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ABSTRACT

Time-series forecasting has caught increasing attention in the AI research field due
to its importance in solving real world problems across different domains, such as
energy, weather, traffic, and economy. As shown in various types of data, it has
been a must-see issue to deal with drastic changes, temporal patterns, and shapes
in sequential data that previous models are weak in prediction. This is because
most cases in time-series forecasting aims to minimize Lp norm distances as loss
functions, such as mean absolute error (MAE) or mean square error (MSE). These
loss functions are vulnerable to not only consider temporal dynamics modeling, but
also capture the shape of signals. In addition, these functions often make models
misbehave and return uncorrelated results to the original time-series. To become
an effective loss function, it has to be invariant to the set of distortions between
two time-series data instead of just comparing exact values. In this paper, we
propose a novel loss function, called TILDE-Q (Transformation Invariant Loss
function with Distance EQuilibrium), that not only considers the distortions in
amplitude and phase but also allows models to capture the shape of time-series
sequences. In addition, TILDE-Q supports modeling periodic and non-periodic
temporal dynamics at the same time. We evaluate the effectiveness of TILDE-Q
by conducting extensive experiments with respect to periodic and non-periodic
conditions of data, from naive models to state-of-the-art models. The experiment
results indicate that the models trained with TILDE-Q outperforms those trained
with other training metrics (e.g., MSE, dynamic time warping (DTW), temporal
distortion index (TDI), and longest common subsequence (LCSS)).

1 INTRODUCTION

Time-series forecasting has been a core problem across various domains, including traffic domain (Li
et al., 2018; Lee et al., 2020), economy (Zhu & Shasha, 2002), and disease propagation analysis (Mat-
subara et al., 2014). The crucial part of the time-series forecasting is modeling of the complex
temporal dynamics (e.g., non-stationary signal, periodicity). Temporal dynamics, intuitively, shape,
has always been one of the most attention-getting keywords in time-series domains, such as rush hour
of traffic data or abnormal usage of the electricity (Keogh et al., 2003; Bakshi & Stephanopoulos,
1994; Weigend & Gershenfeld, 1994; Wu et al., 2021; Zhou et al., 2022). Deep learning methods
are one of the appealing solutions to model complex non-linear temporal dependencies and non-
stationary signals, but recent work reveals that even deep learning is often insufficient to model
temporal dynamics. To properly model the temporal dynamics, Wu et al. (2021); Zhou et al. (2022)
have proposed a novel deep learning approaches with input sequence decomposition. Le Guen &
Thome (2019) try to model sudden changes timely and accurately with dynamic time warping (DTW).
Bica et al. (2020) adopts domain adversarial training to learn balanced representations, which is a
treatment invariant representations over time. Wu et al. (2021); Zhou et al. (2022) have less attention
to the essence of the problem: a shape, in other words, temporal dynamics. Le Guen & Thome (2019);
Bica et al. (2020) try to capture the shape but still have some limitations like Fig. 1 (c).

A shape is a part of patterns in time-series data with a given time interval that could give valuable
information, such as rise, drop, trough, peak, and plateau. We call the prediction is informative when
it could properly consider the shape. In real-world applications like economics, such informative
prediction is crucial to make decisions. To gain informative forecasting, the model should consider the
shape rather than only aim to forecast accurate value for each time step. However, existing models do
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Figure 1: Ground-truth and forecasting results of Informer model with three training metrics (top)
TILDE-Q, (middle) MSE, and (bottom) DTW-based loss function. (middle) MSE tends to generate
non-informative forecasting results, similar to an average value of data and (bottom) DTW often
produces misaligned results. Red dotted box contains three training metrics.

not consider learning shape (Wu et al., 2021; Zhou et al., 2022; Bica et al., 2020; Le Guen & Thome,
2019), so the forecasting results are often inaccurate and uninformative, because deep learning model
tends to learn in easy way (Karras et al., 2019). Fig. 1 shows three real forecasting results with
same model, different training metrics. When we utilize mean squared error (MSE) as an objectives,
the model only aims to reduce gap between prediction and ground truth for each time-step. As a
results, the model generates relatively easy prediction regardless of temporal dynamics (Fig. 1 (b)). It
rarely gives information about original time-series. In contrast, if we consider both gap and shape
of prediction and ground truth, the model could achieve both accuracy and temporal dynamics, as
shown in Fig. 1 (a).

In this work, we aim to design a novel objective function that guides models to improve forecasting
performance by learning the shapes in time-series data. To design such shape-aware loss function,
we review existing literature (Esling & Agon, 2012; Bakshi & Stephanopoulos, 1994; Keogh, 2003)
and investigate the notions of shapes and distortions that interrupt measurement for recognizing
similarity of two time-series data in terms of shapes (Sec. 3.1, Sec. 3.2, and Sec. 3.3). Based on
the investigation, we newly propose required conditions for constructing an objective function for
shape-aware time-series forecasting (Sec. 3.4). We then present a novel loss function, TILDE-Q
(Transformation Invariant Loss function with Distance EQualibrium), that enables shape-aware
representation learning with three different loss terms, which are invariant to the distortions (Sec. 4).
For evaluation, we conduct extensive experiments with state-of-the-art deep learning models for
time-series forecasting with TILDE-Q. The results indicate that TILDE-Q is model-agnostic and
could improve accuracy of existing models, compared to MSE and DILATE.

Contributions We make the following contributions: (1) To understand shape-awareness and
distortion invariances in time-series forecasting, we investigate existing distortions in amplitude and
phase; (2) we implement TILDE-Q that has invariances to many existing distortions and achieves
shape-awareness and informative forecasting in a timely manner; and (3) we show that the proposed
TILDE-Q allows models to have higher accuracy compared to those with existing metrics such as
DTW, TDI, and LCSS on average.

2 RELATED WORK

2.1 TIME-SERIES FORECASTING

There are many methods for time-series forecasting from traditional ones, such as ARIMA model (Box
et al., 2015) and hidden markov model (Pesaran et al., 2004) to recent deep learning models. In this
section, we briefly describe the recent deep learning models for time-series forecasting. Starting
with the huge success of the recurrent neural networks (RNNs) (Clevert et al., 2016; Li et al.,
2018; Yu et al., 2017), researchers have developed novel deep learning architectures, improving
forecasting performance. To effectively capture long-term dependency, which is a weakness of RNNs,
Stoller et al. (2020) have proposed convolutional neural networks (CNNs). However, it is required
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to stack lots of the same CNNs to capture long-term dependency (Zhou et al., 2021). Attention-
based approaches have been another popular research direction in time-series forecasting, including
Transformer (Vaswani et al., 2017) and Informer (Zhou et al., 2021). Although the attention-based
models effectively capture temporal dependencies, they require high computational cost and often
struggle to find proper temporal information (Wu et al., 2021). To cope with the problem, Wu et al.
(2021); Zhou et al. (2022) utilize the input decomposition method that helps models better encode
appropriate information. The other state-of-the-art models adopt neural memory networks (Kaiser
et al., 2017; Sukhbaatar et al., 2015; Madotto et al., 2018; Lee et al., 2022), which refer to historical
data stored in memory to generate meaningful representation.

2.2 TRAINING METRICS

Conventionally, mean squared error (MSE), Lp norm and its variants are the mainstream to optimize
forecasting models. However, they are not the best metric to train forecasting models (Esling & Agon,
2012) because time-series is temporally continuous. Additionally, Lp norm gives less information
about temporal correlation among time-series data. To better model temporal dynamics in time-
series data, researchers have used differentiable, approximated dynamic time warping (DTW), as an
alternative metric of MSE (Cuturi & Blondel, 2017; Abid & Zou, 2018; Mensch & Blondel, 2018).
However, using DTW as a loss function results in ignoring temporal localization of changes. Recently,
Le Guen & Thome (2019) suggests DILATE, a training metric to timely catch sudden changes of
non-stationary signals with smooth approximation of DTW and penalized temporal distortion index
(TDI). To guarantee to work in a timely manner, Le Guen & Thome (2019) introduce a loss function
that gives a harsh penalty when predictions show high temporal distortion. However, TDI relies on
the DTW path, and DTW often shows misalignment because of its noise- and scale-sensitive. Thus,
DILATE often loses its advantage with complex data, showing disadvantages at the beginning of the
training. In this work, we discuss distortions and transformation invariances and design a new loss
function that allows models to learn shapes in the data and produce noise-robust forecasting results.

3 PRELIMINARY

In this section, we aim to investigate common distortions without losing the goal of time-series
forecasting (i.e., modeling temporal dynamics and accurate forecasting). To help understand the
concepts, we first define notations and terms (Sec. 3.1). We then discuss common distortions in
time-series in transformation perspectives that need to be considered for building a shape-aware loss
function (Sec. 3.2) and describe how other loss functions (e.g., DTW and TDI) handle shapes during
learning (Sec. 3.3). Last, we explain the conditions for effective time-series forecasting (Sec. 3.4).

