

All tasks are accompanied by a Gym environment [4] and either a simple English-language task
description or a reward function to indicate the desired agent behavior. The reward-free tasks have
the language task specification; the rewarded tasks are accompanied by a reward function.

We use the same four reward-free tasks from the BASALT competitions, since these tasks were
empirically validated to be challenging [33, 38]. The goal of FindCave is for the agent to discover
a naturally-generated cave. To complete MakeWaterfall, the agent must create a waterfall and
subsequently take a picture of it. Because taking a photograph is not supported in Minecraft, we
simulate it by providing the agent with an option to end the episode: the state at the moment that the
agent ends the episode is its photograph. In CreateVillageAnimalPen, the agent must build an
animal pen next to an existing house, then corral a matching pair of farm animals into the pen. In
BuildVillageHouse, the agent spawns in a village and must build a new house in the same style as
the other surrounding houses — without damaging the village. For more task details, see Appendix A.

Because reward-free tasks are challenging to evaluate, we include ObtainDiamondShovel [33], a
task with a concrete reward function, to enable quick iteration. This task is more challenging than
ObtainDiamond [17], a well-established benchmark in reinforcement learning, since it requires an
additional crafting step after obtaining the diamond. An agent receives reward each time it obtains
the next required resource in the crafting tree towards a diamond shovel.

2.2 Evaluation

To fairly compare algorithms on a benchmark, the parameters of that benchmark must be concretely
defined. Previously, many techniques claimed to solve MineRL ObtainDiamond. Often, these
successes involved giving the agent access to the full game state instead of pixel observations,
building in human priors through extensive action shaping, or simplifying the underlying environment
dynamics. Changes like these should be clearly stated and applied equally to compared methods. To
avoid such discrepancies in the future, we specify some methodological best practices when using
the BASALT benchmark: i) only pixel observations provided by the four environments should be
used, ii) the environments should not be modified in any way, iii) action shaping [26] is permitted, as
long as it applied to all methods, iv) algorithms should be evaluated with TrueSkill [20] using the
specific hold-out test seeds provided in Appendix A, and v) the final evaluations must be conducted
with human evaluators. For further guidance on how to fairly compare algorithms, we refer the reader
to recent work [35].

BASALT agents are evaluated on hold-out test environments to produce multiple videos of agents
attempting to complete that task. A single trial consists of two agents pitted against one another,
which is shown to a human judge. This judge determines which agent completed the task better. The
resulting dataset of human evaluations is assessed using the TrueSkill system, which dynamically
assesses the skills of a particular player (in this case, an LfHF algorithm). In addition to estimating the
relative skill of an algorithm, it provides an uncertainty estimation. For a more extensive discussion
of this procedure and a comparison of TrueSkill to other rating systems, please see Appendix A. We
hope that our demonstrations of successful task completions and the benchmarked algorithms from
the competition can serve as a starting point for evaluating the performance of other algorithms.

Developing algorithms while leveraging real human feedback is both expensive for machine learning
practitioners and time-consuming for human evaluators. Automated human evaluations have emerged
as a valuable part of the pipeline for assessing various aspects of machine learning models [7, 10].
The goal is not to replace human evaluations; instead, it complements the process by providing
quick, iterative feedback for algorithm development and initial assessment. As a result, we propose
automating evaluations [12] as an additional component of the BASALT benchmark. The inclusion
of ObtainDiamondShovel may help develop reward modeling techniques [22] due to its associ-
ated concrete reward function. More generally, we hope that with the release of the Evaluation
Dataset, others can begin developing approaches toward this goal.

2.3 Benchmarking Algorithms on BASALT

To assist with the development of LfHF algorithms and automated evaluations, we implement and
share a codebase with two major contributions. First, the code contains an example of training a
LfHF algorithm with the shared data in the Demonstrations Dataset. Second, we include the
tools for performing the evaluations presented in this work. The code is a Python-installable library,
which allows the functionality to be imported into other codebases for use in research.