3.1 NOTATIONS AND DEFINITIONS

Let Xt denote a data point at a time step t. Then, we can define a time-series forecasting problem as:

Definition 1. Given T -length historical time-series X = [Xt−T+1, . . . , Xt], Xi ∈ RF at time t and
corresponding T ′-length future time-series Y = [Yt+1, . . . , Yt+T ′ ], Yi ∈ RC , time-series forecasting
aims to learn mapping function f : RT×F → RT ′×C .

To distinguish the label (i.e., ground-truth) and prediction time-series data, we note the label data
as Y and prediction data as Ŷ. Next, we set up two goals for time-series forecasting, which require
not only precise, but also informative forecasting Wu et al. (2021); Zhou et al. (2022); Le Guen &
Thome (2019) as follow:

• Mapping function f should be learnt to point-wisely reduce distance between Ŷ and Y; and

• The output Ŷ should have similar temporal dynamics with Y.

Temporal dynamics are informative patterns in time-series, such as rise, drop, trough, peak, and
plateau. The optimization for the point-wise distance is the conventional methods utilized in deep
learning domain, which could be obtained by using MAE or MSE. But in the real-world problem,
for example, the traffic speed prediction or the economics, accurate forecasting of such “temporal
dynamics.” Esling & Agon (2012) also emphasized the importance of measuring temporal dynamics,
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Figure 2: Example of the six distortions on the amplitude axis (top) and temporal axis (bottom).

as “...allowing the recognition of perceptually similar objects even though they are not mathematically
identical.” In this paper, we define the temporal dynamics as follows:

Definition 2. Temporal dynamics (or shapes) are the informative periodic and non-periodic patterns
in time-series data.

In this work, we aim to design a shape-aware loss function that satisfies both goals. To this end, we
first discuss distortions that two time-series with similar shapes can have.

Definition 3. Given two time-series F and G having a similar shape but not being mathematically
identical, F could be formulated by transformation H(G). Then, we can call time-series F and G
have a distortion, which could be represented by transformation H.

Distortion generally occurs in different aspects. Distortions are defined as temporal distortion (i.e.,
warping) and amplitude distortion (i.e.,scaling) with respect to its relevance of dimension, time
and amplitude. Existing distortion in data leads to misbehavior of the model, as measurements
are interrupted by the distortion. For example, if we have two time-series F and G = F + k,
which have a similar shape but different means, G could represent many temporal dynamics of F.
However, measurements often evaluate F and G are different (e.g., measuring with MSE) and causes
misguidance of the model in training. As such, it is important to have measurements that consider
similar shape invariant to distortion. We define a measurement for a distortion as follow:

Definition 4. Let transformation H represents a distortion H . Then, we call measurement D
invariant to H, if ∃δ > 0 : D(T,H(T)) < δ for any time-series T.

3.2 TIME-SERIES DISTORTIONS IN TRANSFORMATION PERSPECTIVES

Distortion, a gap between two similar time-series, affects on capturing shapes in time-series data. As
such, it is important to investigate different distortions and their impact on representation learning
aspects. There are six common time-series distortions that models encounter during learning (Esling
& Agon, 2012; Batista et al., 2014; Berkhin, 2006; Warren Liao, 2005; Kerr et al., 2008)–Amplitude
Shifting, Phase Shifting, Uniform Amplification, Uniform Time Scaling, Dynamic Amplification,
and Dynamic Time Scaling. Next, we explain each common time-series distortion in terms of
transformation with n-length time-series F(t) = [f(t1), f(t2), . . . , f(tn)], where t = [t1, t2, ..., tn].
Fig. 2 presents example distortions, categorized by amplitude and time dimensions.

• Amplitude Shifting describes how much a time-series shifts against another time-series. This
can be described with two time-series and the degree of shifting (k): G(t) = F(t) + k =
[f(t1) + k, . . . , f(tn) + k], where k ∈ R is constant.

• Phase Shifting is the same type of transformation (i.e., translation) as amplitude shifting, but
it occurs along with the temporal dimension. This distortion can be represented with two time-
series functions with the degree of shift (k): G(t) = F(t+ k) = [f(t1 + k), . . . , f(tn + k)],
where k ∈ R is constant. Cross-correlation (Paparrizos & Gravano, 2015; Vlachos et al.,
2005) is the most popular measure method that is invariant to this distortion.
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• Uniform Amplification is a transformation that changes the amplitude by multiplication of
k ∈ R. This distortion can be described with two functions and a multiplication factor (k):
G(t) = k · F(t) = [k · f(t1), . . . , k · f(tn)].

• Uniform Time Scaling means a uniformly shortened or lengthened F(t) on the temporal axis.
This distortion can be represented as G(t) = [g(t1), . . . , g(tm)], where g(ti) = f(t⌈k·i⌉)

and k ∈ R+. Although Keogh et al. (2004) propose uniform time warping methods to handle
this distortion, it still remains one of the difficult distortion types to measure, due to the
difficulty in finding the scaling factor k without testing all possible cases (Keogh, 2003).

• Dynamic Amplification can be interpreted as any distortion occurred by non-zero mul-
tiplication on the amplitude dimension. This distortion can be described as follows:
G(t) = H(t) · F(t) = [h(t1) · f(t1), . . . , h(tn) · f(tn)] with function h(t) such that
∀t∈T, h(t) ̸= 0. Local amplification is a representative distortion of this type of distortions,
which still remains challenging to solve.

• Dynamic Time Scaling means any transformation that dynamically lengthens or shortens
signals on the temporal dimension including local time scaling (Batista et al., 2014) and
occlusion (Batista et al., 2014; Vlachos et al., 2003). It can be represented as follows:
G(t) = F(h(t)) = [f(h(t1)), . . . , f(h(tn))], where h(t) is a positive, strictly increasing
function. Dynamic time warping (DTW) (Bellman & Kalaba, 1959; Berndt & Clifford,
1994; Keogh & Ratanamahatana, 2005) is the most popular technique on this distortion. Das
et al. (1997) also introduce the longest common subsequence (LCSS) algorithm to tackle
occlusion, noise, and outliers in this distortion.

There are several studies on shape-aware clustering (Bellman & Kalaba, 1959; Batista et al., 2014;
Paparrizos & Gravano, 2015; Berkhin, 2006; Warren Liao, 2005; Kerr et al., 2008) and classifica-
tion (Xi et al., 2006; Batista et al., 2014; Srisai & Ratanamahatana, 2009) tasks with the consideration
of shapes. On the other hand, only a few studies exist for time-series forecasting tasks, including
Le Guen & Thome (2019) that utilizes dynamic time warping (DTW) and temporal distortion index
(TDI) for modeling temporal dynamics. Next we describe mean square error (MSE) and DILATE,
proposed by Le Guen & Thome (2019), and discuss their invariance to the distortions.

3.3 DISTORTION HANDLING IN CURRENT TIME-SERIES FORECASTING OBJECTIVES

Many measurement metrics have been used in the time-series forecasting domain, and those based on
the Lp distance, including Euclidean distance, are widely used to handle time-series data. However,
such metrics do not have invariance to the aforementioned distortions (Ding et al., 2008; Le Guen &
Thome, 2019) due to its point-wise mapping. Specifically, since Lp distance compares the values
per time step, it cannot handle temporal distortions appropriately and vulnerable to scaling of the
data. Le Guen & Thome (2019) propose a loss function, called DILATE, to overcome the inadequate
characteristic in the Lp distance metrics by recognizing temporal dynamics with DTW and TDI. In
terms of transformation, DILATE handles dynamic time scaling, especially, local time scaling with
DTW, and phase shifting with penalized TDI, defined as follows:

LDILATE(ŷi, yi) := −γ log
( ∑

A∈Ak,k

exp
(
− ⟨A, α∆(ŷi, yi) + (1− α)Ω⟩

γ

))
,

where A, δ(ŷi, yi), Ω are the warping path, cost matrix, and squared penalization matrix, respectively.

While DILATE shows better performance than existing methods, there is a missing point in invariance
point of view. DILATE highly depends on DTW, which allows dynamic alignment of the time-
series for the predefined window. In such windows, DTW could align the signal regardless of their
information, for example, periodicity. As a result, the model makes misbehavior that could cheat
DTW within the window, as shown in Fig. 1 bottom. DTW’s scale and noise sensitivity are also
problematic. Basically, DTW computes the Euclidean distance of two time-series after its temporal
alignment in dynamic programming and the alignment relies on the distance function. Consequently,
the dynamic alignment of the DTW can be properly achieved only when two time-series have the same
range (Esling & Agon, 2012; Bellman & Kalaba, 1959). That means, it hardly achieves invariance on
amplitude distortion without appropriate pre-processing. Gong & Chen (2017) also show that DTW
poorly matches the prediction and target (i.e., ground-truth) time-series with amplitude shifting. Even
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when the target time-series is aligned with normalization, we cannot guarantee that the predicted and
target time-series are properly aligned due to DTW’s high sensitivity to noise. As a result, DILATE
can generate poor alignment results that can cause wrong optimization of TDI, which produces
instability during optimization steps and incorrect results. To design an effective shape-aware loss
function, we have to understand measures and when the measures have transformation invariances. In
the next section, we discuss how we interpret transformations in time-series forecasting point of view
and which types of transformations should be considered in objective function design.

3.4 TRANSFORMATION INVARIANCES IN TIME-SERIES FORECASTING

In the time-series domain, data often have various distortions so measurements are needed to satisfy
a number of transformation invariances for meaningfully modeling temporal dynamics. As discussed
in Sec. 3.1, we set the goal of time-series forecasting as (1) point-wisely reducing the gap between
prediction and target time-series and (2) preserving temporal dynamics of the target time-series. To
satisfy both of them, we have to consider (1) the method that should not have a negative impact on the
traditional goal of accurate time-series forecasting and (2) the distortions that play a crucial role in
capturing the temporal dynamics of the target time-series. In this section, we review all six distortions
whether it is a feasible loss function or not, discuss their benefits and trade-offs, and find appropriate
distortions to be considered in time-series forecasting.

Amplitude Shifting In a wide range of situations, it is beneficial to capture the the trends of time-
series sequence in spite of shifts in terms of amplitude. Thus, being invariant to amplitude shifting in
a loss function takes many advantages in time-series forecasting: (1) shape-awareness invariant to
amplitude shifting, (2) accurate deviation of values in modeling, and (3) effective on-time prediction
of the peak or sudden changes. To guarantee the amplitude shifting invariant in the optimization stage,
the loss function should induce an equal gap k between prediction and ground truth data in each step.
Formally speaking, the loss function with consideration of the amplitude shifting should satisfy:

L(Y, Ŷ) = 0 ⇔ ∀i∈[1,...,n], d(yi, ŷi) = k, (1)

where k ∈ R is an arbitrary and equal gap, and d(yi, ŷi) is a signed distance with a boundary
yi > ŷi. By allowing tolerance between prediction and target time-series, models can follow trends
in time-series instead of tending to predict exact values in point-wise. In short, unlike existing loss
functions that handle only point-wise distance (e.g., DTW), we should deal with both the point-wise
distance and its relational distance values to guarantee amplitude shifting.

Phase Shifting There are forecasting tasks, whose main objectives concern accurate forecasting of
peaks and periodicity in time-series (e.g., heart beat data and stock price data). For such tasks, phase
shifting invariance is one of the best solutions for (1) modeling periodicity, regardless of translation
on temporal axis and (2) having precise statistics with shapes, such as peak and plateau values. If a
loss function is to be invariant to phase shifting, the function should satisfy:

L(Y, Ŷ) = 0 ⇔ Y and Ŷ have the same dominant frequency. (2)

Note Eq. 2 allows a similar shape as target time-series in forecasting, not exactly same shape (e.g.,
sin(x) and 2 sin(x+ x0) with the same dominant frequency).

Uniform Amplification This proposition will be useful in case of sparse data that contains a
significant number of zeros. By adopting the uniform amplification invariance, models are able to
focus non-zero sequences, whereas this proposition allows models to receive less penalty in zero
sequences. Since it guarantees shape-awareness with a multiplication factor in a timely manner as
Fig. 2, invariance for uniform amplification fits well. To have a model trained with the uniform
amplification invariance, the loss function should satisfy:

L(Y, Ŷ) = 0 ⇔ ∀i∈[1,...,n],
yi
ŷi

= k(ŷi ̸= 0). (3)

Uniform Time Scaling, Dynamic Amplification, and Dynamic Time Scaling After careful
consideration, we conclude that uniform time scaling, dynamic amplification, and dynamic time
scaling are incompatible for optimization. We describe the reason below.

6



Under review as a conference paper at ICLR 2023

To achieve invariance for the uniform time scaling, the loss function should satisfy:

L(Y, Ŷ) = 0 ⇔ ∃c ∈ Z+ : {c|yi = ŷci} ∪ {c|yci = ŷi}∀i ∈ [0, 1, . . . , T ′].

This proposition will influence negatively original temporal dynamics, considering that it gives the
tolerance of mispredicting periodicity (e.g., daily periodic signals) and even cannot catch events (e.g.,
abrupt changing values) in timely manner. In summary, it hinders models from capturing shape and
corrupts periodic information.

For both dynamic amplification and dynamic time scaling, loss functions always are zero for all pairs
when we do not set the limit of tolerance. For example, if we do not limit tolerance, the proposition
for dynamic amplification invariance is as follow:

L(Y, Ŷ) = 0 ⇔ ∀ci ∈ R : yi = ciŷi,

If a loss function satisfies the proposition, it is always zero because there always exists ci = yi/ŷi
except ŷi = 0. Therefore, it is not able to give any information because all random values could be an
optimal solution. The same situation happens with the dynamic time scaling if we do not limit the
window. Consequently, all of the uniform time scaling, dynamic amplification, and dynamic time
scaling are unsuitable to be objectives in time-series forecasting.

4 METHODS

In this section, we describe a novel loss function TILDE-Q (a Transformation Invariant Loss function
with Distance EQuilibrium), which allows models to perform shape-aware time-series forecasting
based on the three distortion invariances. To build a transformation invariant loss function, we have
to design a loss function that satisfies the proposition for amplitude shifting invariance (Eq. 1), phase
shifting invariance (Eq. 2), and uniform amplification shifting invariance (Eq. 3), as discussed in
Sec. 3.4. We select them for our loss function because they help models capture the shape and do not
harm the goal of the traditional time-series forecasting (i.e., minimize gap between prediction and
target time-series). Not only the loss function should satisfy these propositions, but also it should
consider correlations between the whole sequence of outputs and ground truths rather than point-
wisely optimizing the model. It is not achieved by other loss functions, such as MSE or DILATE. To
handle all three distortions and the whole sequence of correlations, we build three objective functions
(a.shift, phase, and amp losses) that achieve one or more invariance by utilizing softmax, Fourier
coefficient, and auto-correlation to design a loss function.

Amplitude Shifting Invariance with Softmax (Amplitude Shifting) To strengthen amplitude
shifting invariance, we design a loss function that satisfies Eq. 1. This means, d(yi, ŷi) needs to be
the same value for all i. To satisfy the condition, we utilize the softmax function:

La.shift(Y, Ŷ) = T ′
T ′∑
i=1

| 1
T ′ − Softmax(d(yi, ŷi)))|,Softmax(d(yi, ŷi)) =

ed(yi,ŷi)∑T ′

j=1 e
d(yj ,ŷj)

(4)

where T ′, Softmax, and d(·, ·) are the length of sequence, softmax function, and signed distance
function, respectively. Because the Softmax produces the proportion of each value, it only reaches
to the optimal solution when it satisfies Eq. 1. Also, if we utilize Softmax, there is no need to know
arbitrary equal gap k.

Invariances with Fourier Coefficients (Phase Shifting) As we discussed in Sec. 3.4, one candidate
method to obtain phase shifting invariance is to use Fourier coefficients. As described in prior
studies (NG & GOLDBERGER, 2007), we can reconstruct original time-series only with dominant
frequencies. In this way, we utilize the norm of dominant Fourier coefficient of ground truth and
prediction sequences as our additional objective function, achieving phase shifting invariance. When
it comes to the other frequencies, we denote the norm of prediction sequence to reduce the value of
Fourier coefficient. Consequently, with the help of our loss function, this loss function allows model
to be noise robustness because the Fourier coefficients of white noises in original time-series are
relatively small. Simply, we optimize the distance between Fourier coefficients of two time-series as:

Lphase(Y, Ŷ) =

{
||F(Y)−F(Ŷ)||p, if dominant frequency
||F(Ŷ)||p, otherwise

(5)
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where || · ||p is the Lp norm. To obtain the dominant frequency terms, we calculate the norm of the
Fourier coefficient for each frequency and filter them with the squared root of sequence length,

√
T ′.

We also guarantee the minimum number of dominant frequencies as
√
T ′. This loss function obtains

uniform amplification invariance by utilizing a normalization technique to Fourier coefficients. For
example, sinx and c · sinx have the same Fourier coefficients if properly normalized. In summary,
by Eq. 5, we could obtain (1) invariance for phase shifting, (2) invariance for uniform amplification,
and (3) robustness to noise.