The training example provides tools to train a behavior cloning model on top of the Video PreTraining
(VPT) [2] model using the imitation [14] library. VPT is a large foundation model that can
complete various tasks in Minecraft, but it is difficult to fine-tune on new tasks due to its size. Inspired
by the success of an imitation-learning approach' in the BASALT 2022 competition, we use behavior
cloning as the base algorithm with the rich embeddings from the VPT model as input. Motivated by
the original VPT results, we remove the no-op actions from the demonstration dataset. We provide
code to use different variants of the VPT model for benchmarking. The final output is a set of videos
to use in evaluations against the shared recordings of other agents in the Evaluation Dataset.

Because setting up human evaluations is time-consuming, we share our platform for conducting
human evaluations. The platform is served as a webpage backed by a simple Python-based webserver.
The collected data is either stored locally in a SQLite database or remotely in a more scalable form.
The platform includes a flexible API to add or remove agents from the set of comparisons. After
a simple setup, researchers can point human evaluators to a specific URL to provide answers. We
provide examples of the form that the human evaluators will see in Appendix D. We also share code
to create figures of the TrueSkill ratings (and all analyses in Section 4), given the answers contained in
the resulting database. This whole process serves as an end-to-end example of creating a new method
with Demonstrations Dataset, then evaluating it with data from Evaluation Dataset.

3 BASALT Evaluation and Demonstrations Dataset

We now introduce BEDD, our extensive dataset of human demonstrations and algorithm evaluations.
This dataset consists of the following components:

* The Demonstrations Dataset, a set of 13,928 videos (state-action pairs) demonstrating
largely successful task completion attempts of the reward-free tasks,

* The Evaluation Dataset, a set of 3,049 dense pairwise comparisons of algorithmic and
human agents attempting to complete the BASALT tasks, and

* The code for utilizing and analyzing these datasets for developing LfHF algorithms (some
details in Section 2.3).

For a full datasheet [13], please see Appendix B.

3.1 Demonstrations Dataset: Completing Reward-Free Tasks in Minecraft

The Demonstrations Dataset for developing new methods consists of 361 hours (26 million
image-action pairs) of human demonstrations of the reward-free BASALT tasks. This data consists of
labeled trajectories, both with high-resolution image observations and keyboard and mouse actions
for each frame. In total, this is 651 GB of data. Table 1 decomposes the high-level data statistics by
task. More details about this dataset are in Appendix C.

"https://github.com/shuishida/minerl_2022

Task Videos Episodes Hours Size Ep. len, s Success %

FindCave 5,466 5,466 91 165GB 60 93%
MakeWaterfall 4,230 4,176 97 175GB 84 98%
CreateVillageAnimalPen 2,833 2,708 89 165GB 119 95%
BuildVillageHouse 1,399 778 85 146GB 391 92%
Total 13,928 13,128 361 651GB 99 95%

Table 1: High-level demonstration data statistics decomposed by task. Episode length is the average
episode length in seconds. A demonstration is counted as success if the player manually ended the
episode instead of dying or timing-out.

Words in Response Sentiment

Task Comparisons Hours Response €3 Q) &

FindCave 722 60 27,948 9% 14% 7%
MakeWaterfall 682 56 26,437 T6% T% 17%
CreateVillageAnimalPen 914 81 32,768 57% 11% 32%
BuildVillageHouse 731 76 26,917 63% 9% 28%
Total 3,049 273 114,070

Table 2: High-level evaluation data statistics decomposed by task. We report the total number of
agent-agent comparisons, human labor hours, and words used in the natural-language justifications of
selecting a specific agent as the best one. We also report the percent of positive, neutral, and negative
sentiments in these justifications.

Each demonstration consists of a trajectory 7 = [sg, ag, . . ., SN, an], or a sequence of state-action
pairs, where NV is the trajectory length. These pairs are contiguously sampled at every Minecraft
game tick (20Hz). Each state consists of the 640x360 RGB frame from the perspective of the player
(see Figure 2). Each action consists of two parts a = [K, M|, where K is all keyboard interactions,
M is all “mouse” interactions (change in view, pitch, and yaw), mimicking the native human control
interface of Minecraft. This dataset serves as a starting point for using demonstrations as a form of
feedback to train agents.

3.2 Evaluation Dataset: Evaluating BASALT Agents

The Evaluation Dataset contains 3,049 pairwise comparisons of different algorithms, produced
from 273 hours of human labeling effort by 65 unique MTurk workers. All responses are contained
in a single JSON file. Table 2 decomposes this dataset by task. Each evaluation in the dataset consists
of the following: (i) the names of the two agents used in the comparison, (ii) the corresponding
videos shown to the human judge, (iii) an answer to the question of which player is better overall
(Left, Right, Draw), (iv) a natural-language justification of this choice, (v) answers to at least one
direct question about concrete achievements by the players (Left, Right, or Both), and answers to
4-7 comparative questions, such as which agent was more human-like (Left, Right, Draw, N/A).
The direct and comparative questions are task-specific. Including the choice of which algorithm
performed best, this dataset consists of a total of 27,905 comparisons along various factors.

We provide all responses in our public release of the data. We also include a list of anonymized
MTurk workers whose responses we found not to suit our standards (e.g., providing the same
answer to every task). Before performing the analyses reported in this paper, we filtered the data to
exclude these responses. We provide all details needed to understand and reproduce these evaluations
in Appendix D. With this dataset, one may compare a newly-developed algorithm with 17 possible
agents: the top 13 teams in the 2022 BASALT competition, a behavioral cloning baseline, a random
agent, and two human experts (two of the authors of this paper). Researchers can use the provided
human evaluations to kickstart the human evaluation, without needing to dedicate costly human labor
to evaluating all algorithms from scratch.

500 ——

~
o
o
o

400 6000
5000
300
4000
200 3000
2000
100
1000

Number of Right Mouse Button Clicks

Number of Steps with a Move Key Pressed

0 — o
Cave Waterfall Pen House Cave Waterfall Pen House
Task Task
(a) Right mouse button clicks (b) Movement key presses

Figure 3: The distributions of the number of right mouse button clicks and movement key presses
across tasks in the Demonstrations Dataset, which act as proxies for the number of blocks placed
and distance traveled per episode, respectively. Because BuildVillageHouse takes the longest to
complete, it is reasonable that it requires more right mouse button clicks and movement key presses.

4 Analysis: Demonstrations Dataset

We now analyze the Demonstrations Dataset. Because the BASALT tasks lack concrete reward
functions, evaluating the progress of agents on these tasks is challenging. This difficulty necessitates
the use of informative proxy measures. As a result, when analyzing the Demonstrations Dataset,
we focus on defining proxy measures that may be useful for understanding the data or tracking
training progress. In this section, we describe these proxies and present the results of our analysis.

We first seek to understand the relative difficulty of the four reward-free tasks. Given the experience of
the contracted data collectors with Minecraft, we believe that the length of the demonstration is a rea-
sonable proxy for task difficulty. Using demonstration length as a proxy for task difficulty, we note that
BuildVillageHouse is likely the most challenging task, even for humans: each video lasts around
6.52 minutes on average, while the next most time-consuming task, CreateVillageAnimalPen,
takes an average of around 1.98 minutes (Table 1). By this metric, the easiest task is FindCave
(1 minute). In practice, one could use this metric to assess training progress or likelihood of task
completion. If an agent completes a task at a rate that is far away from the average, that may signal
worse quality behavior. In contrast, if an agent takes a similar amount of time to the average to
complete a task, then that could signal better behavior (but is clearly not definitive).

We also want to understand when an agent — human or Al — may be underperforming on the
task. Because FindCave requires navigation to find a cave, an agent that remains stationary is likely
unsuccessful. Similarly, because CreateVillageAnimalPen and BuildVillageHouse require the
construction of objects, agents that fail to place any blocks likely do not succeed at the task. As
a result, we employ the number of steps with an active movement key as a proxy for the distance
traveled within the tasks. We also use the count of right mouse button clicks as a proxy for the number
of blocks placed. The only other actions performed by clicking the right mouse button are using a
crafting table or a chest, of which there are relatively few per episode.