Invariances with auto-correlation (Uniform Amplification) Although Fourier coefficients can be
considered as a reasonable solution to catch the periodicity of the target time-series, it is not fully
invariant to phase shifting for three reasons–(1) the statistics (e.g., mean and variance) in data keep
changing, (2) such changing statistics also cause the changes of Fourier coefficients even in the same
frequency, and (3) objectives only with a norm of them cannot fully represent the original time-series.
Thus, we introduce an objective based on normalized cross-correlation, which satisfies Eq. 2 for a
periodic signal:

Lamp(Y, Ŷ) = ||R(Y,Y)−R(Y, Ŷ)||p, (6)

where R(·, ·) is a normalized cross correlation function. This loss function helps predicted sequences
to mimic label sequences by calculating difference between the auto-correlation of the label sequences
and cross-correlation between label and predicted sequences. Therefore, the label and prediction have
similar temporal dynamics regardless of phase shifting and uniform amplification.

In summary, we introduce TILDE-Q (Transformation Invariant Loss Function with Distance Equilib-
rium), combining Eq. 4, Eq. 5, and Eq. 6 as follows:

LTILDEq(Y, Ŷ) = αLa.shift(Y, Ŷ) + (1− α)Lphase(Y, Ŷ) + γLamp(Y, Ŷ), (7)

where α ∈ [0, 1] and γ is hyperparameter.

5 EXPERIMENTS

In this section, we present the results of our comprehensive experiments, demonstrating the effective-
ness of TILDE-Q and importance of transformation invariance.

Experimental Setup We conduct the experiments with four state-of-the-art models, including
Informer (Zhou et al., 2021), N-Beats (Oreshkin et al., 2020), Autoformer (Wu et al., 2021), and
FEDformer (Zhou et al., 2022) and one simple sequence-to-sequence gated recurrent unit (GRU)
model. We use seven real-world datasets–ECG5000, Traffic, ETTh2, ETTm2, ECL, Exchange, and
Weather and one synthetic dataset–Synthetic for model training. We repeat each experiment with a
model and dataset 10 times in combinations with three different objective functions. Appendix A
provides detailed explanations on the datasets, hyperparameter setting, and model architectures.

Table 1: Experimental results of short-term time-series forecasting on the three datasets with sequence-
to-sequence GRU model.

Methods GRU + MSE GRU + DILATE GRU + TILDE-Q

Eval MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

Synthetic 0.0107 3.5080 1.0392 0.3523 0.0130 3.4005 1.1242 0.3825 0.0119 3.2873 1.1564 0.3811

ECG5000 0.2152 1.9718 0.8442 0.7743 0.8270 3.9579 2.0281 0.4356 0.2141 1.9575 0.7714 0.7773
Traffic 0.0070 1.4628 0.2343 0.7209 0.0095 1.6929 0.2814 0.6806 0.0072 1.4600 0.2276 0.7220

5.1 EXPERIMENT RESULTS

Evaluation Metrics In the experiment, we evaluate TILDE-Q with four evaluation metrics: mean
squared error (MSE), dynamic time warping (DTW), its corresponding temporal distortion index
(TDI), all of which are used in Le Guen & Thome (2019). As DTW is sensitive to noise and generates
incorrect paths when one of the time-series data is noisy (as discussed in Sec. 3.3), we additionally
use the longest common subsequence (LCSS) for comparison, which is more robust to outliers and
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Table 2: Experimental results on six real-world datasets (four cases) with four SOTA models and
three training metrics. For all experiment, we set input sequence length T = 96.

Model N-Beats Informer Autoformer FEDformer

Methods MSE DILATE TILDE-Q MSE DILATE TILDE-Q MSE DILATE TILDE-Q MSE DILATE TILDE-Q

Metric MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS MSE LCSS

E
T

T
h2

96 0.187 0.468 0.310 0.487 0.155 0.586 0.246 0.463 0.328 0.503 0.176 0.537 0.153 0.618 0.221 0.531 0.149 0.631 0.130 0.669 0.191 0.526 0.138 0.662
192 0.239 0.450 0.618 0.463 0.173 0.581 0.281 0.425 0.408 0.489 0.243 0.431 0.197 0.601 0.282 0.533 0.207 0.598 0.182 0.623 0.269 0.526 0.199 0.612
336 0.289 0.454 1.140 0.458 0.213 0.537 0.308 0.443 0.416 0.506 0.295 0.416 0.239 0.595 0.375 0.525 0.236 0.597 0.230 0.605 0.351 0.509 0.238 0.604
720 0.388 0.438 1.671 0.457 0.304 0.528 0.287 0.442 0.422 0.481 0.315 0.426 0.285 0.577 0.429 0.492 0.237 0.579 0.278 0.591 0.433 0.509 0.287 0.581

E
T

T
m

2 96 0.079 0.672 0.152 0.437 0.095 0.690 0.088 0.738 0.126 0.512 0.087 0.781 0.099 0.675 0.113 0.593 0.094 0.707 0.068 0.787 0.115 0.632 0.067 0.792
192 0.122 0.576 0.205 0.510 0.128 0.616 0.115 0.670 0.234 0.526 0.131 0.698 0.134 0.651 0.185 0.550 0.125 0.681 0.098 0.734 0.185 0.539 0.097 0.738
336 0.182 0.458 0.250 0.481 0.170 0.619 0.186 0.636 0.280 0.502 0.176 0.655 0.158 0.603 0.200 0.537 0.154 0.616 0.133 0.667 0.249 0.505 0.127 0.682
720 0.237 0.492 0.417 0.583 0.233 0.707 0.216 0.576 0.374 0.474 0.206 0.586 0.199 0.606 0.266 0.500 0.188 0.627 0.196 0.626 0.291 0.481 0.182 0.636

E
C

L

96 0.366 0.658 1.115 0.507 0.318 0.722 0.270 0.703 0.985 0.632 0.280 0.727 0.420 0.648 0.681 0.625 0.351 0.691 0.253 0.732 0.479 0.694 0.264 0.727
192 0.430 0.621 1.185 0.497 0.338 0.718 0.279 0.706 1.120 0.605 0.307 0.733 0.420 0.657 0.731 0.611 0.403 0.668 0.295 0.731 0.549 0.681 0.282 0.734
336 0.519 0.596 1.246 0.509 0.383 0.711 0.320 0.722 1.233 0.569 0.327 0.714 0.462 0.653 0.789 0.609 0.463 0.642 0.331 0.721 0.697 0.689 0.339 0.730
720 0.624 0.571 1.306 0.533 0.454 0.696 0.641 0.456 1.370 0.550 0.467 0.629 0.500 0.618 0.863 0.607 0.504 0.642 0.396 0.696 0.774 0.640 0.394 0.701

E
xc

ha
ng

e 96 0.450 0.442 0.394 0.432 0.275 0.447 0.353 0.469 0.326 0.468 0.526 0.455 0.247 0.458 0.192 0.465 0.173 0.458 0.144 0.435 0.388 0.444 0.122 0.470
192 1.216 0.416 1.568 0.406 1.662 0.435 0.968 0.465 0.974 0.458 1.285 0.496 0.325 0.432 0.473 0.412 0.295 0.443 0.269 0.420 0.591 0.419 0.296 0.447
336 1.453 0.413 3.678 0.387 1.843 0.460 1.371 0.468 1.673 0.443 1.691 0.493 0.548 0.328 0.803 0.311 0.533 0.332 0.492 0.414 0.752 0.397 0.590 0.434
720 1.856 0.407 3.901 0.340 2.849 0.462 1.764 0.468 1.829 0.529 1.913 0.510 1.362 0.236 1.494 0.230 1.199 0.223 1.212 0.384 1.511 0.376 1.170 0.393

Tr
af

fic

96 0.234 0.830 2.332 0.525 0.229 0.837 0.261 0.833 2.961 0.731 0.228 0.849 0.256 0.876 0.483 0.852 0.227 0.888 0.207 0.882 0.353 0.861 0.187 0.898
192 0.301 0.792 2.563 0.552 0.335 0.803 0.292 0.816 2.998 0.739 0.275 0.825 0.260 0.878 0.565 0.819 0.250 0.882 0.205 0.895 1.468 0.859 0.196 0.898
336 0.345 0.792 2.460 0.521 0.399 0.821 0.311 0.811 2.970 0.712 0.299 0.817 0.247 0.880 0.816 0.805 0.242 0.876 0.214 0.902 2.974 0.852 0.206 0.895
720 0.430 0.796 2.352 0.518 0.448 0.809 0.347 0.815 2.685 0.587 0.386 0.775 0.272 0.871 1.073 0.818 0.284 0.868 0.229 0.892 3.083 0.858 0.231 0.873

W
ea

th
er 96 0.004 0.407 0.002 0.426 0.001 0.517 0.004 0.456 0.007 0.516 0.002 0.560 0.017 0.482 0.002 0.531 0.001 0.546 0.007 0.526 0.002 0.554 0.001 0.579

192 0.006 0.421 0.003 0.431 0.002 0.508 0.003 0.452 0.004 0.470 0.003 0.552 0.007 0.494 0.003 0.542 0.002 0.535 0.006 0.542 0.003 0.600 0.002 0.586
336 0.006 0.424 0.009 0.358 0.003 0.507 0.005 0.445 0.005 0.488 0.004 0.567 0.005 0.490 0.003 0.485 0.002 0.525 0.005 0.526 0.005 0.480 0.002 0.578
720 0.007 0.432 0.153 0.398 0.003 0.508 0.006 0.448 0.074 0.514 0.005 0.569 0.008 0.474 0.011 0.472 0.002 0.510 0.006 0.491 0.003 0.489 0.002 0.574

Count 8 0 0 0 16 24 9 3 1 4 14 17 4 4 0 1 20 17 9 7 0 1 15 16

noise (Esling & Agon, 2012). The longer the length of matched subsequences is achieved, the better
performance LCSS shows in modeling the shapes. For the state-of-the-art models, we reports the
MSE and LCSS. For the detailed results including DTW and TDI, please refer to Appendix B.