These proxies are depicted in the per-episode distributions within the Demonstrations Dataset in
Figure 3. The number of right mouse button clicks is highest at around 180 in BuildVillageHouse
and between 20-40 in MakeWaterfall and CreateVillageAnimalPen. These align with expec-
tations, given the amount of building required to complete the tasks. The number of movement
actions has the highest variability in FindCave. This task also has the shortest time-out at 3,600
steps. Perhaps a better proxy would be the average number of movement actions per step: FindCave
should have the highest number, as the task mainly consists of moving around.

We include these results both as a way to understand this dataset and as values to monitor during
agent training to estimate agent performance. However, it is crucial to avoid using these metrics as
direct optimization targets, as they can be easily exploited.

Normalized Sentiment

Agent TrueSkill g Q&
Human?2 2.43 2% 5% 3%
Humanl 2.17 2% 6% 2%
GoUp 0.73 4% 19% %
UniTeam 0.13 66% 25% 9%
BC-Baseline —0.32 65% 26% 9%
Random —1.35 63% 29% 8%

Table 3: Normalized TrueSkill score and percent of positive, neutral, and negative sentiments of the
natural language justifications for selecting an agent as the best one.

5 Analysis: Evaluation Dataset

We first analyze the overall dataset, then focus on a few main comparisons: the top two algorithms
from the BASALT 2022 competition (GoUp and UniTeam), the behavioral cloning baseline (BC-
Baseline), the two human experts (Humanl and Human2), and a random agent (Random). This
subset of data corresponds to 394 of 3,049 total comparisons or nearly 34 hours of human labeling
effort. For additional details about the subsequent analyses, please see Appendix E.

5.1 Task-Based Analysis

Table 2 provides a high-level overview of the 3,049 total evaluations, decomposed by task. The
human judges generally responded using a similar number of words across the different tasks. Only
the responses to FindCave and MakeWaterfall contained significantly more words on average than
CreateVillageAnimalPen (F' = 3.72, p = 0.01; 95% CI: 0.34 to 5.37, p = 0.02; 95% CI: 0.36
to 5.47, p = 0.02, respectively).2 All other tasks exhibited no significant differences between means.
This result suggests that expressing the specific rationale for these simpler tasks may be easier.

To understand the general perceptions of the human judges of the different tasks, we categorized
each response into positive, neutral, or negative sentiment [31]. We then analyzed the differences in
the distribution across tasks. The human judges displayed different levels of sentiment in their re-
sponses, depending on the task.? They responded most positively to FindCave and least positively to
CreateVillageAnimalPen. The only sentiment distributions that were not significant were between
AnimalPen and BuildVillageHouse (X?2(1, N = 1645) = 6.35, p = 0.042), and FindCave and
MakeWaterfall (X2(1, N = 1404) = 2.694,p = 0.260). All other pairs of tasks exhibited sig-
nificant differences in sentiment.* Due to the large number of subtask dependencies required for
completing CreateVillageAnimalPen and BuildVillageHouse (as well as the greater amount
of time required on average for human demonstrators to complete these two tasks, detailed in Table 1
and Section 4), they are considered to be more challenging than FindCave and MakeWaterfall.
The more positive sentiment toward FindCave and MakeWaterfall may be due to an increased
focus on successes due to their relative ease of completion.

5.2 Agent-Based Analysis

We now turn our attention to agent-based analysis. We first provide a brief overview of the included
agents. GoUp uses human knowledge to decompose the tasks into the same high-level sequence,
then uses computer vision techniques to identify the goal for each task (e.g., the cave). UniTeam
combines behavioral cloning with search by embedding the current set of images with a pre-trained
VPT network and then searching for the nearest embedding point in the VPT latent space to find the
situation to use as reference and copying the corresponding expert actions [32]. More details about
the other assessed agents can be found in previous work [33].

*We conducted a one-way ANOVA with a post-hoc Tukey’s HSD test to obtain these results. Results
presented as (ANOVA F' value, p value; CI for Tukey’s HSD, p value).

3We conducted a chi-square test of independence to examine the relationship between task and sentiment
classification. The relation between these variables was significant, X2 (6, N = 3049) = 132.21,p < .001.

“These results are from Bonferroni-corrected pairwise Chi-square tests.