Results and Analysis Table 1 shows the results of short-term forecasting performance of gated
recurrent unit (GRU) optimized with MSE, DILATE, and TILDE-Q metrics. Synthetic, ECG5000,
and Traffic datasets are used for the experiment. With the Synthetic dataset, every used metric shows
its own benefits. This result indicates that similarity of the shape and MSE measures have a clear
advantage when a model is trained and evaluated with themselves. Also, since the model is evaluated
with real-world datasets, it is revealed TILDE-Q outperforms other objective functions in most
evaluation metrics. These results indicate our approach for learning shapes in time-series data works
better than existing methods for forecasting. DILATE does not show impressive performance with
ECG5000 due to its high sensitiveness to noise, as discussed in Sec. 3.3.

Table 2 summarize the experiment results with four state-of-the-art models, N-Beats, Informer,
Autoformer, and FEDformer. The models make predictions for both short-term (L=96) and long-term
(L up to 720), so that we can investigate their performances with different forecasting difficulties. In
most of datasets, the models with TILDE-Q outperform those with other training metrics. Especially
for long-term forecasting, we observe that for N-Beats and Informer with TILDE-Q significantly
improve the performance with the other metrics. We provide some visual examples in Appendix B
and more detailed analysis, qualitative experiments with example visualizations, ablation study results
in Appendix B. This result implies that TILDE-Q improves performances of the models in learning
temporal dynamics, including LCSS of N-Beats (improved over 10%).

6 CONCLUSION AND FUTURE WORK

We propose TILDE-Q, a transformation invariant loss function with distance equilibrium, which
allows shape-aware time-series forecasting in a timely manner. To design TILDE-Q, we review
existing transformations in time-series data and discuss the conditions that ensure transformation
invariances during optimization tasks. The designed TILDE-Q ensures a model to be invariant to
the amplitude shifting, phase shifting, and uniform amplification so that a model better captures
the shape in time-series data. To prove the effectiveness of TILDE-Q, we conduct comprehensive
experiments with state-of-the-art models and real-world datasets. The results indicate that the model
trained with TILDE-Q generates more timely, robust, accurate, and shape-aware forecasting in both
short-term to long-term forecasting tasks. We conjecture that this work can facilitate future research
on transformation invariances and shape-aware forecasting.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Abubakar Abid and James Y Zou. Learning a warping distance from unlabeled time series using
sequence autoencoders. In Advances in Neural Information Processing Systems, volume 31, pp.
10568–10578, 2018.

B.R. Bakshi and G. Stephanopoulos. Representation of process trends—iv. induction of real-time
patterns from operating data for diagnosis and supervisory control. Computers & Chemical
Engineering, 18(4):303–332, 1994.

Gustavo E. A. P. A. Batista, Eamonn J. Keogh, Oben Moses Tataw, and Vinícius M. A. de Souza. CID:
an efficient complexity-invariant distance for time series. Data Mining and Knowledge Discovery,
28(3):634–669, 2014. doi: 10.1007/s10618-013-0312-3.

R. Bellman and R. Kalaba. On adaptive control processes. IRE Transactions on Automatic Control, 4
(2):1–9, 1959.

Pavel Berkhin. A survey of clustering data mining techniques. In Grouping Multidimensional Data -
Recent Advances in Clustering, pp. 25–71. Springer, 2006.

Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time series.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining,
AAAIWS’94, pp. 359–370. AAAI Press, 1994.

Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. In International
Conference on Learning Representations, 2020.

George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time series analysis:
forecasting and control. John Wiley, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In Proceedings of the International Conference on
Learning Representations, 2016.

Marco Cuturi and Mathieu Blondel. Soft-dtw: A differentiable loss function for time-series. In
Proceedings of the 34th International Conference on Machine Learning, ICML’17, pp. 894–903,
2017.

Gautam Das, Dimitrios Gunopulos, and Heikki Mannila. Finding similar time series. In Principles of
Data Mining and Knowledge Discovery, pp. 88–100, 1997.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Querying and
mining of time series data: Experimental comparison of representations and distance measures.
Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008.

Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing Surveys, 45(1), 2012.

Zhichen Gong and Huanhuan Chen. Dynamic state warping. CoRR, abs/1703.01141, 2017.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to remember rare events. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

Eamonn J. Keogh. Efficiently finding arbitrarily scaled patterns in massive time series databases. In
Knowledge Discovery in Databases: PKDD 2003, volume 2838 of Lecture Notes in Computer
Science, pp. 253–265, 2003.

10



Under review as a conference paper at ICLR 2023

Eamonn J. Keogh and Chotirat (Ann) Ratanamahatana. Exact indexing of dynamic time warping.
Knowledge and Information Systems, 7(3):358–386, 2005.

Eamonn J. Keogh, Jessica Lin, and Wagner Truppel. Clustering of time series subsequences is mean-
ingless: Implications for previous and future research. In Proceedings of the IEEE International
Conference on Data Mining, pp. 115–122. IEEE Computer Society, 2003.

Eamonn J. Keogh, Themis Palpanas, Victor B. Zordan, Dimitrios Gunopulos, and Marc Cardle.
Indexing large human-motion databases. In Proceedings of the International Conference on Very
Large Data Bases, pp. 780–791, 2004.

G. Kerr, H.J. Ruskin, M. Crane, and P. Doolan. Techniques for clustering gene expression data.
Computers in Biology and Medicine, 38(3):283–293, 2008.

Vincent Le Guen and Nicolas Thome. Shape and time distortion loss for training deep time series
forecasting models. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Chunggi Lee, Yeonjun Kim, Seungmin Jin, Dongmin Kim, Ross Maciejewski, David Ebert, and
Sungahn Ko. A visual analytics system for exploring, monitoring, and forecasting road traffic
congestion. IEEE Transactions on Visualization and Computer Graphics, 26(11):3133–3146, 2020.
doi: 10.1109/TVCG.2019.2922597.

Hyunwook Lee, Seungmin Jin, Hyeshin Chu, Hongkyu Lim, and Sungahn Ko. Learning to remember
patterns: Pattern matching memory networks for traffic forecasting. In International Conference
on Learning Representations, 2022.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In Proceedings of the International Conference on Learning
Representations. OpenReview.net, 2018.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung. Mem2seq: Effectively incorporating knowledge
bases into end-to-end task-oriented dialog systems. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pp. 1468–1478, 2018.

Yasuko Matsubara, Yasushi Sakurai, Willem G. van Panhuis, and Christos Faloutsos. FUNNEL: au-
tomatic mining of spatially coevolving epidemics. In The ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 105–114. ACM, 2014.

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured predic-
tion and attention. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 3462–3471, 2018.

JASON NG and JEFFREY J GOLDBERGER. Understanding and interpreting dominant frequency
analysis of af electrograms. Journal of Cardiovascular Electrophysiology, 18(6):680–685, 2007.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2020.

John Paparrizos and Luis Gravano. K-shape: Efficient and accurate clustering of time series. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, pp. 1855–1870, 2015. doi: 10.1145/2723372.2737793.

M.H. Pesaran, D. Pettenuzzo, and A. Timmermann. Forecasting time series subject to multiple
structural breaks. Cambridge Working Papers in Economics 0433, Faculty of Economics, University
of Cambridge, 2004.

Dararat Srisai and Chotirat Ann Ratanamahatana. Efficient time series classification under template
matching using time warping alignment. In Proceedings of the International Conference on
Computer Sciences and Convergence Information Technology, pp. 685–690, 2009.

11



Under review as a conference paper at ICLR 2023

Daniel Stoller, Mi Tian, Sebastian Ewert, and Simon Dixon. Seq-u-net: A one-dimensional causal
u-net for efficient sequence modelling. In Christian Bessiere (ed.), Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 2893–2900. ijcai.org, 2020.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In Advances in Neural Information Processing Systems, volume 28, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.

Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Eamonn Keogh. Indexing
multi-dimensional time-series with support for multiple distance measures. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp.
216–225, 2003.

Michail Vlachos, Philip S. Yu, and Vittorio Castelli. On periodicity detection and structural periodic
similarity. In Proceedings of the SIAM International Conference on Data Mining, pp. 449–460,
2005.