= Random = UniTeam Humanl
mmm BC-Baseline WEE GoUp Human2

1 10 1 i

1.0

0.5

IO o R

Score

o

Score

o
[

-1.0

xel et s e o™ o™ ke
?o““d dc qe\;a‘) n‘\'\°“em oot w SN K ?e((_ep e 08 oW e o W et ove™® et et o\
2 e . C (¢
ol . K e O " qauﬂ“ oo et @@ gt Wo! e e e " g e
et e wer W2 e et
MoYeQ et @ el QU
8¢l o
(a) FindCave (b) MakeWaterfall
10 1.0 . .
|| | W ! ! i & i |
05 | | I “ 05
o “ I ” I £
e w ------ ﬂ“ ----- “|ﬂ*w ----- - l I I I l ‘ F‘
-0.5
-0.5
-1.0
10! e 09 O o use ke ace @\> @S oAt quse ao® g N“Q auke
e “ouseL"Cau\ges““c\g\oc\‘v\“‘6\&\“’\“:“\&“3“25&“ S e E;\gse 22‘ o P;‘:\ ﬁpﬂ\m\,(o‘)e‘: No*“;e(‘«ecm ?;‘Neve“;
2% reX aous® ot ate aene’ e X o \ 2! e“er ‘N\) ok ¥ o e e Wo'
e e o W e (e ot
(c) BuildVillageHouse (d) AnimalPen

Figure 4: Comparison of baseline solutions, top BASALT 2022 competition solutions, and humans
on additional questions. Bars represent average score, and error bars represent standard error. Higher
is better: it means that agent exhibited more of that factor according to human judges.

We present the agent-based overview of the evaluations in Table 3. Note that the reported TrueSkill
scores are computed over the 3,049 total comparisons, whereas the sentiment analysis is performed
only on the 394 agent-specific entries. The human agents performed the best using TrueSkill ranking,
with a large performance gap between them and the best-performing algorithmic agent. This result
emphasizes the difficulty of BASALT for algorithmic agents.

The only sentiment distributions that were significant were between either of the two human experts
and the other algorithms. In particular, the sentiment toward comparisons that included human players
were significantly more positive.* All other pairs of algorithms did not exhibit significant differences
in sentiment. In general, human judges were generally positive when evaluating the agents. The
judges may have been more positive due to social influence: they knew that the videos were produced
by different players for ranking in the competition.

We now investigate the responses to the direct and comparative questions. For succinctness, we
summarize each question into a single factor. For example, we use “More Human Like” to capture the
question, “Which player seemed more human-like (rather than a bot or computer player)?”. Figure 4
presents these results. Importantly, no machine learning algorithms outperform humans on any of
the factors, indicating that there is still plenty of improvement to be made. When analyzing future
algorithms, we suggest preserving this decomposition to both validate that the responses are sensible
and obtain a fine-grained understanding of agent capabilities. To validate sensible responses, we
suggest checking the scores for the random agent: except for causing the least harm, this agent should
score poorly compared to the other agents.

Finally, we highlight a few interesting findings that are enabled by our decomposed and extensive set
of evaluation criteria. Figure 4b (MakeWaterfall) in the paper reveals that, although Team GoUp’s
algorithm can create waterfalls at a rate more similar to the human players, it struggles along all other
criteria, including choosing a good location and taking a high-quality photograph. Only looking at
the binary success/failure condition for creating a waterfall would ignore these important nuances
in the algorithm’s behavior. As another example, Figure 4a (FindCave) suggests that, while Team
GoUp’s algorithm still struggles to find caves, it can reasonably search for and navigate to areas
that are likely to have caves. This finding suggests that the performance bottleneck may be the cave
detection system employed by this approach.

6 Related Work

Learning from Human Feedback Learning from human feedback has become a crucial research
direction in machine learning [1, 8, 39], aiming to leverage human expertise to improve algorithm
performance and generalization. Various algorithms have been proposed to integrate human feedback
into the learning process, often using techniques such as imitation learning [21], inverse reinforcement
learning [5, 45], and reward modeling [41]. Most commonly, these algorithms are evaluated in
standard reinforcement learning benchmarks [3, 9, 11, 43]. However, most of these benchmarks do
not have the property that human feedback is critical for task identification, as in BASALT. In some
Atari games, if an agent does anything other than the intended gameplay, it dies and resets to the
initial state, so pure curiosity-based agents perform well [6]. In contrast, BASALT tasks require
human feedback or data to identify and complete tasks.

Minecraft for Machine Learning Minecraft is as a valuable platform for machine learning
research [19, 30, 40] due to its complex, dynamic environment and customizable game engine. As
a result, numerous competitions and benchmarks [16, 18, 24, 37] have been developed to improve
Al capabilities. These often include tasks with concrete or programmatic reward functions, such as
learning to collect diamonds in a sample-efficient way [17], multi-agent learning of cooperative and
competitive tasks [36], and more [12]. In contrast, we emphasize tasks that are designed to be hard to
specify through a reward signal. Other work focuses on natural language as a specific modality for
communicating intent [15, 27, 28, 34]; instead, we aim to promote the development of algorithms
that generally learn from human feedback, including natural language. Some techniques require
complete game state information (knowledge of blocks and items around them) [44, 46]; however,
our benchmark only permits agents to access observations, not game state, to promote learning from
pixels, which is more generalizable to other tasks.

Comparison to MineDojo Perhaps the most similar benchmark to ours is MineDojo [12], which
emerged during the BASALT competitions and contributed a large dataset of Minecraft gameplay
with the aim of developing generally-capable embodied agents. The focus of MineDojo was to
provide a massive dataset scraped from the internet; in contrast, we focus on curating a smaller set of
high-quality demonstrations and evaluations. Our demonstration data was produced by experienced
Minecraft data collectors using a consistent Minecraft version and settings. In contrast, the MineDojo
data, although plentiful, contains many videos with streamer overlays and non-Minecraft parts,
different texture packs, mod packs, and more. Although this diversity may be beneficial in some
settings, previous work had to filter out such data before it could be useful for training [2]. Another
critical difference is evaluation: MineDojo provides only binary success or failure criterion; instead,
our recommended evaluation and resulting Evaluation Dataset involves human judgments across
a range of quantitative (e.g., Found Cave) and qualitative (e.g., Style Matching) criteria.

7 Conclusion

We proposed BEDD, a large and accessible dataset to facilitate algorithm development for the BASALT
benchmark on learning from human feedback. The benchmark consists of five tasks in Minecraft,
four of which lack a reward function. We clarified the benchmark, providing concrete evaluation
recommendations and introducing another avenue for benchmarking: automated evaluations. Our
dataset, BEDD, consists of two key parts: Demonstrations Dataset and Evaluation Dataset.
Demonstrations Dataset contains almost 14,000 videos showing successful task completions of
the four reward-free tasks. The Evaluation Dataset consists of over 3,000 human evaluations to
support the development of automated evaluations of hard-to-specify tasks. To our knowledge, this
dataset is the largest of its type: one that supports both training and evaluating LfHF agents on tasks
with hard-to-specify reward functions.

We demonstrated the utility of our dataset and benchmark by presenting an analysis of the demon-
strations and the several algorithms in the Evaluation Dataset. We showed that the algorithms
exhibit varying degrees of performance on our tasks, as evaluated by human judges on a variety
of factors. Our results suggest that there is ample room for improvement in learning from human
feedback. With the inclusion of our accessible code for benchmarking and evaluating agents, we
hope that our contributions will encourage the development of more effective approaches for both
learning from human feedback and evaluating these techniques in the future.

Acknowledgments and Disclosure of Funding

Creating these datasets and this benchmark was only possible with the help of many people and
organizations. FTX Future Fund Regranting Program, Microsoft, Encultured Al, and Al Journal
provided financial support for the competition and resulting data. We thank Berkeley Existential Risk
Initiative (BERI) for the support in organizing the BASALT competition. Karolis Ramanauskas was
supported by the UKRI Centre for Doctoral Training in Accountable, Responsible and Transparent
Al (ART-AI) [EP/S023437/1] and the University of Bath. We thank our amazing advisory board of
the 2022 competition — Fei Fang, Kianté Brantley, Andrew Critch, Sam Devlin, and Oriol Vinyals
— for their advice and guidance. We also thank any previous organizers or advisors of the previous
competitions for their contributions. Finally, we thank Alcrowd for their help hosting the competion
and the MTurk workers for their work evaluating the submissions.