T. Warren Liao. Clustering of time series data—a survey. Pattern Recognition, 38(11):1857–1874,
2005.

Andreas S. Weigend and Neil A. Gershenfeld. Time Series Prediction: Forecasting the Future and
Understanding the Past. Addison-Wesley, 1994. ISBN 0-201-62601-2.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, volume 34, pp. 22419–22430, 2021.

Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann Ratanamahatana. Fast time
series classification using numerosity reduction. In Proceedings of the International Conference
on Machine Learning, ICML ’06, pp. 1033–1040. Association for Computing Machinery, 2006.

Fisher Yu, Vladlen Koltun, and Thomas A. Funkhouser. Dilated residual networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 636–644. IEEE Computer
Society, 2017.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(12):11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 27268–27286, 2022.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data streams in
real time. In Proceedings of the International Conference on Very Large Databases, pp. 358–369.
Morgan Kaufmann, 2002.

12



Under review as a conference paper at ICLR 2023

A DETAILED EXPERIMENT SETUP

Dataset In our experiment, we utilize six datasets – Synthetic, ECG5000, and Traffic dataset
for the simple model (i.e., Sequence-to-Sequence Gated Recurrent Unit) and ETTh2, ETTm2, and
Electricity for the state-of-the-art model (i.e., Informer and N-Beats). For each dataset, we describe
some metadata of them and experimental setting, including the input length n and prediction window
L.

Synthetic: As Le Guen & Thome (2019) describe, the Synthetic dataset is an artificial dataset for
measuring model performance on sudden changes (step functions) with an input signal composed
of two peaks. The amplitude and temporal position of the two peaks are randomly selected. Then
the selected position and amplitude of the step are determined by a peak position and amplitude. We
use 500 time-series for training, 500 for validation and 500 for testing. For the Synthetic dataset, we
set input length as n = 20 and prediction window as L = 40. The generation code is provided in
DILATE Github1.

ECG5000: This dataset is originally a 20-hour long ECG (Electrocardiogram), downloaded from
Physionet2 and archived in UCR Time Series Classification Archive (Dau et al., 2019). The data is
split by each heartbeat and processed to be in equal lengths (140). In the training, we use 500 for
training, 500 for validation, and 4000 for testing. We take first n = 84 steps as input and predict last
L = 56 steps.

Traffic: Traffic dataset is a collection of 48 months (2015-2016) hourly road occupancy rate (between
0 to 1) data from the California Department of Transportation3. As Le Guen & Thome (2019) do,
we utilize univariate series of the first sensor, a total of 17544 data points. We set our problem as
forecasting L = 24 future occupancy rates with n = 168 historical data (past week). We use 60% of
the data for training, 20% for validation, and the rest for evaluation.

ETT: The ETT (Electricity Transformer Temperature) dataset, published by Zhou et al. (2021), is
2-year data collected from two separated counties in China, including ETTh2 and ETTm2 datasets.
Each data point has a target value of “oil temperature” and other 6 power load features. ETTh2 and
ETTm2 datasets have 1-hour and 15-minute intervals, respectively. As Zhou et al. (2021) do, we split
them into 12/4/4 months for the training/validation/testing. Detailed settings, such as the input and
output length and hyperparameter setting, are based on the information at Informer Github4.

ECL: The ECL (Electricity Consuming Load) is a dataset recorded in kWh every 15-minutes
from 2012 to 2014, for 321 clients. In our experiment, we split them into 15/3/4 months for the
train/validation/test, as Zhou et al. (2021) do. Note that we use the same hyperparameter settings in
the ETTh2 dataset.

Deep Learning Model Architectures We perform experiments with three different model architec-
tures, including Sequence-to-Sequence GRU, Informer, and N-Beats. To induce models to predict
future time-series in a timely manner, we set α = 0.5 and γ = 0.01 for TILDE-Q. Other training
metrics, including MSE and DILATE, are used as described in their original papers. All models are
trained with Early Stopping and ADAM optimizer.

Sequence-to-Sequence GRU To evaluate TILDE-Q in simple model, we utilize one layer Sequence-
to-Sequence GRU model. For the training of the GRU model, we set learning rate of 1e− 3, hidden
size of 128, trained by maximum 1000 epochs with Early Stopping and ADAM optimizer.

Informer When we train Informer with ETTh2, ETTm2, and ECL dataset, we utilize the official code
and hyperparameter setting. In the case of ECL dataset, as author answered in their official code4, we
utilize same hyperparameter and dataset splitting criteria as ETTh2 dataset.

N-Beats For N-Beats, we utilize two generic blocks with the hidden size of 128. Additionally, we set
the learning rate as 1e− 3 for all three datasets.

1https://github.com/vincent-leguen/DILATE
2https://physionet.org/
3http://pems.dot.ca.gov
4https://github.com/zhouhaoyi/Informer2020
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Autoformer For Autoformer5, we use the official code and hyperparameter setting. For the ETTh2
dataset, we utilize hyperparameter settings described in the official code of FEDFormer6.

FEDformer For FEDformer6, we use the official code and hyperparameter setting.

B ADDITIONAL EVALUATIONS

B.1 DETAILED EXPERIMENT RESULTS AND ANALYSIS

Table 3: Detailed experimental results on six real-world datasets (four cases) with N-Beats.
Methods N-Beats + MSE N-Beats + DILATE N-Beats + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

E
T

T
h2

96 0.1869 7.2379 2.3787 0.4688 0.3105 6.5849 3.6490 0.4879 0.1557 5.1011 1.3240 0.5862
192 0.2385 11.5667 4.9153 0.4505 0.6186 9.7254 7.0831 0.4637 0.1738 7.6334 2.4122 0.5819
336 0.2889 16.5255 11.5207 0.4544 1.1406 13.7328 14.6986 0.4584 0.2132 11.3351 5.3556 0.5373
720 0.3881 24.1570 18.8462 0.4381 1.6713 19.4392 23.7028 0.4575 0.3044 17.6006 9.6636 0.5287

E
T

T
m

2 96 0.0790 3.9685 2.0436 0.6721 0.1524 7.9302 5.5597 0.4379 0.0952 4.0110 2.1939 0.6902
192 0.1224 6.8695 3.2834 0.5762 0.2055 10.0393 8.5602 0.5107 0.1286 6.3556 4.9798 0.6160
336 0.1824 12.1438 8.5915 0.4587 0.2501 12.6342 16.1473 0.4819 0.1705 8.9377 8.3539 0.6195
720 0.2370 22.8676 17.8458 0.4929 0.4170 17.7764 24.6877 0.5836 0.2336 14.2715 19.0883 0.7070

E
C

L

96 0.3666 3.5207 0.2989 0.6589 1.1156 5.1430 2.6613 0.5074 0.3183 2.9707 0.4844 0.7229
192 0.4307 5.7578 0.4253 0.6212 1.1859 7.3406 2.8488 0.4973 0.3383 4.1817 0.4229 0.7187
336 0.5199 8.5563 0.5384 0.5965 1.2460 9.5096 3.0517 0.5091 0.3831 5.6643 0.3024 0.7112
720 0.6240 13.9436 0.6510 0.5717 1.3061 13.1928 3.7279 0.5337 0.4540 8.9997 0.3251 0.6960

E
xc

ha
ng

e 96 0.4496 8.6395 4.3197 0.4424 0.3945 8.9661 4.3286 0.4316 0.2748 7.9744 5.2964 0.4467
192 1.2161 12.1857 10.5166 0.4157 1.5684 13.0560 9.2434 0.4061 1.6629 11.5557 8.7896 0.4348
336 1.4529 14.7085 19.0407 0.4130 3.6784 17.5189 17.2512 0.3871 1.8432 12.5648 20.8871 0.4603
720 1.8563 21.7347 50.6751 0.4073 3.9008 26.7020 74.0546 0.3400 2.8487 19.1588 53.8069 0.4619

Tr
af

fic

96 0.2349 2.1046 0.0216 0.8303 2.3325 3.9657 1.2052 0.5250 0.2286 2.0699 0.0207 0.8371
192 0.3014 3.4040 0.0142 0.7916 2.5627 5.4169 1.1355 0.5515 0.3352 3.2559 0.0119 0.8028
336 0.3455 4.6409 0.0088 0.7918 2.4599 8.2828 1.3377 0.5208 0.3990 4.2622 0.0066 0.8206
720 0.4298 7.0561 0.0045 0.7958 2.3522 12.6258 0.9967 0.5177 0.4480 6.7344 0.0034 0.8085

W
ea

th
er 96 0.0042 9.3228 5.9134 0.4072 0.0023 8.9289 5.0617 0.4256 0.0010 6.5198 6.0450 0.5168

192 0.0056 10.9682 11.9549 0.4212 0.0030 12.8164 10.6858 0.4307 0.0017 8.8391 9.0867 0.5076
336 0.0058 13.3578 14.6572 0.4243 0.0087 20.4895 23.7903 0.3579 0.0026 11.8682 9.6758 0.5074
720 0.0068 18.5861 22.1432 0.4315 0.1534 28.6021 47.4488 0.3982 0.0029 17.1895 19.1942 0.5078

At first, we observe that the model optimized with TILDE-Q outperforms the same model optimized
with other objective functions in both short- and long-term forecasting tasks. An interesting point in
the results is the large increased errors of TDI and DTW with long-term forecasting. For example, TDI
of Informer with DILATE shows dramatically increased error with ECL dataset, as the forecasting
window increases, while LCSS does not produce such large increased error. We attribute this to
the weakness of DTW-based loss functions, which have a weakness due to high sensitiveness
on noise. In contrast, TILDE-Q does not show such large performance drop and even achieves
better performance in the long-term forecasting (e.g., Table 4, ETTh2). Additionally, we can find
that Informer with TILDE-Q on ECL data and N-Beats with TILDE-Q on all three datasets show
significant improvements. It indicates that TILDE-Q success to model shape, but other metrics could
not. We provide additional qualitative results below.