References

[1] D. Arumugam, J. K. Lee, S. Saskin, and M. L. Littman. Deep reinforcement learning from
policy-dependent human feedback. arXiv preprint arXiv:1902.04257, 2019.

[2] B. Baker, I. Akkaya, P. Zhokov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro,
and J. Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos.
Advances in Neural Information Processing Systems, 35:24639-24654, 2022.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
2013.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[5] D. S. Brown, Y. Cui, and S. Niekum. Risk-aware active inverse reinforcement learning. In
Conference on Robot Learning, pages 362-372. PMLR, 2018.

[6] Y. Burda, H Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale study of
curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

[7] V. Chen, N. Johnson, N. Topin, G. Plumb, and A. Talwalkar. Use-case-grounded simulations
for explanation evaluation. Advances in neural information processing systems, 2022.

[8] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30,
2017.

[9] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark
reinforcement learning, 2019.

[10] S. Devlin, R. Georgescu, I. Momennejad, J. Rzepecki, E. Zuniga, G. Costello, Guy Leroy,
A. Shaw, and K. Hofmann. Navigation turing test (ntt): Learning to evaluate human-like
navigation. In International Conference on Machine Learning, pages 2644-2653. PMLR, 2021.

[11] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International conference on machine learning, pages 1329—
1338. PMLR, 2016.

[12] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D. A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale
knowledge. arXiv preprint arXiv:2206.08853, 2022.

[13] T. Gebru, J. Morgenstern, B. Vecchione, J. Wortman Vaughan, H. Wallach, H. Daumé III, and
K. Crawford. Datasheets for datasets. Communications of the ACM, 64(12):86-92, 2021.

[14] A. Gleave, M. Taufeeque, J. Rocamonde, E. Jenner, S. H. Wang, S. Toyer, M. Ernestus,
N. Belrose, S. Emmons, and S. Russell. imitation: Clean imitation learning implementations.
2022.

10

[15] J. Gray, K. Srinet, Y. Jernite, H. Yu, Z. Chen, D. Guo, S. Goyal, C. L. Zitnick, and
A. Szlam. Craftassist: A framework for dialogue-enabled interactive agents. arXiv preprint
arXiv:1907.08584, 2019.

[16] D. Grbic, R. B. Palm, E. Najarro, C. Glanois, and S. Risi. Evocraft: A new challenge for
open-endedness. In Applications of Evolutionary Computation: 24th International Conference,
2021.

[17] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mohanty, D. P.
Liebana, R. Salakhutdinov, N. Topin, et al. Neurips 2019 competition: the minerl competition
on sample efficient reinforcement learning using human priors. The 33rd Conference on Neural
Information Processing Systems (NeurlPS) Competition Track, 2019.

[18] D. Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

[19] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[20] R. Herbrich, T. Minka, and T. Graepel. Trueskill™: a bayesian skill rating system. Advances in
neural information processing systems, 19, 2006.

[21] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg. Thriftydag-
ger: Budget-aware novelty and risk gating for interactive imitation learning. 2021.

[22] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human
preferences and demonstrations in atari. Advances in neural information processing systems,
31, 2018.

[23] H.J. Jeon, S. Milli, and A. Dragan. Reward-rational (implicit) choice: A unifying formalism
for reward learning. Advances in Neural Information Processing Systems, 33:4415-4426, 2020.

[24] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. In IJCAI, pages 4246-4247, 2016.

[25] A. Kanervisto, S. Milani, K. Ramanauskas, B. V. Galbraith, S. H. Wang, B. Houghton, S. Mo-
hanty, and R. Shah. The MineRL BASALT competition on learning from human feedback. In

The 36th Conference on Neural Information Processing Systems (NeurlPS) Competition Track,
2022.

[26] A. Kanervisto, C. Scheller, and V. Hautaméiki. Action space shaping in deep reinforcement
learning. In 2020 IEEE Conference on Games (CoG), pages 479—-486. IEEE, 2020.

[27] J. Kiseleva, Z. Li, M. Aliannejadi, S. Mohanty, M. ter Hoeve, M. Burtsev, A. Skrynnik,
A. Zholus, A. Panov, K. Srinet, et al. Neurips 2021 competition iglu: Interactive grounded
language understanding in a collaborative environment. arXiv preprint arXiv:2110.06536, 2021.

[28] J. Kiseleva, A. Skrynnik, A. Zholus, S. Mohanty, N. Arabzadeh, M.-A. Coté, M. Aliannejadi,
M. Teruel, Z. Li, M. Burtsev, M. ter Hoeve, Z. Volovikova, A. Panov, Y. Sun, K. Srinet, A. Szlam,
and A. Awadallah. Iglu 2022: Interactive grounded language understanding in a collaborative
environment at neurips 2022. arXiv preprint arXiv:2205.13771, 2022.

[29] V. Krakovna, J. Uesato, V. Mikulik, M. Rahtz, T. Everitt, R. Kumar, Z. Kenton, J. Leike, and
S. Legg. Specification gaming: the flip side of ai ingenuity. DeepMind Blog, 2020.

[30] S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. Mcllraith. Steve-1: A generative model for
text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

[31] S. Loria et al. textblob documentation. Release 0.15, 2(8), 2018.
[32] F. Malato, F. Leopold, A. Raut, V. Hautamiki, and A. Melnik. Behavioral cloning via search in
video pretraining latent space. arXiv preprint arXiv:2212.13326, 2022.

11

[33] S.Milani, A. Kanervisto, K. Ramanauskas, S. Schulhoff, B. Houghton, S. Mohanty, B. Galbraith,
K. Chen, Y. Song, T. Zhou, et al. Towards solving fuzzy tasks with human feedback: A
retrospective of the minerl basalt 2022 competition. arXiv preprint arXiv:2303.13512, 2023.

[34] A. Narayan-Chen, P. Jayannavar, and J. Hockenmaier. Collaborative dialogue in Minecraft.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 5405-5415, July 2019.

[35] A. Patterson, S. Neumann, M. White, and A. White. Empirical design in reinforcement learning.
arXiv preprint arXiv:2304.01315, 2023.

[36] D. Perez-Liebana, K. Hofmann, S. P. Mohanty, N. Kuno, A. Kramer, S."Devlin, R. D. Gaina,
and D. Ionita. The multi-agent reinforcement learning in Malmé (MARLO) competition. arXiv
preprint arXiv:1901.08129, 2019.

[37] C. Salge, M. C. Green, R. Canaan, and J. Togelius. Generative design in minecraft (gdmc)
settlement generation competition. In Proceedings of the 13th International Conference on the
Foundations of Digital Games, pages 1-10, 2018.

[38] R. Shah, S. H. Wang, C. Wild, S. Milani, A. Kanervisto, V. G. Goecks, N. Waytowich,
D. Watkins-Valls, B. Prakash, E. Mills, et al. Retrospective on the 2021 minerl basalt competi-
tion on learning from human feedback. In NeurlPS 2021 Competitions and Demonstrations
Track, pages 259-272. PMLR, 2022.

[39] R. Shah, C. Wild, S. H. Wang, N. Alex, B. Houghton, W. Guss, S. Mohanty, A. Kanervisto,
S. Milani, N. Topin, et al. The minerl basalt competition on learning from human feedback. In

The 35th Conference on Neural Information Processing Systems (NeurlPS) Competition Track,
2021.

[40] R. Smit and H. Smuts. Game-based learning-teaching artificial intelligence to play minecraft: a
systematic. Proceedings of Society, 93:188-202, 2023.

[41] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano. Learning to summarize with human feedback. Advances in Neural Information
Processing Systems, 33:3008-3021, 2020.

[42] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[43] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[44] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager:
An open-ended embodied agent with large language models. 2023.

[45] H.-N. Wu and M. Wang. Human-in-the-loop behavior modeling via an integral concurrent
adaptive inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

[46] X.Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, Y. Qiao,
Z. Zhang, and J. Dai. Ghost in the minecraft: Generally capable agents for open-world
environments via large language models with text-based knowledge and memory. 2023.

12