Next, we present qualitative analysis of the results. Fig. 3 shows how the model with different training
metrics forecast with different datasets. From the figure, we have noticed that TILDE-Q allows
the model to generate more robust, shape-aware forecasting, regardless of the amplitude shifting,
phase shifting, and uniform amplification. For example, in the case of N-Beats (Fig. 3 (b) bottom),
TILDE-Q generate forecasting results, which are more robust, shape-aware prediction compared
to other metrics. We also see the strength in the Informer case (Fig. 3 (b), top). Even when the
model has not enough ability to capture shape, TILDE-Q tries to retrieve the shape. We provide
additional qualitative results with visualization below. When the model have enough ability to capture
shape (i.e., except ETTh2, Informer of T ′ ∈ [192, 336, 720]), TILDE-Q shown its noise-robust,

5https://github.com/thuml/Autoformer
6https://github.com/MAZiqing/FEDformer
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Table 4: Detailed experimental results on six real-world datasets (four cases) with Informer.
Methods Informer + MSE Informer + DILATE Informer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS
E

T
T

h2

96 0.2466 6.9254 3.6676 0.4633 0.3284 6.3109 3.5838 0.5037 0.1768 5.8437 1.6734 0.5379
192 0.2818 10.2654 11.1580 0.4254 0.4086 8.8262 7.1780 0.4893 0.2432 10.2134 9.9865 0.4317
336 0.3089 12.1822 18.7014 0.4434 0.4164 10.3779 13.2580 0.5062 0.2958 13.5586 20.2850 0.4165
720 0.2877 17.6369 38.4617 0.4425 0.4229 14.1196 23.9403 0.4815 0.3157 18.4617 43.3238 0.4262

E
T

T
m

2 96 0.0889 3.4007 1.5719 0.7386 0.1263 6.0144 2.7757 0.5129 0.0871 3.1354 1.3474 0.7817
192 0.1157 5.7964 2.8128 0.6705 0.2340 9.7004 7.8354 0.5266 0.1317 5.7093 2.9129 0.6983
336 0.1860 8.9971 6.7970 0.6365 0.2805 11.7889 13.3861 0.5025 0.1767 9.0866 7.4023 0.6555
720 0.2165 14.7685 24.6694 0.5768 0.3745 16.7734 29.2783 0.4747 0.2063 15.3057 24.1959 0.5860

E
C

L

96 0.2709 2.8067 0.1720 0.7032 0.9856 3.6394 1.4794 0.6324 0.2800 2.9466 0.2473 0.7275
192 0.2793 4.1193 0.1508 0.7060 1.1209 5.2289 2.1749 0.6053 0.3077 4.2693 0.2978 0.7336
336 0.3203 5.9533 0.1642 0.7222 1.2331 7.8470 3.0415 0.5694 0.3271 5.8090 0.1984 0.7143
720 0.6414 15.8561 4.4284 0.4564 1.3706 12.5981 5.6720 0.5506 0.4676 11.4027 0.7107 0.6298

E
xc

ha
ng

e 96 0.3534 8.0965 4.8843 0.4689 0.3260 7.7370 5.6336 0.4678 0.5264 7.9866 6.5120 0.4553
192 0.9682 11.0843 11.3110 0.4647 0.9737 10.8894 15.6770 0.4584 1.2845 10.4358 10.7009 0.4959
336 1.3710 12.8076 18.5937 0.4676 1.6735 12.7034 29.2013 0.4428 1.6912 12.2349 18.2197 0.4932
720 1.7586 22.6852 59.4243 0.4681 1.8292 16.0093 56.8687 0.5293 1.9130 24.0510 62.8152 0.5104

Tr
af

fic

96 0.2606 2.0994 0.0208 0.8329 2.9612 2.3355 0.9646 0.7312 0.2284 2.0027 0.0194 0.8490
192 0.2920 3.2573 0.0126 0.8158 2.9978 3.5451 0.8429 0.7394 0.2753 3.1721 0.0125 0.8248
336 0.3109 4.6581 0.0078 0.8115 2.9696 4.9879 1.2672 0.7117 0.2993 4.4715 0.0077 0.8170
720 0.3472 6.7989 0.0040 0.8146 2.6845 10.7450 3.4514 0.5874 0.3859 7.5424 0.0051 0.7752

W
ea

th
er 96 0.0043 8.2890 5.4604 0.4556 0.0069 6.5571 4.7505 0.5159 0.0021 5.5412 4.5012 0.5602

192 0.0031 10.7993 9.2928 0.4523 0.0041 10.5645 9.4713 0.4704 0.0028 8.2535 5.8289 0.5516
336 0.0051 13.8721 22.2699 0.4451 0.0055 12.0586 16.4933 0.4884 0.0039 10.8802 10.5220 0.5668
720 0.0061 21.7720 41.5877 0.4476 0.0737 16.8378 29.8112 0.5142 0.0047 13.9934 20.9991 0.5689

Table 5: Detailed experimental results on six real-world datasets (four cases) with Autoformer.
Methods Autoformer + MSE Autoformer + DILATE Autoformer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

E
T

T
h2

96 0.1538 5.2227 2.1865 0.6187 0.2211 6.0453 2.5345 0.5315 0.1494 5.1060 1.9752 0.6317
192 0.1974 7.8730 3.3382 0.6019 0.2825 8.6696 5.6671 0.5335 0.2079 7.8917 3.7532 0.5984
336 0.2393 10.8002 7.3141 0.5954 0.3759 11.0335 13.1347 0.5257 0.2360 10.7212 7.0085 0.5971
720 0.2859 16.3502 15.9233 0.5772 0.4296 15.9819 22.2173 0.4924 0.2378 16.0002 13.7906 0.5795

E
T

T
m

2 96 0.0990 4.3498 2.5052 0.6756 0.1135 5.3097 2.2211 0.5936 0.0940 3.9078 2.2587 0.7075
192 0.1340 6.3207 3.3676 0.6512 0.1854 8.5209 3.7894 0.5506 0.1259 6.0979 2.9278 0.6810
336 0.1587 9.4374 6.9205 0.6036 0.2001 12.0265 8.8305 0.5370 0.1548 9.5223 7.2875 0.6169
720 0.1999 14.8332 11.9655 0.6064 0.2665 17.8025 17.4114 0.5001 0.1885 14.5844 9.9918 0.6277

E
C

L

96 0.4209 3.5957 0.2461 0.6487 0.6813 3.6490 0.4780 0.6253 0.3515 3.2173 0.2298 0.6912
192 0.4206 4.9924 0.3416 0.6574 0.7319 5.5324 0.2775 0.6118 0.4032 4.8581 0.3301 0.6680
336 0.4621 6.6888 0.2795 0.6535 0.7895 7.5665 0.2503 0.6091 0.4637 6.7335 0.3923 0.6429
720 0.5005 10.8571 0.2383 0.6183 0.8630 12.1416 0.1877 0.6074 0.5049 9.8492 0.2525 0.6420

E
xc

ha
ng

e 96 0.2472 8.2957 5.8340 0.4577 0.1921 8.4651 5.6328 0.4646 0.1730 8.2046 5.1165 0.4577
192 0.3255 11.4212 17.0909 0.4319 0.4732 12.8599 19.0164 0.4124 0.2955 11.3655 15.4372 0.4433
336 0.5483 15.1853 44.4975 0.3277 0.8035 18.0948 57.5819 0.3114 0.5331 16.7350 45.8166 0.3321
720 1.3620 24.6397 145.3080 0.2357 1.4936 27.7069 151.6671 0.2302 1.1993 19.5296 121.8509 0.2233

Tr
af

fic

96 0.2562 1.9689 0.0178 0.8761 0.4835 1.9044 0.0392 0.8521 0.2275 1.8778 0.0168 0.8879
192 0.2604 2.8922 0.0091 0.8780 0.5653 3.0466 0.0343 0.8187 0.2497 2.8793 0.0116 0.8817
336 0.2474 4.0026 0.0051 0.8797 0.8155 4.2637 0.0327 0.8047 0.2422 3.9469 0.0059 0.8760
720 0.2720 6.4371 0.0030 0.8710 1.0729 6.0776 0.0217 0.8176 0.2836 6.1751 0.0034 0.8674

W
ea

th
er 96 0.0168 7.4658 6.0336 0.4818 0.0019 5.9775 4.9688 0.5306 0.0015 5.9829 4.8957 0.5461

192 0.0069 10.6173 7.4506 0.4941 0.0026 8.3686 5.4565 0.5423 0.0017 7.7799 6.1032 0.5355
336 0.0052 12.5224 13.2607 0.4898 0.0030 12.4524 12.1816 0.4854 0.0020 10.3144 9.0025 0.5252
720 0.0078 18.5079 25.8063 0.4744 0.0115 20.1354 36.7754 0.4721 0.0023 15.2563 18.3134 0.5102

smooth forecasting with correctly modeled temporal dynamics. In the most of N-Beats results and
some of Informer results, TILDE-Q reveals that these models have enough ability to capture the
temporal dynamics with proper loss function. In summary, TILDE-Q proves that it is model-agnostic,
noise-robust, and able to capture the shape.
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Table 6: Detailed experimental results on six real-world datasets (four cases) with FEDformer.
Methods FEDformer + MSE FEDformer + DILATE FEDformer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS
E

T
T

h2

96 0.1299 4.7265 1.2607 0.6690 0.1906 6.2294 1.8228 0.5261 0.1381 4.7578 1.3560 0.6621
192 0.1819 7.6178 2.6979 0.6229 0.2688 8.8422 4.8043 0.5261 0.1988 7.6174 2.7712 0.6124
336 0.2305 10.5860 6.7027 0.6050 0.3506 11.4834 12.8408 0.5091 0.2382 10.4108 6.6218 0.6039
720 0.2776 15.7013 14.7466 0.5911 0.4327 14.0692 20.6266 0.5091 0.2871 15.3120 16.4059 0.5808

E
T

T
m

2 96 0.0682 3.0962 1.3862 0.7868 0.1147 4.6648 2.2981 0.6325 0.0669 3.0328 1.3556 0.7918
192 0.0976 5.2417 2.0295 0.7340 0.1848 8.0678 4.4893 0.5391 0.0971 5.1508 2.1782 0.7384
336 0.1326 8.3151 5.4619 0.6667 0.2493 13.6349 11.7563 0.5049 0.1279 8.3010 4.5488 0.6828
720 0.1957 14.2579 11.8328 0.6262 0.2913 17.4636 41.9434 0.4806 0.1822 14.1131 10.4778 0.6361

E
C

L

96 0.2531 2.6402 0.1436 0.7322 0.4794 2.8685 0.2482 0.6943 0.2638 2.6594 0.1614 0.7265
192 0.2945 3.8647 0.1831 0.7306 0.5485 4.3313 0.1732 0.6813 0.2821 3.7830 0.1277 0.7340
336 0.3313 5.2789 0.1078 0.7207 0.6967 5.7911 0.1985 0.6892 0.3385 5.1763 0.1229 0.7290
720 0.3956 8.5881 0.0632 0.6961 0.7741 10.1163 0.8837 0.6403 0.3939 8.5665 0.0784 0.7013

E
xc

ha
ng

e 96 0.1437 8.5595 4.4258 0.4347 0.3884 8.9178 7.0385 0.4439 0.1215 8.0591 6.1979 0.4704
192 0.2694 12.5168 12.3117 0.4202 0.5912 13.1929 15.4207 0.4187 0.2956 11.5607 12.1302 0.4474
336 0.4916 16.4673 27.0756 0.4140 0.7520 18.1381 33.7878 0.3969 0.5896 15.9267 24.8808 0.4342
720 1.2115 25.6243 108.0500 0.3838 1.5110 26.7031 91.6313 0.3760 1.1700 24.6190 71.8783 0.3935

Tr
af

fic

96 0.2074 1.9132 0.0165 0.8824 0.3533 1.8617 0.0291 0.8609 0.1867 1.8386 0.0152 0.8983
192 0.2051 2.7761 0.0085 0.8951 1.4682 2.7545 0.1312 0.8591 0.1961 2.7380 0.0083 0.8975
336 0.2140 3.7583 0.0047 0.9023 2.9741 3.7440 0.1779 0.8519 0.2059 3.7834 0.0050 0.8947
720 0.2291 5.9735 0.0026 0.8919 3.0829 5.8173 0.0949 0.8580 0.2312 6.1080 0.0022 0.8735

W
ea

th
er 96 0.0070 6.1550 4.7039 0.5264 0.0017 5.9507 4.5891 0.5535 0.0014 5.5205 4.1085 0.5792

192 0.0063 7.6906 6.2940 0.5417 0.0020 8.6593 4.6333 0.6000 0.0017 6.9706 5.0003 0.5863
336 0.0046 10.3501 9.4691 0.5261 0.0053 14.8249 9.6239 0.4801 0.0018 9.3016 7.4610 0.5784
720 0.0060 15.2429 24.5379 0.4911 0.0029 16.3929 20.0782 0.4892 0.0024 13.7936 15.7668 0.5737

Figure 3: Qualitative results with simple sequence-to-sequence GRU model (a) and state-of-the-art
model (b).

B.2 ADDITIONAL QUALITATIVE EXAMPLES
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Figure 4: Qualitative results with simple sequence-to-sequence GRU model

Figure 5: Qualitative results with ETTh2 in short-term forecasting

Figure 6: Qualitative results with ETTh2 in long-term forecasting
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Figure 7: Qualitative results with ETTm2 in short-term forecasting

Figure 8: Qualitative results with ETTm2 in long-term forecasting
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Figure 9: Qualitative results with ECL in short-term forecasting

Figure 10: Qualitative results with ECL in long-term forecasting
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B.3 ABLATION STUDY

To evaluate the effect of the α, γ, and measure the effect of each loss function, we conduct a set of
experiment with ETTh2 dataset and N-Beats on the long-term forecasting problem. As we can see in
the Fig. 11, the model tends to predict amplification-free forecasting when α increases. This results
indicate our motivation, “La.shift will return the forecasting results with same standard deviation
with timely manner but without consideration of proper average value.”

Furthermore, in the top of Fig. 12, we can observe three things: (1) if we utilize La.shift only, as we
intended, it have different average (-1.19 vs. 0.11) but relatively similar standard deviation (0.408 vs.
0.299); (2) In the case of Lphase only, they can capture dominant frequency and produce relatively
less-noisy forecasting; (3) Lamp have relatively similar average value (-1.195 vs. -0.319), but it has
far different standard deviation (0.408 vs. 8.592). In contrast, forecasting results of the model trained
with MSE is very noisy and hard to interpret (Fig. 12, bottom). Note that we normalized the results in
Fig. 12 because of the scale issue.

In Table 7, we provide how model performances vary with respect to hyperparameters of TILDE-Q.
For the default setting, we utilized α = 0.5, γ = 0.01. Because the design of TILDE-Q mainly
focuses on shape modeling, we can see that DTW and LCSS are not critically changing for the
hyperparameter. But their trade-offs are revealed in the MSE and TDI. For example, when we
decrease α, we can observe TDI increases. It indicates the trade-offs of phase shifting invariance,
which has tolerance for non-timely forecasting. Also, we can see that increasing α or γ affects the
MSE. When we have α = 1, we have no Lphase and less penalty for the statistical differences, and its
absence causes the high MSE, as we can see in Fig. 11. γ also affects the MSE, but Lphase reduces
Lamp’s side effect.

Table 7: Ablation study on with ETTh2, L = 720, and N-Beats
Metric Default γ = 0.1 γ = 0.5 γ = 1.0 α = 0.0 α = 0.1 α = 0.8 α = 1.0 La.shift only Lphase only Lamp only

MSE 0.3005 0.2968 0.3083 0.3168 0.3075 0.3161 0.2872 1.1752 1.5123 0.3391 1.8453
DTW 17.5154 17.5265 17.5649 17.7302 17.7564 17.5931 17.6508 17.6886 17.7261 17.848 18.0261
TDI 9.2197 9.1303 9.2261 9.4366 10.3550 9.8957 8.4725 8.7118 10.2519 12.8568 10.5602

LCSS 0.5382 0.5366 0.5277 0.5137 0.5050 0.5137 0.5584 0.5445 0.5341 0.4920 0.5086

Figure 11: Ablation study result visualization with different α on ETTh2 dataset
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Figure 12: Ablation study result visualization of three proposed loss function on ETTm2 dataset
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